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Abstract: Massive wildfires and extreme fire behavior are becoming more frequent across the western

United States, creating a need to better understand how megafire behavior will evolve in our warming

world. Here, the fire spread model Prometheus is used to simulate the initial explosive growth of

the 2020 August Complex, which occurred in northern California (CA) mixed conifer forests. High

temperatures, low relative humidity, and daytime southerly winds were all highly correlated with

extreme rates of modeled spread. Fine fuels reached very dry levels, which accelerated simulation

growth and heightened fire heat release (HR). Model sensitivity tests indicate that fire growth and

HR are most sensitive to aridity and fuel moisture content. Despite the impressive early observed

growth of the fire, shifting the simulation ignition to a very dry September 2020 heatwave predicted a

>50% increase in growth and HR, as well as increased nighttime fire activity. Detailed model analyses

of how extreme fire behavior develops can help fire personnel prepare for problematic ignitions.

Keywords: wildfire modeling; Prometheus; megafire; hot/dry conditions; California wildfires;

fire weather; fuel moisture content

1. Introduction

In 2020, wildland fires burned over 4 million acres in California (CA), the most
recorded in a single year (Figure 1) [1]. A large portion of the burned area resulted
from an anomalous dry lightning storm that struck in the middle of an August 2020
heatwave [2]. Fires ignited all over the central and northern portion of the state, later
joining into a number of massive burns, referred to as complexes. Multiple fire behavior
drivers aligned to make this fire siege unprecedented. The previous winter—CA’s wet
season—had above average precipitation in December but then decreased in January
through March, which caused overall below average precipitation in much of northern CA
and the Sierra Nevada Mountains [3]. Low winter precipitation causes more flammable,
rapidly drying fuels, which was evident in July 2020 by below average live fuel green-up
and dead fuel moisture content. As warm, dry conditions persisted through July, the
number of wildfires increased. Then, moisture advected from tropical storm Fausto, off
the coast of Baja California, streamed northward, causing over 15,000 lightning strikes
throughout central and northern CA [1].

Near the confluence of Tehama, Glenn, Mendocino, and Lake counties, thirty-seven
individual fires ignited during the August siege. The Doe Fire quickly became the largest of
those fires and is the focus of this study (Figure 1). It predominantly burned in the remote
Mendocino National Forest, spreading through a mixture of fuels, including mixed conifer,
shrubs, and grass. Fire management resource unavailability, due to the number of ongoing
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fires, kept fire suppression efforts initially reduced, despite threatening fire behavior [1].
As the Doe Fire merged with the other individual fires, they formed the August Complex,
which burned over 404,685 ha (1,000,000 acres) by early October, the most ever recorded by
a single fire event in CA. The uncontrollable nature of this megafire cost over $115 million
and a firefighter’s life [2].

 

Figure 1. The Doe Fire joined with several other smaller fires to form the August Complex, which

burned 417,890 ha between 16 August and final containment on 15 November (mamsl = meters above

mean sea level).

The fire regime of a region is defined by where and when wildfires occur, how they
behave, and how they affect the landscape [4]. Research at scales ranging from individual
fires to regional fire activity over multiple seasons has demonstrated that the mixed conifer
forests of northwestern CA have a mixed-severity fire regime [5]. The highest severity
fires are most often caused by extreme fire weather, including high temperatures and low
atmospheric moisture [6,7]. Weather driven, high severity fires can also be intensified by
complex topography and dry fuels, which was seen during the Doe Fire. On a larger scale,
increases in extreme fire behavior throughout CA and the western United States (USA)
have been attributed to atmospheric warming and drying caused by climate change [8–13].
A warmer atmosphere causes an increase in vapor pressure deficit (VPD) because satura-
tion vapor pressure exponentially increases with temperature [10]. VPD increases cause
decreases in fuel moisture content [14]. As climate change continues, heatwave frequency
and intensity are also increasing in CA [15–18]. Changing precipitation patterns present the
possibility of increased drought frequency [19] and a longer, drier fire season [20,21]. With
extreme weather becoming more likely, it is critical to ask the following question: How will
megafire behavior change with increased warming of the planet?

This study aims to contribute to this investigation by employing wildfire model
simulations of the first four days of the Doe Fire, the largest individual fire that contributed
to the August Complex. Specifically, we investigate the following three questions: (1) What
meteorological variables (winds, relative humidity (RH), temperature) and fuel conditions
contributed most to the rate of fire spread? (2) How would the Doe Fire have evolved
if the ignition had occurred during a second, stronger heat wave observed in September
2020? (3) How do fire characteristics (area burned and heat release) vary with changes
in temperature and aridity? To answer these three questions, we used the Canadian
fire spread model Prometheus [22]. This choice was based on the model’s widespread
use [23], simplicity, contemporary updates, and the availability of Canadian fire danger
indices in the global reanalysis used in this study. In preliminary work, Prometheus also



Fire 2022, 5, 16 3 of 19

outperformed USA-based models FARSITE and FlamMap, which prompted an attempt to
test its capabilities in CA.

Section 2 of this paper describes the model calibration and experimental design.
Section 3 discusses our findings. The results of the control model run of the Doe Fire,
including fuel consumption, rate of spread (ROS), and fire heat release (HR) analyses are
presented and discussed in Section 3.1. Next, we discuss model sensitivity tests to several
meteorological inputs, FMC scenarios, and ignition time tests in Sections 3.2–3.4. Section 3.5
then describes the connection between warming/drying and fire spread. Section 4 contains
our concluding remarks. An acronym table is included in Appendix A (Table A1).

2. Materials and Methods

2.1. Case Study

We simulated the Doe Fire because it was the largest individual contributor to CA’s
largest recorded wildfire—the August Complex. The initial growth was also minimally
influenced by suppression actions, which are difficult to account for in fire spread modeling.
The Doe Fire began on 16 and 17 August from at least three different lightning strikes—
detected by analyzing NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) fire
detection data. On 18 August, its perimeter was reported as 566 ha. Then, hot, dry weather
and gusty winds caused the fire area to explode to 52,280 ha by 22 August. Fire behavior
lessened after 22 August, which motivated us to simulate the four days of extreme behavior
between 18–22 August. In Prometheus, we set the ignition time to 1200 Pacific Daylight
Time (PDT) on 18 August, rather than 16 or 17 August, because Prometheus was not
able to capture the initial post lightning strike or slow evolution of fire growth. We then
ran the simulation for 96 h. Daily shapefiles of observed fire progression during August
and September 2020 were obtained from FireNet (https://www.firenet.gov/, accessed on
23 September 2020).

2.2. Fire Model

Prometheus, the Canadian wildland fire growth simulation model, uses a deterministic
approach to simulate the spread of wildfire with wave propagation equations and the
Canadian Forest Fire Behavior Prediction System [24]. The fire is represented by a growing
polygon, and at every model time step, the vertices of that polygon serve as points where
new fire ellipses grow. After every time step, a new perimeter is drawn by tracing a
tangential line around all of the new fire ellipses. The nature of the wave propagation
technique produces outputs along each time step perimeter, but Prometheus also includes
built in interpolation methods—inverse distance weighting, Voronoi area weighting, and
nearest vertex—for gridded fire behavior outputs [22]. The spread of each ellipse and
associated outputs are based on Canadian Forest Fire Behavior Prediction System equations.
An initial ROS value is determined using the fuel type, wind speed, and fuel moisture
content (FMC) of fine fuels. That ROS value is then recomputed using a net effective
wind speed, which accounts for slope. The net effective wind direction also accounts
for slope and determines the fire spread direction. ROS can be further affected by a
buildup effect, which factors in larger combustible fuel availability using longer time lag
FMC indices. Crown fire behavior, which can also increase ROS, occurs when a critical
surface fire intensity is reached, which depends on a fuel type’s crown base height and
foliar moisture content. Crowning also affects the total fuel consumption, calculated by
adding surface fuel consumption—based on fuel moisture and availability—and crown fuel
consumption—based on crown fraction burned and fuel load. The associated equations are
based on fire observations or best judgement when observations were not available [24,25].
The Forest Behavior Prediction System and Prometheus do have some limitations. Short-
range spotting is accounted for within the ROS equations, but long-range spotting is not
accounted for, although Prometheus does allow the fire to breach a barrier that is at most
1.5 times the flame length. Due to its two-dimensional nature, Prometheus does not account
for interactions between merging fires and between fires and the atmosphere [22], both
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of which occurred during the Doe Fire [26]. These limitations reduce the accuracy of
output values, but analysis of and comparisons between simulations are still helpful in
understanding extreme fire behavior.

2.3. Meteorological Inputs

Meteorological data (wind speed/direction, temperature, RH, and precipitation) can
be input as either hourly point streams, grids, or daily values. We chose to use hourly
streams because Prometheus also has an option to spatially interpolate meteorological
variables across the domain using multiple points [22]. This method allowed us to use four
locations from ERA5 reanalysis [27] as “virtual weather stations”, the coordinates of which
are 39.5◦ N, 122.5◦ W; 39.5◦ N, 122.75◦ W; 39.75◦ N, 122.5◦ W; and 39.75◦ N, 122.75◦ W.
These locations surround the Doe Fire perimeter (Figure 2). To assess the feasibility of
using the coarse resolution ERA5 reanalysis for the weather locations, we also ran a test
simulation using six virtual weather stations from a Weather Research and Forecasting
(WRF) model downscaling run. The modeled fire behavior was similar when comparing
the higher resolution (2 km) WRF meteorological inputs to the coarser (0.25◦) ERA5 inputs.
We therefore chose to use ERA5, alleviating computational intensity and making it easier
to investigate several scenarios. Prometheus requires the selection of a primary weather
stream. We chose the northwest location because it fell within the perimeter of the Doe Fire
and was at a representative elevation.

Figure 2. Observed (52,281 ha) and simulated (52,245 ha) Doe Fire perimeter on 22 August, after 96 h

of explosive growth. ERA5 weather stream locations are marked with green locators.

2.4. Topography and Fuel Inputs

A digital elevation model (DEM) and fire behavior fuel model—LF 2016 Remap
Scott/Burgan 40—for the Doe Fire region were obtained through the LANDFIRE Pro-
gram [28]. The LANDFIRE data were converted from the default raster format to gridded
ASCII files. We also upscaled the elevation and fuel inputs from a 30 m resolution to
a 300 m resolution, which later allowed us to increase simulation temporal length and
resolution. Prometheus cannot directly import USA-based fuel models, so we created a fuel
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lookup table (Table A2) comparing the USA Scott/Burgan fuel model and the Canadian
fuel types that are built into the model. We matched USA fuel model ROS curves [29] for
each fuel in our domain with Canadian ROS curves [24]. Fuel loads were not compared,
which reduces the accuracy of fuel consumption and intensity outputs. The Canadian
mixedwood fuel type was primarily used in the fuel lookup table because the ROS can
be adjusted by changing the ratio of conifer to deciduous composition. The Canadian
fuel types also do not include any shrub fuels, which limited the options for converting
USA-based shrub fuels. Example fuel descriptions, ROS curves, and conversion charts are
provided in Table A3 and Figure A1.

Prometheus also requires FMC inputs from the day before simulation start time. These
include the fine fuel moisture code, duff moisture code, and drought code. The fine fuel
moisture code ranges from 0–101 and indicates the FMC of forest litter fuels; the duff
moisture code represents the moisture content of organic material under the litter; and the
drought code indicates the moisture conditions of deep soil drying similar to the Keetch–
Byram Drought Index, and can be indicative of vegetation drought stress [30]. Daily FMC
indices are available through ERA5 reanalysis. Higher values correspond to drier fuels.

2.5. Model Calibration

Prometheus includes an option to stop fire spread when certain burning conditions—
initial spread index, fire weather index, wind speed, and RH—are not met. For additional
details on initial spread index and fire weather index descriptions and calculations, refer
to [24]. We modified the model default burning conditions until our simulation accurately
reproduced the observed fire growth (Table 1). The default values were embedded in
Prometheus but not discussed in the model reference [22]. We also noticed model predic-
tions of errant fire spread into the Sacramento Valley to the east. The Doe Fire did not
spread there because of suppression efforts, sparser fuels, and less complex topography [31].
To reproduce the observed fire behavior, we created a fuel patch that designated all dry
climate grass (GR2) fuels in that area as non-burnable. A band of north–south running
dry climate grass-shrub (GS2) and dry climate shrub (SH7) was also showing excessive
fire spread to the north. In our fuel lookup table (Table A2), these correspond to Canadian
mixedwood fuel types because the Canadian fuel model does not include shrub fuels. The
mixedwood fuel type allows for adjustment of the ratio of deciduous to conifer. We lowered
the conifer percentage, which lowers ROS, of both the dry climate grass-shrub—originally
70 percent—and dry climate shrub—originally 85 percent—to 50 percent. These modifi-
cations were necessary due to the inherent differences between Canadian and USA fuels.
Additional case studies could be helpful for creating a fuel lookup table that is practical
for all CA biomes, beyond our study region. Finally, based on sensitivity tests, we used
two centrally-located ignitions rather than the hypothesized 3+ ignitions due to the model
emergent spread behavior (Figure 2). By combining these modifications with the required
burning conditions, we were able to create a reasonable approximation of the fire footprint
after four days of explosive Doe Fire growth, with daily comparisons presented later. This
approximation allowed us to perform additional experiments to understand the factors
underlying extreme fire spread behavior.

Table 1. Prometheus default values for required burning conditions and the values we used after calibration.

Required Burning Conditions Default Value Calibrated Value

Initial Spread Index >6 >6

Fire Weather Index >20 >20

Wind Speed (km/h) >4 >1.2

Relative Humidity (%) <25 <40
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2.6. Experimental Design

We performed principal component analysis to determine the covariance and main
modes of diurnal variability among the hourly meteorological inputs and fire behavior
outputs. Additional details on principal component analysis methodology can be found
in [32]. After testing different combinations of meteorological and fire behavior variables,
we included 96 h long time series of temperature, RH, zonal and meridional winds, and
ROS. We used the northwest ERA5 location (Figure 2) for our meteorological inputs because
it is the primary weather stream, the most proximate to ignitions, and the closest to average
domain elevation. The ROS time series is a sum of all gridded values over each time step.

Our additional simulation experimental design included seven different variations to
the calibrated control run and was categorized as follows.

2.6.1. Sensitivity to Climate

In the first scenario, all hourly meteorological variables (wind speed/direction, tem-
perature, RH, and precipitation) in each of the four weather streams were replaced by
hourly climatological values. The 18–22 August climatology weather streams were derived
by averaging each hourly value from 41 years (1979–2020) of ERA5 reanalysis data for each
weather stream location (Figure 2). The 41-year averaged initial FMC values were also used
for each weather stream. This scenario represents how the simulated Doe Fire behaves in
mean weather conditions, i.e., no heatwave.

In the second and third scenarios, only temperature was perturbed by adding and
subtracting increments of 0.8 ◦C from the original weather stream values. A trend of +0.8 ◦C
warming was derived from a linear fit to the ERA5 reanalysis locations and estimated as
the long-term (41-year) temperature increase in the region during August. We did not
perturb the other meteorological variables during these simulations (wind speed/direction,
RH, precipitation) because no statistically significant long-term trends were calculated,
although this does not mean they will not change in the future. By subtracting 0.8 ◦C, we
are simulating fire behavior during similar heatwave conditions before the recent 41-year
warming trend, while adding 0.8 ◦C shows how modeled fire behavior could change in
a future warmer world. In the fourth scenario, an increment of 1.6 ◦C was added to the
control weather streams to further test the sensitivity to warming. The results of these
temperature change scenarios prompted us to do additional temperature sensitivity tests,
adding 0.4, 1.2, 2.0, and 2.4 ◦C to the control weather streams. These additional scenarios
were used to illustrate the effect of warming on modeled fire growth.

2.6.2. Sensitivity to FMC

FMC variations were examined by computing the 41-year (1979–2020), 90th, 95th,
and 99th percentile values of FMC indices (fine fuel moisture code, duff moisture code,
and drought code) on 17 August at each of the four weather stream locations. These
values were then input as the weather stream initial FMC conditions to represent Doe
Fire ignition under more severe drought/fuel drying. All other model inputs were kept
constant. Similar results were found with all three percentile values, so we only included
the 90th percentile results.

2.6.3. Sensitivity to Heatwaves

In the first scenario, the time of ignition was changed to 5 August at 1200 PDT, which
was before the 18 August heatwave, while in the second scenario, the ignition was set to
6 September at 1200 PDT, during a hotter, drier heatwave. During the 96 h simulations,
mean temperature and RH values were as follows: August 5 was 24.7 ◦C and 37.7% RH,
18 August was 25.3 ◦C and 28.5% RH, and 6 September was 25.9 ◦C and 16.6% RH. We
decided to use the control run winds instead of the observed winds during the altered
ignition timing, so we could better determine the effects of temperature and aridity. These
scenarios are used to investigate what would have happened to the Doe Fire had it ignited
during different environmental conditions.
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For every simulated scenario, fire area was compared to the observed growth and HR
outputs were compared to the model control run. HR was chosen as an output because
it influences suppression difficulty and fire effects. Calculated HR values are based on
Canadian fuel type consumption, which reduces the accuracy, but comparisons between
the scenarios are still relevant. To calculate HR, we multiplied the total fuel consumption
(TFC) for each hour by a generalized heat-of-combustion constant [33]:

HR (kW) =
Heat of Combustion

(

kJ
kg

)

∗ TFC
(

kg

m2

)

∗ Cell Resolution
(

m2
)

Time Duration (seconds)
(1)

Heat of Combustion = 18,000 kJ/kg

3. Results

3.1. Control Run Simulation

The calibrated control run resulted in a four-day burned area of 52,245 ha, which is
comparable to the observed Doe Fire size on 22 August: 52,281 ha (Figure 2). The simulated
fire stopped spreading for 10–12 h each night and early morning because one or more
of the burning condition thresholds were not met during that hourly time step, i.e., the
wind speed/initial spread index/fire weather index was too low or the RH was too high.
Reduced nighttime activity is typical wildfire behavior, although this is currently changing
with increased warming and drying at night [34–36]. The fuels and ignition alterations also
helped the shape of the control perimeter match with the observed perimeter, as seen in
Figure 2. Within the control perimeter, the four dominant USA Scott/Burgan fuel models
were as follows (Figure 3):

1. Very high load, dry climate shrub (SH7)—18,676 ha;
2. Very high load, dry climate timber-shrub (TU5)—15,244 ha;
3. Long-needle litter (TL8)—8095 ha;
4. Moderate load, dry climate grass-shrub (GS2)—3752 ha.

Figure 3. (a) The four main fuels consumed during the DOE Fire simulation included very high load,

dry climate shrub (SH7); very high load, dry climate timber-shrub (TU5); long-needle litter (TL8);

and moderate load, dry climate shrub-grass (GS2). (b) Gridded rate of spread (ROS) output from the

control with each day’s 1200 PDT perimeter.
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Figure 3 also shows the gridded ROS (m/min) experienced during the growth of the
control run. The regions where modeled ROS was greatest occurred on 19 August and
20 August. Meteorological factors leading to temporal ROS differences were investigated
through principal component analysis.

Figure 4 and Table 2 show the results of our principal component analysis, which
helped test the sensitivity between the weather inputs and modeled fire behavior. The first
eigenvalue of 2.94 explains 59% of the variance between temperature, RH, zonal/meridional
winds, and simulated ROS. Temperature, meridional wind, and ROS were positively
correlated to PC1, and RH was negatively correlated. These results indicate that high
temperatures, a dry atmosphere, and daytime southerly winds were all closely linked to
periods of high modeled ROS. None of these weather variables were the most extreme on
record during this time period, especially wind speeds; however, the Doe Fire’s observed
behavior was extreme, growing an average of 16,953 ha per day from 19–22 August.

 

  
        

     −   −  
   −  −    −  
   −     −  
    −     
    −   −  −  

−
−

Figure 4. (a) PC1 time series that highly correlates to (b) temperature, (c) ROS, (d) RH, and (e) meridional

wind during the 96 h control run. PCA input variables are from the primary weather stream, the

northwest location.

Table 2. Results of the principal component analysis (PCA), showing the variance explained by each

eigenvalue, as well as the correlations between each PC and temperature (T), relative humidity (RH),

zonal winds (U), meridional winds (V), and rate of spread (ROS).

Variance Explained Correlations

Eigenvalue % Variance Variables PC1 PC2 PC3 PC4 PC5

2.94 58.77 T 0.92 0.04 −0.21 0.20 −0.25

1.07 21.37 RH −0.80 −0.32 0.34 0.37 −0.08

0.54 10.88 U −0.10 0.96 0.24 0.08 −0.02

0.32 6.45 V 0.92 −0.04 0.06 0.31 0.23

0.13 2.51 ROS 0.77 −0.20 0.57 −0.21 −0.06

When analyzing each burning day of the control—defined here as 1200–2200—we
noticed important changes among averaged meteorological, fuel moisture, and modeled
fire behavior variables (Table 3). During the first day, temperature was the highest, which
coincided with the highest VPD, even with day 1 RH not being lowest. Mean ROS was
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the lowest on the first day, and mean HR was the second lowest. The highest VPD on
day 1 preceded a drier FMC through days 1–3. Modeled ROS then peaked on day 2,
followed by the highest HR on day 3. As the VPD decreased and RH increased, the fine fuel
moisture code lessened on day 4, which corresponded to decreasing ROS and HR, despite
consistently high temperatures.

Table 3. Temperature (T), relative humidity (RH), vapor pressure deficit (VPD), wind speed (WS),

fine fuel moisture code (FFMC), duff moisture code (DMC), drought code (DC), fire weather index

(FWI), rate of spread (ROS), heat release (HR), and fire growth averaged over the main burning hours

(1200–2200) for each day of the control run.

T
(◦C)

RH
(%)

VPD
(hPa)

WS
(km/h)

FFMC DMC DC FWI
ROS

(m/min)
HR

(MW)
Growth

(ha)

Day 1 32.9 17.1 42.2 6.1 92.6 456 590 36.3 4.51 1118 1932

Day 2 29.5 12.9 37.0 9.0 94.2 462 598 46.0 6.63 1222 11,172

Day 3 29.4 16.3 35.5 2.0 94.7 467 607 38.0 5.72 1249 16,675

Day 4 29.3 30.1 29.5 3.3 94.2 472 615 38.0 4.66 989 12,917

3.2. Sensitivity to Climate

When we used 41-year climatologically averaged weather streams, the perturbed
model run showed the fire initially spreading faster (Figure 5a) and producing more heat
than the control (Figure 6a), due to higher winds on day 1 of the climatology. In days 2–4,
the hotter and drier control run surpassed the climatology in both modeled area and HR.
The climatology run eventually resulted in a −13.6% change in total area when compared to
the observed perimeter and a −18.8% lower mean HR than the control (Figure 7). These dif-
ferences indicate how sensitive fire growth predictions are to initial model conditions. Wind
speed can drive greater ROS and HR, but winds are often more variable than temperature
and RH, which influence larger spatiotemporal scale fire behavior.

Our next set of simulations involved perturbing temperature. Adding 0.8 ◦C (“Add
Warming Trend”) caused steady increases in both area and HR throughout the simulation
(Figures 5b and 6b), resulting in a final area increase of 4.3% and a mean HR increase
of 3.7% (Figure 7). When we doubled that warming trend (1.6 ◦C), the model showed
a higher fire growth and HR increases during the four days Figures 5d and 6d), ending
with a 6.8% increase in area and a 6.2% increase in HR. Adding 0.8 ◦C and 1.6 ◦C also
increased the number of hours that the modeled fire burned during the night, because the
required burning condition thresholds were met during those additional hours (Table 4).
These situations show how fires may behave in future warmer scenarios or during hotter
heatwaves. As temperature and VPD disproportionately increase during nighttime hours,
fires will burn longer into the night [34–36]. On the other hand, subtracting 0.8 ◦C from the
weather streams resulted in a −4.6% change in area and a −4.9% change in HR (Figure 7).
However, the number of modeled spreading hours did not deviate from the control.

3.3. Sensitivity to FMC

In the perturbed FMC scenario, we raised the simulation’s initial fine fuel mois-
ture code, duff moisture code, and drought code to the 41-year 90th percentile value on
17 August. With drier fuels, the simulation burned area spread to over three times the size
of the observed and control perimeters on the first day (Figure 5e). The FMC run day 1 HR
values also peaked at over twice the maximum of the control run (Figure 6e). Prometheus
recalculates FMC conditions throughout the simulation, so the next three days did not
show major differences. In the end, fire growth increased by 17.7% and the HR increased by
17.4% (Figure 7). The ongoing U.S. Drought Monitor Severe Drought conditions, as well as
the heat wave, caused below average FMC during the Doe Fire, but CA often endures even
drier periods [37]. If there was an ongoing extreme drought or exceptional drought, such
as in those in 2014 or 2021, the fire could have grown faster and burned more intensely [38].
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The FMC scenario also created an additional four hours of nighttime burning, indicating
that drier fuels make fire suppression at night more difficult (Table 4).

 

Figure 5. Observed (daily temporal resolution) and simulated (hourly resolution) Doe Fire growth

compared to seven simulation experiments: (a) 41 years of climatologically averaged weather,

(b) adding 0.8 ◦C to observed temperatures, (c) subtracting 0.8 ◦C, (d) adding 1.6 ◦C, (e) initializing

fuel moisture content (FMC) with 41-year 90th percentile values of 17 August FMC, (f) changing

ignition time to 08/05, pre-heatwave, and (g) changing ignition time to 09/06, hotter, drier heatwave.

Figure 6. Simulated heat release (HR) compared to seven simulation experiments: (a) 41 years of

climatologically averaged weather, (b) adding 0.8 ◦C to observed temperatures, (c) subtracting 0.8 ◦C,

(d) adding 1.6 ◦C, (e) initializing fuel moisture content (FMC) with 41-year 90th percentile values of

17 August FMC, (f) changing ignition time to 08/05, pre-heatwave, and (g) changing ignition time to

09/06, hotter, drier heatwave.
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Figure 7. (a) Percent change in final fire area for each of the seven simulation experiments: 41 years of

climatologically averaged weather, adding 0.8 ◦C to observed temperatures, subtracting 0.8 ◦C,

adding 1.6 ◦C, initializing fuel moisture content (FMC) with 41-year 90th percentile values of

17 August FMC, changing ignition time to 08/05, pre-heatwave, and changing ignition time to 09/06,

hotter, drier heatwave. (b) Percent change in total mean fire heat release (HR) for each experiment.
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Table 4. Mean temperature, relative humidity (RH), vapor pressure deficit (VPD), fine fuel moisture

code (FFMC), duff moisture code (DMC), drought code (DC), and fire weather index (FWI) variables

for each experimental simulation described in Figure 5, as well as the number of hours that each

simulation actively spread.

Experiments T (◦C) RH (%) VPD FFMC DMC DC FWI
# Spreading

Hours

Control 25.3 28.5 25.7 90.1 465 603 29.3 48

Climatology 23.2 34.5 20.4 89.5 407 492 26.7 43

Add 0.8 26.1 28.5 26.9 90.2 467 606 29.7 49

Add 1.6 26.9 28.5 28.2 90.4 470 609 30.1 50

Subtract 0.8 24.5 28.5 24.5 89.9 462 600 28.9 48

FMC 90th 25.3 28.5 25.7 90.8 514 504 31.3 52

5-August 24.7 37.7 21.4 88.3 398 490 25.0 36

6-September 25.9 16.6 30.0 91.8 557 756 34.2 61

3.4. Sensitivity to Heatwaves

In order to determine the fire behavior effects of heatwaves, we perturbed the control
run ignition timing by changing it to 1200 PDT 5 August (pre-heatwave) and 1200 PDT
6 September (second hotter/drier heatwave). Keeping winds equal to the control run
allowed us to better determine the sensitivity of temperature and RH differences. The
5 August simulation area and HR remained similar to the control through the first day,
but the extreme fire behavior of the control run days 2–4 was not seen (Figures 5f and 6f).
This reduced behavior produced an overall −51.7% change in area and a −52.9% change
in mean HR (Figure 7). There was also a twelve-hour reduction in the number of active
spreading hours. These large decreases coincide with a lower mean temperature, lower
VPD, and lower fine fuel moisture code (Table 4). Contrastingly, the 6 September ignition
caused much greater modeled growth and HR on days 1, 2, and 4 (Figures 5g and 6g).

This extreme behavior resulted in an area increase of 57.1% and a mean HR increase
of 55.6%. It also spread for an additional thirteen hours during the night. This simulation
had the highest mean temperature, VPD, and fine fuel moisture code (Table 4). These large
changes exemplify the model sensitivity to ignition timing, especially during periods of
critical fire weather conditions. Heatwaves cause high maximum temperatures, which then
cause exponential increases in VPD and the drying of FMC.

3.5. Model Sensitivity to Temperature/VPD

The additional temperature sensitivity tests of adding 0.4, 1.2, 2.0, and 2.4 ◦C to the
weather streams made for a total of seven temperature perturbation simulations (Figure 8a).
Fitting a linear trend to the modeled data indicates an increase of ~2322 ha per 1 ◦C of
warming. We also compared the mean VPD of each of these scenarios against the modeled
fire area and noticed a similar linear trend (Figure 8b). These simulations were done with
constant RH. Potential climate change-driven decreases in terrestrial RH would cause even
greater fire growth due to compounding atmospheric drying [39–41].
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−Figure 8. Depiction of how fire area changed with temperature variations (−0.8, 0.4, 0.8, 1.2, 1.6, 2.0,

and 2.4 ◦C) compared to the control run. (a) The change in area with temperature adjustments and

(b) that same area change against the mean vapor pressure deficit (VPD) for each scenario.

4. Discussion and Conclusions

In this study, we used the fire spread model Prometheus to recreate the first four days
of the Doe Fire’s explosive growth, which eventually led to the August Complex, CA’s
largest recorded wildfire event. We analyzed the factors that caused the fire to grow to
52,281 ha by 22 August 2020. An ongoing heatwave when the fire began created high
temperatures, an arid atmosphere, and dry fine fuels. Severe drought conditions in the
area caused greater fuel aridity in larger fuels, which increases combustible fuel availability.
These flammable conditions led to very high ROS values in our model simulations, despite
surface wind speeds remaining low. Observed wind speeds were potentially accelerated
by pyroconvection [26,42], but we were not able to model this as Prometheus does not
incorporate fire-atmosphere feedbacks. The increasing frequency and intensity of extreme
weather, including heatwaves and droughts, is leading to an increasing frequency and
intensity of uncontrollable megafires [10,15,16]. Aridity increases are making CA forests
very vulnerable to devastating wildfire behavior, especially when combined with over a
century of fuel buildup from fire suppression [11,43]. Preceding and ongoing fuel moisture
conditions need to be better analyzed and incorporated into fire behavior predictions and
indices [44–46]. As more fire perimeter and intensity data become available and fire models
become more sophisticated, additional analyses of megafires could lead to higher resolution
detection of when and where extreme fire behavior may occur.

We also used Prometheus to understand climate and fuel influences on modeled fire
behavior. We found that simulated ignitions during climatologically averaged weather and
FMC conditions (41 years) exhibited high ROS and HR, but not to the extent that was seen
during the calibrated model ignition. This exemplifies how extreme weather can influence
fire behavior. When altering the temperature and keeping all other variables the same,
we found that the modeled fire area after four days increased linearly by ~2322 ha for
every degree of warming. This same linear relationship was observed when comparing
area to changing VPD. On a seasonal temporal and statewide spatial scale, climate change-
induced VPD increases have been associated with exponential increases in fire area [10].
We also saw increases in the modeled area and HR during simulations with drier fuel
conditions. In a warmer, drier atmosphere, we can expect the atmospheric and fuel
influences to simultaneously contribute to more extreme fire behavior. This combination
of warming and drying was represented in an experiment where ignition timing was
changed to 6 September 2020 during an even hotter, drier heatwave in the area. The
6 September simulation had the most extreme mean temperature, VPD, and FMC values,
which combined to cause a greater than 50% increase in both area and HR. The modeled
fire also spread for an additional thirteen nighttime hours, which presents a problem for
already taxed firefighters that historically use the night for easier containment and rest
opportunities. This finding supports a growing amount of research and observations
by fire managers reporting longer fire days due to nighttime VPD increases [34–36]. On
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the other hand, a change of ignition to 5 August—no heatwave—caused more than a
50% decrease in the modeled area and HR and twelve less hours of active nighttime fire
spread. Curbing future warming and instating preventative measures that avert fire
ignitions during heatwaves are promising avenues for reducing the risk of fast burning
and intense fires.

Extensive work is being done to increase wildfire resilience, but policies have not been
able to keep pace with wildfire growth. The share of the United States Forest Service budget
related to wildland fire has risen from 16% in 1995 to 52% in 2015 and is expected to further
rise to 67% in 2025 [47]. Most of these funds are spent on fire suppression, but megafires are
becoming increasingly insuppressible. During the initial growth of the Doe Fire, firefighters
were only able to contain the eastern flank. Early reports suggest that fire managers
underpredicted how large and costly the August Complex would eventually become [26].
With better understanding and prediction of extreme fire behavior, resources could be pre-
positioned to suppress problematic ignitions. If wildfires do begin to spread out of control,
more advanced modeling can help fire managers efficiently deploy firefighting resources.
In CA, the Department of Forestry and Fire Protection (CAL FIRE) has recently employed
the use of modeling software that provides fire spread predictions in real-time [48,49]. This
technology is beneficial for quick decision making, but it is also important to continuously
conduct post-fire analysis and model evaluation.

Prometheus has the ability to provide a wide range of fire behavior outputs that
can be evaluated against other models or observed data. The authors of this study were
impressed by the adaptability, technical support, and extensive spatial analysis capabilities
of Prometheus, but these advantages came with a number of limitations. Model calibration
required multiple parameter adjustments, which reduces efficacy in an operational setting.
Also, Prometheus does not account for the fire’s effects on the fuels and atmosphere.
Additionally, more research is needed to determine the accuracy of HR calculations using
fuel consumption, especially in fuels that are not well represented by the Canadian Forest
Fire Behavior Prediction system. Despite these shortcomings, Prometheus has many
advantages, and its continued use and evaluation against other wildfire spread models can
only help the fire community.
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Appendix A

Table A1. Meanings of all acronyms used throughout the manuscript.

Abbreviation Description

DC Drought code
DEM Digital elevation model
DMC Duff moisture code

ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 ECMWF reanalysis 5th generation
FBP Canadian Forest Fire Behavior Prediction

FFMC Fine fuel moisture code
FMC Fuel moisture content
FWI Canadian fire weather index
HR Heat release
ISI Initial spread index

LANDFIRE Landscape Fire and Resource Management Planning Tools
PCA Principal component analysis
PDT Pacific Daylight Time
RH Relative humidity
ROS Rate of spread

VIIRS Visible Infrared Imaging Radiometer Suite
VPD Vapor pressure deficit
WRF Weather Research and Forecasting
WS Wind speed

Table A2. Fuel lookup table comparing USA and Canadian fuel types.

Grid Value
Descriptive

Name
Fuel Type Grid Value

Descriptive
Name

Fuel Type

91 NB1 Non-fuel 146 SH6 M-1 (50 PC)

92 NB2 Non-fuel 147 SH7 M-1 (85 PC)

93 NB3 Non-fuel 148 SH8 M-1 (30 PC)

98 NB8 Non-fuel 149 SH9 M-1 (80 PC)

99 NB9 Non-fuel 161 TU1 D-1

101 GR1 O-1a 162 TU2 M-1 (30 PC)

102 GR2 O-1a 163 TU3 M-1 (80 PC)

103 GR3 O-1b 164 TU4 M-1 (45 PC)

104 GR4 O-1b 165 TU5 M-1 (20 PC)

105 GR5 O-1b 181 TL1 C-5

106 GR6 O-1b 182 TL2 D-2

107 GR7 O-1b 183 TL3 C-5

108 GR8 O-1b 184 TL4 D-1

109 GR9 O-1b 185 TL5 M-2 (20 PC)
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Table A2. Cont.

Grid Value
Descriptive

Name
Fuel Type Grid Value

Descriptive
Name

Fuel Type

121 GS1 M-1 (35 PC) 186 TL6 M-1 (20 PC)

122 GS2 M-1 (70 PC) 187 TL7 M-2 (10 PC)

123 GS3 M-1 (60 PC) 188 TL8 M-2 (20 PC)

124 GS4 M-1 (50 PC) 189 TL9 M-1 (25 PC)

141 SH1 D-1 201 SB1 S-2

142 SH2 M-1 (25 PC) 202 SB2 S-1

143 SH3 M-1 (10 PC) 203 SB3 S-3

144 SH4 M-1 (75 PC) 204 SB4 S-3

145 SH5 M-1 (95 PC) 9999 NoData M-1 (90 PC)

Table A3. USA–Canada fuel crosswalk examples of dominant four fuels in Doe Fire perimeter.

USA Description and ROS Canada Description and ROS

SH7

Very high load, dry climate shrub, woody shrubs
and shrub litter, very heavy shrub load, depth
4–6 feet, flame very high

    

 

 

 
 

 

 

  

 
 

 

 

 

 
 

 

  
 

 

M-1
(85 PC)

Boreal mixedwood-leafless, moderately well
stocked mixed stand of boreal conifers and
deciduous species, 85 percent conifer (PC)

    

 

 

 
 

 

 

  

 
 

 

 

 

 
 

 

  
 

 

TU5

Very high load, dry climate shrub, heavy forest
litter with shrub or small tree understory, spread
rate and flame moderate

    

 

 

 
 

 

 

  

 
 

 

 

 

 
 

 

  
 

 

M-1
(20 PC)

Boreal mixedwood-leafless, moderately well
stocked mixed stand of boreal conifers and
deciduous species, 20 percent conifer (PC)

    

 

 

 
 

 

 

  

 
 

 

 

 

 
 

 

  
 

 

TL8

Long needle litter, moderate load long needle pine
litter, may have small amounts of herbaceous fuel,
spread rate moderate and flame low

    

 

 

 
 

 

 

  

 
 

 

 

 

 
 

 

  
 

 

M-2
(20 PC)

Boreal mixedwood-green, moderately well
stocked mixed stand of boreal conifers and
deciduous species, 20 percent conifer (PC)
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Table A3. Cont.

USA Description and ROS Canada Description and ROS

GS2

Moderate load, dry climate grass-shrub, shrubs are
1-3 feet high, grass load moderate, spread rate
high, and flame length is moderate

    

 

 

 
 

 

 

  

 
 

 

 

 

 
 

 

  
 

 

M-1
(70 PC)

Boreal mixedwood-leafless, moderately well
stocked mixed stand of boreal conifers and
deciduous species, 70 percent conifer (PC)

    

 

 

 
 

 

 

  

 
 

 

 

 

 
 

 

  
 

 

Figure A1. Conversion charts used to compare USA and Canada rate of spread (ROS) curves.
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