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ABSTRACT
The existence of multiple solutions to AC optimal power flow

(ACOPF) problems has been noted for decades. Existing solvers

are generally successful in finding local solutions, which satisfy

first and second order optimality conditions, but may not be glob-

ally optimal. In this paper, we propose a simple iterative approach to

improve the quality of solutions to ACOPF problems. First, we call

an existing solver for the ACOPF problem. From the solution and

the associated dual variables, we form a partial Lagrangian. Then

we optimize this partial Lagrangian and use its solution as a warm

start to call the solver again for the ACOPF problem. By repeating

this process, we can iteratively improve the solution quality, mov-

ing from local solutions to global ones. We show the effectiveness

of our algorithm on standard IEEE networks. The simulation results

show that our algorithm can escape from local solutions to achieve

global optimums within a few iterations.
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1 INTRODUCTION
The optimal power flow (OPF) problem is a fundamental resource
allocation problem in power system operations that minimizes the
cost of power generation while satisfying demand. The ACOPF
formulation of the problem uses nonlinear power flow equations,
resulting in nonlinear and nonconvex optimization problems [6, 10,
19]. The consequence of the nonconvexity of ACOPF we study in
this paper is the presence of multiple solutions.

Most ACOPF problems are solved via variations of nonlinear
optimization algorithms, including Newton-Raphson, sequential
programming, interior points and others (see [7, 19, 26] and the
references within). These algorithms are in general only able to
certify whether a solution is locally optimal, that is, they satisfy
first order and/or second order optimality conditions. Because of

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9397-3/22/06.
https://doi.org/10.1145/3538637.3538858

the existence of multiple local solutions, it is often difficult to find

the globally optimal one and the system loses efficiency.

The existence of multiple local solutions of the OPF problem

has been well-known for several decades [13, 17, 22]. Despite this,

a common assumption is that OPF problems tend to have a sin-

gle “practical” solution that is globally optimal, and therefore the

fact that multiple solutions can exist do not impact day-to-day

operations [21, 30]. However, an increasingly large body of work

have pointed to that multiple solutions do occur under reasonable

conditions and cannot be easily ruled out [5, 19, 31]. For example,

during day-to-day operations, small changes in the load could lead

to a solver jumping between solutions that are far apart from each

other [8, 23]. In addition, [5] shows how modifications of the stan-

dard IEEE benchmarks can lead to each having more than one local

solution. Statistical studies in [12, 15] show that there are more

solutions than previously thought in many systems.

An open question in the field is to develop algorithms that can

find globally optimal solutions, or at least improve upon local ones.

In addition to lowering the operating cost, understanding and distin-

guishing between locally and globally optimal solutions can lead to

important theoretical discoveries about the ACOPF problem. Con-

sequently, several classes of algorithms have been developed. For

example, holomorphic embedding has been used in [9, 14], but are

slow and require very high numerical precision. Genetic algorithms

can escape a local minimum, but are random in nature and require

repeated trial and error [1, 3]. Robust optimal power flow can alle-

viate convergence issues, but may not improve on the quality of

the solution [25]. Compared to meshed networks, radial networks

are less complicated and there have been advances in the solving

techniques for radial networks to avoid being kept at strictly local

solutions. A common method is to convexify the nonlinear and

nonconvex power flow equations [11, 16, 20, 32]. However, these

relaxations can have difficulties when there are lower bounds on

reactive or active power and the feasibility region of the problem

becomes disconnected.

In this paper, we propose a simple algorithm that can effectively

escape from strict local solutions to find better ones. By moving

from one solution to another while reducing the cost, we can suc-

cessively move towards the globally optimal solution. In contrast

to algorithms that are launched repeatedly with random initial-

izations, our proposed algorithm is deterministic. And it relies on

duality theory to provide better warm starts to existing solvers.

Our process is outlined in Fig. 1. First, we solve the ACOPF

problem using some solver (e.g., IPOPT [29] or Matpower [33]).

From the solution and its associated dual variables, we form a

partial Lagrangian by dualizing the power balance equations. We

then optimize this partial Lagrangian, which leads to a different
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Figure 1: Outline of our algorithm. We form partial Lagra-
gians at local optima and solve it to provide better warm
starting points. Note that the partial Lagrangian is solved
using the same initialization as in the first call of the solver.

solution. Using this second solution as a warm start, we again

call the solver for the ACOPF problem. Interestingly, this iterative

process moves from higher cost to lower cost ones.

The key reason for the success of the algorithm is that the ge-

ometry of the partial Lagrangian is much more "friendly" than the

geometry of the original ACOPF problem. We provide both theoret-

ical analysis on tree networks and simulation results on standard

9-bus, 22-bus, 39-bus, 118-bus and 300-bus meshed networks and

also on the IEEE 141-bus radial network. We show that our algo-

rithm can quickly escape from local solutions and find lower cost

solutions. This feature holds even for ACOPF problems with discon-

nected feasible spaces, for example, the 2-bus network shown in

Section 4.1, which has been traditionally difficult to deal with [5, 19].

For networks with known global solutions (3, 9, 22, 118, 300-bus),

we show that our algorithm can find the globally optimal solution

in a single iteration, even starting from a strict local solution.

Our approach can be seen as a way to provide good warm starts

to nonlinear optimization solvers. DCOPF is commonly used, al-

though it can fail to find good starting points as shown by our

simulations as well as existing results [2]. More sophisticated ap-

proaches either randomizes (stochastic gradient in [8] and load

fluctuations in [23]) or uses a previous solution as the starting

point [28]. The former tends to be time consuming, while the latter

tends to lead to system being stuck in a strict local solution [5].

2 MODEL AND PROBLEM FORMULATION
Consider a power system network of 𝑛 buses and 𝑚 lines. For

bus 𝑖 , let 𝑉𝑖 denote its voltage magnitude, 𝜃𝑖 its angle, 𝑃
𝐺
𝑖

and 𝑄𝐺
𝑖

the active and reactive output of the generator and 𝑃𝐷
𝑖

and 𝑄𝐷
𝑖

the active and reactive load. The admittance between 𝑖 and 𝑗 is

𝑔𝑖 𝑗 − 𝑗𝑏𝑖 𝑗 , the active power and reactive power flow from 𝑖 to 𝑗 is

𝑃
𝑓

𝑖 𝑗
and 𝑄

𝑓

𝑖 𝑗
and 𝜃𝑖 𝑗 is used as a shorthand for 𝜃𝑖 − 𝜃 𝑗 .

The ACOPF problem is to minimize the cost of active power

generations while satisfying a set of constraints [5]. Out of the

feasible solutions, we focus on two classes: local solutions and

global solutions. Local solutions are all the solutions that satisfy

local optimality conditions, for example, the KKT conditions or

second order ones [4]. Out of this set, the solutions with the lowest

cost are called the global ones. We sometimes refer to the local

solutions that are not global as strict local solutions. We assume

both strict local solutions and the global solutions are regular and

the KKT conditions always hold at these solutions [4]. Therefore,

there always exist unique Lagrangian multipliers and we can use

them to form the partial Lagrangian.

Specifically, the ACOPF problem is given by the following opti-

mization problem:

min

V,𝜽

∑
𝑖 𝑐𝑖 (𝑃𝐺𝑖 ) (1a)

s.t. 𝑃𝐺𝑖 = 𝑃𝐷𝑖 +∑𝑁
𝑗=1

𝑃
𝑓

𝑖 𝑗
(1b)

𝑄𝐺
𝑖 = 𝑄𝐷

𝑖 +∑𝑁
𝑗=1

𝑄
𝑓

𝑖 𝑗
(1c)

𝑃
𝑓

𝑖 𝑗
= 𝑉 2

𝑖 𝑔𝑖 𝑗 −𝑉𝑖𝑉𝑗 (𝑔𝑖 𝑗 cos(𝜃𝑖 𝑗 ) − 𝑏𝑖 𝑗 sin(𝜃𝑖 𝑗 )) (1d)

𝑄
𝑓

𝑖 𝑗
= 𝑉 2

𝑖
ˆ𝑏𝑖 𝑗 −𝑉𝑖𝑉𝑗 (𝑏𝑖 𝑗 cos(𝜃𝑖 𝑗 ) + 𝑔𝑖 𝑗 sin(𝜃𝑖 𝑗 )) (1e)

V𝑖 ≤ 𝑉𝑖 ≤ 𝑉𝑖 (1f)

P
𝐺
𝑖 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖 (1g)

Q
𝐺
𝑖 ≤ 𝑄𝐺

𝑖 ≤ 𝑄𝐺
𝑖 (1h)

(𝑃 𝑓

𝑖 𝑗
)2 + (𝑄 𝑓

𝑖 𝑗
)2 ≤ (𝑆max

𝑖 𝑗 )2
(1i)

where
ˆ𝑏𝑖 𝑗 = 𝑏𝑖 𝑗 +0.5𝑏𝐶

𝑖 𝑗
and𝑏𝐶

𝑖 𝑗
is the line charging susceptance. The

constraints (1b) and (1c) enforce power balance, (1d) and (1e) are the

AC power flow equations, (1f) limits the bus voltage magnitudes,

(1g) and (1h) represent the active and reactive limits and (1i) are

the line flow limits. We assume the cost at each bus 𝑖 , i.e., 𝑐𝑖 (·),
is increasing. Other than that, the cost can be linear, quadratic or

other functions. We assume problem (1) is feasible in this paper.

Over the years, many nonlinear programming (NLP) solvers have

been developed for the ACOPF problem, and their speed and effi-

ciency have improved dramatically (e.g., see [6] and the references

within). However, NLP solvers are typically only able to return

local solutions. Since a local solution is not necessarily global, we

propose an iterative approach to improve the solution quality by

alternatively solving (1) and a partial Lagrangian. Any NLP solver

can be used, and we use IPOPT [29] in this paper.

3 ALGORITHM
Our algorithm starts with a call to a NLP solver with some initial

guess, denoted by 𝜽init, Vinit. For example, this can be the standard

flat start with voltage magnitudes being 1 p.u. and angles set to 0.

Then we assume the solver returns a feasible solution. Of course,

we don’t know whether this solution is globally optimal or not.

At this solution, we record the dual variables associated with the

power balance equations (1b) and (1c), denoted as 𝝁𝑃 and 𝝁𝑄 . Using

these dual variables, we form the following partial Lagrangian by

dualizing the power balance equations:

L(V, 𝜽 , 𝝁𝑃 , 𝝁𝑄 ) =
∑︁
𝑖

𝑐𝑖𝑃
𝐺
𝑖 +

∑︁
𝑖

𝜇𝑃𝑖 (𝑃
𝐷
𝑖 +

𝑁∑︁
𝑗=1

𝑃
𝑓

𝑖 𝑗
− 𝑃𝐺𝑖 )

+
∑︁
𝑖

𝜇
𝑄

𝑖
(𝑄𝐷

𝑖 +
𝑁∑︁
𝑗=1

𝑄
𝑓

𝑖 𝑗
−𝑄𝐺

𝑖 ) .

We then minimize the partial Lagrangian by solving

min

V,𝜽
L(V, 𝜽 , 𝝁𝑃 , 𝝁𝑄 ) (3)

s.t. (1𝑑) − (1𝑖) .
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The problem in (3) can be solved using any NLP solver. Since the

partial Lagrangian has less constraints than the primal problem,

its feasible solution space is larger. Therefore, the problem in (3) is

feasible if the original ACOPF problem is feasible.

We solve the problem in (3) starting from the same initial point
(Vinit, 𝜽init) that was used to solve the original primal problem in

(1). Denote this solution to (3) by (V̄, ¯𝜽 ). Note (V̄, ¯𝜽 ) will not be
the same as (Vinit, 𝜽init) since they come from different problems.

Then we start the NLP solver again to solve (1) but with the initial

point (V̄, ¯𝜽 ). This process can be repeated until the solutions stop

changing or up to a predefined number of iterations.

The key observation in this paper is that the solution (V̄, ¯𝜽 ) found
by solving the partial Lagrangian is often a much better starting

point than the original choice of (Vinit, 𝜽init). Therefore, by repeat-

ing these steps, we can iteratively improve the solution quality (i.e.,

reducing the cost). The algorithm is summarized below as Algo-

rithm 1. We illustrate the intuition behind this algorithm in the next

section using 2-bus and 3-bus networks. Formal proofs are given in

Section 5, and simulations results for larger IEEE benchmarks are

presented in Section 6.

Algorithm 1: Solving ACOPF iteratively
Inputs: 𝜽 (𝑖)

init
, V(𝑖)

init
, 𝑖 = 0

1: At 𝑖-th iteration: Initialized at 𝜽 (𝑖)
init

, V(𝑖)
init

:

2: Call NLP solver for (1), record (𝝁𝑃(𝑖) , 𝝁
𝑄

(𝑖) ).
3: Given (𝝁𝑃(𝑖) , 𝝁

𝑄

(𝑖) ), call solver for the partial
Lagrangian in (3), record the solutions as ( ¯𝜽 (𝑖) , V̄(𝑖) ).
4: Call IPOPT for (1) initialized at ( ¯𝜽 (𝑖)

, V̄(𝑖) ),
record solutions ( ˆ𝜽 (𝑖) , V̂(𝑖) ).
5: If the solution from line 4 does not reduce the cost,

terminate the algorithm.

6: Otherwise, update initial points:

𝜽 (𝑖+1)
init

= ˆ𝜽 (𝑖)
, V(𝑖+1)

init
= V̂(𝑖)

.

7: Repeat 1-6 until the maximum number of

iterations is reached.

In terms of computational overhead, each iteration of Algorithm

1 solves an ACOPF problem twice and an OPF-like problem (mini-

mizing the partial Lagrangian) once. In practice, we observe that

the cost is reduced after every iteration and the global solution can

be reached in a small number of iterations (for the cases where

the global solution is known). Therefore, in contrast to algorithms

that resolve the ACOPF problem from a large number of random

initialization points [8], Algorithm 1 is much more computationally

efficient.

4 GEOMETRY AND INTUITION
In this section, we study the geometry of the ACOPF problem to

shed some light on why Algorithm 1 might be successful. We find

that the main reason is that the optmization landscape of the partial

Lagrangian is much “better” than the landscape of the original

problem. To illustrate this geometric property, we use the 2-bus

and 3-bus networks as examples. The formal proofs are provided

in Section 5.

4.1 2-bus network
In this part, we consider a 2-bus network. For simplicity, we ignore

the reactive power and set both voltage magnitudes to 1 p.u.. Sup-

pose bus 1 is a generator and also the reference (slack) bus with

an increasing cost function 𝑐 (·), and bus 2 is the load bus with

angle −𝜃 . The line admittance is 𝑔 − 𝑗𝑏. Given a load of 𝑙 at bus 2

and ignoring all constraints except for the load balancing one, the

ACOPF in (1) becomes

min

𝜃
𝑐 (𝑔 − 𝑔 cos(𝜃 ) + 𝑏 sin(𝜃 )) (4a)

s.t. 𝑙 + 𝑔 − 𝑔 cos(𝜃 ) − 𝑏 sin(𝜃 ) = 0. (4b)

This is an example of an OPF with a disconnected feasible space,

since there are two discrete solutions to (4b) and we are asking for

the one with lower cost.

To see how a NLP solver would approach this problem, we adopt

a common practice [4, 23] and form a penalized version of (4).
1

The penalized unconstrained problem is given by

L𝜌 =𝑐 (𝑔 − 𝑔 cos(𝜃 ) + 𝑏 sin(𝜃 )) (5)

+ 𝜌/2(𝑙 + 𝑔 − 𝑔 cos(𝜃 ) − 𝑏 sin(𝜃 ))2,

where 𝜌 is a penalty parameter. For large enough 𝜌 , the solutions of

(5) would coincide with those of (4) [4]. The function L𝜌 is plotted

in Fig. 2 (green line). We can see that there are two local minimas,

with the left one being global. The strict local minimum (the right

one) satisfies both first and second order optimality conditions.

Therefore, if we initialize an NLP solver with a bad starting point,

it would be stuck at the strict local solution. For this example, if

the initial point is to the left of the maximum of the green curve, a

solver would converge to the left solution; and if the initial point

is to the right, a solver would find the right (suboptimal) solution.

Hence, a flat start would lead to the global solution. However, for

larger systems, flat starts are often not successful (e.g., see the 22-

bus system in Section 6). Therefore, this 2-bus example is useful as

it illustrates the geometry of the optimization landscape.

Now suppose 𝜇 is the multiplier corresponding to the equality

constraint (4b) at the strict local solution. The partial Lagrangian of

(4) by dualizing (4b) is:

L𝜇 =𝑐 (𝑔 − 𝑔 cos(𝜃 ) + 𝑏 sin(𝜃 )) (6)

+ 𝜇 (𝑙 + 𝑔 − 𝑔 cos(𝜃 ) − 𝑏 sin(𝜃 )).

Since the sinusoidal functions are periodic with period 2𝜋 , let us

consider the range 𝜃 ∈ [−𝜋, 𝜋]. It is interesting now to compare

the solution of L𝜇 and the original problem in (4) (or equivalently,

L𝜌 ). The blue curve in Fig. 2 plots L𝜇 . We observe two interesting

facts. The first is that unlike L𝜌 , L𝜇 in this 2-bus network only

has a single minimum. Therefore, no matter where we initialize the

NLP solver for L𝜇 , we would reach this minimum. The second fact

is that the minimum of L𝜇 is close to the global minimum of L𝜌 .

Therefore, if we start a NLP solver for the ACOPF at the solution of

L𝜇 , we would reach the global solution. Interestingly, we are using

the multiplier at the strict local solution. So even if a solution is not

1
We use quadratic penalties only as an analysis method that allows us to obtain cleaner

theoretical results. This approach is standard in convergence analysis of nonlinear pro-

gramming, for example, see [4] (Chap. 1), [23], and [27]. All simulation and numerical

results in the paper are obtained using state-of-the-art solvers rather than quadratic

penalty method.
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Figure 2: Geometry of the penalized objective functions L𝜌 and the
partial Lagrangian L𝜇 . The line admittance is 1 − 𝑗4 and the penalty
parameter is 2.

global, it is still very useful, since by solving L𝜇 as an intermediate

step, we would not be stuck at the strict local solution. We prove

that this procedure is guaranteed to work for tree networks in the

next section.

4.2 3-bus network
Now, let us show that the intuitions built in the 2-bus example still

carry over into the 3-bus network. We again ignore the reactive

power and set all voltage magnitudes to 1 p.u. to optimize over

the angles. Suppose bus 1 is a generator and also the reference bus

with an increasing cost function 𝑐 (·), while bus 2 and bus 3 are load
buses with angles −𝜃2 and −𝜃3, respectively. The load at bus 2 is 𝑙2
and at bus 3 is 𝑙3. Then the ACOPF in (1) can be simplified to

min

𝜃2,𝜃3

𝑐 (
∑︁
𝑗=2,3

𝑔1𝑗 − 𝑔1𝑗 cos(𝜃 𝑗 ) + 𝑏1𝑗 sin(𝜃 𝑗 )) (7a)

s.t.

𝑙2 +
∑︁
𝑗=1,3

(𝑔2𝑗 − 𝑔2𝑗 cos(𝜃2𝑗 ) − 𝑏2𝑗 sin(𝜃2𝑗 )) = 0 (7b)

𝑙3 +
∑︁
𝑗=1,2

(𝑔3𝑗 − 𝑔3𝑗 cos(𝜃3𝑗 ) − 𝑏3𝑗 sin(𝜃3𝑗 )) = 0. (7c)

As in the 2-bus case, to understand how a NLP solver may ap-

proach (7), we form its penalized version:

L𝜌 = 𝑐 (
∑︁
𝑗=2,3

𝑔1𝑗 − 𝑔1𝑗 cos(𝜃 𝑗 ) + 𝑏1𝑗 sin(𝜃 𝑗 )) (8)

+ 𝜌

2

©­«𝑙2 +
∑︁
𝑗=1,3

(𝑔2𝑗 − 𝑔2𝑗 cos(𝜃2𝑗 ) − 𝑏2𝑗 sin(𝜃2𝑗 ))ª®¬
2

,

+ 𝜌

2

©­«𝑙3 +
∑︁
𝑗=1,2

(𝑔3𝑗 − 𝑔3𝑗 cos(𝜃3𝑗 ) − 𝑏3𝑗 sin(𝜃3𝑗 ))ª®¬
2

.

It turns out that there are four local solutions (one of which is

global) for (8).
2
All of these solutions satisfy both first order and

second order conditions and they are listed in Table 1. At these

solutions, the gradients ∇L𝜌 are zero and the Hessians ∇2L𝜌 are

2
They are found via a grid search, i.e., we finely discretize the space and exhaustively

check all points.

positive definite. This makes L𝜌 look like valleys (convex) at all

of the minimas. So it can be hard for an NLP solver to get out of

being trapped at a strict local minima. The level sets around the

solutions of L𝜌 are plotted on the left of Fig. 3, where there is little

difference between the local and the global minima.

Solution Bus 2 Bus 3 Hessian matrix of L𝜇

1st (global) ∠0.52 ∠0.52 Positive definite

2nd ∠0.7 ∠2.2 Indefinite

3rd ∠2.2 ∠0.7 Indefinite

4th ∠2.09 ∠2.09 Negative definite

Table 1: The four solutions to problem (7) through grid search. The
Hessian of L𝜌 is positive definite at all solutions. The definiteness of
theHessian of L𝜇 is listed. The parameters are𝑔12− 𝑗𝑏12 = 𝑔13− 𝑗𝑏13 =

1 − 𝑗4 and 𝑔23 − 𝑗𝑏23 = 0.1 − 𝑗0.4.

Now we show that a partial Lagrangian behaves qualitatively

differently. Suppose that we choose a strict local solution of (7). Let

the multipliers corresponding to the equality constraints (7b) and

(7c) be 𝜇1 and 𝜇2, respectively. The partial Lagrangian for (7) is:

L𝜇 = 𝑐 (
∑︁
𝑗=2,3

𝑔1𝑗 − 𝑔1𝑗 cos(𝜃 𝑗 ) + 𝑏1𝑗 sin(𝜃 𝑗 )) (9a)

+ 𝜇1 (𝑙2 +
∑︁
𝑗=1,3

(𝑔2𝑗 − 𝑔2𝑗 cos(𝜃2𝑗 ) − 𝑏2𝑗 sin(𝜃2𝑗 ))) (9b)

+ 𝜇2 (𝑙3 +
∑︁
𝑗=1,2

(𝑔3𝑗 − 𝑔3𝑗 cos(𝜃3𝑗 ) − 𝑏3𝑗 sin(𝜃3𝑗 ))) . (9c)

In contrast to the penalized problem, there is only a single solution

for L𝜇 which satisfies both the first order and second order opti-

mality conditions. It is close to the global solution of L𝜌 (the black

dot in Fig. 3(b)), even though the multipliers used in forming L𝜇

are from a strict local solution.

If we look at the Hessian of L𝜇 , we see that the Hessian is either

negative definite or indefinite at the strict local solutions of L𝜌

(the definiteness of the Hessians for L𝜇 at the local solutions of

L𝜌 are listed in Table. 1). If the Hessian is not positive semidefinite,

then there is always a direction to lower the objective value of a

function. For example, these descent directions are shown as dotted

arrows in Fig. 3(d) and Fig. 3(f).

All together, Fig. 3 shows how Algorithm 1 would get around

the strict local solutions in L𝜌 . Suppose we solve the Lagrangian

from a point around the global minimum x★. Since ∇2L𝜇 (x★) is
positive definite, this means the starting point is at a valley of the

Lagrangian surface. So solving the Lagrangian would return the

global solution. Now let us use a point around the local solution, say

x̄, as an initial point to solve the Lagrangian. As shown in Fig. 3(d))

and 3(f)), ∇2L𝜇 (x̄) is negative definite or indefinite, so the surface

of the Lagrangian is concave down or has a saddle. Then we can

find at least one descent direction to get out of being trapped at the

current point.

5 ANALYSIS OF ALGORITHM 1
In this section, we provide a rigorous analysis of Algorithm 1. As a

first step, we focus our attention on systems with a tree topology

and ignore the reactive power. For mesh networks with both active
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(a) L𝜌 , global solution (b) L𝜇 , global solution

(c) L𝜌 , local solution (d) L𝜇 , local solution

(e) L𝜌 , local solution (f) L𝜇 , local solution

Figure 3: The contour plot of L𝜌 and L𝜇 nearby the 1st, 2nd and
4th solution. The Hessian matrix of L𝜇 is positive definite in (b),
indefinite in (d), and negative definite in (f). The black arrows in (d)
and (f) indicates the descent directions of the function value.

and reactive power flows, we provide detailed simulation studies in

Section 6 and show how the intuition from tree networks applies.

Formal proofs for meshed systems is an important part of our future

work.

We first consider a tree network with fixed voltage magnitudes

and show that the minimizer of the Lagrangian falls into the attrac-

tion basin of the global minimum of the ACOPF problem, which

generalizes the observations in Section 4.1. Then we optimize over

both voltage magnitudes and angles for a 2-bus network, and look

at the Hessian matrix of the Lagrangian as we do in Section 4.2. We

prove that the Hessian matrix of the Lagrangian is positive definite

at the global minimum and negative definite or indefinite at the

local minimum.

Figure 4: Illustrative figure of Definition 1. There are two local min-
imums, i.e., 𝑥1 and 𝑥2. The attraction basins of each of them are
marked as intervals and annotated with blue fonts.

5.1 Fixed voltage magnitudes
In this part, we consider a tree network with fixed voltage magni-

tudes. We note that the NLP solver we use in this paper, IPOPT, uses

a barrier function to solve a sequence of unconstrained optimization

problems using a mixture of gradient descent and Newton-type

methods (with many different ways of tuning stepsizes). With-

out loss of generality, we assume that the NLP solver runs either

a gradient descent or a Newton-type algorithm. For either algo-

rithm, there is a theorem called the Capture Theorem (see [4], Prop.

1.2.4 for gradient-like algorithms and Prop. 1.4.1 for Newton-type

algorithms) saying that once the algorithm enters the region of at-

traction around a local minimum it has to go to this local minimum.

This means starting the solver from an initial point in the region

of attraction of a solution would return this solution. Formally, the

region of attraction of a solution is defined as follows [4]:

Definition 1. Let x★ be an unconstrained local minimum to

𝑓 : R𝑛 −→ R. Assume there exists a set X such that 𝑓 (x) is contin-
uously differentiable on X and x★ ∈ X. For every point x ≠ x★ and

x ∈ X, if the following inequality holds, then X is a subset of the

region of attraction around x★:

∇𝑓 (x)𝑇 (x★ − x) < 0, ∀x ≠ x★, x ∈ X, (10)

where ∇𝑓 (x) represents the gradient of 𝑓 (·) at the point x.

An illustrative figure of Definition 1 is given in Fig. 4. Intuitively,

the inequality in (10) implies that the direction where the func-

tion value decreases (the descent direction) is aligned with the

negative gradient. Now we give the following theorem about the

performance of Algorithm 1 for a tree network with fixed voltage

magnitudes:

Theorem 2. Consider a𝑁 -bus radial network and keep the voltage
magnitudes fixed to optimize over voltage angles. If the NLP solver gets
stuck at a strictly local solution when it starts from an initialization
point, then starting Algorithm 1 from the same initialization point is
able to escape from this strictly local solution.

Proof. Since Algorithm 1 uses the solution of the partial La-

grangian as a new initialization point to solve the primal problem

again, we prove Theorem 2 by showing that the minimizer of the
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partial Lagrangian falls into the region of attraction around the

global minimum of the ACOPF problem. As we assumed at the

beginning of this part, the NLP solver is running either a gradi-

ent descent or a Newton-type algorithm. Both of the two follow

the Capture Theorem in [4]. As a result, starting the solver from

the minimizer of the Lagrangian would be able to find the global

minimum.

We do the proof by induction starting with a 2-bus network.

The ACOPF problem for the 2-bus network is given in (4) and its

Lagrangian is given in (6). We first study the solutions to (4) by

looking at the equality constraintℎ(𝜃 ) = 𝑙 +𝑔−𝑔 cos(𝜃 )−𝑏 sin(𝜃 ) =
0. Its gradient can be written as

ℎ′(𝜃 ) = 𝑔 cos(𝜃 ) (tan(𝜃 ) − 𝑏/𝑔).
Suppose 𝜃 ∈ (−𝜋/2, 3𝜋/2), then the gradient ℎ′ is zero at 𝜃 =

tan
−1 (𝑏/𝑔). We also have

ℎ′(𝜃 ) <0,∀ 𝜃 ∈ (−𝜋

2

, tan
−1 (𝑏/𝑔)) (11a)

ℎ′(𝜃 ) >0,∀ 𝜃 ∈ (tan
−1 (𝑏/𝑔), tan

−1 (𝑏/𝑔) + 𝜋). (11b)

This implies that 𝜃 = tan
−1 (𝑏/𝑔) is a minima of ℎ(𝜃 ). Since for

a feasible problem, the solution to ℎ(𝜃 ) = 0 must exist within

(−𝜋/2, 3𝜋/2), then by the intermediate value theorem, there are

two solutions to (4), which satisfy the following inequalities:

− 𝜋/2 < 𝜃★ < tan
−1 (𝑏/𝑔) < ¯𝜃 < 3𝜋/2, (12)

where 𝜃★ is the global minimum and
¯𝜃 is the local minimum (see

Appendix A for more details).

Now we use (10) to show that the interval (−𝜋/2, tan
−1 (𝑏/𝑔))

is a subset of the attraction region of 𝜃★. For a sufficiently large

penalty, the globally optimal solution 𝜃★ can be very close to the

global minimum of the unconstrained penalized problem in (5).

Therefore, this is equivalent to showing

L′
𝜌 (𝜃 )𝑇 (𝜃★ − 𝜃 ) < 0,∀ 𝜃 ∈ (−𝜋

2

, tan
−1 (𝑏/𝑔)). (13)

As 𝜌 is sufficiently large, the sign of L′
𝜌 (𝜃 ) is dominated by the

gradient of the second term in (5), i.e.,

L′
𝜌 (𝜃 ) ≈𝜌 (𝑙 + 𝑔 − 𝑔 cos(𝜃 ) − 𝑏 sin(𝜃 )) (𝑔 sin(𝜃 ) − 𝑏 cos(𝜃 ))

=𝜌ℎ(𝜃 )ℎ′(𝜃 ).

For any 𝜃 ∈ (−𝜋/2, tan
−1 (𝑏/𝑔)), we have ℎ′(𝜃 ) < 0 from (11a),

which means the function ℎ(𝜃 ) is decreasing on the interval

(−𝜋/2, tan
−1 (𝑏/𝑔)). Also, the globalminimum𝜃★must satisfyℎ(𝜃★) =

0. Therefore we have

ℎ(𝜃 ) >0,∀ 𝜃 ∈ (−𝜋/2, 𝜃★)
ℎ(𝜃 ) <0,∀ 𝜃 ∈ (𝜃★, tan

−1 (𝑏/𝑔)) .

Then the inequality in (13) follows from above. Therefore, by Defini-

tion 1, the interval (−𝜋/2, tan
−1 (𝑏/𝑔)) is a subset of the attraction

region of 𝜃★.

To obtain the minimizer of L𝜇 , we write out the optimality

condition of (6) for the primal-dual optimal solution ( ˆ𝜃, 𝜇):

(𝑐 ′ + 𝜇)𝑔 sin( ˆ𝜃 ) + (𝑐 ′ − 𝜇)𝑏 cos( ˆ𝜃 ) = 0, (16)

where 𝑐 ′ is a shorthand for 𝑐 ′(𝑔 − 𝑔 cos( ˆ𝜃 ) + 𝑏 sin( ˆ𝜃 )) and is the

gradient of the cost function. Suppose
ˆ𝜃 ∈ (−𝜋/2, 3𝜋/2), then ˆ𝜃

(a) (b)

Figure 5: The two types of three bus networks with the tree structure.

solves

tan
−1 ( 𝜇 − 𝑐 ′

𝜇 + 𝑐 ′ 𝑏/𝑔) + 𝑘𝜋, 𝑘 = 0, 1, (17)

where the smaller value is the minimum of L𝜇 and the larger

one is the maximum (see Appendix B for more details). Let
ˆ𝜃 be

the minimum, which satisfies −𝜋/2 < ˆ𝜃 < tan
−1 (𝑏/𝑔). Since the

interval (−𝜋/2, tan
−1 (𝑏/𝑔)) is a subset of the attraction region of

𝜃★, no matter what initial point we start Algorithm 1 from, solving

the Lagrangian gives us a solution lying in the attraction region

around the global minimum. Following from the Capture Theorem

in [4], Algorithm 1 is able to get out of a strict local solution and

reach the global minimum.

Now we induct from 2-bus to 3-bus networks. There are two

types of tree topology for a 3-bus network, which are shown in

Fig. 5. Since the topology in Fig. 5(b) is equivalent to two 2-bus

networks, we focus on the 3-bus branch in Fig. 5(a), where bus 1 is

the reference bus.

The ACOPF problem for Fig. 5(a) can be written as follows:

min

𝜃12,𝜃23

𝑐 (𝑃𝐺
1
) (18a)

s.t. 𝑙2 + 𝑃
𝑓

21
+ 𝑃

𝑓

23
= 0 (18b)

𝑙3 + 𝑃
𝑓

32
= 0. (18c)

Note that only bus 1 generates power and to deliver the power to bus

3 the power has to be delivered to bus 2 first. Since the cost function

𝑐 (·) is increasing, given the load at bus 2 and bus 3, minimizing the

power generation cost in (1) is equivalent to minimizing the power

transfer cost on both lines. Therefore, (18) can be decomposed into

two parts, and each part is nothing but solving the ACOPF for a

2-bus network with voltage fixed and ignoring reactive power, i.e.,

the formulation in (4). To make this clear, we first rewrite (18) as

follows:

min

𝜃12,𝜃23

𝑐1 (𝑃12) + 𝑐2 (𝑃23) (19a)

s.t. 𝑙2 + 𝑃21 + 𝑃23 = 0 (19b)

𝑙3 + 𝑃32 = 0. (19c)

With 𝑙2 fixed, for every given 𝜃23, we can always pick some 𝜃12

to satisfy (19b). Therefore, we can regard 𝜃23 as the optimization

variable first. Then the problem (19) is reduced to

min

𝜃23

𝑐 (𝑃23)

s.t. 𝑙3 + 𝑃32 = 0

where 𝑐 (·) is some increasing cost function that takes into account

the effect of 𝜃23 on 𝑃12. This problem has exactly the same for-

mulation as the 2-bus network in (4). As we proved for the 2-bus
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network, if we start Algorithm 1 from a point where 𝜃23 is at the

local minimum, then we still can get out of this local minimum.

Now we optimize 𝜃12 for a given 𝜃23, then we can add 𝑃23 to 𝑙2.

Therefore, (19) is reduced to

min

𝜃12

𝑐1 (𝑃12)

s.t.
˜𝑙2 + 𝑃21 = 0

where
˜𝑙2 = 𝑙2 + 𝑃23. This problem also has the same formulation

as the 2-bus network in (4). Therefore, if the initial point is a lo-

cal minimum for 𝜃12, Algorithm 1 still can get out of this local

minimum.

Let us assume Theorem 2 holds for a (𝑁 − 1)-bus radial network
and consider a 𝑁 -bus radial network. Similar to the proof for a

3-bus network, we can reduce the ACOPF problem for a 𝑁 -bus

network to the case of (𝑁 − 1)-bus. So by induction, Theorem 2

holds for the 𝑁 -bus radial network. □

5.2 Optimizing both voltage magnitudes and
angles

In this part, we optimize both voltage magnitudes and angles for a 2-

bus network. For simplicity, we ignore the reactive power. Suppose

bus 1 is a generator and also the reference (slack) bus with linear

cost $1/MW, and bus 2 is the load bus with load 𝑙 . The ACOPF in

(1) can be simplified as

min

𝜃,𝑉1,𝑉2

𝑔𝑉 2

1
−𝑉1𝑉2 (𝑔 cos(𝜃 ) − 𝑏 sin(𝜃 )) (22a)

𝑠 .𝑡 .𝑙 +𝑉 2

2
𝑔 −𝑉1𝑉2 (𝑔 cos(𝜃 ) + 𝑏 sin(𝜃 )) = 0 (22b)

𝑉min ≤ 𝑉1,𝑉2 ≤ 𝑉max . (22c)

Let us collect all the variables into the vector x = (𝜃,𝑉1,𝑉2). We

denote the objective function by 𝑓 (x), and the equality constraint

(22b) by ℎ(x) = 0. The following theorem gives the property of the

Hessian matrix of the Lagrangian.

Theorem 3. Denote the global solution of (22) as x★ and the local
solution as x̄. Then the Hessian matrix of a Lagrangian of (22), formed
with multipliers at any of the local solutions, is positive definite at x★

and negative definite or indefinite at x̄.

Proof. To study the solution to (22), we look at the equality

constraint (22b) directly. Its gradient with respect to𝜃 can bewritten

as

𝜕ℎ/𝜕𝜃 = 𝑔 sin(𝜃 ) − 𝑏 cos(𝜃 ) = 𝑔 cos𝜃 (tan(𝜃 ) − 𝑏/𝑔) .

Suppose 𝜃 ∈ (−𝜋/2, 3𝜋/2), then 𝜕ℎ/𝜕𝜃 is zero at tan
−1 (𝑏/𝑔) + 𝑘𝜋 ,

𝑘 = 0, 1, where the smaller value is located at the global minimum

and the larger value is at the local minimum. Denote the global

minimum as 𝜃★ and at the local minimum as
¯𝜃 . They satisfy (see

Appendix A for the details):

−𝜋/2 < 𝜃★ < tan
−1 (𝑏/𝑔) < ¯𝜃 < 3𝜋/2. (23)

In Appendix C, we show that at least one of𝑉1 and𝑉2 need to be

binding at a constraint, but both voltages cannot be binding at the

same time. This allows us to consider the cases where𝑉1 is binding

or 𝑉2 is binding separately.

First, suppose 𝑉1 is inactive and 𝑉2 is binding. In this case, 𝑉2 is

a constant and the Lagrangian of (22) can be written as

L𝜆,𝝁 =𝑓 (x) + 𝜇ℎ(x) + ¯𝜆1 (𝑉1 −𝑉max) + 𝜆
1
(−𝑉1 +𝑉min) .

The multipliers are associated with some local solution, and 𝜇 is

the Lagrange multiplier related to the equality constraint, and
¯𝜆1

and 𝜆
1
are the multipliers related to the inequality constraints of

𝑉1.

Denote the Hessian matrix of L𝜆,𝝁 as ∇2L𝜆,𝝁 (x). To determine

its definiteness, we write out all leading principal minors at a solu-

tion x̃ (see Appendix D for the details):

𝐷1 (x̃) = 𝑉̃1𝑉̃2

−2𝑔𝑏

𝑔 cos( ˜𝜃 ) (tan( ˜𝜃 ) − 𝑏/𝑔)
(24a)

𝐷2 (x̃) = 2𝑔𝐷1 (x̃) . (24b)

Following from the inequalities in (23), both leading principal mi-

nors in (24) are positive at the global minimum and negative at the

local minimum. This means the Hessian matrix at x★ is positive

definite. In contrast, the Hessian matrix at x̄ is negative definite.

Now we suppose 𝑉2 is inactive and 𝑉1 is binding. In this case, 𝑉1

is a constant and the Lagrangian is:

L𝜆,𝝁 =𝑓 (x) + 𝜇ℎ(x) + ¯𝜆2 (𝑉2 −𝑉max) + 𝜆
2
(−𝑉2 +𝑉min) .

where the multipliers are associated with some local solution. Let

us denote the Hessian matrix of the Lagrangian as
˜∇2L𝜆,𝝁 (x). Its

leading principal minors at a feasible solution x̃ are (see Appendix

D for the details):

𝐷1 (x̃) = 𝑉̃1𝑉̃2

−2𝑔𝑏

𝑔 cos( ˜𝜃 ) (tan( ˜𝜃 ) − 𝑏/𝑔)
(25a)

𝐷̃2 (x̃) = 2𝑔𝜇̃𝐷1 (x̃) . (25b)

Since the multiplier 𝜇 represents the marginal price of consuming

each additional unit of load, it is positive at the global minimum.

This means 𝐷2 (x̃) has the same sign as 𝐷1 (x̃). For the global mini-

mum x★, 𝐷1 (x̃) is positive from (23), hence both leading principal

minors in (25) are positive and the Hessian matrix is positive defi-

nite at x★. In contrast, at the local minimum x̄, 𝐷1 (x̃) is negative
following from (23). Then the Hessian matrix is either negative

definite or indefinite at x̄. □

The simulation results in the next section do not need to make

any of the assumptions in Theorem 2 and 3. They are about mesh

networks with all constraints included. Therefore, we suspect the

theory can be made much stronger and would extend to larger

meshed networks. However, analyzing these cases is challenging

and is a future direction for us.

6 SIMULATION RESULTS
In this section we report the simulation results to validate the

effectiveness of our algorithm. The NLP solver used here is IPOPT

[29] and the convergence tolerance is set to 0.0001. It returns a

feasible solution, which may or may not be a global optimum. We

test our algorithm on IEEE meshed networks with 3, 9, 22, 39, 118

and 300 buses, and also on the IEEE radial network with 141 buses.

For the 3-bus, 9-bus, 22-bus, 118-bus and 300-bus networks, the

local and global solutions are known and listed in [5, 24]. We use the

strict local solutions as starting points for the solver to demonstrate
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the ability of Algorithm 1 of getting out of local solutions. For

the 39-bus and 141-bus networks, we do an exhaustive search by

discretizing each variable within their bounds to find the global

solution. The simulation results show that for the 3, 9, 22, 118,

300 and 141-bus networks, Algorithm 1 finds the globally optimal

solution in 1 iteration. For the 39-bus networks, it takes at most 3

iterations for Algorithm 1 to obtain the optimal solution.

6.1 3-Bus Mesh Network
The 3-bus networkwe use is shown in Fig. 5a and the voltage bounds

are [0.95, 1.05]. Two solutions exist and they are listed in Table 2.

This was an example used in [24] to show that multiple reasonably

looking local solutions can exist, and contrary to conventional

wisdom, the higher voltage one is the suboptimal one (although

the cost difference is small).

If we start the nonlinear solver from an initial point near the sec-

ond solution, then the solver cannot get out of the attraction basin

and always returns the second solution. In contrast, if we launch

Algorithm 1 using the second solution as a starting point, then the

algorithm converges to the first solution (the global solution) after

one iteration. Although the cost difference is small between the

two solutions, larger networks will have bigger cost differences.

Bus 1 Bus 2 Bus 3 Cost

Solution 1 0.95∠0 0.95∠−0.48 0.98∠−0.53 1

Solution 2 0.95∠0 1.01∠−0.46 1.05∠−0.51 1.0021

Table 2: The two local solutions for the 3-bus network in
Fig. 5a. The cost is normalized to 1 for the global solution.

6.2 9-Bus Mesh Network
In the 9-bus network, there are 3 generators (bus 1, 2 and 3) and 9

transmission lines. The voltage bounds are [0.9, 1.1]. Four solutions
exist. The cost of the worst local solution is 38% more than the cost

at the global solution. We also find that the solutions at generators

2 and 3 and load buses 6, 7, and 8 are important to improve the

cost. The power transfer along the lines between these buses tend

to get stuck at a suboptimal solution, which leads to a cost more

than 30% higher than the lowest one. For the nonlinear solver, we

need to relaunch it using different initial points in order for these

five nodes to get around the attraction basin. This requires many

trials. In contrast, Algorithm 1 only requires one iteration to achieve

the global solution, even starting from the local solution with the

highest cost.

6.3 22-Bus Mesh Network
In the 22-bus network, the buses are connected in a loop. There

are 11 generators and 22 transmission lines. The voltage bounds

are [0.95, 1.05]. There exist two solutions, and the cost of the local

solution is 30% higher than that of the global solution. The two

solutions are quite different. We pick 5 buses that are evenly spaced

and list their solutions in Table 3. Since the two solutions are very

different, it is hard for a nonlinear solver to get around the local

solution.

Figure 6: Percentage of globally optimal solutions for the 39-bus
network after each iteration. Using a set of random starting points,
47% of them leads to the global optima after a direct call to IPOPT.
The fraction of global optimal solutions increases to 98%, 99.93%
and 100% after running one, two and three iterations of algorithm 1,
respectively.

Particularly, if we initialize the solver with a flat start, we obtain

the strict local solution. Furthermore, we generate 100 random

points uniformly at random within the bounds of each variable.

If these points are used to initiate the nonlinear solver, the local

solution is always obtained and the global one cannot be reached. In

comparison, Algorithm 1 can achieve the global solution after one

iteration regardless of the initial point. This is an example where

using random search is very computationally inefficient, and our

deterministic algorithm turns out to be much more successful.

6.4 39-Bus Mesh Network
In the 39 bus network, there are 10 generators and 46 transmis-

sion lines. The voltage bounds are [0.95, 1.05]. Unlike the previous
smaller networks, the number and the cost of the solutions are

not previously known for this network. Therefore we conducted

an exhaustive search to find the global solution. To evaluate the

effectiveness of Algorithm 1, we choose 600 random points within

the bounds of each variable using the uniform distribution. Then

we start Algorithm 1 with these random points to observe the

improvement of the solution quality.

In Fig. 6, we plot the fraction of global solutions in the set of all

600 results after each iteration. The x-axis represents the number

of iterations that Algorithm 1 is ran, and y-axis represents the

percentage of globally optimal solutions after each iteration. When

we make a direct call to the solver, less than half of the solutions

are globally optimal. One application of Algorithm 1 increases the

percentage of globally optimal solutions to 98%. After two iterations,

only four cases are not globally optimal. When we run Algorithm 1

for three iterations, all solutions are globally optimal.

We also calculate the average cost of the 600 solutions after each

iteration of Algorithm 1 and plot the result in Fig. 7. The x-axis

is the number of iterations of running Algorithm 1, and y-axis

represents the average cost of 600 solutions, which is normalized

using the optimal cost as the factor. After a direct call to the solver,

the average cost is 30% higher than the optimal cost. As Algorithm 1

is ran, the average cost decreases quickly. After one iteration, the

average cost is only 1.5% more than the globally optimal cost, and

after three iterations all solution are at the global optimum.
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Bus 2 Bus 7 Bus 12 Bus 17 Bus 22 cost

Solution 1 1.0285∠−0.045 1.05∠0 1.0285∠−0.045 1.05∠0 1.0285∠−0.045 1

Solution 2 0.95∠−0.339 1.0145∠4.57 0.95∠3.089 1.0145∠1.714 0.95∠0.233 1.306

Table 3: The two solutions for the 22-bus network. We pick five buses and show their voltage and angles. The costs at the two
solutions are normalized such that the globally optimal cost is 1.

Figure 7: The average cost of all 600 solutions for the 39-bus network
after each iteration. The cost is normalized such that the optimal
cost is 1. After a direct call to IPOPT, the average cost is 30% higher
than the optimal cost. Then the average cost reduces to 1.5%, 0.4%

higher than the optimal value after running one and two iterations
of Algorithm 1, respectively. After three iterations, the average cost
is exactly the optimal cost.

6.5 118-Bus Mesh Network
The topology of the 118-bus meshed network can be found in [5].

There are 54 generators and 186 transmission lines. When the

voltage bounds are [0.94, 1.06] and power generation bounds are

scaled by 4, two locally optimal solutions are known and listed in

[5]. The strictly local minima has a cost that is 28.8% higher than

the global minimum.

Figure 8: Angles of solutions for
buses from 35 to 61.

Figure 9: Angles of solutions for
buses from 69 to 88.

Demonstration of how the proposed algorithm can escape from the
strictly local minima for the 118-busmeshed system. Use two subsets
of buses to show the relationship between the local minimum, the
solution of the Lagrangian and the globalminimumsolution (Figures
(a) and (b)).The solution to the partial Lagrangian (yellow squares)
provides a good warm start for the solver to escape from the strictly
local minima. Using the yellow squares as initialization points, the
NLP solver is able to find the globally optimal solutions (red stars).

To show how the proposed algorithm can escape from the strictly

local minima by using the solution to the partial Lagrangian as

a warm start, we choose two subsets of buses from the 118-bus

meshed network and plot the angle of the voltage solutions for

each subset. The angle solutions for the subset composed of buses

from 34 to 61 are plotted in Fig. 8, and for the subset composed of

buses from 69 to 88 plotted in Fig. 9.

When the NLP solver reaches the strictly local solution (marked

as blue diamonds) from some initialization point, it terminates

at this solution. To escape from this suboptimal solution, we call

the solver to solve the partial Lagrangian starting from the same

initialization point and get the solutionmarked as yellow square.We

use this solution as the new warm start to solve the primal problem

again, then we can obtain the global minima (marked as red stars)

with a single run of Algorithm 1. As is shown in Fig. 8 and Fig. 9,

the solution to the partial Lagrangian jumps quite far away from

the local solution but stay close to the global solution. Therefore,

it provides a good initialization point for the NLP solver to escape

from the strictly local minima and get to the global minima.

6.6 300-Bus Mesh Network
The topology of the 300-bus meshed network can also be found in

[5]. There are 69 generators and 411 transmission lines. When the

voltage bounds are [0.93, 1.07] and the reactive power generation

lower bounds are tightened to −100 Mvar for all generator buses,

two locally optimal solutions are known and listed in [5]. The

strictly local minimum has a cost that is 0.62% higher than the

global minimum. For the NLP solver to escape from the strictly

local solution, only a single run of Algorithm 1 is needed.

Figure 10: Demonstration of how the proposed algorithm can escape
from the strictly local minima for the 300-bus meshed system and
plot of angle solutions for the subset of buses from 148 to 166. The
solution to the partial Lagrangian (yellow squares) jump far away
from the strictly local minima (blue diamonds). As a result, starting
from the yellow squares, the NLP solver is able to escape from the
strictly local solution and find the globally optimal solution (red
stars).
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Bus 1 Bus 30 Bus 50 Bus 80 Bus 121 relative cost

PG(MW) at solution 1 3.2578 5.7791 7.9975 5.0351 9.768 1

PG(MW) at solution 2 3.664 4.7109 8.2127 3.8811 13.8361 1.115

PG(MW) at solution 3 4.3365 5.1223 7.039 4.9725 9.5491 1.026

Table 4: The active power generation at a subset of generator buses at the three optimal solutions for the 141-bus radial network.
The costs are normalized such that the global optimal cost is 1.

To show how the proposed algorithm can escape from the strictly

local minimum by using the solution to partial Lagrangian as an

initialization point, we choose a subset of buses from 148 to 166

and plot the angles of their voltage solutions in Fig. 10. As Fig. 10

shows, the solution to the partial Lagrangian (marked as yellow

squares) jumps far away from the strictly local solution and thus

act as a good warm start for the NLP solver to escape from the

strictly local minima and find the global minima.

6.7 141-Bus Radial Network
The topology of the 141-bus radial network can be found in [18].

There are 9 generators and 140 transmission lines.When the voltage

bounds are [0.83, 1.17] and the reactive power generation lower

bounds are tightened for buses 2, 7 to 5 Mvar and bus 5 to 15

Mvar, 3 locally optimal solutions are found. The two strictly local

minima has costs that is 11.5% and 2.6% higher than the global

minimum, respectively. The active power generation at a subset of

the generator buses for each of the solutions are shown in Table 4.

To test the performance of our algorithm and demonstrate how it

escapes from local minima, we randomly generate 1000 initial points

within the bounds of each variable using a uniform distribution,

and call the NLP solver to solve the primal AC OPF problem starting

from these initial points.

To demonstrate how the solution of partial Lagrangian can be

a good warm start, we choose a subset of buses from the 141-bus

radial network and plot the angle of the voltage solutions. First,

we show how the proposed algorithm escapes from the first lo-

cal minimum. In Fig. 11, the NLP solver reaches local solution-1

(marked as blue diamonds) from an initialization point. The NLP

solver terminates at this solution. To escape from this suboptimal

solution, we call the solver to solve the partial Lagrangian starting

from the same initialization point and get the solution marked as

yellow square. We use this solution as a new warm start to solve

the primal problem again, then we can obtain the global solution

(marked as red stars) with only a single run of Algorithm 1. As

Fig 11 shows, the solution to the partial Lagrangian jumps quite far

from the local minimum and provides a good starting point for the

NLP solver to reach the global minimum.

In Fig. 12, we show how our proposed algorithm escapes from the

second local minimum solution. For an initialization point where

the NLP solver reaches local solution-2, we solve the partial La-

grangian. Initializing the NLP solver from the solution of the partial

Lagrangian allows us to reach the global solution, and we show the

voltage angles of different solutions for buses 60 to 69 in Fig. 12.
3

3
The reason why we choose different subsets is that the local and global solutions

in the subset composed of buses 89 to 110 are very similar. To better illustrate the

effectiveness of our method, we choose the subset composed of buses 60 to 69, where

the local and global solutions are quite different.

Figure 11: Angles of solutions for
buses from 89 to 110.

Figure 12: Angles of solutions for
buses from 60 to 69.

Demonstration of how the proposed algorithm can escape from the
strictly local minima for the 141-bus radial system. Specifically, Fig-
ure (a) shows how the solutions escape from the first local minimum
and (b) shows how they escape from the secondminimum. Using our
proposed algorithm, the solution of the partial Lagrangian is able
to escape the local minimum (blue diamonds). Using these (yellow
squares) as initialization points, the NLP solver is able to find the
globally optimal solution (red stars).

7 CONCLUSION
In this paper, we propose a simple algorithm to iteratively improve

the solution quality of ACOPF problems. First, we solve the ACOPF

problem using an existing nonlinear solver. From the solution and

its associated dual variables, we construct a partial Lagrangian by

dualizing the power balance equations. Optimizing this partial La-

grangian leads to a new solution. With this solution as an initial

point, we again call the solver for the ACOPF problem. By repeat-

ing these steps, we can iteratively improve the solution quality,

escaping from local solutions to find better ones. We illustrate the

intuition behind our algorithm using 2 and 3-bus networks, which

shows that the partial Lagrangian has a flatter optimization land-

scape compared to the original primal problem. We prove that the

algorithm is guaranteed to work in tree networks. Theoretical anal-

ysis for more general networks is an important part of our future

work. We validate the effectiveness of our algorithm on standard

9-bus, 22-bus, 39-bus, 118-bus and 300-bus mesh networks and also

on the IEEE 141-bus radial network. Regardless of the initial points,

our algorithm always finds the global optimumwithin at most three

iterations.
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A DETERMINE GLOBAL MINIMUM FOR
ACOPF

In Section 5.1 and 5.2, we find two solutions to the supply/balance

equality constraint, which satisfy the inequalities in (12) or (23).

In this part, we give the reason why the smaller solution in (12)

(or (23)) is the global minimum and the larger solution is the local

minimum.

Let us subtract the power received at the load bus from the

generation at the generator, then we have the transmission loss as

follows:

loss = 𝑔 − 𝑔 cos(𝜃 ) + 𝑏 sin(𝜃 ) − (−𝑔 + 𝑔 cos(𝜃 ) + 𝑏 sin(𝜃 ))
= 2𝑔(1 − cos(𝜃 )).

Due to the periodicity of arctangent function, the larger value
¯𝜃

must be larger than 𝜋/2. Then the loss at 𝜃★ is smaller than the loss

at
¯𝜃 . So 𝜃★ is an more optimal solution than

¯𝜃 . Since there are only

two solutions for this example, 𝜃★ must be the global minimum

and
¯𝜃 is the strict local minimum.

B DETERMINE GLOBAL MINIMUM FOR THE
LAGRANGIAN

In this part, we determine the global minimum of the Lagrangian

problem for the 2-bus network, where we fix the voltagemagnitudes

and optimize over the angles.

Let us denote the two solutions of the Lagrangian problem in (6)

as
ˆ𝜃 and

¯𝜃 , and the multipliers associated with them are 𝜇 and 𝜇,

respectively. Then from (17), we have

− 𝜋

2

< ˆ𝜃 = tan
−1 ( 𝜇 − 𝑐 ′

𝜇 + 𝑐 ′
𝑏

𝑔
) < tan

−1 (𝑏
𝑔
) (26a)

𝜋

2

< ¯𝜃 = tan
−1 ( 𝜇 − 𝑐 ′

𝜇 + 𝑐 ′
𝑏

𝑔
) + 𝜋 < tan

−1 (𝑏
𝑔
) + 𝜋. (26b)

Also we can represent the multiplier using 𝜃 by rearranging the

terms in (16). We take ( ˆ𝜃, 𝜇) as an example, and 𝜇 can be represented

using
¯𝜃 in a similar way. The expression of 𝜇 in terms of

ˆ𝜃 is

𝜇 = −𝑔 sin( ˆ𝜃 ) + 𝑏 cos( ˆ𝜃 )
𝑔 sin( ˆ𝜃 ) − 𝑏 cos( ˆ𝜃 )

. (27)
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Now let us write out the second-order derivative of the Lagrangian

function, and plug (27) into it. Then we have:

L′′
𝜇
( ˆ𝜃 ) = (1 + 𝜇)𝑔 cos( ˆ𝜃 ) − (1 − 𝜇)𝑏 sin( ˆ𝜃 )

= − 2𝑔𝑏

𝑔 cos( ˆ𝜃 ) (tan( ˆ𝜃 ) − 𝑏
𝑔 )

.

Using the inequalities in (26), we have

L′′
𝜇
( ˆ𝜃 ) > 0,

L′′
𝜇 ( ¯𝜃 ) < 0.

Based on the first-order and second-order optimality conditions,
ˆ𝜃

is the minimum of the Lagrangian problem, and
¯𝜃 is the maximum.

C VOLTAGE INEQUALITY CONSTRAINTS
In this part, we prove that not all inequality constraints in (22c) are

inactive by contradiction.We first suppose all inequality constraints

in (22c) are inactive, and convert (22) to the penalized unconstrained

formulation:

L𝜌 (x) = 𝑓 (x) + 𝜌/2[ℎ(x)]2 . (28)

Assume 𝜌 is sufficiently large, then (28) can be viewed as being

equivalent to the original problem (22). Let us take gradients of

L𝜌 (x) with respect to 𝑉1 and 𝑉2 at a feasible solution x̃. Since x̃
satisfies ℎ(x̃) = 0, the terms multiplied by 𝜌ℎ in the gradients can

be ignored. So the gradients are given by

𝜕L𝜌

𝜕𝑉1

= 2𝑔𝑉̃1 − 𝑉̃2 (𝑔 cos( ˜𝜃 ) − 𝑏 sin( ˜𝜃 )) (29a)

𝜕L𝜌

𝜕𝑉2

= −𝑉̃1 (𝑔 cos( ˜𝜃 ) − 𝑏 sin( ˜𝜃 )) . (29b)

1) If

𝜕L𝜌

𝜕𝑉1

= 0, then we have

𝑔 cos( ˜𝜃 ) − 𝑏 sin( ˜𝜃 ) = 2𝑔
𝑉̃1

𝑉̃2

(𝑉̃2 ≠ 0) . (30)

Plug (30) into (29b) and we get

𝜕L𝜌

𝜕𝑉2

= −2𝑔
𝑉̃ 2

1

𝑉̃2

< 0.

This means if 𝑉1 is inactive, then 𝑉2 must be on the boundary of

the constraint set.

2) Suppose

𝜕L𝜌

𝜕𝑉2

= 0. Since 𝑉̃1 ≠ 0, we have

𝑔 cos( ˜𝜃 ) − 𝑏 sin( ˜𝜃 ) = 0. (31)

If we plug (31) into (29a), then we have

𝜕L𝜌

𝜕𝑉1

= 2𝑔𝑉̃1 > 0.

That is, if 𝑉2 is inactive, then 𝑉1 must be on the boundary of the

constraint set. Therefore one of𝑉1 and𝑉2 must be binding, and (22)

can be reduced to the bivariate optimization problem.

D HESSIAN MATRIX OF THE LAGRANGIAN
In this part, we derive the Hessianmatrix of the Lagrangian function

for problem (22), where we optimize both voltage magnitudes and

angles for a 2-bus network. In Appendix C, we have shown that

one of 𝑉1 and 𝑉2 must be binding, so here we consider the cases

where 𝑉1 is binding or 𝑉2 is binding separately.

We first suppose𝑉1 is inactive (equivalently,𝑉2 is binding). Then

the Hessian matrix of the Lagrangian is

∇2L𝜆,𝝁 =
©­«

𝜕2L𝜆,𝝁

𝜕𝜃 2

𝜕2L𝜆,𝝁

𝜕𝜃𝜕𝑉1

𝜕2L𝜆,𝝁

𝜕𝜃𝜕𝑉1

𝜕2L𝜆,𝝁

𝜕𝑉 2

1

ª®¬ .
The two leading principal minors of ∇2L𝜆,𝝁 at a feasible solution

x̃ are

𝐷1 (x̃) =
𝜕2L𝜆,𝝁

𝜕𝜃2

= 𝑉̃1𝑉̃2 [(1 + 𝜇̃)𝑔 cos( ˜𝜃 ) − (1 − 𝜇̃)𝑏 sin( ˜𝜃 )]
𝐷2 (x̃) = ∇2L𝜆,𝝁

= 2𝑔𝐷1 (x̃) − 𝑉̃ 2

2
[(1 + 𝜇̃)𝑔 sin( ˜𝜃 ) + (1 − 𝜇̃)𝑏 cos( ˜𝜃 )]2

where 𝜇̃ is the dual solution associated with x̃. If (x̃, 𝜇̃) are the

optimal primal-dual solutions, then we can write out the first-order

optimality condition of the Lagrangian w.r.t. 𝜃 :

(1 + 𝜇̃)𝑔 sin( ˜𝜃 ) + (1 − 𝜇̃)𝑏 cos( ˜𝜃 ) = 0. (33)

From (33), 𝐷2 (x̃) can be simplified as

𝐷2 (x̃) = 2𝑔𝐷1 (x̃) .

Also, we can represent 𝜇̃ in terms of
˜𝜃 :

𝜇̃ = −𝑔 sin( ˜𝜃 ) + 𝑏 cos( ˜𝜃 )
𝑔 sin( ˜𝜃 ) − 𝑏 cos( ˜𝜃 )

. (34)

If we plug (34) into 𝐷1 (x̃), then we have

𝐷1 (x̃) = 𝑉̃1𝑉̃2

−2𝑔𝑏

𝑔 cos( ˜𝜃 ) (tan( ˜𝜃 ) − 𝑏
𝑔 )

.

Following from the inequalities in (23), 𝐷1 (x̃) and hence 𝐷2 (x̃) are
positive at the global minimum and negative at the local minimum.

Therefore, Theorem 3 holds for the case where 𝑉1 is inactive and

𝑉2 is binding.

Nowwe suppose𝑉2 is inactive (equivalently,𝑉1 is binding). Then

the Hessian matrix of the Lagrangian is

˜∇2L𝜆,𝝁 =
©­«

𝜕2L𝜆,𝝁

𝜕𝜃 2

𝜕2L𝜆,𝝁

𝜕𝜃𝜕𝑉2

𝜕2L𝜆,𝝁

𝜕𝜃𝜕𝑉2

𝜕2L𝜆,𝝁

𝜕𝑉 2

2

ª®¬ . (35)
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The two leading principal minors of
˜∇2L𝜆,𝝁 at a feasible solution

x̃ are

𝐷1 (x̃) =
𝜕2L𝜆,𝝁

𝜕𝜃2

= 𝑉̃1𝑉̃2

−2𝑔𝑏

𝑔 cos( ˜𝜃 ) (tan( ˜𝜃 ) − 𝑏
𝑔 )

(36a)

𝐷̃2 (x̃) = ˜∇2L𝜆,𝝁

= 2𝑔𝜇̃𝐷1 (x̃) − 𝑉̃ 2

1
[(1 + 𝜇̃)𝑔 sin( ˜𝜃 ) + (1 − 𝜇̃)𝑏 cos( ˜𝜃 )]2

(36b)

where 𝜇̃ is the dual solution associated with x̃. If (x̃, 𝜇̃) are the opti-
mal primal-dual solutions, then the first-order optimality condition

w.r.t. 𝜃 takes the same form as in (33). Then 𝐷̃2 (x̃) in (36b) can be

simplified as

𝐷̃2 (x̃) = 2𝑔𝜇̃𝐷1 (x̃) . (37a)

Since the multiplier 𝜇̃ represents the marginal price and is positive

at the global minimum, 𝐷̃2 (x̃) has the same sign as 𝐷̃1 (x̃). From
the inequalities in (23), 𝐷̃1 (x̃) is positive, hence the Hessian matrix

˜∇2L𝜆,𝝁 is positive definite at the global minimum. For the local

minimum, since 𝐷̃1 (x̃) is negative from (23), the Hessian matrix

˜∇2L𝜆,𝝁 cannot be positive definite. This means it is either negative

definite or indefinite at the local minimum. Therefore, Theorem 3

also holds for the case where 𝑉2 is inactive and 𝑉1 is binding.
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