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Abstract: Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during

downslope wind-driven fires even though various fuel treatments are conducted across the western

United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence

of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth

model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel

breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected

by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind

speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire

spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity

on the downstream edge of the fuel break. However, fuel break width mattered. We found that the

lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break

more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the

time of ignition influenced fire behavior and efficacy of management interventions.

Keywords: wildland-urban interface (WUI); fuels management; evacuation; Camp Fire; fuel break;

fire spread modeling; fire intensity; rate of spread; downslope wind; Prometheus fire growth model

1. Introduction

Wildfire behavior regimes can be broadly characterized as either fuel-dominated or
wind-dominated. These two wildfire regimes in California reflect differences in seasonal
timing, ignition sources, and geographical distributions across the state, which is topo-
graphically, climatologically, and ecologically diverse [1]. Management responses need to
consider this diversity to effectively mitigate fire risk. Fuel-dominated fires, also known as
plume or convection-dominated fires [2–5], are predominantly controlled by anomalously
high fuel loads and are common in central and northern California conifer forests during
peak lightning season (June–July), coinciding with high air temperatures and low precipita-
tion [6]. These fires tend to occur in low populated regions. The moderate rate of fire spread
allows for easier community evacuation and fire suppression activities as a method for
mitigating wildfire risk to human life and structures. Consequently, fuel-dominated fires
usually do not result in significant loss of lives or properties. In contrast, wind-dominated
fires are mostly caused by ignitions from humans or infrastructure failure, such as downed
power lines during extreme downslope wind events. These are typically dry, warm, and
gusty downslope windstorms occurring on the lee-side of mountain ranges and often have
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geographically distinct names, such as the North, Diablo, Sundowner, and Santa Ana winds
in California [7]. Large, fast-moving wildfires associated with these strong winds have long
been recognized as costly and difficult to mitigate and control [8]. As population growth
expands the wildland urban interface (WUI) into areas of higher wildfire risk, the chance of
ignition also increases [9–11]. When ignitions coincide with extreme winds and dry fuels,
rapid fire spread poses a major threat to communities. The potential for significant loss
of life and property increases because fire suppression efforts have very limited success.
One example of a catastrophic wind-dominated fire was the Camp Fire in 2018, which
burned through the town of Paradise and is currently the deadliest (85 deaths) and most
destructive (over 18,000 structures destroyed) wildfire in California history [12], with less
than three hour evacuation times for many people living in Paradise.

A variety of fuels treatments are used to mitigate the severity of wildfires in fire-prone
landscapes of the western United States. Commonly employed fuel-reduction treatments
include clearing, thinning, surface and ladder fuel removal (also known as shaded fuel
breaks), prescribed burning, planting fire-resistant vegetation, and grazing/pasturing. WUI
fuel treatments of a minimum width of 400 m have been proposed to protect private prop-
erty by creating safe zones for direct attack tactics [13]. Fuel treatments typically modify
fire behavior but do not always stop fire growth. Fuel breaks can play an important role
in controlling wildfire size and behavior if they are strategically placed, maintained, and
accessible for suppression activities by firefighters [14–16]. Alternatively, structural hard-
ening and 30–60 m of defensible space around structures can often increase fire resilience
more than broad scale fuel treatments far from the WUI [1,17,18].

A recent study [1] questions the efficacy of landscape-level fuel-reduction treatments
in controlling the overall size of wind-dominated fires, particularly during drought periods
when fuel moisture content is very low. Most structure losses during wind-dominated
wildfires are associated with spotting (burning embers lofted and transported ahead of the
fire front) [12,19]. In addition to spotting, wind-dominated fires often exhibit other extreme
fire behavior characteristics. High rate of spread, prolific crowning, and the presence of
occasional fire whirls (vertically oriented, intensely rotating columns of gas found in or
near fires) often inhibit direct fire control efforts [7]. For wind-dominated fire risks, a more
effective vegetation management strategy involves increasing the fuel moisture content
around the WUI [12,20], as opposed to traditional vegetation removal techniques away
from the WUI. Because there is no consensus on optimal fuel break widths, more research
is required to understand how fuel breaks in the WUI interact with severe downslope
wind-driven fires.

Wildfire behavior modeling is one important tool in fuels management [21]. A deter-
ministic wildfire modeling approach is one way to assess the effectiveness of fuel treatments
as demonstrated by [14] and [15], because actual fire scenarios can be represented by a
realization of some deterministic processes. Alternatively, a stochastic wildfire model-
ing approach is also used to create a more holistic picture of spatial wildfire risks using
Monte Carlo simulations [22–26]. Semi-empirical fire spread models have several advan-
tages over more sophisticated coupled fire-atmosphere models, such as significantly faster
computational times and relatively simple model configurations.

The aim of this study is to explore the effectiveness of fuel breaks placed in the WUI
(hereafter referred to as WUI fuel breaks) as a potential fuel treatment option for wind-
dominated wildfires. We use the Camp Fire as a retrospective case study because the
ignition by power line failure resulted in rapid fire spread and very short evacuation time
under strong downslope winds and extremely dry fuel conditions. The main research
objectives are to examine: (1) the potential downstream impacts of a WUI fuel break on
fire intensity, propagation, and arrival time or evacuation time of the Camp Fire; (2) how
the downstream fire behavior is affected by the width and fuel properties of the WUI fuel
break; and (3) the impacts of background wind speeds on the WUI fuel break. Note that
the WUI fuel break that we study is hypothetical and not an actual fuel break that exists in
the study area.
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2. Materials and Methods

2.1. Case Study

The Camp Fire was ignited at 06:25 Pacific Standard Time (PST) on 8 November 2018
due to an electrical transmission infrastructure failure under strong, dry downslope winds.
Fuels were also very dry due to delayed autumn precipitation. The fire reached the WUI of
the town of Paradise (defined here as the eastern edge of the township) within two hours
(Figure 1). This rapid fire spread is speculated to have partly resulted from long-range
spotting, with embers traveling as far as 7 km ahead of the main fire front [27]. Most of the
burned area between Paradise and the ignition point had previously burned during the
Butte Lightning Complex fire in July 2008, which was ignited by lightning strikes under
hot and dry but much less windy conditions. Brewer and Clements [28] and Mass and
Ovens [29] discussed the synoptic and mesoscale conditions during the Camp Fire.
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Figure 1. Map of Scott and Burgan Fire Behavior Fuel Models [30] in the 2018 Camp Fire domain.

Inset shows the domain location in California, USA. Observed burn perimeter at 18:00 PST on 8

November is shown in red contour and Paradise Township boundary is shown in magenta contour.

Yellow color indicates grass (GR) fuels, light orange color shrub (SH) or grass-shrub mix (GS) fuels,

green color timber understory (TU) fuels, and brown color timber litter (TL) fuels in the Scott and

Burgan fuel models. Bodies of water are shown in blue. The upwind (downwind) weather stream

location is shown with blue cross (circle) marker. The location of the ignition is indicated with a

red triangle.

2.2. Fire Growth Model

We use the Canadian operational wildland fire growth model Prometheus to test
WUI fuel break sensitivity during simulations of the Camp Fire (Figure 1). Prometheus
was developed to predict fire growth for near real-time operational decision support
and to assess the effectiveness of various fuel management strategies [31]. It computes
spatially-explicit, deterministic fire spread and behavior using topography (slope, aspect,
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and elevation), fuel, and weather data as inputs. Fire perimeters are produced in time
and space based on Huygen’s principle of wave propagation, which is also used in the US
FARSITE fire growth model [32].

Prometheus was selected for this study for the following reasons: [33] found that
the FARSITE [32] and FlamMap [34] models have significant underprediction biases in
modeled crown fire behavior in conifer forests in western North America. This is partly due
to incompatible model linkages between Rothermel’s surface [35] and crown fire [5] rate
of spread models and Van Wagner’s [36] criteria for crown fire initiation and propagation,
which were developed independently and were not intended to work together. Rothermel’s
models are laboratory based, while Prometheus, which is underpinned by the Canadian
Forest Fire Behavior Prediction (FBP) System [37,38], is largely based on field experiments
and high-intensity wildfire observations. Prometheus also accounts for the effect of short-
range spotting and breaching of non-fuel areas (lakes, rivers, roads, and fuel breaks) based
on the relationship between fire intensity and flame length [39]. It also accounts for the
contact angle of the head-fire to the non-fuel area [31]. Since the Camp Fire occurred in a
region of mixed conifer forests, grass, shrub, and dead and down fuels, we believe that
Prometheus is well suited for simulating the wildfire event and understanding the potential
impact of WUI fuel breaks on wildfire behavior. Finally, fire suppression actions are not
modeled as part of this study.

2.3. Weather and Fire Weather Index System Data

Hourly weather and associated Canadian Forest Fire Weather Index System compo-
nent values [40,41] were used in the Prometheus fire growth simulations. For the hourly
weather input, Weather Research and Forecasting (WRF) simulations were run at 1.6 km
horizontal grid spacing. Model-observation comparison was conducted using surface
Remote Automated Weather Station (RAWS) data in the region (Figure S1). The WRF
simulation overestimated the relative humidity (RH) and wind speed for the time period
between 06:30 and 18:00 PST. Overestimation trends were also seen in the WRF simulations
by [28,29] that had similar horizontal grid spacing. Keeping the minor overestimations
in mind, we decided to use the WRF output to create hourly weather stream data at two
locations in the simulation domain (Figure 2). Meteorological inputs to Prometheus consist
of an hourly time series of temperature, RH, wind speed and direction, and precipitation
(hereafter weather streams). The two weather stream locations (see Figure 1) were selected
to spatially represent low-level north-northwesterly flow over the northern Central Val-
ley and strong northeasterly winds descending the western slopes of the Sierra Nevada
Mountains. See [28,29] for detailed synoptic and mesoscale meteorological conditions.

We used the observed fire perimeter at 18:00 PST on 8 November 2018 to help infer
biases in the wind forcing data. This is due to significant uncertainty in wind speed
and direction associated with fire-atmosphere interactions [42,43] that are currently not
accounted for in two-dimensional fire growth models, such as Prometheus and FARSITE.
Specifically, +15 degrees was added to the hourly 10 m open wind directions to better
match the simulation with the observed fire perimeter. Additionally, a gust factor, defined
as the ratio between the peak wind gust of a specific duration to the mean wind speed for a
period of time [44], was calculated. The 10 m hourly wind gust and horizontal wind speed
(derived from u- and v-components) outputs from the ERA5 reanalysis [45] were used for
the calculations. At the upwind weather input locations, we multiplied the hourly wind
speeds by the gust factor. The final wind speed magnitude agrees with [29]’s estimated
wind gust of 26–31 m s−1 at the time of the ignition based on the above-surface wind speed.
The final wind speed magnitude is also similar to the maximum wind speed at about 250 m
above ground level in the vertical wind profiles of our WRF simulation near the ignition
point at 06:00 PST (Figure S2).
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In addition to the hourly meteorological forcing, Prometheus requires Fire Weather
Index System component values for the Fine Fuel Moisture Code (FFMC), Duff Moisture
Code (DMC), and Drought Code (DC), to account for the effects of weather on fuel moisture
contents and fire potential [40,41]. The FFMC provides a relative numeric rating of the
moisture content of fine surface litter (1–2 cm depth) and is indicative of the ease of ignition
and fine fuel flammability. The FFMC is characterized by a fast response to weather
variations. The DMC provides a relative numerical rating of the moisture content of loosely
compacted duff of moderate depth (7 cm depth) below the surface litter. The DMC has a
much slower response time (15 days) than the FFMC. The DC provides a relative numerical
rating of the moisture content of deep, compact organic matter (25 cm). The DC can indicate
the effects of seasonal drought on forest fuels because of its long-term response time (about
53 days) to weather variations [46]. The fuel moisture code scales are arranged so that
higher values represent lower moisture contents. The FFMC can range from zero to a
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maximum theoretical value of 99. The DMC and DC, on the other hand, are “open ended”,
meaning that they can range from zero to an increasingly higher value given an extended
dry spell. The FFMC, DMC, and DC values on the day of the Camp Fire were obtained from
ERA5 reanalysis. The starting FFMC, DMC, and DC values to initialize the Prometheus
model were 90, 325, and 1300, respectively.

2.4. Landscape Data

In Prometheus, vegetation is represented by one of the 16 Canadian Fire Behavior
Prediction System fuel types [37,38]. We converted LANDFIRE’s 40 Scott and Burgan
fire behavior fuel model remap data [30,47] into the 16 standard Fire Behavior Prediction
System fuel types, as shown in Figure 1 and Table 1, to better represent the domain for this
case study. LANDFIRE fuel data represents structures in Paradise as non-burnable, which
is not realistic. To better represent observed fire spread, we converted these fuels to M-1
with a 90% percent conifer value (Figure S3). Dominant fuel types inside the observed burn
perimeter and upwind of Paradise mainly consisted of a mixture of timber understory (TU;
high load conifer with shrub and grass) and timber litter (TL; dead and down woody fuel)
(Figure S4). A mixture of grass and shrub fuels was more dominant downwind of Paradise.
Slope, aspect, and elevation grid files for the study domain at 30 m horizontal grid spacing
were also obtained from the LANDFIRE website.

Table 1. Summary of Scott and Burgan [30] fuel models with a brief description, in the LANDFIRE

dataset and conversion to Canadian FBP System fuel types [37,38] used in Prometheus, and their

percentage within the 2018 Camp Fire observed burn perimeter. It is noted that the 3.5 t ha−1 is grass

fuel load default value in the FBP System (and in turn Prometheus).

Scott and Burgan
(2005) Fuel Model

Brief Description Fuel Type Assigned in Prometheus
Fuel Fractions Inside

Observed Perimeter (%)

165 (TU5)
Timber-Understory. Heavy forest

litter with shrub.
M-1 (90% percent conifer). 42.6

186 (TL6) Timber Litter. Moderate fuel load. M-1 (90% percent conifer). 14.0
188 (TL8) Timber Litter. Moderate fuel load. M-1 (90% percent conifer). 7.1
102 (GR2) Low load grass. O-1b (3.5 t ha−1 fuel load, 60% cured). 7.0

122 (GS2)
Grass-Shrub mixture. High

spread rate.
M-1 (70% percent conifer). 6.4

91 (NB1) Non-burnable. Urban/suburban. Replaced by TU5. 6.1

2.5. WUI Fuel Break Design

The objective of this study is to test the effectiveness of fuel breaks around the WUI
that mitigate fire speed and intensity, potentially allowing for increased evacuation time.
A network of defensible fuel profile zones between 400–800 m in width has been used in
the northern Sierra Nevada Mountains in California. Surface, ladder, and crown fuel loads
are reduced in the zones by a combination of mechanical thinning and prescribed fire, to
provide safe firefighter access and reduce fire intensity and crown fire spread [13,48,49].
There are many possible fuel break designs to be tested, with 400 m suggested as a minimum
width for most WUI fuel breaks [13]. Due to the unrealistic ability to apply 400 m fuel breaks
everywhere, we tested 200 m and 400 m widths. The WUI fuel breaks in our experiments
were designed using Google Earth as strips along the eastern edge of the Paradise Township.
These polygons were then imported into Prometheus as fuel patches (in .kml format). The
WUI fuel break was placed on the eastern edge of the Paradise Township boundary because
of the potential ineffectiveness of fuel breaks in remote wildland areas [16]. Because [50]
showed that overlapping fuel treatment units can effectively modify fire growth and
behavior, only a single strip design of a 200 m or 400 m wide WUI fuel breaks is investigated
in this study.

All burnable fuels within the WUI fuel break were converted into grass fuel (O-1b fuel
type), because grass fuel types in Prometheus allow for modification of grass curing and
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fuel loading (the dry weight of grass in a burn unit) to represent a wide range of fuel break
conditions. The grass fuel properties used for the fuel break are shown in Table S1. For
simplicity, our WUI fuel break design does not account for practical considerations, such as
environmental protection standards, fuel break connectivity, and fuel break aesthetics [51].
Prior to placing the WUI fuel break, 94% and 91% of the 200 m and 400 m fuel break areas
were considered to be represented by variations of the FBP system fuel type M-1.

2.6. Model Evaluation and Experiments

The model performance was verified by comparing with the observed Camp Fire
growth (Figure 3a). We then performed a series of sensitivity tests in which we indepen-
dently varied each of the following: (i) WUI fuel break width; (ii) the degree of curing and
fuel load of the grass fuel used for the WUI fuel break; and (iii) constant meteorological
forcing corresponding to 06:30 PST and homogenous fuel types across the domain (tested
at ±25% of the observed wind speed) (Tables 2 and 3).
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for the verification simulation (a,b), 200 m-wide (c,d) and 400 m-wide (e,f) WUI fuel break scenarios.

The locations of the 2018 Camp Fire ignition and WUI fuel break are indicated with a red triangle

and black polygon, respectively. Observed burn perimeter at 18:00 PST on 8 November is shown

using a red polygon. The Paradise Township boundary is shown with a magenta polygon. In panels

(a,c,e), the color bar represents fire intensity with warmer colors corresponding to higher intensities.

In panels (b,d,f), the colors correspond to fire arrival times in hours since 06:30 PST, with darker

colors corresponding to earlier arrival times.
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Table 2. Summary of model verification and sensitivity experiments with their scenario descriptions.

See Table 3 for the constant and uniform fuel specifications.

Simulation Name Weather Fuel WUI Fuel Break Scenario Description

No WUI-FB hourly spatially varying No verification run
WUI-FB200 hourly spatially varying YES (200 m) added a 200-m wide WUI fuel break.
WUI-FB400 hourly spatially varying YES (400 m) added a 400-m wide WUI fuel break.

WUI-FB400-DOC30 hourly spatially varying YES (400 m)
same as WUI-FB400 except degree of curing

of grass fuel break = 30%

WUI-FB400-DOC50 hourly spatially varying YES (400 m)
same as WUI-FB400 except degree of curing

of grass fuel break = 50%

WUI-FB400-FL1.7 hourly spatially varying YES (400 m)
same as WUI-FB400 except fuel load of grass

fuel break halved

WUI-FB400-FL7 hourly spatially varying YES (400 m)
same as WUI-FB400 except fuel load of grass

fuel break doubled

WUI-FB400-DOC50-FL7 hourly spatially varying YES (400 m)
same as WUI-FB400-DOC50 but fuel load of

grass fuel break also increased by 50%

No WUI-FB U_ref constant uniform No
reference run with a constant input weather

stream over time

WUI-FB400 U_ref constant uniform YES (400 m)
Same as above but with a 400 m

WUI fuel break

WUI-FB400 U_lower constant uniform YES (400 m)
with a 400 m WUI fuel break and 25% lower

wind speed than reference run

WUI-FB400 U_higher constant uniform YES (400 m)
with a 400 m WUI fuel break and 25% higher

wind speed than reference run

Table 3. Constant upwind weather stream input used for the idealized experiments in Sections 2.5 and 2.6.

Temp (◦C) RH (%) WS (m s−1) WD (◦) Fuel Type

6.3 28 20, 26, 32 64 M-1 (90pc)

3. Results

3.1. Model Calibration

Figure 3a,b show the simulation output of fire arrival time and fire intensity 11.5 h
after ignition. The simulated fire arrival time to the eastern edge of the Paradise boundary
was between two and three hours, whereas the actual Camp Fire may have travelled
and/or spotted there as quickly as 1.5 h after ignition [52]. An estimation of fire arrival
time at Paradise can be made using the equation in [53]: the forward rate of fire spread
measurement R (km h−1) = d/t, where d represents the maximum distance (km) from the
end point of one fire isochrone to the end point of the preceding isochrone over a given
time period t (h), can be rewritten as t = d/R. Using the distance of 11 km between Paradise
and the ignition point and the observed R = 4–4.8 as shown in [53], we found a fire arrival
time of 2 h 20 min–2 h 30 min to Paradise.

Model-derived fire intensity is one of the critical parameters for understanding the
potential for high intensity forest fire behavior. Fire intensity is also used for fuel treatment
prescriptions [24]. The simulated fire intensity (Figure 3a) shows areas over 100 MW m−1

associated with an active/continuous crown fire (Crown Fraction Burned > 90%; not
shown) upstream of Paradise compared to the downstream area. Lower fire intensity
occurs in locations where the grass fuel type is dominant. Observations show the simulated
fire intensity reasonably, as the fire intensity of wind-dominated crown fires has been
observed to exceed 100 MW m−1 for significant periods of time. For example, a head fire
intensity of 90 MW m−1 was observed in a northern jack pine-black spruce forest during
a crown fire experiment in Canada. Fuel consumptions in that experiment ranged from
2.8 to 5.5 kg m−2 [54]. Simulated total fuel consumptions in this study were on average
4.5 kg m−2 for the forest fuel types.
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Computed mean rate of spread and fire intensity for forest and grass fuel types for
the verification run are shown in Figure 4. The mean modeled rate of spread was close
to 60 m min−1 for the forest fuel types for the first three hours after ignition, when the
input wind speed was also the highest. Maranghides et al. [26] estimated the fire spread
rate during the Camp Fire to be 66 m min−1 for the first hour and 60 m min−1 in the grass
areas downwind of Paradise. Therefore, overall modeled mean rate of spread of 20–30 m
min−1 for the simulated grass fuel may be underestimated, given that model parameters
associated with complete (100%) curing were not used because the model substantially
overestimated observed fire growth rate. However, assigning the degree of curing value
of 100% for the grass fuels in the entire domain in our simulation resulted in a significant
overestimation of the fire growth downwind of Paradise. A much larger fraction of the
hourly burned area was more dominated by the forest fuel types compared to the grass
fuel types in our simulations. Therefore, the impact of the underestimated rate of spread
on the simulated fire arrival time at Paradise was relatively small. After calibration, the
overall shape of the fire perimeter is well represented in the model and serves as a good
reference for fuel modification experiments.
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3.2. Impact of WUI Fuel Breaks on Downstream Fire Behavior

Figure 5 shows the results of fire intensity for the verification run (no WUI fuel break)
and the 200 m and 400 m WUI fuel break runs. Both fuel break simulations dispersed
the fire front downstream of the fuel break. Fire intensity increased downstream of the
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400 m fuel break, as compared to the no-fuel break scenario. This is likely resulting from
interactions between the fire spread rate and timing of the meteorological forcing. That is,
relative humidity dropped from the morning into the afternoon concomitantly with the
fire’s leading edge moving downstream of the fuel break. Flank fire (lateral fire spread)
was also noticeably suppressed downstream of the 400 m fuel break, because a delay in fire
spread across the WUI fuel break means less time for the forward and lateral fire spread.
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The WUI fuel break location shown in (a) is only for reference.

One way to measure the effectiveness of the WUI fuel break in the context of wind-
dominated wildfires ignited near the WUI is the time gained for community evacuation
during a fast-approaching wildfire. Figure 6 shows the area burned in Paradise (inside the
magenta isoline in Figure 1) over the simulation time. While the 200 m fuel break delayed
the fire arrival by an hour as compared to the verification run with no fuel break, the 400 m
fuel break resulted in a five-hour delay. These one- and five-hour delays in fire arrival
time at Paradise represent the potential evacuation time that could have been afforded to
Paradise by WUI fuel breaks. It should also be noted that at the end of the simulations, the
200 (400) m fuel break scenario resulted in 0.8% (15.5%) of the area saved in Paradise, as
compared to the no fuel break scenario that showed 99.3% of the burned area in Paradise.
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3.3. Impact of the Grass Fuel Conditions over the WUI Fuel Break on Downstream
Fire Propagation

Changing the fuel load of the grass fuel over the WUI fuel break from 3.5 t ha−1 (WUI-
FB400) to 1.7 t ha−1 (WUI-FB400-FL1.7), or 7 t ha−1 (WUI-FB400-FL7) had little impacts on
the area burned in Paradise over the simulation time (Figure 7). This is because in the FBP
system the fuel load does not affect the rate of fire spread in grass fuel type O-1, but it does
affect fire intensity. Conversely, the dryness of the grass, as represented by the degree of
curing in this study, played a major role in the area burned. When a 50% value was used
for the degree of curing, the area burned approached the verification model scenario with
no fuel break present. Fuel load played little role in fire intensity of the grass fuel in the
fuel break as the range of the fuel load values resulted in similar fire intensity (Figure 7b).
Overholt et al. [55] similarly found that fuel moisture content of the grass fuel played the
most significant role in the fire spread rate, whereas the fuel load did not play a major role
in the fire spread rate.
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For the degree of curing of 10% and fuel load of 3.5 t ha−1, the increased fuel break
width from the 200 m to 400 m resulted in decreased fire intensity over the 50–100 MW m−1

and increased fire intensity over the 110–170 MW m−1 range. This result possibly occurred
from the interaction between the WUI fuel break and daytime progression of weather. The
fire intensity distributions in Figure 7 are reflected in the fire intensity maps in Figure 3
that show locally higher fire intensity over Paradise in the 400 m WUI fuel break scenario
(Figure 3e), as compared to the 200 m one (Figure 3c). It is possible that, as a result of
delayed fire arrival time to Paradise, higher air temperatures and lower RH midday caused
more severe burning conditions despite lower input wind speeds.
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3.4. Role of Wind Speeds in the Effectiveness of WUI Fuel Breaks

In this section, three simulations were run using three different constant wind speeds
(20, 26, and 32 m s−1) over a uniform fuel landscapes (M-1 with a 90% percent conifer value).
Weather inputs were kept the same over the entire simulation, as shown in Table 3. The
objective of this analysis was to determine the impacts of wind speeds on the effectiveness
of the WUI fuel breaks. Figure 8 shows the simulated burn perimeters for 25% lower and
25% higher wind speeds than the reference simulation (26 m s−1). For increased (decreased)
wind speeds, the fire perimeters became narrower (wider) as compared to the fire perimeter
with the reference wind speed both upstream and downstream of the fuel break. Thus, the
burned area in Paradise was controlled not only by the fuel break, but also wind speed
timing relative to ignition timing, such that lower wind speeds resulted in broader, shorter
fire perimeters (Figure 8).
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constant wind speed (WUI-FB400 U_ref), and 25% lower (WUI-FB400 U_lower) and 25% higher

(WUI-FB400 U_higher) than the reference wind speeds. The locations of the ignition and WUI fuel

break are indicated with a red triangle and black polygon, respectively. The red contour line indicates

the observed burn perimeter at 18:00 PST on 8 November. The Paradise Township boundary is shown

by a magenta polygon.

Figure 9a shows the percent area burned in Paradise over the simulation time. The
simulation with the highest wind speed (WUI-FB400_higher) resulted in the lowest percent
area burned in Paradise at the end of the simulations due to narrower fire perimeters.
These results can depend on the behavior of the fire front. The highest wind speed did not
necessarily result in the earliest fire arrival at Paradise because the fire propagation speed
over the WUI fuel break appeared to depend on the upstream fire propagation and its
approaching direction to the WUI fuel break. Figure 9b shows the fire intensity distribution
of burned area in Paradise for three different wind speeds. There is evidence that wind
speed played a role in modifying the fire intensity as expected. For example, the lower
wind speed simulation (blue line) resulted in less areas of relatively high fire intensity
around 160 MW m−1 and more areas with lower fire intensity around 100 MW m−1 as
compared to the higher wind speed simulation (red line). However, the dominant fire
intensity remained at 160 MW m−1 regardless of wind speeds. It is also shown that a
400 m wide fuel break has a minor effect in reducing fire intensity downstream from 180
to 160 MW m−1, which still remains well above the suppression threshold of 3 MW m−1

considered effective for airtankers controlling a fireline [56].
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4. Discussion

This study investigated the effectiveness of WUI fuel breaks on downslope wind-
dominated fire behavior, including fire intensity and spread rate. Both directly impact
WUI community evacuation time and wildfire damage potential. We found that increasing
the width of a WUI fuel break from 200 m to 400 m more than doubled the evacuation
time. In addition, the fuel break changed fire behavior by breaking up the advancing fire
front into multiple fire fronts on the downstream edge of the fuel break. However, the
overall fire intensity downstream of the fuel break remained well above the suppression
threshold intensity. Furthermore, the width and degree of curing in grass fuel comprising
the WUI fuel break had noticeable impacts on controlling fire arrival and evacuation times
downstream of the WUI fuel break. Finally, we showed that the burned area downstream
of the WUI fuel break may be affected by both the presence of the fuel break and magnitude
of the extreme wind speeds. The latter controlled the lateral extent of fire spread upstream
of the fuel break.

While our model experiments provide evidence for the potential utility of WUI fuel
breaks in mitigating wildfire hazards, there are several sources of uncertainty rooted in
model assumptions. For example, Prometheus does not represent long-range spotting. We
acknowledge that not including the influence of long-range spotting in our simulation
runs is a limitation of this work, as 200–400 m spotting distances are common [57]. From
an observational perspective, it is unclear whether long-range spotting contributed to the
increased rate of spread or if the head fire overran the spot fire ignitions during the Camp
Fire. Storey et al. [58] found that the contribution of spot fires to the overall rate of spread
may depend on topography. In their study, spotting accelerated the spread of the fire
front in complex terrains. The Camp Fire region is topographically complex and thus, the
spot fires may have contributed to uncertainty in model predictions. Operational two-
dimensional fire growth models, including Prometheus and FARSITE, also do not currently
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account for atmospheric stability, which is known to be a major contributor to long-range
spotting and nonlinear fire spread and intensity [59]. Another source of uncertainty is fuel
moisture content in the WUI fuel breaks, which we were unable to directly modify. The
effect of the FFMC on fire spread was also examined by using a weather patch function
in Prometheus to produce rainfall over the WUI fuel break. The precipitation lowered the
FFMC value and resulted in substantial reductions in the burned area (Figure S5). The
combined effects of the FFMC and the degree of curing on the WUI fuel break effectiveness
warrant further investigation using a set of similar experiments.

The grass fuel type in the WUI fuel breaks tested in this study can be viewed as the
most optimistic scenario, as it may be prohibitively expensive to remove trees in the WUI
fuel breaks. In our study, we explored a scenario in which all existing trees were converted
to grass without leaving any additional fuels on the ground. In reality, more live and
dead fuels may be distributed in patches on the ground after a fuel treatment. Partial tree
removal is expected to increase evacuation times relative to no WUI fuel break, but not by
as much as a fuel break with no trees.

Even though only grass type WUI fuel breaks were explored in this study, varying
the degree of curing and fuel load scenarios may represent alternative designs of WUI
fuel breaks with similar fire behavior characteristics of the grass fuel type. Agricultural
lands, open space parks and preserves, golf courses, and other recreational green zones
(i.e., greenbelts) have been proposed or already implemented to create wildfire resilient
communities in some parts of California [60]. Similar assessments of proposed WUI fuel
breaks can be conducted to estimate relative evacuation time gains using operational or
more sophisticated fire spread models for different fuel break designs and historical weather
scenarios. In practice, the design and implementation of greenbelts or WUI fuel breaks
requires collaboration and coordination efforts among cities and counties, landowners, and
local agencies, such as fire departments and regional park services [13,60]. Furthermore,
an often-overlooked requirement for the construction of WUI fuel breaks is that when
firefighters deploy, there must be an adequate number of firefighter safety zones established
along the fuel break [61].

California wildfires forced the evacuation order of over one million residents in
California during 2017–2019 [62]. Increasing population and WUI expansion increase the
likelihood of human-caused ignitions [12]. Thus, community evacuations may become more
important than in the past to minimize the impacts of wind-dominated fires. Community
evacuations during extreme wind-dominated wildfires may pose considerable challenges
and stresses on emergency management agencies, as seen during the Camp Fire. Our
results suggest that WUI fuel breaks, if constructed sufficiently wide and green (i.e., degree
of curing), are beneficial for delaying fire front arrival and gaining evacuation times by
several hours.

Currently, California plans to spend $1.5 billion on vegetation management in 2021 [63].
Greenbelts constructed on the fringe of urban areas are one promising way to spend
these funds and may also be able to reduce overall firefighting costs. They also have the
potential to create fire resilient communities, while promoting positive social, economic, and
environmental impacts. The primary goal of this work was to quantitatively understand the
effectiveness of hypothetical WUI fuel breaks and their interactions with wind-dominated
high intensity crown fires under extreme fire weather conditions. Our study contributed
to these goals by quantitatively understanding the effectiveness of hypothetical WUI fuel
breaks and their interactions with wind-dominated high intensity crown fires under an
extreme fire weather condition. To make these experiments more realistic, a combination
of topography, location, land use, environmental constraints, ecological impacts, and
implementation costs should be incorporated into fire growth simulations with fuel breaks.



Fire 2022, 5, 37 15 of 18

5. Conclusions

The model simulations presented in this study indicate that WUI fuel breaks would
have afforded more evacuation time for the town of Paradise. The results of reduced
final burned area and locally reduced fire intensity downstream of the WUI fuel break
in our simulations also suggest that total area burned and home destruction would have
possibly been lower. It is hypothesized that structural hardening and creating a proper
defensible space around homes can minimize the impact of long-range spotting crossing
the WUI fuel breaks and the risk of urban conflagrations. To best prepare communities
for unexpected circumstances, a myriad of other measures could be deployed, including
evacuation planning and community education.

On a concluding note, this study does not include all facets of wildfire dynamics.
Future research could also utilize several different wildfire growth models to examine the
relative effectiveness of existing or planned WUI fuel breaks and greenbelts. The increasing
amount of wildfire-related remote sensing data could be used to examine how wildfires
have behaved in already existing greenbelts and WUI fuel breaks.
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