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We study the time-dependent formation and evolution of a current sheet (CS)
in a magnetised, collisionless, high-beta plasma using hybrid-kinetic particle-in-cell
simulations. An initially tearing-stable Harris sheet is frozen into a persistently driven
incompressible flow so that its characteristic thickness gradually decreases in time. As
the CS thins, the strength of the reconnecting field increases, and adiabatic invariance
in the inflowing fluid elements produces a field-biased pressure anisotropy with excess
perpendicular pressure. At large plasma beta, this anisotropy excites the mirror instability,
which deforms the reconnecting field on ion-Larmor scales and dramatically reduces the
effective thickness of the CS. Tearing modes whose wavelengths are comparable to that of
the mirrors then become unstable, triggering reconnection on smaller scales and at earlier
times than would have occurred if the thinning CS were to have retained its Harris profile.
A novel method for identifying and tracking X-points is introduced, yielding X-point
separations that are initially intermediate between the perpendicular and parallel mirror
wavelengths in the upstream plasma. These mirror-stimulated tearing modes ultimately
grow and merge to produce island widths comparable to the CS thickness, an outcome we
verify across a range of CS formation timescales and initial CS widths. Our results may
find their most immediate application in the tearing disruption of magnetic folds generated
by turbulent dynamo in weakly collisional, high-beta, astrophysical plasmas.
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1. Introduction
Magnetic reconnection is a fundamental plasma process in which the magnetic-field

topology is rapidly rearranged, resulting in the conversion of magnetic energy into plasma
energy (Zweibel & Yamada 2009; Loureiro & Uzdensky 2016). Despite its broad relevance
to a wide variety of space, astrophysical and terrestrial plasmas, its detailed physics is most
often examined in the somewhat restrictive limit of low plasma beta, β .= 8πp/B2 ! 1 or
even !1, where p is the thermal pressure and B is the magnetic-field strength. Given
that reconnection plays a central role in powering solar flares and coronal mass ejections,
and in degrading energy and particle confinement in tokamak plasmas, both of which
are low-β environments of practical importance to humanity, this focus is perhaps not
so surprising. However, nearly half of all the baryonic material in the Universe (often
referred to as the ‘warm-hot intergalactic medium’, or WHIM) resides in a hot and dilute
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plasma state, very likely with β " 1. For example, measurements of Faraday rotation from
the intracluster medium (ICM) of the nearby Coma galaxy cluster suggest magnetic-field
strengths B ∼ 1–5 µG (Bonafede et al. 2010); given the observed number density n ∼
3 × (10−4–10−3) cm−3 and temperature T ∼ 8 keV, this implies approximately 1014 M&
worth of magnetised plasma having β ∼ 102. For the ICM in other nearby galaxy clusters,
such values of β appear to be the norm (e.g. Carilli & Taylor 2002; Govoni et al. 2017).
It is then of both plasma-physical and astrophysical interest to investigate how magnetic
reconnection onsets and proceeds in these more commonplace, high-β environments.

There are two immediately complicating factors to such a line of inquiry. The first
is that many of these high-β astrophysical plasmas, such as the ICM, are also weakly
collisional. Taking the Coma cluster again as an example, the Coulomb-collisional
mean free path there is λmfp ∼ 10 kpc, roughly 10 % of the thermal-pressure scale
height. Under such conditions, there is little reason to expect the plasma to be in local
thermodynamic equilibrium, particularly so given the turbulent state in which the ICM
often finds itself (e.g. Churazov et al. 2012; Hitomi Collaboration 2016). Instead, the
velocity distribution function of the plasma particles is likely to be biased with respect
to the local magnetic-field direction (Chew, Goldberger & Low 1956; Braginskii 1965), on
account of the plasma’s strong magnetisation (viz., ρi/λmfp ≪ 1, where ρi is the Larmor
radius of the resident ions; in Coma, ρi ∼ 1 npc). Coupled with the high plasma beta, this
opens up the potential for kinetic instabilities to feed off departures from velocity-space
isotropy (e.g. firehose and mirror instabilities driven by field-aligned pressure anisotropy;
Schekochihin et al. 2008) and thereby affect the material properties of the plasma (Kunz
et al. 2019).

In the context of magnetic reconnection, the incorporation of pressure anisotropy (viz.,
p⊥ (= p‖, the subscripts denoting the components of the pressure tensor perpendicular
and parallel to the magnetic-field direction) has fallen roughly into two categories. The
first concerns the linear theory of tearing modes in a pressure-anisotropic environment
(Chen & Davidson 1981; Coppi 1983; Chen & Palmadesso 1984; Chen & Lee 1985;
Shi, Lee & Fu 1987; Burkhart & Chen 1989; Karimabadi, Daughton & Quest 2004;
Quest, Karimabadi & Daughton 2010), the general finding being that p⊥ > p‖ increases
tearing growth rates (particularly at smaller scales) whereas p⊥ < p‖ reduces growth rates.
Kinetic simulations of reconnection in pressure-anisotropic plasmas support this finding
(Ambrosiano, Lee & Fu 1986; Matteini et al. 2013; Gingell, Burgess & Matteini 2015),
with the latter two references drawing attention to the impact of ion-cyclotron instability
(for p⊥ > p‖) and firehose instability (for p⊥ < p‖) on the geometry of the tearing current
sheet (CS). The second concerns pressure anisotropy (particularly in the electrons) that is
generated in the reconnecting layer during the nonlinear evolution of the tearing instability,
due to particle trapping within the reconnecting layer (Egedal, Le & Daughton 2013)
and/or Fermi acceleration in evolving magnetic islands (Schoeffler, Drake & Swisdak
2011). In both cases, whether pressure anisotropy is assumed ad hoc to be present in the
initial configuration or whether it is generated during the reconnection process itself, the
basic lesson is the same: magnetic reconnection is affected by the thermodynamic state of
a weakly collisional plasma.

The second complicating factor is the difficulty in formulating a suitable equilibrium
state about which to investigate tearing and reconnection. This, of course, holds
true regardless of whether β is low or high, or whether the plasma is weakly
collisional or magnetohydrodynamic (MHD). Indeed, the recent realisation that elongated
Sweet–Parker-like CSs (Parker 1957; Sweet 1958) are super-Alfvénically unstable to a
resistive plasmoid instability implies that they can never form in the first place (Loureiro,
Schekochihin & Cowley 2007; Bhattacharjee et al. 2009; Samtaney et al. 2009; Pucci &
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Velli 2014; Tenerani et al. 2015; Loureiro & Uzdensky 2016). Instead, one must consider
the growth of the tearing instability in a current layer as it is being formed, in order to
determine the reconnection onset time and the CS parameters at that moment (Uzdensky
& Loureiro 2016). What high beta and low collisionality bring to the mix are the generation
of kinetically unstable pressure anisotropy and the consequent destabilisation of the CS on
ion-Larmor scales. The argument runs as follows (Alt & Kunz 2019).

During the gradual formation of a CS, the strength of the reconnecting magnetic field
will increase in the inflowing fluid elements due to flux accumulation. The approximate
conservation of adiabatic invariants in the magnetised plasma will then lead to the
increase of perpendicular pressure and the decrease of parallel pressure (Chew et al.
1956), thus creating pressure anisotropy with p⊥ > p‖. At high beta, and in the absence
of strong collisional isotropisation, the pressure anisotropy will promptly grow large
enough to trigger the mirror instability, forming static magnetic mirror-like structures on
ion-Larmor scales that regulate the anisotropy by trapping and scattering particles (Kunz,
Schekochihin & Stone 2014a; Riquelme, Quataert & Verscharen 2015). These structures
influence the CS’s stability to tearing by decreasing appreciably the effective thickness of
the CS and nonlinearly seeding small-scale tearing modes. The former effect is similar to
that caused by small current corrugations in the CS, which Militello et al. (2009) showed
can boost substantially the value of the tearing-instability parameter.

The purpose of this paper is then to investigate the early evolution and subsequent
disruption of a thinning CS in a high-β, weakly collisional plasma, while taking into
consideration plasma-kinetic effects such as pressure anisotropy and the mirror instability
that are self-consistently driven during CS formation. We do so by performing a series of
hybrid-kinetic particle-in-cell (PIC) simulations of a thinning CS using the Pegasus++
code, with the further aim of testing certain predictions of the analytic model of Alt &
Kunz (2019) for the mirror-instigated tearing of a forming CS.

The paper is organised as follows. Section 2 provides an exposition of the principal
themes of this work, namely, the steady thinning of a forming CS, the attendant adiabatic
production of positive pressure anisotropy and the ensuing destabilisation of the sheet by
mirror and tearing instabilities. The view of a CS as a dynamically forming structure,
rather than a predetermined equilibrium state, is essential to this narrative. Having
established these themes, in § 3 we detail our numerical method for studying CS formation,
mirror-stimulated tearing, and the onset of magnetic reconnection. We also describe a
novel technique for identifying reconnecting X-points and magnetic islands based on
watershed segmentation. The results of our numerical experiments are catalogued in § 4.
We close in § 5 with a recapitulation of our main results, their limitations, and a discussion
of their implications for magnetic reconnection in weakly collisional, high-β plasmas.

2. Physical ingredients
We begin our exposition by emphasising that, in general, any study of the onset

problem of magnetic reconnection should take into account effects that transpire and/or
accumulate during the formation and gradual thinning of the CS. In the context of this
paper, these effects include the adiabatic production of pressure anisotropy, the consequent
destabilisation of the plasma to the growth of ion-Larmor-scale magnetic mirrors, and the
effect of these mirrors on the emergence of tearing modes. These topics are discussed in
§§ 2.3–2.5. However, first, we introduce a simple model of CS formation that demonstrates
the physics emphasised in this paper and which we ultimately implement in our numerical
simulations (§ 2.1), and then analyze its time-dependent stability to hyper-resistive tearing
modes (§ 2.2).
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2.1. CS formation
Consider a reversing, time-dependent magnetic field with a Harris (1962) profile without
a guide field,

Br(t, x) = Br(t) tanh
[

x
a(t)

]
ŷ, (2.1)

which is frozen into an incompressible flow given by

u(t, x, y) = 1
Γ (t)τcs

(−xx̂ + yŷ) with Γ (t) .= 1 + t
τcs

. (2.2)

This flow compresses the CS in the x direction and stretches it in the y direction over
a characteristic CS formation timescale τcs, such that the CS maintains its profile but
with a decreasing thickness a(t) = a0/Γ (t) and increasing field strength Br(t) = Br0Γ (t)
(Tolman, Loureiro & Uzdensky 2018, § 2). (Here, and for the remainder of this paper, the
‘0’ subscript denotes an initial value.) The characteristic Alfvén Mach number of the flow
(2.2) is

MA0
.= a0

vA0τcs
, (2.3)

where vA0 is the initial Alfvén speed of the reconnecting field. Although the magnetic-field
profile Br(t, x) has no intrinsic lengthscale in the y direction, any two points initially
separated by a distance L0ŷ will move apart and eventually be separated by L0Γ (t)ŷ,
consistent with the incompressibility of the flow. Accordingly, we define a lengthscale
L(t) = L0Γ (t) and refer to it as the ‘length’ of the CS; although the constant L0 is
somewhat arbitrary at this point, it will find a practical definition in our numerical
simulations as the initial length of the computational domain in the y direction (see § 3).

The thinning of this CS brings with it two important consequences. First, because the
aspect ratio L(t)/a(t) = (L0/a0)Γ

2(t), the CS will become increasingly susceptible to
tearing. Namely, the Harris-sheet tearing instability parameter

∆′(t, N) = 2N
L(t)

[
1

N2

L2(t)
a2(t)

− 1
]

(2.4)

will grow positively for all mode numbers N .= kt(t)L(t) = const., where kt(t) =
[kt0/Γ (t)]ŷ is the tearing wavenumber made time-dependent due to its advection by the
flow (2.2). Even for an initially tearing-stable CS satisfying 2πa0/L0 # 1 (for which
∆′(0, N) $ 0 for all N), the CS will eventually become unstable as it continually thins.
Uzdensky & Loureiro (2016) considered this time-dependent problem for the onset and
evolution of the tearing instability of a thinning CS in the limit of resistive MHD. In § 2.2,
we adapt their arguments for the case in which the resistive diffusion of the magnetic field
is fourth order in space, viz. η∇2B → η4∇4B, relevant to the simulations described in § 3.

The second consequence of the thinning of the CS, at least for a sufficiently collisionless
plasma, is the adiabatic production of pressure anisotropy in the inflowing fluid elements
and, at sufficiently large β, the eventual triggering of the mirror instability. These events
will of course affect any subsequent tearing of the CS, indeed, this is the entire point of this
paper, but it is instructive to ask first how the CS would evolve without such interference.

2.2. Hyper-resistive tearing of a thinning CS without mirrors
Our first goal is to establish for how long a given CS must thin until tearing modes are able
to onset and disrupt its formation. For that, we adapt the arguments given in Uzdensky
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& Loureiro (2016) to the case with hyper-resistive tearing, relevant to the simulations
described in § 3 that use fourth-order magnetic dissipation. The idea is as follows: because
the instability parameter ∆′(t, N) (see (2.4)) increases in time for each unstable tearing
mode N, the growth rate γt(t, N) of each tearing mode increases as well, with the onset of
tearing occurring only once γt(t, N)τcs % 1. A further complication in the case of tearing
is that, as the CS lengthens, more and more modes (viz., larger values of N) become
successively unstable, i.e. their ∆′(t, N) becomes positive. One must then know how γt
depends on N to assess whether the tearing is ultimately dominated by a single island or
by multiple islands: a question that depends upon whether ∆′ is small (!δ−1

in , where δin
is the thickness of the resistive inner layer, corresponding to the ‘constant-ψ’ or ‘FKR’
regime; Furth, Killeen & Rosenbluth 1963) or large (∼δ−1

in , corresponding to the ‘Coppi’
regime; Coppi et al. 1976).

For a Harris sheet subject to Ohmic resistivity, the tearing growth rate in the FKR regime
satisfies γt ∝ k−2/5

t for tearing wavenumber kt satisfying kta ! 1. The fastest-growing
FKR mode is then the longest one that fits into the CS (i.e. N ∼ 1). With hyper-resistivity,
however, the growth rate in the FKR regime is roughly independent of kt for kta ! 1
(Huang, Bhattacharjee & Forbes 2013):

γt ∼ vA

a
S−1/3

a (∆′a)2/3(kta)2/3 (2.5a)

∼ vA

a
S−1/3

a

(
1 − k2

t a2)2/3
, where Sa

.= a3vA

η4
(2.5b)

is the hyper-resistive Lundquist number and vA is the Alfvén speed associated with the
reconnecting field Br. In the corresponding Coppi regime, Huang et al. (2013) find slower
growth with γt ∝ k4/5

t for kta ! S−1/6
a (see their figure 1). As a result, the fastest-growing

unstable mode will always be an FKR-like mode with γt ∼ (vA/a)S−1/3
a .

With all such modes growing at approximately the same rate, we argue that it will be the
mode that first becomes unstable as the CS thins, viz. N ∼ 1, that will ultimately win out
(it having a head start over the others). Demanding that its growth rate satisfy γtτcs %
1 requires that a ! vAτcsS−1/3

a ! L. Using our CS model with L(t)/L0 = a0/a(t) =
vA(t)/vA0 = 1 + t/τcs (see § 2.1) then specifies constraints on the critical time tcr at which
γtτcs % 1:1

(
1 + tcr

τcs

)2/3 a0

L0
! S1/3

a0 MA0 !
(

1 + tcr

τcs

)8/3

. (2.6)

With a view towards the results presented in § 4, we note that our numerical simulations
generally have Sa0 ∼ 106 and M−1

A0 ∈ [1, 16]; the inequality (2.6) then implies values of
tcr/τcs that exceed unity by a factor of a few. In other words, for a thinning Harris CS
without the production of pressure anisotropy and consequent excitation of mirror modes,
we expect linear hyper-resistive tearing of our forming CS to onset at N ∼ 1 after a few
τcs. It is important to bear this point in mind for what follows.

1If the right-hand side of (2.6) were to become !S4/21
a0 (a0/L0)

8/7 before (2.6) is satisfied, then the N ∼ 1 mode
would enter the slower-growing Coppi regime before its FKR growth rate satisfies γtτcs ! 1. In this case, (2.6) would
pertain only to those unstable modes whose mode numbers are greater than or equal to that of the mode ‘transitional’
between the FKR and Coppi regimes, viz. Ntr ∼ (L/a)S−1/6

a . Evaluating the latter at t = tcr, we find that all unstable
modes whose N " Ntr(tcr) ∼ (L0/a0)S

1/8
a0 M7/8

A0 attain growth rates satisfying γtτcs ! 1 at roughly the same time. None
of these details affect the estimate implied by (2.6) for tcr.
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2.3. Production and destabilisation of pressure anisotropy
We now demonstrate that the arguments given in § 2.2 for the onset of tearing in a thinning
CS are likely to be irrelevant in a collisionless, high-beta plasma.

Consider a flux-frozen fluid element initially located at x = ξ0 and moving towards
x = 0 in the velocity field (2.2). It is straightforward to show that, as the CS thins, the
magnetic-field strength as seen by this element steadily increases as Br0 tanh(ξ0/a0)Γ (t). If
the first and second adiabatic invariants of the plasma are approximately conserved during
this thinning, then the components of the pressure tensor parallel (p‖) and perpendicular
(p⊥) to the local magnetic field become unequal, with the latter outpacing the former.
Namely, if the plasma is initially pressure-isotropic, then the pressure anisotropy ∆p

.=
p⊥/p‖ − 1 in the fluid element should evolve according to

∆p(t, ξ(t)) = [Γ (t)]3 − 1 ≈ 3t
τcs

, (2.7)

the approximation being accurate for t/τcs ! 1. Thus, pressure anisotropy increases in all
fluid elements at the same rate.

In a plasma whose collision timescale is much longer than the CS formation timescale,
the pressure anisotropy will continue to grow in time following (2.7) until one of two
things occurs: either (i) the tearing instability onsets and disrupts the steady thinning of
the CS or (ii) the pressure anisotropy grows large enough to surpass the mirror instability
threshold,

Λm
.= ∆p − 1

β⊥
> 0, (2.8)

where β⊥
.= 8πp⊥/B2. With β⊥(t, ξ(t)) = β⊥(0, ξ0)/Γ (t), the latter scenario is possible

in any inflowing fluid element so long as β⊥(0, ξ0) > 41/3/3 0 0.53. Let us assume for the
moment that case (ii) happens first, likely a good assumption when β⊥(0, ξ0) " 1, because
in this situation the plasma becomes mirror-unstable (viz.Λm > 0) after a small fraction of
the CS formation time. Namely, setting (2.7) equal to 1/β⊥(t, ξ(t)) and Taylor-expanding
the result in t/τcs ∼ 1/β⊥(0, ξ0) ! 1, we find that the plasma becomes mirror-unstable at
a time tm that satisfies

tm

τcs
≈ 1

3β⊥(0, ξ0)
! 1. (2.9)

In the next two subsections, we use this estimate to predict the evolution of mirror
fluctuations, including when they should regulate the pressure anisotropy and what the
consequences are for tearing in a mirror-infested sheet.

2.4. Mirror instability in a forming CS
For a uniform plasma with Λm > 0 threaded by a static, uniform magnetic field, the
maximum growth rate of the mirror instability is given by γm ∼ ΩiΛ

2
m, where Ωi is

the ion-Larmor frequency (Hellinger 2007). In the asymptotic limit β⊥Λm ! 1, the
field-parallel and field-perpendicular wavenumbers at which this growth occurs satisfy
k‖,mρi ∼ (k⊥,mρi)

2 ∼ Λm, where ρi is the ion-Larmor radius. Two things complicate the
application of these formulae to our forming CS. First, the reconnecting field (2.1) is
non-uniform, with a null line occurring at the centre of the CS. This means that both
Ω−1

i and ρi are smaller away from the neutral line, with ions unable to execute Larmor
motion for |x| ! (ρia)1/2 (Parker 1957; Dobrowolny 1968; Chen & Palmadesso 1984). As
a result, mirror modes will grow faster and on smaller physical scales away from the CS
(|x| % a), where the plasma is better magnetised.
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Secondly, the mirror growth rate and wavenumbers are made time-dependent by the
increasingly positive pressure anisotropy, and mirror modes can only emerge in the
magnetised regions of the CS if their growth rate is much larger than the rate of
CS formation, i.e. γm(t)τcs " 1. With γm(t) ∼ ΩiΛ

2
m(t), this means that the instability

parameterΛm must reach a value "(Ωiτcs)
−1/2 before the mirrors can grow fast enough to

outpace the more leisurely production of pressure anisotropy. Thereafter,Λm will decrease
as the plasma converts its free energy into magnetic fluctuations. We therefore anticipate
a maximal value of Λm given by

Λm,max = Cm(Ωiτcs)
−1/2, (2.10)

where Cm " 1 is some constant (determined by the numerical simulations in § 4 to be
≈14).2 By Taylor-expandingΛm(t) about t = tm, we find that (2.10) is attained after a time
tm,reg that satisfies

tm,reg − tm

τcs
≈ Cm

3
(Ωiτcs)

−1/2, (2.11)

beyond which the pressure anisotropy is regulated towards the mirror-instability threshold,
Λm = 0. Due to the mirrors’ super-exponential growth, this regulation will occur very
rapidly after tm,reg.

As Λm tends towards zero, the transfer of free energy from pressure anisotropy to
mirror fluctuations drives the fluctuation amplitude δB/B to a value of approximately
Λ1/2

m,max (Kunz et al. 2014a). However, as the CS continues to thin, ∆p continues to
be driven positively, and the mirror fluctuations must grow in amplitude to maintain a
marginally unstable plasma. For a linear-in-time drive, they do so secularly with δB2 ∝ t4/3

(Schekochihin et al. 2008; Kunz et al. 2014a; Rincon, Schekochihin & Cowley 2015),
as an increasing fraction of large-pitch-angle particles become trapped in the deepening
magnetic wells. If tearing does not intercede and disrupt their evolution, these mirrors
would grow in amplitude all the way to δB/B ∼ 0.3, independent of Λm,max, after which
the ions pitch-angle scatter off sharp ion-Larmor-scale bends in the mirroring field and
saturate the instability. This scattering breaks adiabatic invariance and thereby maintains
marginal stability by severing the link between ∆p and changes in B (Kunz et al. 2014a;
Riquelme et al. 2015). In the context of our forming CS, reaching this saturated state would
take a time of approximately τcs.

2.5. Hyper-resistive tearing of a mirror-infested CS
The emergence of mirrors in the forming CS has two effects on any subsequent
tearing. First, by appreciably wrinkling the reconnecting field on kinetic scales, nonlinear
mirrors cause ∆′ to depart from that corresponding to an undisturbed Harris sheet (2.4).
Proposing a simple model for the magnetic profile of a mirror-infested CS, Alt & Kunz
(2019) calculated the resulting ∆′(kt) and showed that it becomes positive (and, thus,
the CS becomes tearing-unstable) at wavenumbers kt up to that corresponding to the
inverse location of the innermost magnetic mirror (which effectively replaces a as the
characteristic thickness of the CS). Those authors then argued that the location of the
innermost magnetic mirror is set by the perpendicular wavenumber of that mirror, using
k⊥,mρi ∼ Λ1/2

m,max with Λm,max given by (2.10) and ρi and Ωi taking on their local values. In
the case of a very weak guide field, and accounting for the Lagrangian compression during

2A similar scaling was found empirically by Kunz et al. (2014a) in their simulations of positive pressure anisotropy
driven by a linear shear flow and of the resultant mirror instability.
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CS formation, this corresponds to a distance xm that satisfies

xm

a(t)
∼

(
ρi0

a0

)4/7

(Ωi0τcs)
1/7 (2.12)

(see their (4.11)). For a0/ρi0 " (Ωi0τcs)
1/4, this dramatically extends the range of

tearing-unstable wavenumbers (from kt ∼ 1/a up to ∼1/xm). It also expedites the onset
of reconnection by boosting tearing growth rates, since the effective ∆′ ∼ 1/xm is
independent of kt and so (2.5a) implies γt ∝ k2/3

t . Secondly, the perturbations to the
reconnecting field caused by the mirror instability will nonlinearly seed tearing modes
with kt % k‖,m, giving them a head start over any traditional tearing modes of the thinning
Harris sheet (if they are indeed unstable). As a result, mirror-stimulated tearing should
onset at a wavenumber kt satisfying x−1

m % kt % k‖,m.
Taken together, these two effects suggest that the onset of reconnection in an evolving

CS, driven by mirror-stimulated tearing modes, likely occurs earlier and at smaller scales
than it would have without the mirrors. More quantitatively, if pretearing mirrors were
to wrinkle the CS and effectively reduce the CS thickness by a factor of approximately
(xm/a) (see (2.12)), then the right-hand side of (2.6) would acquire a multiplicative factor
of approximately (a/xm)4/3 ∼ (a0/ρi0)

16/21(Ωi0τcs)
−4/21 " 1, thereby reducing the critical

time significantly.
The remainder of the paper is dedicated to testing these ideas using numerical

simulations of CS formation and reconnection onset.

3. Method of solution
3.1. Hybrid-kinetic treatment of a thinning CS

For our numerical simulations, we adopt the hybrid-kinetic approximation, in which a
non-relativistic, quasi-neutral, collisionless plasma is modelled by kinetic ions (mass mi,
charge e) that interact with a massless electron fluid via an electric field E given by the
following generalised Ohm’s law:

E = −u
c

× B − Te

en
∇n + (∇ × B) × B

4πen
. (3.1)

Our notation is standard: n and u are the ion number density and bulk-flow velocity,
respectively; Te is the (assumed constant and isotropic) temperature of the electron fluid;
c is the speed of light; and the magnetic field B satisfies Faraday’s law of induction,

∂B
∂t

= −c∇ × E. (3.2)

The ions are treated using the PIC method, in which they are represented by finite-sized
macro-particles whose positions rp and velocities vp are governed by the characteristic
equations

drp

dt
= vp, (3.3)

dvp

dt
= e

mi

[
E(t, rp) + vp

c
× B(t, rp)

]
. (3.4)

These equations are solved using the second-order-accurate code Pegasus++
(Arzamasskiy et al., in preparation); we refer the reader to Kunz, Stone & Bai (2014b)
for algorithmic details.
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To model the thinning of the CS, we impose an externally driven, immutable flow
that incompressibly expands the plasma along the sheet direction while contracting
it in the perpendicular direction. To avoid having the box itself deform, we perform
the simulation in the frame of the flow by applying a continuous coordinate
transformation to the equations during each time step of the integration. To do so, we
introduce the time-dependent Jacobian transformation matrix !(t) .= ∂r/∂r′ tying the
lab frame (t, r, v) to the comoving frame (t′ = t, r′ = !−1r, v′ = !−1v), and specify its
form via

!(t) = Γ −1(t)x̂x̂ + Γ (t)ŷŷ, with Γ (t) .= 1 + t
τcs

. (3.5)

This transformation has the consequence that the strength of the reconnecting field
increases linearly in time as the CS thickness a(t) ∝ 1/Γ (t), as in § 2.1. Note that
λ

.= det! = 1 at all times, thereby preserving the area of each cell and thus their density.
In this comoving (primed) frame, (3.1)–(3.4) become, respectively,

E ′ = −u′

c
× B′ − Te

en′ ∇
′n′ + (∇′ × B′) × !2B′

4πen′λ
, (3.6)

∂B′

∂t′
= −c∇′ × E ′ − η4∇′4B′, (3.7)

dr′
p

dt′
= v′

p, (3.8)

dv′
p

dt′
= e

mi
!−2

[
E ′(t′, r′

p) +
v′

p

c
× B′(t′, r′

p)

]
− 2!−1 d!

dt′
v′

p, (3.9)

where E ′ = !E, B′ = λ!−1B, n′ .= λn, and u′ .= !−1u (see Hellinger & Trávnıček 2005,
Appendix A). To facilitate the reconnection of magnetic-field lines, we have appended
to (3.7) a fourth-order hyper-resistive diffusion with constant coefficient η4 (discussed
further in the following). This is the set of equations solved by Pegasus++; the final
(velocity-dependent) term in (3.9) is straightforwardly incorporated into the semi-implicit
Boris algorithm for solving particle trajectories alongside the v′

p × B′ rotation. Quantities
in the lab frame are easily obtained ex post facto.

Before proceeding any further, we pause here for a moment to explain our adoption
of a hybrid-kinetic model with a fourth-order hyper-resistivity, rather than an alternative
approach in which the electron kinetics play a role and the reconnection is facilitated
by electron inertia and pressure-tensor effects. In some ways, our use of hybrid kinetics
is of a purely pragmatic nature: our focus is on the macroscale evolution of a forming
CS, the generation of pressure anisotropy in the inflowing fluid elements, and the effect
of emergent mirror modes on the stability of the thinning sheet. All of this physics
is captured within hybrid kinetics, which has the added bonus of being significantly
cheaper numerically than a fully kinetic approach (especially at high β with large-scale
separations). Moreover, hyper-resistivity is often used to mimic the role of anomalous
electron viscosity in facilitating reconnection, and yields tearing growth rates in the FKR
regime that are approximately independent of kt for a Harris sheet (recall (2.5b)), just as in
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the fully collisionless case (e.g. Drake & Lee 1977; Karimabadi, Daughton & Quest 2005;
Fitzpatrick & Porcelli 2004, 2007).

Practical considerations aside, however, there is some astrophysical justification for
resolving the ion-Larmor scale while breaking the frozen-in condition through a resistive
term at sub-ρi scales. In the hot and dilute ICM, ρi ∼ 1 npc is far below any meso-
or macro-scale (including the Coulomb mean free path) but is only a factor of a few
larger than the Ohmic-resistive scale (assuming Coulomb collisions; Schekochihin &
Cowley 2006). Such a scale hierarchy places the ICM (and our simulations) in the
‘semi-collisional’ regime specified by the ordering de ! δin ! ρi ! a where de denotes
the electron skin depth, in which MHD is no longer a sufficient description but the
frozen-flux constraint is broken by resistivity rather than electron inertia (Cowley, Kulsrud
& Hahm 1986; Bhat & Loureiro 2018, although their focus was on the low-beta limit).
All this is to say that our hybrid-kinetic approach is not without physical utility or direct
application to actual systems.

Of greater potential consequence is our neglect of electron pressure anisotropy, which
could affect the reconnection dynamics in a number of ways. First, both in observations
of reconnection in the Earth’s magnetotail (e.g. Øieroset et al. 2002) and in previous
theoretical work on collisionless reconnection (Egedal et al. 2013), pressure anisotropy
in the electron species (with p‖ > p⊥) has been found to influence the inner diffusive layer
of the CS. The idea is that adiabatic trapping of the electrons by magnetic mirrors and
parallel electric fields within the reconnection region cause strong parallel heating of the
electrons, producing pressure anisotropy that alters the reconnection geometry by driving
electron currents in extended layers. Hybrid simulations that incorporate electron pressure
anisotropy have shown the formation of more elongated CSs near X-points when compared
with those found when adopting a pressure-isotropic closure, although the reconnection
rate in both cases was found to be similar (Le et al. 2016). Because we are considering
the case with zero guide field, we do not anticipate such effects to play a role; without
a guide field, the electrons are not adiabatically trapped in the inner layer and so can
stream freely across the sheet and phase mix with other electrons (Le et al. 2013). They
can, however, develop significant agyrotropy in their pressure tensor as they partially
demagnetise in the electron diffusion layer and bounce in the field-reversal region (Hesse,
Birn & Kuznetsova 2001). In collisionless reconnection, this agyrotropy contributes to
the reconnecting electric field (Vasyliunas 1975; Hesse et al. 2011) and can be used as
a proxy for identifying separatrices and X-points (Scudder & Daughton 2008; Swisdak
2016). Another way in which pressure anisotropy can develop during reconnection is due
to Fermi acceleration within contracting islands, which increases the parallel pressure and,
at sufficiently high plasma β, becomes regulated by the firehose instability (Schoeffler
et al. 2011). However, all of these effects – particle trapping within the reconnecting
layer and Fermi acceleration during island growth and merging – feature in CSs within
which tearing has already onset and gone nonlinear. In the context of this paper, the
more relevant missing physics is electron pressure anisotropy generated during the CS
formation itself, in a manner analogous to that discussed in § 2.3 for the ions. In this
case, the electron pressure anisotropy could contribute to destabilising the forming CS
at high β, either by adding to the total pressure anisotropy that factors into the mirror
instability threshold (Basu & Coppi 1982; Hellinger 2007; Hellinger & Štverák 2018)
or by triggering its own kinetic instabilities (e.g. electron whistler instability; Kennel
& Petschek 1966; Gary & Wang 1996; Riquelme, Quataert & Verscharen 2016). All of
these effects could be taken into consideration in future work by adopting a fully kinetic
approach.



Triggering tearing with mirrors 11

3.2. Initial and boundary conditions
For all of our simulations, we construct a doubly periodic, two-dimensional (2D) domain
with initial size Lx × Ly, in which we initialise a magnetic field having a double
Harris-sheet profile with no guide field,

Br(t = 0) = Br0

[
tanh

(
x − xcs,1

a0

)
− tanh

(
x − xcs,2

a0

)
− 1

]
ŷ. (3.10)

The locations of the two CSs are set to be xcs,1
.= Lx/4 and xcs,2

.= 3Lx/4. As we vary the
initial CS thickness a0 in our parameter study, we keep Lx/a0 = 48, a value large enough
to minimise interactions between the two sheets.

Using this numerical setup eliminates some complications that can arise from adopting
the more common (and, arguably, more appropriate) open boundary conditions. In
addition to the challenge of runaway particles in the open boundary setup, it is difficult to
choose an appropriate particle distribution function in the upstream. On the other hand,
by disallowing reconnected magnetic flux from leaving the domain, periodic boundaries
lead to unphysical behaviour at long times. Fortunately, with our focus being solely on the
effect of pressure anisotropy and mirrors on the onset of tearing modes, and not on the
long-time evolution of reconnection, this should not pose any problem. Having two CSs in
each simulation has the added benefit of reducing statistical noise when computing mean
quantities.

We normalise the magnetic field to the initial strength of the reconnecting field far away
from the CS, Br0, and all velocities to the initial Alfvén velocity, vA0

.= Br0/
√

4πmi〈ni0〉,
where the initial ion density is averaged over the entire simulation domain and set equal to
unity. The simulation time is normalised to the initial ion gyrofrequency, Ωi0

.= eBr0/mic,
and all lengthscales are normalised to the initial ion skin depth, di0

.= vA0/Ωi0. For our
fiducial case with initial sheet width a0 = 125, we choose Lx × Ly = 6000 × 1500 with
Nx × Ny = 2688 × 672 cells. The hyper-resistivity is set so that L3

yvA0/η4 = 5.625 × 108.
The CS length is chosen such that the smallest available parallel wavenumber ky,min

.=
2π/Ly is just barely unstable to the tearing instability discussed in § 2.2, that is, ky,mina0 ≈
0.5. Additional simulations using a wider sheet with a0 = 250 and Lx = 12 000, for which
∆′(ky,mina0) < 0, are also presented for comparison. We vary τcs ∈ [1.25, 2.5, 5, 10, 20] ×
102, which implies characteristic inflow velocities a0/τcs that are sub-Alfvénic for all but
the fastest compression (MA0 ! 1).

Initially, we draw N = 104NxNy ion macro-particles from a stationary Maxwell
distribution corresponding to an initial ion temperature Ti0 and distribute them spatially
to satisfy pressure balance within the double-Harris sheet. The (massless, fluid) electrons
are set to be in thermal equilibrium with the ions, Te/Ti0 = 1. We initialise the ions to
be pressure-isotropic with β‖,i0 = β⊥,i0 = βi0 = 100; the initial ion-Larmor radius in code
units is then given by ρi0

.= β
1/2
i0 = 10. For these physical and numerical parameters, the

ion-Larmor scale and the thickness of the diffusive inner layer are resolved at all times.
Note, however, that neither the production of ion pressure anisotropy and its regulation by
the mirror instability nor the evolution of the hyper-resistive tearing modes triggered by
them within the forming CS require the resolution of the ion skin depth.

3.3. Watershed segmentation: identifying magnetic islands and X-points
Several useful diagnostics for quantifying the onset of reconnection require the
identification and subsequent tracking of the X-points that form along the neutral line
of the CS. In 2D reconnection, these points may be identified by tracing isocontours of
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the magnetic flux function ψ or, equivalently, of the plane-perpendicular component of
the magnetic vector potential. In this case, X-point locations are defined as the saddle
points of ψ , where the first-order derivatives vanish and the second-order derivatives in
two orthogonal directions have opposing signs. The latter can be quantified by computing
the Hessian matrix of ψ(x, y), defined as Hψ(x, y), and looking for cells with negative
determinants (e.g. Servidio et al. 2009). This saddle-point identification method relies
heavily on the ability to perform accurate finite differences at the grid level; this may
be difficult in data from PIC simulations due to the grid-scale noise coming from the
(second-order-accurate) deposition of the ion density and momentum on the grid using
a finite number of simulation particles. Typically, this ‘PIC noise’ masks the precise
locations of zero crossings in the first-order-derivatives test (e.g. Haggerty et al. 2017).

To circumvent this issue, we have tried a different method discussed in Zhdankin et al.
(2013) that takes three differently sized loops around each cell and considers the cell to
contain an X-point if the values of ψ(x, y) rise above twice and fall below twice of the
tested cell’s value on each loop. Unfortunately, we have also found this procedure to be
sensitive to fluctuations at the grid scale from PIC noise, resulting in spuriously identified
X-points.

We have instead developed a novel method to locate X-points based on the watershed
segmentation algorithm (Beucher & Meyer 2018). This algorithm has been studied and
utilised extensively to separate out regions of a scalar field (e.g. Mangan & Whitaker
1999). It treats the value of the field at any given point as though it were the topographic
height of a relief and segments the region by its flood basins around local minima (hence,
the name of the algorithm).

For X-point identification, ψ(x, y) acts as the scalar variable of interest. Depending on
the directional change of the reconnecting field, it might be necessary to consider −ψ(x, y)
instead, such that locations of the O-points on the neutral line can be the basins’ local
minima. Following application of the algorithm, each magnetic island behaves similarly
to the rainfall basin that surrounds an O-point. Preprocessing by applying a low-pass filter
on ψ(x, y) can further eliminate any erroneously segmented regions on sub-ρi scales.
We found that a Gaussian filter with a radius of size ρi0 works best to minimise the
misidentification of basins. Compared with the other two methods discussed previously,
this method is much more robust to the grid-scale noise coming from the PIC deposition
scheme.3

Given the watershed algorithm properties, it is possible that some of the segmented
regions do not contain any magnetic island. These regions are typically the result of
spuriously identified valleys located away from the neutral line and can easily be discarded.
For two neighbouring regions that contain magnetic islands, an X-point should exist
on their boundary and correspond to the local minimum value along that boundary. In
addition, locations of O-points can be easily identified as the local minimum value of the
flux function within the regions containing a magnetic island.

In figure 1 we present a direct comparison between these three algorithms for detecting
X-point locations. We select a small region centred about the neutral line from our fiducial
simulation (see figure 2c) that clearly exhibits three X-points. Figure 1(a) demonstrates
that the simple saddle-point method tends to under-count X-points, identifying only one
out of the three X-point locations. The reason for this is that the constraints on the
first-order derivative must be simultaneously satisfied for gradients in both the x and

3As this paper was being completed, we became aware of a similar approach to X-point detection proposed and
analyzed by Banesh et al. (2020), which treats ψ(x, y) as a topological scalar field and implements a contour-tree-based
segmentation algorithm to identify X-point locations. The goal there, as well, was to reduce the complicating effects of
PIC noise on X-point identification.
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(a)

(b)

(c)

FIGURE 1. Comparison of X-point detection methods for a given flux function ψ(x, y) taken
from one of our simulations: (a) simple saddle point, (b) loop comparison and (c) watershed
segmentation. Values of ψ(x, y) are represented as the greyscale shading and the interpolated
blue contours. Cell locations determined to contain X-points are shaded in red, whereas the
purple shaded cells in panel (a) show locations of other zero crossings of the first-order
derivative. Yellow shaded cells in panel (c) show the boundary cells obtained from watershed
segmentation.

y directions. In contrast, the loop comparison algorithm shown in figure 1(b) tends to
over-count, or even mistakenly identify, X-points. Cells satisfying the test conditions can
also be disconnected, complicating the interpretation of identified X-point locations. The
result from our proposed watershed segmentation algorithm is shown in figure 1(c), and
demonstrates a robust detection, identifying all X-point locations.

4. Results
In this section we present the results from our simulations, in which two CSs that

initially have Harris-sheet profiles gradually thin and lengthen according to the coordinate
transformation discussed in § 3.1. Our results are organised into three subsections: the
first focuses on what we consider to be our fiducial run (a0 = 125, τcs = 1000), whereas
the other two concern variations in the compression time τcs and the initial CS width a0.
In general, we observe that as the strength of the reconnecting field increases linearly,
Br(t) = Γ (t), pressure anisotropy builds up and eventually triggers the mirror instability.
Mirror fluctuations then wrinkle the CSs, changing their magnetic profiles and seeding
small-scale tearing modes that would otherwise be stable. These mirror-triggered tearing
modes first grow exponentially and then secularly, ultimately spawning multiple islands
that merge and grow to become comparable with the instantaneous CS thickness. At that
point, which is typically on the order of the CS formation time τcs, we terminate the
simulations and consider reconnection of the CS to have fully onset.

Given the magnetic geometry in our simulations, we focus mainly on four separate
regions in the domain whose widths are comparable to a0/Γ (t) and whose lengths span
the full Ly. Two of these regions, centred about x = xcs,1 and xcs,2, represent the dynamics
occurring inside each of the two CSs; any quantity averaged over these two regions is
referred to with the label CS. The two other regions are centred about x = 0 and x = Lx/2,
in between the CSs; any quantity averaged over these two regions is referred to with the
label Bulk. All mean quantities are denoted by 〈 . . . 〉 unless otherwise noted.
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4.1. Fiducial run
We describe the evolution in our fiducial run using a set of four figures. Figure 2 shows
slices centred about a CS in our fiducial simulation taken at four different times in the
evolution. All quantities, including fluctuations in the reconnecting field δBy (colour) and
isocontours of the flux function (black lines), have been translated into the stationary lab
frame; note the geometric thinning and lengthening of the CS in time. Figure 3 provides the
time evolution in the lab frame of the mirror instability parameter 〈Λm〉, the out-of-plane
component of the electric field 〈|Ez|〉, and the energy of the magnetic fluctuations δB2(t) .=
〈|B(t, x, y) − Br(t, x)|2〉, each of which has been averaged separately over the CS and the
Bulk. In the second panel displaying 〈|Ez|〉, we also present this value averaged over
all X-point locations identified by our watershed segmentation algorithm, labelled by
XPoints. The early values of this average are rendered transparent, because the inferred
X-points during this period are strongly influenced by the low signal-to-PIC-noise ratio.
Cuts of the reconnecting field in the code frame, B′

y, about the null line at x′ = x′
cs,1

are shown in figure 4 for the same four times as in figure 2. For this figure, the code
frame is chosen so that the Harris profile remains stationary and the growth of mirror
fluctuations can be more easily seen. Finally, figure 5 supplements figure 2 by providing
the lab-frame reconnecting field By (colour) and flux-function contours (black lines) at
later times, t = 500 and 1000, by which point the X-points have begun to collapse into
thin secondary CSs.

We begin with figure 2(a), corresponding to t = 50. At this point, the CS has already
thinned by a factor of 1.05, causing a 5 % increase in the strength of the reconnecting
magnetic field. Owing to the approximate conservation of adiabatic invariants, pressure
anisotropy builds up in the system (figure 3a). Although formally mirror-unstable, the
accumulated anisotropy is too small at this time for the growth of the mirror instability to
outpace the thinning of the CS, and the pressure anisotropy continues to increase positively
following the predicted double-adiabatic evolution (see (2.7) and (2.8)),

Λm(t) = [Γ (t)]3 − 1 − Γ (t)
βi0

(double-adiabatic), (4.1)

indicated by the dashed line in figure 3(a).
Figure 2(b) corresponds to t = 120, by which time structures in the reconnecting field,

reminiscent of the mirror instability, can be seen outside of the CS where the magnetic
field is strongest. Subtle wrinkling of the field lines can also be seen in the profile of B′

y
shown in figure 4. It is around this time that the pressure anisotropy in the Bulk region
begins to depart from the double-adiabatic prediction and the magnetic-field fluctuations
start their exponential growth in figure 3(c). In contrast, Λm is still rising steadily within
the contracting CS, due to the weaker magnetisation there delaying the growth of mirror
modes.

As the expansion proceeds (figure 2(c) at t = 160), significant structures in δBy are
observed both inside and outside of the CS. In the Bulk plasma, Λm is decreasing
(figure 3) as the growth of mirror fluctuations depletes the pressure anisotropy. These
fluctuations then grow secularly with 〈δB2〉 ∝ t4/3, as expected for the nonlinear evolution
of the mirror instability (see § 2.4). Simultaneously, the profile of the reconnecting field
away from the CS becomes noticeably disturbed (figure 4). Within the CS, the mirror
instability also starts to grow at this time, as indicated by the stalled increase in Λm
(figure 3). At this stage, X-point locations near the neutral line can be distinguished
using the algorithm described in § 3.3, indicating that the tearing instability has also been
triggered within the CS. It is particularly notable that the characteristic spacing of these
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FIGURE 2. Time slices centred about the CS at x = xcs,1 from our fiducial simulation, showing
properties of the magnetic field at (a) t = 50, (b) t = 120, (c) t = 160 and (d) t = 250. All
quantities have been transformed back into the stationary lab frame; note the geometric thinning
and lengthening of the CS. The size of an undisturbed Harris sheet of width a(t) = a0/Γ (t)
is marked for reference by the green lines. The quantity δBy

.= By − Γ (t) tanh[x/a(t)] is
represented by the colour contours, with the overlaid black lines tracing levels of the flux function
ψ . In the bottom two panels, locations of the inferred X-points, found using the method discussed
in § 3.3, are marked by the purple crosses and surrounded by finer levels of the flux function.

X-points not only is comparable to the parallel wavelength of the mirror fluctuations just
outside of the neutral line, but also corresponds to a value of ∆′ that would be negative
given an undisturbed Harris profile. In other words, in the absence of the mirror instability,
the observed tearing modes would still be stable. We revisit this assertion quantitatively in
§ 4.2.

In the final panel of figure 2 at t = 250, the mirror instability in the Bulk region is
saturated at 〈δB2〉 ∼ 0.3 and tearing inside of the CS is fully nonlinear. Reconnection is
well underway and the magnetic islands have grown to the expected width of the CS and
begun to merge. The consequent disturbances to the Harris profile seen in figure 4 indicate
large fluctuations both inside and outside of the CS. Beyond this time, 〈|Ez|〉 around
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FIGURE 3. (a) Mirror instability threshold 〈Λm〉, (b) out-of-plane electric field 〈|Ez|〉 and
(c) magnetic-field fluctuation energy 〈δB2〉 as a function of time from the fiducial simulation
averaged over different parts of the simulation. Grey vertical lines indicate the times plotted
in figure 2. The black dashed line in panel (a) represents double-adiabatic growth (see (2.7)),
whereas the black dashed line in panel (c) shows the predicted secular growth ∝t4/3 of the
mirror fluctuations outside of the CS.
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FIGURE 4. Reconnecting field in the co-moving coordinates B′
y as a function of x′ centred on

the CS at x = xcs,1 at the four different times shown in figure 2. The black dashed line shows the
profile of an undisturbed Harris sheet; the inset plot provides an enlarged view at the first two
times plotted. Small-scale disturbances of the Harris profile caused by the mirror instability are
evident.

the X-points (i.e. the reconnecting electric field) steadily increases in time, ultimately
attaining a value %10−2, similar to that found in prior hyper-resistive MHD simulations
of reconnection (e.g. Huang et al. 2013). In contrast, the value of |Ez| averaged over the
CS region slowly decreases as the mirrors near the edge of the CS region are displaced
by the growing magnetic islands, as seen in figure 5(b). In figure 5(a) at t = 500, we also
see the formation of Y-points with a Sweet–Parker-like profile, one of which (near the
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FIGURE 5. Time slices centred about the CS at x = xcs,1 in our fiducial simulation at t = 500
and 1000, similar to figure 2 but with the quantity By plotted instead as the colour contours.
These panels exhibit X-point collapse into a Y-point geometry and, in the lower panel, plasmoid
formation.

left boundary of this figure) eventually disrupts due to plasmoid formation at t = 1000 in
panel (b).

4.2. Varying the CS formation time scale τcs

Having described the overall evolution using our fiducial run, we now vary the CS
formation time τcs ∈ {125, 250, 500, 1000, 2000}. At fixed a0 = 125, this is equivalent to
varying the Alfvén Mach number MA0 of the driving flow ∈{1, 0.5, 0.25, 0.125, 0.0625}.
The goals are to test the scalings ofΛm,max and tm,reg against the theory, to demonstrate that
tearing modes are always triggered on a length scale that correlates with the wavelength
of the mirror instability, and to verify that such tearing modes would be stable were it not
for the distortions in the Harris-sheet profile caused by the mirror fluctuations.

First, in figure 6 we show the evolution of 〈Λm〉 within the CS region for different τcs
(figure 6a), as well as how its maximum value, 〈Λm〉max, and the ‘regulation’ time at which
its maximum value is reached, tm,reg, scale with τcs (figure 6c and 6d). As τcs is increased,
〈Λm〉max decreases, consistent with the argument that the mirror instability requires less
excess pressure anisotropy to outpace the CS formation when τcs is large. In § 2.4, we
argued that both Λm,max and tm,reg should scale as ∝τ−0.5

cs in the asymptotic limit. The
results in figure 6(c) and 6(d) are consistent with this scaling, the slight departures being
because tm,reg is not !τcs.

We now turn to the evolution of Ez within the CS as a function of τcs, shown in
figure 6(b). Both mirror and tearing instabilities contribute to the growth of Ez in the CS
region. By itself, the mirror instability’s contribution to Ez should peak at the same time
as doesΛm and then slowly decay, similar to the behaviour shown in figure 3(b) for the CS
region. Instead, we observe secondary growth of Ez beyond its initial exponential growth,
which we attribute to the onset of tearing. This association is strengthened by examining
Ez evaluated at the X-points, whose linear (exponential) growth starting at time tlin gives
way to secular growth at the same moment that Ez averaged over the CS region peaks
for a second time. Given the statistical advantages of the CS-averaged values, we use this
well-defined second peak as a proxy for the time at which reconnection ‘onsets’. Denoting
this time as tonset, we found in all cases a temporal ordering of tlin < tm,reg < tonset.

This temporal ordering confirms that both instabilities grow at approximately the same
time, with the tearing instability transitioning from its linear stage to its nonlinear stage
after the CS pressure anisotropy begins to be regulated by the mirror instability. Note from
figure 6(d) that both the mirror-regulation and onset times have the same dependence on
τcs. A comparison of the fluctuation energy shown in figure 7 indicates that the growth
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FIGURE 6. Evolution of (a) Λm and (b) Ez averaged over the CS region for different τcs.
Maximum values of Λm are marked by triangles; the approximate starts of exponential growth
in 〈|Ez|〉 for the determined X-point locations are marked by squares; and the maximum values
of 〈|Ez|〉 in CS are marked by circles. The dashed line in panel (a) corresponds to (4.1). (c)
Power-law scaling of Λm,max with respect to τcs. (d) Times at which the pressure anisotropy
starts to be regulated by the mirror instability (black points) and at which reconnection onsets
(blue points). The theoretical prediction for these dependencies in the asymptotic limit of large
scale separation is Λm,max ∝ tm,reg/τcs ∝ τ−0.5

cs (see § 2.4).

of both instabilities rapidly increases between tlin (squares) and tonset (circles), followed by
secular growth that appears to be linear in time and independent of τcs.

To further emphasise the effect of the mirror instability on the tearing stability of the CS,
in figure 8 we provide an analysis of the mean separation between the X-points that form
on the neutral line by tearing and its relationship to the characteristic wavelengths of the
mirror instability. Figure 8(a) displays this mean separation as measured in the code frame
and identified by our watershed algorithm, .′

X, as a function of time for different τcs. Here,
the code frame is used because the Lagrangian advection of the islands by the driving
flow makes L/.X approximately a constant during the linear growth phase of tearing; in
this situation, .′

X is proportional to the inverse tearing-mode number, N−1. The thickened
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FIGURE 7. Evolution of magnetic fluctuation δB2 in the CS region for different τcs. The time of
〈|Ez|〉 linear growth, the maximum value of 〈Λm〉, and the maximum value of 〈|Ez|〉 are marked
by the square, triangle and circle, respectively.

portions of the lines correspond to the time period between the peaking of Λm and the
second peak of Ez in the CS region, with the first moment corresponding to the onset of the
mirror instability and the latter coinciding with the transition of the tearing instability from
its linear phase to its nonlinear phase. It is during this time interval that we compute an
average value for .X, which we associate with the characteristic tearing-mode wavelength
and plot in figure 8(b) against τcs. We consider the value of .′

X measured prior to the
highlighted interval to be unreliable, because the field perturbation amplitudes caused
by the tearing modes are not yet sufficiently large relative to the PIC noise to make the
watershed algorithm accurate (i.e. there are many spuriously identified X-points). The
rapid fluctuations seen in the curves are due to X-points that are transiently identified by
the algorithm; at later times, they correspond to X-points that occur between two magnetic
islands that are merging.

Two important things are noticeable in figure 8(a). First, larger values of τcs result in a
larger mean separation between X-points (i.e. smaller N). To place these values in context,
note that a mode number of N = 100 corresponds in these simulations to .′

X 0 94, a
value comparable to that measured during the linear phase of tearing in the simulation
with τcs = 2000. Secondly, the X-point separations increase rapidly after the linear stage
(corresponding to islands merging) and ultimately level off (indicating that mergers have
slowed dramatically and the islands are mostly advected with the flow).

In figure 8(b) we compare the average X-point spacing during the linear phase of
tearing, 〈.X〉, with the characteristic x (i.e. perpendicular to Br) and y (i.e. parallel
to Br) wavelengths of the mirror fluctuations as measured in the Bulk region. All
three quantities are presented in the lab frame. To compute the characteristic mirror
wavelength, we find the mode number at which the Bulk energy spectrum |By(kx, ky)|2 is
maximal and average the implied x and y wavelengths using the same time interval over
which .X is averaged. (Recall that the Bulk region only contains mirror fluctuations.)
The resulting characteristic mirror wavelengths are denoted by 〈λy,m〉 and 〈λx,m〉; their
respective values are plotted as the red and blue points, with the error bars indicating their
standard deviations associated with the time averaging. Note that the mirror modes go to
longer wavelengths as τcs increases, similarly to 〈.X〉. Moreover, 〈λx,m〉 < 〈.X〉 < 〈λy,m〉,
consistent with the theoretical arguments made in § 2.5.

Finally, figure 8(c) shows the value of the Harris sheet ∆′a, denoted by (∆′a)Harris,
evaluated using kt = 2π/.X and averaged over the same time interval used to calculate
〈.X〉. For all values of τcs, we find that (∆′a)Harris < 0, i.e. the observed tearing modes
would be stable if not for the excitation of the mirror instability and consequent
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FIGURE 8. (a) Evolution of the average X-point separation measured in the code frame, .′X, for
different τcs, as inferred using our watershed algorithm. (b) Time average and standard deviation
of X-point separation measured between tm,reg and tonset as a function of τcs; also shown are
the dominant wavelengths of By(x, y) measured along and perpendicular to the reconnection
field during that time interval in the Bulk region, representing the characteristics wavelengths
of mirror instability. These quantities have been transformed into the physical lab frame. (c)
Harris-sheet ∆′a evaluated using the average .X shown in panel (b); note that it is negative,
indicating that these tearing modes would be stable if it were not for the influence of the mirrors
on the CS profile.

wrinkling of the CS on small scales. This is perhaps the clearest quantitative evidence
for mirror-stimulated tearing.

4.3. Wide sheet
We additionally ran simulations in which the initial CS width a0 = 250, a value double
that used in our fiducial run. The CS formation time is varied as in § 4.2, with τcs ∈
{125, 250, 500, 1000, 2000}. As a result, the initial Alfvén Mach number MA0 (see (2.3))
and magnetisation a0/ρi0 are larger, so that ∆′ < 0 initially for all modes. In order to
maintain the same level of interaction between the two CSs, we increased the system size
to have Lx = 12 000 and Nx = 5376 while keeping all other parameters constant.
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FIGURE 9. As in figures 6 and 8, but for a CS with a0 = 250.

The main results from these runs are shown in figure 9, including the maximum
value of Λm in the CS region (figure 9a), the mirror-regulation and tearing-onset
times (figure 9b), the mean X-point separation compared with the characteristic mirror
wavelengths (figure 9c), and the Harris sheet ∆′a evaluated at kt = 2π/.X (figure 9d),
all as functions of τcs. The scalings shown in figure 9(a) and 9(b) are nearly identical to
those seen in figure 6(c) and 6(d), and are consistent with the expected scalings for the
mirror-regulation and tearing-onset times. Likewise, figure 9(c) exhibits a τcs scaling for
the mean X-point separation similar to that found in figure 8(b), with 〈λx,m〉 < 〈.X〉 <
〈λy,m〉. Once again, these values of .X imply a tearing-mode wavenumber that would be
stable in an undisturbed Harris sheet; in fact, the values of (∆′a)Harris shown in figure 9(d)
are nearly twice as negative as those found when a0 = 125. As the onset times are
approximately equal to those found in § 4.2, this confirms that the mirror instability is
the main instigator of tearing and the subsequent onset of reconnection.

5. Discussion
We have used hybrid-kinetic simulations to show that a steadily thinning CS in a

collisionless, magnetised plasma accumulates pressure anisotropy in the inflowing fluid
elements, and that this anisotropy quickly goes mirror-unstable at sufficiently large β. The
subsequent ion-Larmor-scale wrinkling of the CS modifies the profile of the reconnecting
field in a way that dramatically reduces its effective thickness and, thereby, its stability
to tearing modes (quantified through ∆′). Simultaneously, the rapid growth of the mirror
fluctuations directly stimulates tearing modes by providing a nonlinear seed. As a result,
tearing onsets earlier and on smaller scales than it would have without the mirrors, thereby
placing a tighter upper limit on the aspect ratio of any forming CS. By varying the
CS formation time τcs, we find that the reconnection onset time τonset is approximately
proportional to τ 1/2

cs , as the mirror instability grows proportionally earlier in simulations
with slower compression. In other words, the ratio τonset/τcs decreases with increasing
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scale separation. Increasing the initial CS thickness a0 returns hardly any change in the
outcome: the onset times are close to those obtained at smaller a0, and the unstable tearing
modes are again intermediate in scale between the parallel and perpendicular wavelengths
of the mirrors. In all cases, the mirror-stimulated tearing modes ultimately grow to produce
multiple islands whose widths are comparable to the CS thickness.

Our work lends credence to the conclusion made by Alt & Kunz (2019) that ‘numerical
simulations of collisionless reconnection in high-β plasmas should not initialise with
a Maxwellian plasma embedded in an equilibrium CS. Instead, the CS should be
allowed to evolve, and the particle distribution function self-consistently with it’. It also
provides a natural explanation for results from a recent laser–plasma experiment of driven
reconnection with collisionless ions, which indicated an earlier onset of tearing having
larger growth rates and significantly smaller scales than anticipated (Fox et al. 2021).
These successes borne in mind, it is useful to place our work in the broader context
of the turbulent plasma dynamo, in which chaotic large-scale fluid motions organise
a growing magnetic field into a highly intermittent patchwork of long, thin, reversing
structures. These ‘magnetic folds’ may be viewed locally as CSs that, depending on
their aspect ratio and the material properties of the plasma, may be susceptible to
disruption by tearing (Galishnikova, Kunz & Schekochihin 2022). In a collisionless
or weakly collisional plasma, the generation of these folds involves the production of
positive pressure anisotropy in the regions of low magnetic curvature (e.g. Rincon et al.
2015; St-Onge & Kunz 2018; St-Onge et al. 2020), in a manner qualitatively similar to
the CS-formation model employed here. Assuming our results carry over to that more
complicated system, the implication is that such folds will experience mirror-stimulated
tearing and breakup into plasmoid-like flux ropes before they are able to thin to resistive
(or electron-kinetic) scales. How electron pressure anisotropy interferes with or assists
this process (e.g. by triggering electron-Larmor-scale instabilities that may result in an
anomalous electrical resistivity) awaits a more general treatment of CS formation and
reconnection physics than we have employed here. Fully kinetic simulations would be
most informative.
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