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ABSTRACT

The existence of multiple solutions to AC optimal power flow
(ACOPF) problems has been noted for decades. Existing solvers
are generally successful in finding local solutions, which satisfy
first and second order optimality conditions, but may not be glob-
ally optimal. In this paper, we propose a simple iterative approach to
improve the quality of solutions to ACOPF problems. First, we call
an existing solver for the ACOPF problem. From the solution and
the associated dual variables, we form a partial Lagrangian. Then
we optimize this partial Lagrangian and use its solution as a warm
start to call the solver again for the ACOPF problem. By repeating
this process, we can iteratively improve the solution quality, mov-
ing from local solutions to global ones. We show the effectiveness
of our algorithm on standard IEEE networks. The simulation results
show that our algorithm can escape from local solutions to achieve
global optimums within a few iterations.
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1 INTRODUCTION

The optimal power flow (OPF) problem is a fundamental resource
allocation problem in power system operations that minimizes the
cost of power generation while satisfying demand. The ACOPF
formulation of the problem uses nonlinear power flow equations,
resulting in nonlinear and nonconvex optimization problems [6, 10,
19]. The consequence of the nonconvexity of ACOPF we study in
this paper is the presence of multiple solutions.

Most ACOPF problems are solved via variations of nonlinear
optimization algorithms, including Newton-Raphson, sequential
programming, interior points and others (see [7, 19, 26] and the
references within). These algorithms are in general only able to
certify whether a solution is locally optimal, that is, they satisfy
first order and/or second order optimality conditions. Because of
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the existence of multiple local solutions, it is often difficult to find
the globally optimal one and the system loses efficiency.

The existence of multiple local solutions of the OPF problem
has been well-known for several decades [13, 17, 22]. Despite this,
a common assumption is that OPF problems tend to have a sin-
gle “practical” solution that is globally optimal, and therefore the
fact that multiple solutions can exist do not impact day-to-day
operations [21, 30]. However, an increasingly large body of work
have pointed to that multiple solutions do occur under reasonable
conditions and cannot be easily ruled out [5, 19, 31]. For example,
during day-to-day operations, small changes in the load could lead
to a solver jumping between solutions that are far apart from each
other [8, 23]. In addition, [5] shows how modifications of the stan-
dard IEEE benchmarks can lead to each having more than one local
solution. Statistical studies in [12, 15] show that there are more
solutions than previously thought in many systems.

An open question in the field is to develop algorithms that can
find globally optimal solutions, or at least improve upon local ones.
In addition to lowering the operating cost, understanding and distin-
guishing between locally and globally optimal solutions can lead to
important theoretical discoveries about the ACOPF problem. Con-
sequently, several classes of algorithms have been developed. For
example, holomorphic embedding has been used in [9, 14], but are
slow and require very high numerical precision. Genetic algorithms
can escape a local minimum, but are random in nature and require
repeated trial and error [1, 3]. Robust optimal power flow can alle-
viate convergence issues, but may not improve on the quality of
the solution [25]. Compared to meshed networks, radial networks
are less complicated and there have been advances in the solving
techniques for radial networks to avoid being kept at strictly local
solutions. A common method is to convexify the nonlinear and
nonconvex power flow equations [11, 16, 20, 32]. However, these
relaxations can have difficulties when there are lower bounds on
reactive or active power and the feasibility region of the problem
becomes disconnected.

In this paper, we propose a simple algorithm that can effectively
escape from strict local solutions to find better ones. By moving
from one solution to another while reducing the cost, we can suc-
cessively move towards the globally optimal solution. In contrast
to algorithms that are launched repeatedly with random initial-
izations, our proposed algorithm is deterministic. And it relies on
duality theory to provide better warm starts to existing solvers.

Our process is outlined in Fig. 1. First, we solve the ACOPF
problem using some solver (e.g., IPOPT [29] or Matpower [33]).
From the solution and its associated dual variables, we form a
partial Lagrangian by dualizing the power balance equations. We
then optimize this partial Lagrangian, which leads to a different
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Figure 1: Outline of our algorithm. We form partial Lagra-
gians at local optima and solve it to provide better warm
starting points. Note that the partial Lagrangian is solved
using the same initialization as in the first call of the solver.

solution. Using this second solution as a warm start, we again
call the solver for the ACOPF problem. Interestingly, this iterative
process moves from higher cost to lower cost ones.

The key reason for the success of the algorithm is that the ge-
ometry of the partial Lagrangian is much more "friendly" than the
geometry of the original ACOPF problem. We provide both theoret-
ical analysis on tree networks and simulation results on standard
9-bus, 22-bus, 39-bus, 118-bus and 300-bus meshed networks and
also on the IEEE 141-bus radial network. We show that our algo-
rithm can quickly escape from local solutions and find lower cost
solutions. This feature holds even for ACOPF problems with discon-
nected feasible spaces, for example, the 2-bus network shown in
Section 4.1, which has been traditionally difficult to deal with [5, 19].
For networks with known global solutions (3, 9, 22, 118, 300-bus),
we show that our algorithm can find the globally optimal solution
in a single iteration, even starting from a strict local solution.

Our approach can be seen as a way to provide good warm starts
to nonlinear optimization solvers. DCOPF is commonly used, al-
though it can fail to find good starting points as shown by our
simulations as well as existing results [2]. More sophisticated ap-
proaches either randomizes (stochastic gradient in [8] and load
fluctuations in [23]) or uses a previous solution as the starting
point [28]. The former tends to be time consuming, while the latter
tends to lead to system being stuck in a strict local solution [5].

2 MODEL AND PROBLEM FORMULATION

Consider a power system network of n buses and m lines. For
bus i, let V; denote its voltage magnitude, 6; its angle, Pl.G and QIG
the active and reactive output of the generator and Pl.D and sz
the active and reactive load. The admittance between i and j is
gij — jbij, the active power and reactive power flow from i to j is

P£. and QZ. and 6;; is used as a shorthand for 0; — 6;.

The ACOPF problem is to minimize the cost of active power
generations while satisfying a set of constraints [5]. Out of the
feasible solutions, we focus on two classes: local solutions and
global solutions. Local solutions are all the solutions that satisfy
local optimality conditions, for example, the KKT conditions or
second order ones [4]. Out of this set, the solutions with the lowest
cost are called the global ones. We sometimes refer to the local
solutions that are not global as strict local solutions. We assume
both strict local solutions and the global solutions are regular and
the KKT conditions always hold at these solutions [4]. Therefore,
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there always exist unique Lagrangian multipliers and we can use
them to form the partial Lagrangian.

Specifically, the ACOPF problem is given by the following opti-
mization problem:

min 3, ci(Pf) (1)
st.PO=PP+ 3N P{;. (1b)
0% =oP+3¥, of, (1)
P{; = V2gij — ViVi(gij cos(j) — bijsin(6;;))  (1d)
Q{; = V2bij — ViVj(bij cos(0ij) + gijsin(6;)))  (le)
V,<Vi<V; (1f)
PS¢ < P < P (1g)
oF <of <07 (1h)
(L)% +(Q])? < (smaxy? (1i)

where b; j = bij +0.5bic. and bic. is the line charging susceptance. The
constraints (1b) and (1c) enforce power balance, (1d) and (1e) are the
AC power flow equations, (1f) limits the bus voltage magnitudes,
(1g) and (1h) represent the active and reactive limits and (1i) are
the line flow limits. We assume the cost at each bus i, i.e., ¢;(+),
is increasing. Other than that, the cost can be linear, quadratic or
other functions. We assume problem (1) is feasible in this paper.

Over the years, many nonlinear programming (NLP) solvers have
been developed for the ACOPF problem, and their speed and effi-
ciency have improved dramatically (e.g., see [6] and the references
within). However, NLP solvers are typically only able to return
local solutions. Since a local solution is not necessarily global, we
propose an iterative approach to improve the solution quality by
alternatively solving (1) and a partial Lagrangian. Any NLP solver
can be used, and we use IPOPT [29] in this paper.

3 ALGORITHM

Our algorithm starts with a call to a NLP solver with some initial
guess, denoted by Oinjt, Vinit. For example, this can be the standard
flat start with voltage magnitudes being 1 p.u. and angles set to 0.
Then we assume the solver returns a feasible solution. Of course,
we don’t know whether this solution is globally optimal or not.
At this solution, we record the dual variables associated with the
power balance equations (1b) and (1c), denoted as ji” and ji9. Using
these dual variables, we form the following partial Lagrangian by
dualizing the power balance equations:

N
L(V,G,HP,FQ) :chPlG+ZﬂfJ(PP+ZP£_Pl(;)
i i j=1

N
+ 2P+ 0l -09).
i j=1
We then minimize the partial Lagrangian by solving
in L(V,0,u", y?
min LV, 0,p, p%)
s.t. (1d) — (1i).
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The problem in (3) can be solved using any NLP solver. Since the
partial Lagrangian has less constraints than the primal problem,
its feasible solution space is larger. Therefore, the problem in (3) is
feasible if the original ACOPF problem is feasible.

We solve the problem in (3) starting from the same initial point
(Vinit, Oinir) that was used to solve the original primal problem in
(1). Denote this solution to (3) by (V, 8). Note (V, #) will not be
the same as (Vipit, Oinit) since they come from different problems.
Then we start the NLP solver again to solve (1) but with the initial
point (V, §). This process can be repeated until the solutions stop
changing or up to a predefined number of iterations.

The key observation in this paper is that the solution (V, 8) found
by solving the partial Lagrangian is often a much better starting
point than the original choice of (Viyit, Oinit). Therefore, by repeat-
ing these steps, we can iteratively improve the solution quality (i.e.,
reducing the cost). The algorithm is summarized below as Algo-
rithm 1. We illustrate the intuition behind this algorithm in the next
section using 2-bus and 3-bus networks. Formal proofs are given in
Section 5, and simulations results for larger IEEE benchmarks are
presented in Section 6.

Algorithm 1: Solving ACOPF iteratively
@ v@ . _

Oinit> Vinit» 1 =0 ) )

1: At i-th iteration: Initialized at Gi(nli)t, Vi(r?t:

2: Call NLP solver for (1), record (ﬂﬁ.), ﬁ(i))‘

Inputs:

3: Given (ﬂﬁ.), ﬂ?i) ), call solver for the partial
Lagrangian in (3), record the solutions as (6@, vy,
4: Call IPOPT for (1) initialized at (69, V()),

record solutions (é(i),‘?(i)).

5: If the solution from line 4 does not reduce the cost,
terminate the algorithm.

6: Otherwise, update initial points:

o) 0, vt Z

7: Repeat 1-6 until the maximum number of
iterations is reached.

In terms of computational overhead, each iteration of Algorithm
1 solves an ACOPF problem twice and an OPF-like problem (mini-
mizing the partial Lagrangian) once. In practice, we observe that
the cost is reduced after every iteration and the global solution can
be reached in a small number of iterations (for the cases where
the global solution is known). Therefore, in contrast to algorithms
that resolve the ACOPF problem from a large number of random
initialization points [8], Algorithm 1 is much more computationally
efficient.

4 GEOMETRY AND INTUITION

In this section, we study the geometry of the ACOPF problem to
shed some light on why Algorithm 1 might be successful. We find
that the main reason is that the optmization landscape of the partial
Lagrangian is much “better” than the landscape of the original
problem. To illustrate this geometric property, we use the 2-bus
and 3-bus networks as examples. The formal proofs are provided
in Section 5.
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4.1 2-bus network

In this part, we consider a 2-bus network. For simplicity, we ignore
the reactive power and set both voltage magnitudes to 1 p.u.. Sup-
pose bus 1 is a generator and also the reference (slack) bus with
an increasing cost function ¢(-), and bus 2 is the load bus with
angle —0. The line admittance is g — jb. Given a load of | at bus 2
and ignoring all constraints except for the load balancing one, the
ACOPF in (1) becomes

m@in c(g — gcos(0) + bsin(6)) (4a)

s.t.1+g—gcos(8) —bsin(f) = 0. (4b)

This is an example of an OPF with a disconnected feasible space,
since there are two discrete solutions to (4b) and we are asking for
the one with lower cost.

To see how a NLP solver would approach this problem, we adopt
a common practice [4, 23] and form a penalized version of (4). !
The penalized unconstrained problem is given by

Ly =c(g - gcos(8) +bsin(6))
+p/2(1+g — gcos(8) — bsin(0))?,

©)

where p is a penalty parameter. For large enough p, the solutions of
(5) would coincide with those of (4) [4]. The function £, is plotted
in Fig. 2 (green line). We can see that there are two local minimas,
with the left one being global. The strict local minimum (the right
one) satisfies both first and second order optimality conditions.
Therefore, if we initialize an NLP solver with a bad starting point,
it would be stuck at the strict local solution. For this example, if
the initial point is to the left of the maximum of the green curve, a
solver would converge to the left solution; and if the initial point
is to the right, a solver would find the right (suboptimal) solution.
Hence, a flat start would lead to the global solution. However, for
larger systems, flat starts are often not successful (e.g., see the 22-
bus system in Section 6). Therefore, this 2-bus example is useful as
it illustrates the geometry of the optimization landscape.

Now suppose p is the multiplier corresponding to the equality
constraint (4b) at the strict local solution. The partial Lagrangian of
(4) by dualizing (4b) is:

L, =c(g — gcos(8) + bsin(6))
+ p(l+ g —gcos(8) — bsin(0)).

(6)

Since the sinusoidal functions are periodic with period 27, let us
consider the range 6 € [, x]. It is interesting now to compare
the solution of £, and the original problem in (4) (or equivalently,
L,). The blue curve in Fig. 2 plots .£,,. We observe two interesting
facts. The first is that unlike Ly, L, in this 2-bus network only
has a single minimum. Therefore, no matter where we initialize the
NLP solver for £, we would reach this minimum. The second fact
is that the minimum of £, is close to the global minimum of £,.
Therefore, if we start a NLP solver for the ACOPF at the solution of
L, we would reach the global solution. Interestingly, we are using
the multiplier at the strict local solution. So even if a solution is not

1We use quadratic penalties only as an analysis method that allows us to obtain cleaner
theoretical results. This approach is standard in convergence analysis of nonlinear pro-
gramming, for example, see [4] (Chap. 1), [23], and [27]. All simulation and numerical
results in the paper are obtained using state-of-the-art solvers rather than quadratic
penalty method.
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Figure 2: Geometry of the penalized objective functions £, and the
partial Lagrangian £,,. The line admittance is 1 — j4 and the penalty
parameter is 2.

global, it is still very useful, since by solving L, as an intermediate
step, we would not be stuck at the strict local solution. We prove
that this procedure is guaranteed to work for tree networks in the
next section.

4.2 3-bus network

Now, let us show that the intuitions built in the 2-bus example still
carry over into the 3-bus network. We again ignore the reactive
power and set all voltage magnitudes to 1 p.u. to optimize over
the angles. Suppose bus 1 is a generator and also the reference bus
with an increasing cost function c(+), while bus 2 and bus 3 are load
buses with angles —02 and —6s, respectively. The load at bus 2 is I
and at bus 3 is I3. Then the ACOPF in (1) can be simplified to

min ¢( Z g1j — g1j cos(8;) + by sin(6})) (7a)

02,03 j=23

s.t.

I+ Z (gzj - g2j COS(sz) - sz Sin(@zj)) =0 (7b)
j=1,3

I3+ Z (g3j —93j COS(93j) - b3j sin(93j)) =0. (7C)
j=1,2

As in the 2-bus case, to understand how a NLP solver may ap-
proach (7), we form its penalized version:

Ly=c( ). g1j—gujcos(0)) + by sin(0)))
j=23

®
2
+ 2+ Z (g2j — g2j cos(B2j) — bzj sin(62;)) | ,
2 :
Jj=13
2
+ E l3 + Z (g3j - g3j COS(93J') - b3j Sin(@gj))
2 :
Jj=12
It turns out that there are four local solutions (one of which is
global) for (8).2 All of these solutions satisfy both first order and
second order conditions and they are listed in Table 1. At these
solutions, the gradients V£, are zero and the Hessians viL p are

2They are found via a grid search, i.e., we finely discretize the space and exhaustively
check all points.

292

Ling Zhang and Baosen Zhang

positive definite. This makes £, look like valleys (convex) at all
of the minimas. So it can be hard for an NLP solver to get out of
being trapped at a strict local minima. The level sets around the
solutions of L, are plotted on the left of Fig. 3, where there is little
difference between the local and the global minima.

Solution Bus2 Bus3 Hessian matrix of £,
1st (global) £0.52 £0.52 Positive definite

2nd £0.7 £2.2  Indefinite

3rd £2.2 /0.7 Indefinite

4th £2.09 /£2.09 Negative definite

Table 1: The four solutions to problem (7) through grid search. The
Hessian of £, is positive definite at all solutions. The definiteness of
the Hessian of £, is listed. The parameters are gi2— jb12 = g13—jb13 =
1- j4 and g23 — jb23 =0.1- j0.4.

Now we show that a partial Lagrangian behaves qualitatively
differently. Suppose that we choose a strict local solution of (7). Let
the multipliers corresponding to the equality constraints (7b) and
(7c) be p1 and pg, respectively. The partial Lagrangian for (7) is:

L= c( Z g1j — g1j cos(0;) + by sin(6;)) (9a)
j=2.3
+p1(la+ ) (92 = gaj cos(B2)) = ba; sin(65)))  (9b)
j=1,3
+p2(ls+ )" (gsj —gajcos(0s)) — bajsin(63)))).  (9)
j=12

In contrast to the penalized problem, there is only a single solution
for £, which satisfies both the first order and second order opti-
mality conditions. It is close to the global solution of £, (the black
dot in Fig. 3(b)), even though the multipliers used in forming £,
are from a strict local solution.

If we look at the Hessian of L, we see that the Hessian is either
negative definite or indefinite at the strict local solutions of £,
(the definiteness of the Hessians for £, at the local solutions of
L, are listed in Table. 1). If the Hessian is not positive semidefinite,
then there is always a direction to lower the objective value of a
function. For example, these descent directions are shown as dotted
arrows in Fig. 3(d) and Fig. 3(f).

All together, Fig. 3 shows how Algorithm 1 would get around
the strict local solutions in £,. Suppose we solve the Lagrangian
from a point around the global minimum x*. Since V?£,,(x*) is
positive definite, this means the starting point is at a valley of the
Lagrangian surface. So solving the Lagrangian would return the
global solution. Now let us use a point around the local solution, say
X, as an initial point to solve the Lagrangian. As shown in Fig. 3(d))
and 3(f)), VZLII (%) is negative definite or indefinite, so the surface
of the Lagrangian is concave down or has a saddle. Then we can
find at least one descent direction to get out of being trapped at the
current point.

5 ANALYSIS OF ALGORITHM 1

In this section, we provide a rigorous analysis of Algorithm 1. As a
first step, we focus our attention on systems with a tree topology
and ignore the reactive power. For mesh networks with both active
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indefinite in (d), and negative definite in (f). The black arrows in (d)

and (f) indicates the descent directions of the function value.

and reactive power flows, we provide detailed simulation studies in
Section 6 and show how the intuition from tree networks applies.
Formal proofs for meshed systems is an important part of our future
work.

We first consider a tree network with fixed voltage magnitudes
and show that the minimizer of the Lagrangian falls into the attrac-
tion basin of the global minimum of the ACOPF problem, which
generalizes the observations in Section 4.1. Then we optimize over
both voltage magnitudes and angles for a 2-bus network, and look
at the Hessian matrix of the Lagrangian as we do in Section 4.2. We
prove that the Hessian matrix of the Lagrangian is positive definite
at the global minimum and negative definite or indefinite at the
local minimum.

293

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

Attraction
basin of

Attraction;
basin of !

-1.0 H
X 1
-1.5 1 !
1
! »
-2.0 1 2
=25 20 -15 -10 -05 00 05

Figure 4: Illustrative figure of Definition 1. There are two local min-
imums, i.e., x; and x;. The attraction basins of each of them are
marked as intervals and annotated with blue fonts.

5.1 Fixed voltage magnitudes

In this part, we consider a tree network with fixed voltage magni-
tudes. We note that the NLP solver we use in this paper, [IPOPT, uses
a barrier function to solve a sequence of unconstrained optimization
problems using a mixture of gradient descent and Newton-type
methods (with many different ways of tuning stepsizes). With-
out loss of generality, we assume that the NLP solver runs either
a gradient descent or a Newton-type algorithm. For either algo-
rithm, there is a theorem called the Capture Theorem (see [4], Prop.
1.2.4 for gradient-like algorithms and Prop. 1.4.1 for Newton-type
algorithms) saying that once the algorithm enters the region of at-
traction around a local minimum it has to go to this local minimum.
This means starting the solver from an initial point in the region
of attraction of a solution would return this solution. Formally, the
region of attraction of a solution is defined as follows [4]:

Definition 1. Let x* be an unconstrained local minimum to
f :R" — R. Assume there exists a set X such that f(x) is contin-
uously differentiable on X and x* € X. For every point x # x* and
x € X, if the following inequality holds, then X is a subset of the
region of attraction around x*:

Vix)T(x* —x) <0, Vx #x*,x € X, (10)

where V f(x) represents the gradient of f(-) at the point x.

An illustrative figure of Definition 1 is given in Fig. 4. Intuitively,
the inequality in (10) implies that the direction where the func-
tion value decreases (the descent direction) is aligned with the
negative gradient. Now we give the following theorem about the
performance of Algorithm 1 for a tree network with fixed voltage
magnitudes:

THEOREM 2. Consider a N-bus radial network and keep the voltage
magnitudes fixed to optimize over voltage angles. If the NLP solver gets
stuck at a strictly local solution when it starts from an initialization
point, then starting Algorithm 1 from the same initialization point is
able to escape from this strictly local solution.

Proor. Since Algorithm 1 uses the solution of the partial La-
grangian as a new initialization point to solve the primal problem
again, we prove Theorem 2 by showing that the minimizer of the
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partial Lagrangian falls into the region of attraction around the
global minimum of the ACOPF problem. As we assumed at the
beginning of this part, the NLP solver is running either a gradi-
ent descent or a Newton-type algorithm. Both of the two follow
the Capture Theorem in [4]. As a result, starting the solver from
the minimizer of the Lagrangian would be able to find the global
minimum.

We do the proof by induction starting with a 2-bus network.
The ACOPF problem for the 2-bus network is given in (4) and its
Lagrangian is given in (6). We first study the solutions to (4) by
looking at the equality constraint A(0) = [+g—g cos(0) —bsin(0) =
0. Its gradient can be written as

h'(0) = gcos(0)(tan(9) — b/g).

Suppose 6 € (—n/2,37/2), then the gradient h’ is zero at 6 =
tan~'(b/g). We also have

K (6) <0,V 6 € (—%,tan_l(b/g)) (11a)

B’ (0) >0,V 0 € (tan"1(b/g), tan" 1 (b/g) + 7). (11b)

This implies that § = tan~!(b/g) is a minima of h(#). Since for
a feasible problem, the solution to h(f) = 0 must exist within
(—m/2,37/2), then by the intermediate value theorem, there are
two solutions to (4), which satisfy the following inequalities:

—m/2 < 0* <tan"(b/g) < 8 < 37/2, (12)

where 0* is the global minimum and @ is the local minimum (see
Appendix A for more details).

Now we use (10) to show that the interval (-z/2,tan"!(b/g))
is a subset of the attraction region of 6*. For a sufficiently large
penalty, the globally optimal solution 6* can be very close to the
global minimum of the unconstrained penalized problem in (5).
Therefore, this is equivalent to showing

(13)

As p is sufficiently large, the sign of L;)(G) is dominated by the
gradient of the second term in (5), i.e.,

L;,(@) ~p(l+g—gcos() — bsin(0))(gsin(8) — b cos(0))
=ph(0)h’ ().

LyO)(6* - 6) <0V e (- tan"' (b/g)).

For any 6 € (-x/2,tan"1(b/g)), we have h’(8) < 0 from (11a),
which means the function h(0) is decreasing on the interval
(—m/2,tan"1(b/g)). Also, the global minimum §* must satisfy h(6*)
0. Therefore we have

h(0) >0,V 0 € (-x/2,0%)
h(0) <0,Y 0 € (%, tan"1(b/g)).
Then the inequality in (13) follows from above. Therefore, by Defini-
tion 1, the interval (-z/2,tan"1(b/g)) is a subset of the attraction
region of 6*.
To obtain the minimizer of £, we write out the optimality

condition of (6) for the primal-dual optimal solution (6, ):
(¢’ + p)gsin(8) + (¢" — )b cos(h) = 0, (16)

where ¢’ is a shorthand for ¢/(g — g cos() + bsin(0)) and is the
gradient of the cost function. Suppose 6 € (—x/2,37/2), then 6
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Figure 5: The two types of three bus networks with the tree structure.

solves

_C,

tan_l('; b/g) +kr, k= 0,1, 17)

+c’
where the smaller value is the minimum of £, and the larger
one is the maximum (see Appendix B for more details). Let 6 be
the minimum, which satisfies —7/2 < 6 < tan™! (b/g). Since the
interval (-7/2,tan"1(b/g)) is a subset of the attraction region of
6*, no matter what initial point we start Algorithm 1 from, solving
the Lagrangian gives us a solution lying in the attraction region
around the global minimum. Following from the Capture Theorem
in [4], Algorithm 1 is able to get out of a strict local solution and
reach the global minimum.

Now we induct from 2-bus to 3-bus networks. There are two
types of tree topology for a 3-bus network, which are shown in
Fig. 5. Since the topology in Fig. 5(b) is equivalent to two 2-bus
networks, we focus on the 3-bus branch in Fig. 5(a), where bus 1 is
the reference bus.

The ACOPF problem for Fig. 5(a) can be written as follows:

min c(PG) (18a)
01205

st.L+Pl +Pl =0 (18b)

L+Pl =0, (18¢)

Note that only bus 1 generates power and to deliver the power to bus
3 the power has to be delivered to bus 2 first. Since the cost function
c(+) is increasing, given the load at bus 2 and bus 3, minimizing the
power generation cost in (1) is equivalent to minimizing the power
transfer cost on both lines. Therefore, (18) can be decomposed into
two parts, and each part is nothing but solving the ACOPF for a
2-bus network with voltage fixed and ignoring reactive power, i.e.,
the formulation in (4). To make this clear, we first rewrite (18) as
follows:

min c1(P12) +c2(P23) (192)
012,023

st.lp+ Py +Pr3=0 (19b)

I3+ P33 = 0. (19¢)

With [, fixed, for every given 623, we can always pick some 6012
to satisfy (19b). Therefore, we can regard 023 as the optimization
variable first. Then the problem (19) is reduced to

min ¢(Pa3)
023
st.l3+P35 =0

where ¢(+) is some increasing cost function that takes into account
the effect of 033 on Pjy. This problem has exactly the same for-
mulation as the 2-bus network in (4). As we proved for the 2-bus
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network, if we start Algorithm 1 from a point where 63 is at the
local minimum, then we still can get out of this local minimum.

Now we optimize 0;; for a given 633, then we can add P3 to I.
Therefore, (19) is reduced to

min ¢ (P12)
012
s.t. Zg +Py1 =0

where ig = Iy + Py3. This problem also has the same formulation
as the 2-bus network in (4). Therefore, if the initial point is a lo-
cal minimum for 013, Algorithm 1 still can get out of this local
minimum.

Let us assume Theorem 2 holds for a (N — 1)-bus radial network
and consider a N-bus radial network. Similar to the proof for a
3-bus network, we can reduce the ACOPF problem for a N-bus
network to the case of (N — 1)-bus. So by induction, Theorem 2
holds for the N-bus radial network. O

5.2 Optimizing both voltage magnitudes and
angles

In this part, we optimize both voltage magnitudes and angles for a 2-

bus network. For simplicity, we ignore the reactive power. Suppose

bus 1 is a generator and also the reference (slack) bus with linear

cost $1/MW, and bus 2 is the load bus with load I. The ACOPF in

(1) can be simplified as

in gV2 - V. 6) — bsin(0 22
oin gV = 2(g cos(0) — bsin(0)) (22a)
s.t.l+VEg—ViVa(gcos(0) +bsin(6)) = 0 (22b)
Vimin £ V1, V2 < Viax. (22¢)

Let us collect all the variables into the vector x = (6, V1, V2). We
denote the objective function by f(x), and the equality constraint
(22b) by h(x) = 0. The following theorem gives the property of the
Hessian matrix of the Lagrangian.

THEOREM 3. Denote the global solution of (22) as x* and the local
solution as x. Then the Hessian matrix of a Lagrangian of (22), formed
with multipliers at any of the local solutions, is positive definite at x*
and negative definite or indefinite at X.

Proor. To study the solution to (22), we look at the equality
constraint (22b) directly. Its gradient with respect to 6 can be written
as

0h/d0 = gsin(0) — b cos() = gcos O(tan(0) — b/g).

Suppose 0 € (—/2,31/2), then oh/a0 is zero at tan~!(b/g) + kx,
k =0, 1, where the smaller value is located at the global minimum
and the larger value is at the local minimum. Denote the global
minimum as * and at the local minimum as 6. They satisfy (see
Appendix A for the details):

—7/2 < 0% < tan"1(b/g) < 0 < 37/2. (23)

In Appendix C, we show that at least one of V; and V3 need to be
binding at a constraint, but both voltages cannot be binding at the
same time. This allows us to consider the cases where V; is binding
or V; is binding separately.
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First, suppose V; is inactive and V is binding. In this case, V; is
a constant and the Lagrangian of (22) can be written as

-L/Lp =f(X) + ,Uh(x) + /il (V1 = Vinax) +41 (=V1 + Viin) -

The multipliers are associated with some local solution, and p is
the Lagrange multiplier related to the equality constraint, and
and A, are the multipliers related to the inequality constraints of
V.

Denote the Hessian matrix of £, , as vViL J.u(%). To determine
its definiteness, we write out all leading principal minors at a solu-
tion X (see Appendix D for the details):

—2gb

gcos(0)(tan(0) - b/g)
Dy (%) = 2gD1 (%).

Di(%) =1y

(24a)

(24b)

Following from the inequalities in (23), both leading principal mi-
nors in (24) are positive at the global minimum and negative at the
local minimum. This means the Hessian matrix at x* is positive
definite. In contrast, the Hessian matrix at X is negative definite.

Now we suppose V3 is inactive and V; is binding. In this case, V;
is a constant and the Lagrangian is:

-E/Lu =f(x) + ph(x) + Az (Vo — Vinax) +&2 (=V2 + Viin) -
where the multipliers are associated with some local solution. Let
us denote the Hessian matrix of the Lagrangian as V2L o (X). Its

leading principal minors at a feasible solution X are (see Appendix
D for the details):

—2gb
gcos(0)(tan(d) — b/g)
D2(X) = 2gjiD1 (%). (25b)

Since the multiplier y represents the marginal price of consuming
each additional unit of load, it is positive at the global minimum.
This means D3 (%) has the same sign as D (X). For the global mini-
mum x*, D1 (X) is positive from (23), hence both leading principal
minors in (25) are positive and the Hessian matrix is positive defi-
nite at x*. In contrast, at the local minimum %, D1 (X) is negative
following from (23). Then the Hessian matrix is either negative
definite or indefinite at x. O

Dy (%) =iV (25a)

The simulation results in the next section do not need to make
any of the assumptions in Theorem 2 and 3. They are about mesh
networks with all constraints included. Therefore, we suspect the
theory can be made much stronger and would extend to larger
meshed networks. However, analyzing these cases is challenging
and is a future direction for us.

6 SIMULATION RESULTS

In this section we report the simulation results to validate the
effectiveness of our algorithm. The NLP solver used here is IPOPT
[29] and the convergence tolerance is set to 0.0001. It returns a
feasible solution, which may or may not be a global optimum. We
test our algorithm on IEEE meshed networks with 3, 9, 22, 39, 118
and 300 buses, and also on the IEEE radial network with 141 buses.
For the 3-bus, 9-bus, 22-bus, 118-bus and 300-bus networks, the
local and global solutions are known and listed in [5, 24]. We use the
strict local solutions as starting points for the solver to demonstrate
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the ability of Algorithm 1 of getting out of local solutions. For
the 39-bus and 141-bus networks, we do an exhaustive search by
discretizing each variable within their bounds to find the global
solution. The simulation results show that for the 3, 9, 22, 118,
300 and 141-bus networks, Algorithm 1 finds the globally optimal
solution in 1 iteration. For the 39-bus networks, it takes at most 3
iterations for Algorithm 1 to obtain the optimal solution.

6.1 3-Bus Mesh Network

The 3-bus network we use is shown in Fig. 5a and the voltage bounds
are [0.95,1.05]. Two solutions exist and they are listed in Table 2.
This was an example used in [24] to show that multiple reasonably
looking local solutions can exist, and contrary to conventional
wisdom, the higher voltage one is the suboptimal one (although
the cost difference is small).

If we start the nonlinear solver from an initial point near the sec-
ond solution, then the solver cannot get out of the attraction basin
and always returns the second solution. In contrast, if we launch
Algorithm 1 using the second solution as a starting point, then the
algorithm converges to the first solution (the global solution) after
one iteration. Although the cost difference is small between the
two solutions, larger networks will have bigger cost differences.

Bus 1 Bus 2 Bus 3 Cost
Solution1 0.95/0 0.95/-0.48 0.98/-0.53 1
Solution2 0.95/0 1.01/-0.46 1.05/-0.51 1.0021

Table 2: The two local solutions for the 3-bus network in
Fig. 5a. The cost is normalized to 1 for the global solution.

6.2 9-Bus Mesh Network

In the 9-bus network, there are 3 generators (bus 1, 2 and 3) and 9
transmission lines. The voltage bounds are [0.9, 1.1]. Four solutions
exist. The cost of the worst local solution is 38% more than the cost
at the global solution. We also find that the solutions at generators
2 and 3 and load buses 6, 7, and 8 are important to improve the
cost. The power transfer along the lines between these buses tend
to get stuck at a suboptimal solution, which leads to a cost more
than 30% higher than the lowest one. For the nonlinear solver, we
need to relaunch it using different initial points in order for these
five nodes to get around the attraction basin. This requires many
trials. In contrast, Algorithm 1 only requires one iteration to achieve
the global solution, even starting from the local solution with the
highest cost.

6.3 22-Bus Mesh Network

In the 22-bus network, the buses are connected in a loop. There
are 11 generators and 22 transmission lines. The voltage bounds
are [0.95, 1.05]. There exist two solutions, and the cost of the local
solution is 30% higher than that of the global solution. The two
solutions are quite different. We pick 5 buses that are evenly spaced
and list their solutions in Table 3. Since the two solutions are very
different, it is hard for a nonlinear solver to get around the local
solution.
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Figure 6: Percentage of globally optimal solutions for the 39-bus
network after each iteration. Using a set of random starting points,
47% of them leads to the global optima after a direct call to IPOPT.
The fraction of global optimal solutions increases to 98%, 99.93%
and 100% after running one, two and three iterations of algorithm 1,
respectively.

Particularly, if we initialize the solver with a flat start, we obtain
the strict local solution. Furthermore, we generate 100 random
points uniformly at random within the bounds of each variable.
If these points are used to initiate the nonlinear solver, the local
solution is always obtained and the global one cannot be reached. In
comparison, Algorithm 1 can achieve the global solution after one
iteration regardless of the initial point. This is an example where
using random search is very computationally inefficient, and our
deterministic algorithm turns out to be much more successful.

6.4 39-Bus Mesh Network

In the 39 bus network, there are 10 generators and 46 transmis-
sion lines. The voltage bounds are [0.95,1.05]. Unlike the previous
smaller networks, the number and the cost of the solutions are
not previously known for this network. Therefore we conducted
an exhaustive search to find the global solution. To evaluate the
effectiveness of Algorithm 1, we choose 600 random points within
the bounds of each variable using the uniform distribution. Then
we start Algorithm 1 with these random points to observe the
improvement of the solution quality.

In Fig. 6, we plot the fraction of global solutions in the set of all
600 results after each iteration. The x-axis represents the number
of iterations that Algorithm 1 is ran, and y-axis represents the
percentage of globally optimal solutions after each iteration. When
we make a direct call to the solver, less than half of the solutions
are globally optimal. One application of Algorithm 1 increases the
percentage of globally optimal solutions to 98%. After two iterations,
only four cases are not globally optimal. When we run Algorithm 1
for three iterations, all solutions are globally optimal.

We also calculate the average cost of the 600 solutions after each
iteration of Algorithm 1 and plot the result in Fig. 7. The x-axis
is the number of iterations of running Algorithm 1, and y-axis
represents the average cost of 600 solutions, which is normalized
using the optimal cost as the factor. After a direct call to the solver,
the average cost is 30% higher than the optimal cost. As Algorithm 1
is ran, the average cost decreases quickly. After one iteration, the
average cost is only 1.5% more than the globally optimal cost, and
after three iterations all solution are at the global optimum.
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Bus 2 Bus 7 Bus 12 Bus 17 Bus 22 cost
Solution 1 1.0285/-0.045 1.0520 1.0285/-0.045 1.05/0 1.0285/-0.045 1
Solution 2 0.95/-0.339 1.0145/4.57 0.95/3.089 1.0145/1.714  0.9520.233 1.306

Table 3: The two solutions for the 22-bus network. We pick five buses and show their voltage and angles. The costs at the two

solutions are normalized such that the globally optimal cost is 1.

1.30

1.25

1.20

115
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o 3

i 2
Number of Iterations

Figure 7: The average cost of all 600 solutions for the 39-bus network
after each iteration. The cost is normalized such that the optimal
cost is 1. After a direct call to IPOPT, the average cost is 30% higher
than the optimal cost. Then the average cost reduces to 1.5%, 0.4%
higher than the optimal value after running one and two iterations
of Algorithm 1, respectively. After three iterations, the average cost
is exactly the optimal cost.

6.5 118-Bus Mesh Network

The topology of the 118-bus meshed network can be found in [5].

There are 54 generators and 186 transmission lines. When the
voltage bounds are [0.94,1.06] and power generation bounds are
scaled by 4, two locally optimal solutions are known and listed in
[5]. The strictly local minima has a cost that is 28.8% higher than
the global minimum.

—&— local solution
solution of Lagrangian
- global solution

S

—&— local solution
solution of Lagrangian
—- global solution

1 raaius
in radius

0.00
. KA A R Ak K
-0.25

—0.50

35 a0 a5 50 55 60 69 73 77 81 85

Figure 8: Angles of solutions for Figure 9: Angles of solutions for
buses from 35 to 61. buses from 69 to 88.

Demonstration of how the proposed algorithm can escape from the
strictly local minima for the 118-bus meshed system. Use two subsets
of buses to show the relationship between the local minimum, the
solution of the Lagrangian and the global minimum solution (Figures
(a) and (b)).The solution to the partial Lagrangian (yellow squares)
provides a good warm start for the solver to escape from the strictly
local minima. Using the yellow squares as initialization points, the
NLP solver is able to find the globally optimal solutions (red stars).

To show how the proposed algorithm can escape from the strictly
local minima by using the solution to the partial Lagrangian as

297

a warm start, we choose two subsets of buses from the 118-bus
meshed network and plot the angle of the voltage solutions for
each subset. The angle solutions for the subset composed of buses
from 34 to 61 are plotted in Fig. 8, and for the subset composed of
buses from 69 to 88 plotted in Fig. 9.

When the NLP solver reaches the strictly local solution (marked
as blue diamonds) from some initialization point, it terminates
at this solution. To escape from this suboptimal solution, we call
the solver to solve the partial Lagrangian starting from the same
initialization point and get the solution marked as yellow square. We
use this solution as the new warm start to solve the primal problem
again, then we can obtain the global minima (marked as red stars)
with a single run of Algorithm 1. As is shown in Fig. 8 and Fig. 9,
the solution to the partial Lagrangian jumps quite far away from
the local solution but stay close to the global solution. Therefore,
it provides a good initialization point for the NLP solver to escape
from the strictly local minima and get to the global minima.

6.6 300-Bus Mesh Network

The topology of the 300-bus meshed network can also be found in
[5]. There are 69 generators and 411 transmission lines. When the
voltage bounds are [0.93, 1.07] and the reactive power generation
lower bounds are tightened to —100 Mvar for all generator buses,
two locally optimal solutions are known and listed in [5]. The
strictly local minimum has a cost that is 0.62% higher than the
global minimum. For the NLP solver to escape from the strictly
local solution, only a single run of Algorithm 1 is needed.

0.4

gl

0.0

6 in radius

—&— local solution
solution of Lagrangian
—— global solution

148 152 156

Bus

Figure 10: Demonstration of how the proposed algorithm can escape
from the strictly local minima for the 300-bus meshed system and
plot of angle solutions for the subset of buses from 148 to 166. The
solution to the partial Lagrangian (yellow squares) jump far away
from the strictly local minima (blue diamonds). As a result, starting
from the yellow squares, the NLP solver is able to escape from the
strictly local solution and find the globally optimal solution (red
stars).
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Bus1 Bus30 Bus50 Bus80 Bus121 relative cost
PG(MW) at solution 1 3.2578 57791 7.9975 5.0351 9.768 1
PG(MW) at solution 2 3.664 47109 8.2127 3.8811 13.8361 1.115
PG(MW) at solution 3  4.3365 5.1223  7.039 49725 9.5491 1.026

Table 4: The active power generation at a subset of generator buses at the three optimal solutions for the 141-bus radial network.

The costs are normalized such that the global optimal cost is

To show how the proposed algorithm can escape from the strictly
local minimum by using the solution to partial Lagrangian as an
initialization point, we choose a subset of buses from 148 to 166
and plot the angles of their voltage solutions in Fig. 10. As Fig. 10
shows, the solution to the partial Lagrangian (marked as yellow
squares) jumps far away from the strictly local solution and thus
act as a good warm start for the NLP solver to escape from the
strictly local minima and find the global minima.

6.7 141-Bus Radial Network

The topology of the 141-bus radial network can be found in [18].
There are 9 generators and 140 transmission lines. When the voltage
bounds are [0.83,1.17] and the reactive power generation lower
bounds are tightened for buses 2, 7 to 5 Mvar and bus 5 to 15
Mvar, 3 locally optimal solutions are found. The two strictly local
minima has costs that is 11.5% and 2.6% higher than the global
minimum, respectively. The active power generation at a subset of
the generator buses for each of the solutions are shown in Table 4.

To test the performance of our algorithm and demonstrate how it
escapes from local minima, we randomly generate 1000 initial points
within the bounds of each variable using a uniform distribution,
and call the NLP solver to solve the primal AC OPF problem starting
from these initial points.

To demonstrate how the solution of partial Lagrangian can be
a good warm start, we choose a subset of buses from the 141-bus
radial network and plot the angle of the voltage solutions. First,
we show how the proposed algorithm escapes from the first lo-
cal minimum. In Fig. 11, the NLP solver reaches local solution-1
(marked as blue diamonds) from an initialization point. The NLP
solver terminates at this solution. To escape from this suboptimal
solution, we call the solver to solve the partial Lagrangian starting
from the same initialization point and get the solution marked as
yellow square. We use this solution as a new warm start to solve
the primal problem again, then we can obtain the global solution
(marked as red stars) with only a single run of Algorithm 1. As
Fig 11 shows, the solution to the partial Lagrangian jumps quite far
from the local minimum and provides a good starting point for the
NLP solver to reach the global minimum.

In Fig. 12, we show how our proposed algorithm escapes from the
second local minimum solution. For an initialization point where
the NLP solver reaches local solution-2, we solve the partial La-
grangian. Initializing the NLP solver from the solution of the partial
Lagrangian allows us to reach the global solution, and we show the
voltage angles of different solutions for buses 60 to 69 in Fig, 12.3

3The reason why we choose different subsets is that the local and global solutions
in the subset composed of buses 89 to 110 are very similar. To better illustrate the
effectiveness of our method, we choose the subset composed of buses 60 to 69, where
the local and global solutions are quite different.

1.
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Figure 11: Angles of solutions for
buses from 89 to 110.

Figure 12: Angles of solutions for
buses from 60 to 69.
Demonstration of how the proposed algorithm can escape from the
strictly local minima for the 141-bus radial system. Specifically, Fig-
ure (a) shows how the solutions escape from the first local minimum
and (b) shows how they escape from the second minimum. Using our
proposed algorithm, the solution of the partial Lagrangian is able
to escape the local minimum (blue diamonds). Using these (yellow
squares) as initialization points, the NLP solver is able to find the
globally optimal solution (red stars).

7 CONCLUSION

In this paper, we propose a simple algorithm to iteratively improve
the solution quality of ACOPF problems. First, we solve the ACOPF
problem using an existing nonlinear solver. From the solution and
its associated dual variables, we construct a partial Lagrangian by
dualizing the power balance equations. Optimizing this partial La-
grangian leads to a new solution. With this solution as an initial
point, we again call the solver for the ACOPF problem. By repeat-
ing these steps, we can iteratively improve the solution quality,
escaping from local solutions to find better ones. We illustrate the
intuition behind our algorithm using 2 and 3-bus networks, which
shows that the partial Lagrangian has a flatter optimization land-
scape compared to the original primal problem. We prove that the
algorithm is guaranteed to work in tree networks. Theoretical anal-
ysis for more general networks is an important part of our future
work. We validate the effectiveness of our algorithm on standard
9-bus, 22-bus, 39-bus, 118-bus and 300-bus mesh networks and also
on the IEEE 141-bus radial network. Regardless of the initial points,
our algorithm always finds the global optimum within at most three
iterations.
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A DETERMINE GLOBAL MINIMUM FOR
ACOPF

In Section 5.1 and 5.2, we find two solutions to the supply/balance
equality constraint, which satisfy the inequalities in (12) or (23).
In this part, we give the reason why the smaller solution in (12)
(or (23)) is the global minimum and the larger solution is the local
minimum.

Let us subtract the power received at the load bus from the
generation at the generator, then we have the transmission loss as
follows:

loss = g — gcos(8) + bsin(0) — (—g + gcos(8) + bsin(0))
=2¢g(1 - cos(0)).

Due to the periodicity of arctangent function, the larger value
must be larger than 7/2. Then the loss at 6* is smaller than the loss
at §. So 0* is an more optimal solution than @. Since there are only
two solutions for this example, 0* must be the global minimum
and 0 is the strict local minimum.

B DETERMINE GLOBAL MINIMUM FOR THE
LAGRANGIAN

In this part, we determine the global minimum of the Lagrangian
problem for the 2-bus network, where we fix the voltage magnitudes
and optimize over the angles.

Let us denote the two solutions of the Lagrangian problem in (6)
as 6 and 0, and the multipliers associated with them are /i and £,
respectively. Then from (17), we have

-z <é=tan—1(‘f_c,9) <tan'(%) (263)
2 a+c g g
) T b

T i=tan ' (S ) s r<tan (D) + (26b)
fi+c' g g

Also we can represent the multiplier using 0 by rearranging the
terms in (16). We take (6, i) as an example, and fi can be represented
using  in a similar way. The expression of /i in terms of  is

_gsin(0) +bcos(0)

~ = (27)
gsin(0) — b cos(0)

f=
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Now let us write out the second-order derivative of the Lagrangian
function, and plug (27) into it. Then we have:

L;{(é) = (1+ f))gcos(d) — (1 - f1)bsin(f)
B 2gb
gcos(é)(tan(é) - g).

Using the inequalities in (26), we have
L7(0) >0,
L7(©6) <o.

Based on the first-order and second-order optimality conditions, 6

is the minimum of the Lagrangian problem, and  is the maximum.

C VOLTAGE INEQUALITY CONSTRAINTS

In this part, we prove that not all inequality constraints in (22c) are
inactive by contradiction. We first suppose all inequality constraints
in (22c) are inactive, and convert (22) to the penalized unconstrained
formulation:

Ly (x) = f(x) + p/2[h(x)]*. (28)

Assume p is sufficiently large, then (28) can be viewed as being
equivalent to the original problem (22). Let us take gradients of
L, (x) with respect to Vi and V; at a feasible solution X. Since X
satisfies h(X) = 0, the terms multiplied by ph in the gradients can
be ignored. So the gradients are given by

oL, R - o
— =2gV; — Va(g cos(0) — bsin(0)) (29a)
Vi
oL . . .
—2 = _Vi(gcos(6) — bsin(6)). (29b)
%)
1) If % = 0, then we have
. . Vi o~
gcos(6) — bsin(0) = 29\7_ (V2 #£0). (30)
2

Plug (30) into (29b) and we get

‘N/Z

oL
= = —2g~—1 <0.
V2

Wy

This means if V; is inactive, then V, must be on the boundary of
the constraigt set.
2) Suppose 3_Vzp = 0. Since V; # 0, we have

gcos(f) — bsin(6) = 0. (31)

If we plug (31) into (29a), then we have

oLy

=2gV; > 0.
A% gh

That is, if V5 is inactive, then Vi must be on the boundary of the
constraint set. Therefore one of V; and V, must be binding, and (22)
can be reduced to the bivariate optimization problem.
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D HESSIAN MATRIX OF THE LAGRANGIAN

In this part, we derive the Hessian matrix of the Lagrangian function
for problem (22), where we optimize both voltage magnitudes and
angles for a 2-bus network. In Appendix C, we have shown that
one of Vi and V, must be binding, so here we consider the cases
where Vj is binding or V3 is binding separately.

We first suppose V; is inactive (equivalently, V3 is binding). Then
the Hessian matrix of the Lagrangian is

F Loy F Loy
2 _ 002 209V,
\Y -E)L,/J =\ #Ly, PLa, |
200V, avlz

The two leading principal minors of V2.£ ). at a feasible solution
X are

821:/1,”
902
= ViVa[(1+ ji)g cos(0) — (1 - ji)bsin(6)]
Dy(%) = V2 Ly,
= 2gD1(%) — V7 [(1+ f)g sin(6) + (1~ )b cos(6)]?

Di(%) =

where ji is the dual solution associated with x. If (%, ji) are the
optimal primal-dual solutions, then we can write out the first-order
optimality condition of the Lagrangian w.r.t. 6:

(1+ fi)gsin(0) + (1 — ji)b cos(0) = 0. (33)
From (33), D2(%) can be simplified as
Da(%) = 2gD1(%).
Also, we can represent /i in terms of 6:
. sin(é) +b cos(é)
j= ISR FOCS) (34)

g sin(é) -b cos(é) '
If we plug (34) into D; (X), then we have

—2gb
g cos(é)(tan(é) - g) '

Di(%) = ViV,

Following from the inequalities in (23), D1 (X) and hence D, (%) are
positive at the global minimum and negative at the local minimum.
Therefore, Theorem 3 holds for the case where V; is inactive and
V3 is binding.

Now we suppose V; is inactive (equivalently, V; is binding). Then
the Hessian matrix of the Lagrangian is

FLiy Ly

o2 _ 902 09V,

V ‘LA,;I = 32 ‘CAVF 32 ‘C/LII (35)
909V, V2
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The two leading principal minors of V2£ 2, at a feasible solution
X are

—2gb
2 %) %) b
gcos(0)(tan(0) — §)
D2(%) = V2 Ly,
= 2g/iD1 (%) = V[ (1+ f)g sin(6) + (1 - fi)b cos(6)]?
(36b)

where /i is the dual solution associated with %. If (X, i) are the opti-
mal primal-dual solutions, then the first-order optimality condition

(36a)
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w.r.t. 0 takes the same form as in (33). Then D3 (%) in (36b) can be
simplified as

Dy (%) = 2gjiD; (%).
Since the multiplier /i represents the marginal price and is positive
at the global minimum, Dy (%) has the same sign as D (x). From

(37a)

the inequalities in (23), Dy (%) is positive, hence the Hessian matrix
V2L . 18 positive definite at the global minimum. For the local
minimum, since D; (%) is negative from (23), the Hessian matrix
V2L J,u cannot be positive definite. This means it is either negative
definite or indefinite at the local minimum. Therefore, Theorem 3
also holds for the case where V; is inactive and V; is binding.
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