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Abstract

Standard enthalpies, entropies, and heat capacities are calculated for 16,813 halo-

carbons using an automated high-fidelity thermochemistry workflow. This workflow

generates conformers at density functional tight binding (DFTB) level, optimizes ge-

ometries, calculates harmonic frequencies, and performs 1D hindered rotor scans at

DFT level, and computes electronic energies at G4 level. The computed enthalpies of

formation for 400 molecules show good agreement with literature references, but the

majority of the calculated species have no reference in the literature. Thus, this work

presents G4-computed thermochemistry for thousands of novel halocarbons. This new

data set is used to train an extensive ensemble of group additivity values and hydrogen

bond increment groups within the Reaction Mechanism Generator (RMG) framework.

On average, the new group values estimate standard enthalpies for halogenated hy-

drocarbons within 3 kcal/mol of their G4 values. A significant contribution towards

automated mechanism generation of halocarbon combustion, this research provides

thermochemical data for thousands of novel halogenated species and presents a self-

consistent set of halogen group additivity values.
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Introduction

Halogenated Hydrocarbons (HHCs)

Halogenated hydrocarbons (HHCs) are commonly used as flame suppressants and refrigerant

working fluids. The first generation of these compounds, chlorofluorocarbons (CFCs) and

hydrochlorofluorocarbons (HCFCs), depleted the ozone layer and were banned worldwide un-

der the Montreal Protocol in the 1980s.1 The second generation, hydrofluorocarbons (HFCs),

are ozone-friendly but are currently being phased out due to their high global warming po-

tentials (GWPs).2 Despite these controls on high-GWP HFC production, a recent study

discovered that emissions of HFC-23 (CHF3), a potent greenhouse gas, reached an historic

high in 2018.3

To address these environmental concerns, several low-GWP HHC refrigerants and sup-

pressants have been proposed. However, the chemical properties that make these HFCs more

environmentally friendly also increase their flammability.4 Therefore, the combustion prop-

erties of these proposed HHCs are of the utmost concern. Since experimental studies of these

properties are complex and costly, predictive kinetic modeling of HHC combustion is crucial

in screening proposed compounds in order to facilitate their innovation and implementation.

Understanding the complex chemistry of new compounds and predicting their combus-

tion behavior under di↵erent conditions requires the compilation and simulation of detailed

kinetic mechanisms (or microkinetic models) which often contain thousands of elementary re-

actions among hundreds of intermediate species. Building these models by hand is extremely

challenging and error-prone due to the vast number of possible species and reactions to con-

sider, sparse thermokinetic data available in the scientific literature, and biases of the human
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choosing which pathways to select. Thus, a tool that generates these models automatically

by enumerating and evaluating the many potential pathways by which HHCs combust will

be instrumental in screening the flammabilty of greener refrigerants and suppressants.

Reaction Mechanism Generator

Reaction Mechanism Generator (RMG) is an open-source software package that automati-

cally builds detailed kinetic models by proposing elementary reactions and estimating chem-

ical properties (physical, thermochemical, kinetic, solvation, etc.) using a database of reac-

tion templates, thermokinetic data, and estimation methods.5,6 These chemical properties

are first sought in a database of known parameters, but are more commonly estimated using

hierarchical decision trees. Thermochemical parameters (�fH
�
298K , S

�
298K , C

T
p ) are usually

estimated using Benson’s group additivity method7 for closed-shell species and the Hydro-

gen Bond Increment (HBI) scheme8 for radicals. RMG’s group additivity values are derived

from high fidelity experimental data supplemented with high level quantum chemistry data.

The success of RMG’s rate-based algorithm in generating reliable kinetic models that

capture all the essential chemistry in complex reacting systems depends heavily on the ac-

curacy of thermokinetic parameters. As RMG was originally developed to study the ki-

netics of hydrocarbon combustion, its databases contain extensive, although not exhaustive,

thermokinetic data for CHO chemistry (molecules solely comprised of carbon, hydrogen, and

oxygen). Since many short-lived intermediate species and elementary reactions are impos-

sible to isolate and investigate experimentally, quantum chemistry methods are needed to

calculate thermokinetic parameters. Recent progress on expanding RMG to model hydrocar-

bons substituted with nitrogen,9 sulfur,10 and silicon11 has shown that quantum chemistry

calculations are a viable approach to expand RMG’s databases and estimation methods to

new chemical systems. Thus, adding high-accuracy halogen thermochemical data to RMG’s

thermodynamic libraries and group additivity trees is essential to extending RMG to model

halocarbon combustion.
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Thermochemistry for HHCs

As kinetic modeling of HHCs has been been studied for many decades, thermochemical

data for these molecules and their derivatives have accumulated through various theoretical

investigations (Table 1). The Active Thermochemical Tables (ATcT)12,13 and the Third

Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion14,15

are two of the most expensive databases containing experimental and theoretical thermo-

chemistry for HHCs. With advances in ab-initio quantum chemistry methods and codes,

recent studies use high-level ab initio composite schemes and/or isodesmic reactions to cal-

culate thermochemical properties such as �fH
�
298K within or close to chemical accuracy (1

kcal/mol). Included in many of these studies are group additivity values (GAVs), in partic-

ular the works of Bozzelli and coworkers.16–22 Since conventional group additivity does not

work well for chlorocarbons, Chen and Bozzelli introduced a modified scheme which uses non-

next-nearest neighbor interaction terms (NNNI) to account for the destabilizing interaction

between electronegative chlorine atoms on adjacent carbons.23 This modified NNNI-GAV

scheme was later extended to fluorine-fluorine interactions in HFCs16 and chlorine-oxygen

interactions in chlorinated hydroperoxides.17

Although there are highly accurate thermochemical data in the literature, the data are

very sparse and only cover a very small fraction of chemical space containing C, H, O, F,

Cl, and Br chemistry. Since RMG explores a significant portion of this chemical space as

it builds a mechanism, more HHC thermochemical data are needed to train RMG’s group

additivity schemes to improve its accuracy and reliability in estimating thermochemical

properties. Thus, the focus of this work is not to more accurately calculate thermochemistry

of previously studied molecules; instead, the objectives are: (1) to compute thermochemistry

for a large and diverse set of halocarbons, and (2) derive an extensive ensemble of halogen

GAVs with NNNIs within RMG’s framework.
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Table 1: Decades of quantum chemistry calculations for halocarbons. (GAVs- group addi-
tivity values, CC-high level coupled-cluster based model chemistry, NNNI-non-next-nearest
neighbor interaction)

Year Species Methods GAVs Ref

1996 ⇠ 100 C1 and C2 HFCs BAC-MP4 24

1998 fluorinated and chlorinated C1 and
C2 species

G2, G2(MP2), CBS-Q, CBS-4 25

1999 2-fluoro-2-methylpropane G2(MP2) (isodemic reactions) C/C3/F (with NNNI) 16

2000 ⇠ 120 C1 and C2 HFCs G3 26

2003 chloroethyl hydroperoxides B3LYP/6-311+G(3df,-2p),
QCISD(T)/6-31G(d,p),
CBSQ//B3LYP/6-31G(d,p)

INT/OO/Cl, INT/OO/Cl2,
INT/OO/CL3 NNNI terms

17

2009 fluorine and chlorine oxides CC 27

2010 halomethane derivatives CC 28

2014 C2HxF6-x (x=0–5) CC 29

2015 14 C2–C4 HFCs B3LYP, CBS-QB3, CBS-APNO,
M06, M06-2X, !B97X, G4,
G4(MP2)-6X, W1U (isodesmic
reactions)

C/C/F/H2, C/C2/F/H,
C/C/F2/H, C/C2/F2, C/C/F3
(with NNNI)

18

2016 FOxH and FOxF (x=1–3) ccCA, G3, G3B3, M06, M06-2X 30

2016 CH3-xFxOH and CH3-xFxOOH
(x=1–3)

CBS-QB3, CBS-APNO, G4
(isodesmic reactions)

C/F/H2/O, C/F2/H/O, C/F3/O
and HBI groups (with NNNI)

19

2017 C1–C2 HFC derivatives and radicals CC 31

2018 65 C1 and C2 brominated halocar-
bons

G3, G4, ccCA, CCSD(T)/CBS 32

2018 fluorinated and chlorinated methane
and ethane derivatives

diet-HEAT, diet-HEAT-F12 33

2019 organofluorine compounds CCSD(T)/aug-cc-
pvqz//B3LYP/def2-TZVP-D3(BJ)

34

2019 C2–C3 fluorinated aldehydes CBS-APNO, CBS-4M, CBS-QB3,
M06-2X, !B97X, B3LYP, G2, G3,
G4, W1U (isodesmic reactions)

CO/C/F, C/CO/F3, C/CO/F/H2,
C/C/CO/F/H, C/C/CO/F2,
C/C/CO/F/H (with NNNI)

20

2019 1,1,2-trifluoroethene and oxidized
derivatives

B2PLYP, M06-2X, G3MP2B3,
CBS-QB3, CBS-APNO (isodesmic
reactions)

C/C/F2/OH, C/C/F/H/OH (with
NNNI)

21

2020 dimethyl and ethyl methyl fluori-
nated ethers

MN15/cc-pVTZ, CBS-QB3, and
CBS-APNO

C/C/F/H2, C/C/F/H/O,
C/F/H2/O and HBI groups

22

2021 16,813 CHO-F,Cl,Br molecules (see
Table 2)

G4//M062X-D3/jun-cc-pvtz 2,041 GAVs (see Table 4) This work

5



Methods

The enum-halocarb4 dataset

Due to a scarcity of thermochemical data for HHCs in the literature, we generated a new

dataset called enum-halocarb4 . In order to obtain high coverage and diversity of CHO-

(F,Cl,Br) chemical space, this dataset was created by “halogenating” the complete chemical

subspace for CHO containing up to 4 carbon and/or oxygen atoms, denoted [CHO]1�4, as

generated by Margraf et al.35 Margraf defines the complete chemical subspace as a set of

molecules such that breaking any bond in any molecule makes fragments that are also in-

cluded in the set. [CHO]1�4 was created by starting with CH4, H2O, and H2, the smallest

saturated closed-shell molecules containing C, O, and H, respectively. Then, the set was it-

eratively enlarged by replacing hydrogens with methyl (�CH3) and hydroxyl (�OH) groups.

Subsequently, rings were added, bond orders were incremented, and radicals were introduced

via hydrogen abstractions. Along the way, duplicate strucutres were removed using canonical

SMILES from RDKit.36

In this work, enum-halocarb4 was created by systematically substituting halogen atoms

(F,Cl,Br) for hydrogens in [CHO]1�4 using RDKit. Molecules that contain more than one

halogen element (CF3Br for example) are referred to as “mixed-halogens” and molecules with

only a single halogen element (CF4 for example) are called “mono-halogens”. To reduce the

size of the dataset, enum-halocarb4 was pruned by removing:

• radical species with more than one unpaired electron

• mixed-halogens with more than 8 heavy atoms

• cyclic mixed-halogens

The chemical composition of the 16,813 molecules in the enum-halocarb4 is shown in Ta-

ble 2. Since the dataset lacked singlet carbenes, which are more prominent in halocarbon

combustion than in hydrocarbon combustion, 47 singlet carbenes (18 CHOF, 16 CHOCl,

and 13 CHOBr) were generated manually and added to enum-halocarb4 (see supplementary

information).
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Table 2: Composition of 16,813 molecules in enum-halocarb4

Composition
Noncyclic
Closed

Noncyclic
Radical

Cyclic
Closed

Cyclic
Radical

Total

CHOF 1,048 1,591 278 441 3,358
CHOCl 1,040 1,552 264 393 3,249
CHOBr 721 721 254 382 2,078
CHOFCl 852 923 0 0 1,775
CHOFBr 1,540 1,858 0 0 3,398
CHOClBr 932 1,108 0 0 2,040
CHOFClBr 447 468 0 0 915
Total 6,580 8,221 796 1,216 16,813

Thermochemistry Workflow

The automated thermochemistry workflow used to calculate high-level thermochemical pa-

rameters (�fH
�
298K , S

�
298K , Cp

�
1000K) of the enum-halocarb4 dataset is shown in Figure 1.

First, a SMILES representation of the molecule is used to generate a molecular graph of the

species using RMG. Then, the molecule is embedded with RDKit. to create a 3D geometry.

After embedding, conformers are investigated using the systematic conformer generation

algorithm implemented in AutoTST.37,38 This algorithm explores conformers by rotating

dihedrals in 120� increments, varying cis/trans isomerism of double bonds, and alternating

R/S sterochemistry for chiral centers. Conformers are optimized in ASE39 using the dftb+

calculator40 with the halorg-0-1 parameter set.41 A unique set of conformers is gathered by

discarding geometrically similar molecules with a root-mean-square deviation below 0.1 Å of

a conformer in the unique set. Subsequently, to obtain a unique set of low-energy conformers,

high energy conformers are discarded with electronic energies above 5 kcal/mol of the lowest

energy conformer in the set. A maximum conformer cuto↵ of 10 was used in this work to

limit the number of DFT calculations and save computational time.

These conformers are re-optimized with DFT in Gaussian 1642 using M06-2X-D3/jun-cc-

pvtz (the M06-2X functional with Grimme’s D3 empirical dispersion43 and the jun-cc-pvtz

basis set44). Following all geometry optimizations, RMG’s graph isomorphism algorithm

is used to ensure that the optimized molecules match the corresponding input SMILES. If
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SMILES
CC(F)F

F
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- Energy cutoff: 5 kcal/mol
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Low-energy unique conformers DFT optimization
M062X-GD3/
jun-cc-pvtz
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Energy
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1-D Hindered Rotor Scan
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- B3LYP/6-31+G(2df,p) Opt Freq
- Series of single point calculations

(HF, MP2, MP4, CCSD(T))

Arkane

Thermodynamics
(H, S, Cp)

Figure 1: ab-initio Thermochemistry Workflow

the optimized conformer is not isomorphic with the input molecular graph, the conformer is

discarded from the set. If all of the optimized conformers were not isomorphic, that molecule

was deemed unstable and removed from enum-halocarb4.

After identifying the lowest energy conformer with M06-2X-D3/jun-cc-pvtz, 1D hindered

rotors calculations are performed in Gaussian 16 for molecules with internal rotors. For

CHOF-containing molecules, the lowest energy conformer was optimized using B3LYP/6-

31+G(2df,p) and rotor scans were performed in 10� increments with the same method. For

molecules containing chlorine and bromine, the rotor scans were performed in 15� increments

using M06-2X-D3/jun-cc-pvtz. If a lower energy conformer is found during the rotor scans,

the conformer is reoptimized starting with the lower energy coordinates with DFT and the

rotor scans are redone. If the rotor scan is discontinuous, the rotor scan is rerun with all

of the torsions frozen in the molecule except for the scan torsion. If the rotor scan is still

discontinuous, the RRHO approximation is used.
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To obtain more accurate electronic energies, the lowest energy conformer is re-calculated

with the Gaussian 4 (G4) compound method45 in Gaussian 16. The G4 method was selected

because it is an economical composite scheme that is accurate for halogenated hydrocar-

bons.46–49 Lastly, to obtain thermochemistry as a seven coe�cient NASA polynomial,50 the

G4 energies and harmonic frequencies and the DFT rotor scans are passed to RMG’s statis-

tical mechanics calculator Arkane,51 a tool which uses quantum chemistry calculation results

to compute thermochemical or kinetic parameters. For species with internal rotors, Arkane’s

best fit algorithm is used to determine whether a cosine function or a Fourier series, with 5,

7, or 9 terms, better fits the energy profile of the rotor scan.

Group Additivity Values

Table 3: Group additivity enthalpy estimate for CH3CH2CHFCF2.

Group �fH
�
298K (kcal/mol)

Benson
Cs-CsHHH �10.2
Cs-CsCsHH �4.9
Cs-CsCsFH �55.2
Cs-CsFFH �107.4

Long-Distance
Cs(F)2-Cs(F) +4.7

HBI
CsjF2(Cs-CsFH) +100.2
H atom �52.1

Total �124.9
G4 �126.2
Error +1.3

The thermochemical data in the enum-halocarb4 dataset was used as training data to fit

2,041 new halogen thermo group addivitity values (GAVs) in RMG. Five types of thermo
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Table 4: Halogen GAVs derived in this work

Type Groups

Benson 226
HBI 1,421
Ring Correction 247
Long-distance noncyclic 91
Long-distance cyclic 56
Total 2,041

additivity groups were derived: conventional nearest-neighbor Benson groups, hydrogen bond

increment groups (HBI), cyclic and noncyclic non-next-nearest neighbor interaction groups

(long-distance), and ring correction groups. Table 4 shows the number of groups derived

for each group type, and Table 3 demonstrates how these groups combine to estimate the

enthalpy of formation for a hydrofluorocarbon radical CH3CH2CHFCF2 calculated in enum-

halocarb4. Cs represents an sp
3 hybridized carbon with four single bonds, and j represents

a radical electron.

The new Benson groups were systematically created by generating every possible nearest-

neighbor group with either a carbon or oxygen center atom, bonded to at least one halo-

gen atom. To maintain RMG’s performance for estimating CHO thermochemistry, existing

groups were held fixed while new halogen groups were fitted using scikit-learn’s52 linear least

square ridge regression method with a regularization strength (alpha) of 1⇥ 10�6. In total,

226 Benson groups and 91 long-distance interaction groups were derived using thermochemi-

cal data (�fH
�
298K , S

�
298K , C

T
p ) for 6,578 noncyclic closed-shell species in enum-halocarb4. To

derive HBIs, reactions with closed-shell conjugates were created by saturating radicals with

a hydrogen atom as shown in equation 1. Then, the HBIs were fitted by subtracting the ther-

mochemical properties of the radical and hydrogen atom from the thermo of the saturated

conjugate species as shown in equation 2. 3,825 radicals and their saturated closed-shell

conjugates from enum-halocarb4 were used to fit 76 nearest-neighbor HBIs. To improve

the accuracy of the HBI scheme, 1025 second nearest-neighbor HBIs and 320 three and

four member ring HBIs were derived using 6,064 noncyclic radicals and 717 cyclic radicals,
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respectively.

For the radical R· the reaction

R ·+H· ! RH (1)

is used to define the HBI corrections as

X[HBI(R·)] = X[RH]�X[R·]�X[H·] (2)

where X is a thermochemical function �fH
�
298K , S

�
298K , or C

T
p .

Cyclic groups were also included to account for ring strain in halogen-substituted rings.

247 cyclic corrections and 56 long-distance cyclic interactions were derived from 796 closed-

shell three and four member ring species in enum-halocarb4. No corrections were included

for ring sizes greater than four atoms since the maximum ring size in enum-halocarb4 is four.

Test Set Generation

To assess the accuracy of RMG’s new halogen thermo groups in estimating thermochemistry

of intermediates created during automated generation of HHC combustion models, an RMG

model was constructed for 2-Bromo-3,3,3-trifluoropropene (2-BTP) and CF3Br in methane

flames. Before generating a model, a literature mechanism for 2-BTP from NIST53 was

imported into RMG. In order to teach RMG how these two flame suppressants behave in

hydrocarbon flames, 727 of the 1,610 reactions in the literature mechanism were added as

training reactions to RMG’s reaction families. Adding these reactions into training helps

RMG generalize and improves rate estimates of reactions with similar functional groups.

Then, an RMG model was built using the Foundational Fuel Chemistry Model Version 1.0
54

in RMG-database as a seed mechanism. enum-halocarb4, the thermochemical dataset gen-
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erated in this work, was used as an RMG thermo library during 2-BTP model generation,

should RMG need thermochemistry for an intermediate in that dataset; other HHCs were

estimated using the new GAV scheme. Our description is brief because the goal here is

not to produce a better kinetic model, but to generate a test-set of molecules from a re-

alistic scenario of automated model generation with RMG. 104 HHCs from the resulting

RMG mechanism that were not in the enum-halocarb4 GAV training set were recalculated

at G4 level using the automated thermochemistry workflow previously discussed, and the

calculated thermochemical properties were compared to GAV estimates.

Results and discussion

Thermochemistry Workflow Benchmark

Figure 2: Enthalpies for halocarbons cal-
culated with G4 show good agreement
with reference values. (MAD = mean
absolute deviation, RMSD = root-mean-
square deviation, MAX = maximum de-
viation, q75 = 0.75 quantile of absolute
error)

Figure 3: Error distribution by number
of halogens in the molecule. G4 tends
to slightly underestimate enthalpies of
formation for molecules with more halo-
gens. (Number in parentheses indicates
the number of benchmark molecules with
number of halogen atoms on x axis)

To evaluate the accuracy of our automated workflow in calculating �fH
�
298K using the
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G4 method, 400 enum-halocarb4 species were benchmarked against literature data. Figure

2 shows the distribution of the error for the benchmark set compared to reference �fH
�
298K

from the Active Thermochemical Tables (ATcT)13 and various literature sources.17–22,26–28,31–34,55

With a mean absolute error (0.83 kcal/mol) within chemical accuracy ( 1 kcal/mol), G4

is a suitable, relatively low cost composite quantum chemistry method for high-fidelity and

high-throughput calculations of HHCs. However, for heavily halogenated systems, G4 and

other composite methods do not compute enthalpies within chemical accuracy.56 Calculated

G4 enthalpies for C2Cl5 and C2Cl6 in enum-halocarb4 are more than 3 kcal/mol lower than

ATcT values. Illustating this trend, Figure 3 shows that G4 tends to slightly underpredict en-

thalpies for molecules containing more halogen atoms in the benchmark set. Thus, it is likely

that more heavily halogenated molecules in enum-halocarb4 have higher errors than their

more sparsely halogenated counterparts. To more accurately compute thermochemistry for

heavily halogenated molecules, error-cancelling reactions, such as isodesmic reactions, could

be used in place of the atomization approach used in this work. However, incorporating

automated error-canceling reaction generation within our workflow was beyond the scope of

the present work. The benchmark set is available in the supplementary material.

Group Additivity Values Performance

The new GAVs derived in this work dramatically improve RMG’s estimates of �fH
�
298K ,

S
�
298K , Cp

�
1000K for 16,456 species in enum-halocarb4, as shown in Figure 4. Overall, the mean

absolute deviation (MAD) of RMG’s GAV estimates for�fH
�
298K is reduced from 66 kcal/mol

to 2.21 kcal/mol with the new groups, which is now on-par with RMG’s CHO GAVs which

typically estimate enthalpy within 2–3 kcal/mol. The new groups also significantly improve

accuracy at estimating S
�
298K (MAD reduced from 92 to 1.48 cal/mol/K) and Cp

�
1000K (MAD

reduced from 13 to 0.51 cal/mol/K). Based on the halogen GAV performance on the large

and diverse enum-halocarb4 dataset, RMG’s new halogen GAVs appear to be reliable at

accurately predicting thermochemical properties for a wide range of halocarbons.
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(a) RMG GAV estimates for enum-halocarb4 before new groups

(b) RMG GAV estimates for enum-halocarb4 with new groups

Figure 4: New GAVs significantly improve RMG’s estimates of �fH
�
298K , S

�
298K , Cp

�
1000K for

HHCs in enum-halocarb4 computed using G4 level of theory. (MSD = mean signed deviation,
MAD = mean absolute deviation, RMSD = root-mean-square deviation, q75 = 0.75 quantile
of absolute error)
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Figure 5: Probability density functions of GAV error for 4 classes of molecules in enum-

halocarb4 : noncyclic closed-shell, noncyclic radicals, cyclic closed-shell, cyclic radical
molecules.

To further examine their accuracy and fidelity, the GAV performance with the new groups

was evaluated for four di↵erent classes of molecules within the enum-halocarb4 dataset:

noncyclic closed-shell, noncyclic radical, cyclic closed-shell, and cyclic radical. Figure 5 shows

the GAV performance for each molecule class. For noncyclic HHCs, which are a majority of

the dataset (⇠ 88%), the GAVs are accurate at estimating thermochemical parameters for

both closed-shell molecules and radicals. For non-cyclic closed-shell molecules, the MAD for

�fH
�
298K is 2.07 kcal/mol which is slightly less than the 2.13 kcal/mol MAD for noncyclic

radicals. However, for cyclic species, the GAVs are significantly more accurate for cyclic

closed-shell species (MAD = 1.56 kcal/mol) than for cyclic radicals (MAD = 3.75 kcal/mol).

This disparity is most likely a result of only including closed-shell cyclic species in the

derivation of the cyclic corrections and long-distance cyclic interaction groups. Therefore,

since the radical cyclics are a test set for these groups whereas the closed-shell cyclics were

included in training, it follows that the GAVs perform worse for the cyclic radicals.

Long-distance groups are included in the new GAV scheme to account for halogen/halogen
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Figure 6: GAV enthalpy of formation estimates with long-distance groups (solid) and without
long-distance interaction groups (dashed). Without long-distance groups, GAVs systemati-
cally underpredict enthalpies for HHCs.

and halogen/oxygen interactions on adjacent carbons. This modified group additivity ap-

proach was shown to significantly reduce errors in estimates of fluorinated and chlorinated

hydrocarbons.16,23 To investigate their impact in this work, the long-distance interactions

were removed from the ensemble of GAVs, and estimated �fH
�
298K without these groups

were compared to estimates with the groups included for molecules in enum-halocarb4 that

have halogens on adjacent carbons. Figure 6 shows that, without the contributions from

long-distance interactions, the GAVs systematically underestimate the �fH
�
298K of these

molecules by over 5 kcal/mol on average. In other words, GAVs overpredict stability of

HHCs if lacking a long-distance term to capture the destabilizing interaction between halo-

gens or oxygens on adjacent carbons. This indicates that these long-distance interactions are

essential to accurately predict thermochemical properties of HHCs using a group additive

scheme.

16



Figure 7: GAV �fH
�
298K estimates for 104 fluorinated and/or brominated hydrocarbons in

the 2-BTP RMG test set computed using G4 level of theory. The number of molecules in
each category is indicated in parentheses. (MSD = mean signed deviation, MAD = mean
absolute deviation, RMSD = root-mean-square deviation

RMG Test Set

As automated mechanism generation is the intended application, the new halogen GAVs

were implemented in RMG, and RMG was used to construct a test set. Since RMG explores

a wide variety of molecules as it builds a mechanism, RMG molecules provide a challenging

test for GAVs and other graph-based molecular property estimators. The performance of

the GAVs for the 2-BTP RMG test set is shown in Figure 7. Expectedly, the GAVs showed

poorer performance for estimating �fH
�
298K on the RMG test set with an overall mean ab-

solute deviation of 4.69 kcal/mol compared to 2.21 kcal/mol on the enum-halocarb4 training

set. The GAVs performed well for noncyclic test set molecules with mean absolute deviations

of 2.85 kcal/mol for closed-shell species and 4.19 kcal/mol for radicals. However, the GAVs

performed relatively poorly for cyclic compounds, with mean absolute deviations of 6.89

kcal/mol for closed-shell molecules and 6.44 kcal/mol for cyclic radicals. The poorer perfor-

mance for the cyclic species can mainly be attributed to the following three factors. First,

due to a lack of training data, the GAVs do not include halogen-specific ring corrections for
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ring sizes greater than 4 atoms. The mean absolute deviation for cyclic species with ring sizes

greater than 4 was 7.42 kcal/mol compared to 6.09 kcal/mol for three and four member rings.

Second, the long-distance corrections in RMG are not applied for neighboring atoms if one

atom is in a ring and the other atom is outside the ring. A missing long-distance interaction

between halogens on atoms in and out of a ring would lead to systematic underprediciton of

�fH
�
298K for these types of molecules, which may be reflected in the negative mean signed

deviation for cyclic compounds in the test set. Third, because RMG was used to build the

test set and RMG prefers to incorporate low energy molecules in its models (endothermic re-

actions are typically slower), there is a bias for underestimated (i.e. lower energy) molecules

to be selected for the test set. In other words, it is more likely for molecules that the GAVs

underestimated (negative MSD) to end up in the test set than overestimated or correctly

estimated molecules. Although the current GAV estimates do not perform as well for cyclic

halocarbons as noncyclic ones, the estimates are a vast improvement on RMG’s estimates

before this work and will help in the automated construction of microkinetic models.

Conclusions

This research provides thermochemical data for thousands of novel halogenated species and

presents a comprehensive, self-consistent set of halogen group additivity values within the

Reaction Mechanism Generator framework. The new GAVs accurately estimate enthalpies

of formation for noncyclic closed-shell and radical species in enum-halocarb4 and an RMG

test set, but show poorer performance for rings for which more thermochemical training data

are needed. Overall, the new halogen GAVs substantially improve RMG’s thermo estimates

for halocarbons, reducing the mean-absolute deviation of �fH
�
298K for the enum-halocarb4

dataset from 66 to 2.21 kcal/mol. Importantly, these new groups will enable rapid and accu-

rate on-the-fly estimation of halocarbon thermochemistry during automated model genera-

tion, thereby improving the fidelity and reliability of RMG’s halocarbon combustion models
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for next-generation eco-friendly refrigerants and flame suppressants. These models can be

used to determine important molecules for more rigorous thermochemical study. This work

also contributes a new data set, enum-halocarb4, which provides essential thermochemical

data in a sparsely populated region of chemistry for training other machine learning estima-

tion methods We recommend a few areas of chemical space not thoroughly studied in this

work for future thermochemistry measurements: triplet halocarbons, aromatic and cyclic

halocarbons with rings larger than 4 atoms, and hypervalent chlorinated and brominated

molecules.
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