Electric Power Systems Research 213 (2022) 108595

Contents lists available at ScienceDirect

ELECTRIC
POWER
L SYSTEMS

Electric Power Systems Research

RESEARCH

journal homepage: www.elsevier.com/locate/epsr

Check for

Learning to solve DCOPF: A duality approach o
Yize Chen ®*, Ling Zhang ", Baosen Zhang "

a Lawrence Berkeley National Laboratory, Berkeley, CA, USA
b University of Washington, Seattle, WA, USA

ARTICLE INFO ABSTRACT

Keywords:
Machine learning
Optimal power flow

The optimal power flow (OPF) problem is a fundamental tool in power system operation and control. Because
of the increase in uncertain renewable resources, solving OPF problems fast and accurately provides significant
values because of a large number of load and generation scenarios need to be accounted for. Recent works have
focused on using neural networks to replace iterative solvers to speed up the computation of OPF problems.
A critical challenge is to ensure solutions satisfy the hard constraints in the OPF problem, which is difficult
to do in end-to-end machine learning. In this work, by leveraging the rich theory of duality and physical
interpretations of OPF, we design a learning-based approach that has theoretical characterizations of constraint
satisfaction. This approach is an order of magnitude faster than standard solvers, and performs much better

than other learning methods in terms of feasibility and optimality.

1. Introduction

The optimal power flow (OPF) problem is a fundamental tool used
in power systems planning and operations [1-3]. The OPF problem
finds the generator outputs that minimize the cost of generation while
satisfying the power flow equations and other operational constraints.
In this paper we consider the DCOPF formulation by linearizing the
power flow equations [4].

The DCOPF problem has been studied extensively in the last sixty
years and is a workhorse of the power industry [3]. If the generator
cost is linear, the DCOPF is a linear program. If the costs are quadratic,
then it is a quadratic program with linear constraints. Both types
of optimization problems can be solved efficiently by a variety of
algorithms, which have been implemented in a number of software
packages [5,6]. Today, a DCOPF problem can be solved quickly for
fairly large networks [4,7].

Because of the uncertainties brought by the renewables on many
of the nodes, the number of generation and load scenarios that need
to be considered are starting to grow exponentially [8-10]. Even if
each scenario under consideration takes less than a second to solve
using modern solvers, not all of them can be completed within the
required time period. For example, if one instance of DCOPF can be
solved in 0.5 s, then solving it for 2,000 scenarios would take more
than 15 min, while outside the 5 min time resolution that real-time
DCOPF are performed in practice. Therefore, using neural networks
(NNs) to learn the mapping between input load profiles and the corre-
sponding optimal generation outputs has gained significant attention,

* Corresponding author.

since making inference via a trained architecture can be potentially
orders of magnitude faster than an iterative solver [11,12]. Many of
application problems in power systems have been to use end-to-end
supervised learning to find the mapping from input data to the optimal
solution [13,14]. Such learning-based approaches can also help tasks
such as hosting capacity analysis in distribution grids and strategic
investments in energy markets [15,16].

Using end-to-end neural networks to directly make decisions about
optimization problems has also been investigated in the computer
science literature. Surprisingly, the answer to this question has been
largely negative [17,18]. A key challenge is that the learned solution
must satisfy hard constraints, which is difficult to enforce using fixed
neural neural networks. In DCOPF, these constraints are the generator
limits, the line flow limits and the power balance constraints. The
generator limits can be built into a neural network by clipping the
outputs (e.g., using the tanh function), yet the other constraints cannot
be directly enforced [12]. One approach is to add costs to constraint
violations during training [19], but the generalization performance is
not certain [20], and it does not guarantee constraints are satisfied for
new test samples and degrades optimality and training speeds. Some
recent efforts have focused on the feasibility issues of learning-based
OPF solvers [21], yet the solution is either highly dependent on the
training performance [22], or requires specific design on correction
steps of violated constraints [23].

Another drawback of end-to-end solvers is that they do not fully
utilize additional information about the underlying physical systems.

E-mail addresses: yizechen@lbl.gov (Y. Chen), 1zhangl8@uw.edu (L. Zhang), zhangbao@uw.edu (B. Zhang).

https://doi.org/10.1016/j.epsr.2022.108595

Received 3 October 2021; Received in revised form 17 April 2022; Accepted 2 July 2022

0378-7796/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/epsr
http://www.elsevier.com/locate/epsr
mailto:yizechen@lbl.gov
mailto:lzhang18@uw.edu
mailto:zhangbao@uw.edu
https://doi.org/10.1016/j.epsr.2022.108595
https://doi.org/10.1016/j.epsr.2022.108595
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2022.108595&domain=pdf

Y. Chen et al

X
Xi
' mjn Objective
Input ; _ s.t. constraint 1
% X Obj constraint 2

—> Training
- — > Prediction

Optimization Solver

Training

Electric Power Systems Research 213 (2022) 108595

am{;:ux) ¥
. I - N D,ual constraint IiBound
- X € T Variable _ , constraint 2=Bound
ST » Selections e
o)
Equation Solver
Prediction

Fig. 1. The schematic of our proposed Neural Decoder for solving OPF problems. A neural network is trained to predict the optimal objective value; during implementation for
solving OPF, the network’s gradient is interpreted as a noisy codeword for active constraints, and a linear equation is solved to obtain optimal solutions.

DCOPF is often solved to find the locational marginal prices (LMPs) at
the buses [4]. During probabilistic load forecasting, the system operator
may be interested in finding the LMPs corresponding to each load
scenario [11]. Most iterative solvers provide the LMPs as a byproduct of
the optimal solution, but end-to-end methods cannot yield them easily.
In addition, LMPs are not continuous in the load and thus are hard to
learn directly using neural networks [14].

To overcome these challenges, we do not view learning DCOPF as
an end-to-end task. Instead, we leverage the rich algorithmic under-
standing of DCOPF and convex optimization, as well as the economic
interpretation of the primal and dual variables to offer a novel solution
architecture. Our workflow is shown in Fig. 1. Concretely, we construct
a neural network that takes the net load at each node as the input
and outputs the optimal system cost (a scalar). Of course, the optimal
value of the cost is not the solution of the LP. Rather, using the neural
network, we compute the gradient of the cost with respect to the net
loads. Identifying these as the dual variables or the LMPs, we use them to
predict the binding nodal and line constraints. Once these constraints
are identified, the optimal solution is given by solving a simple linear
system of equations. The overall procedure can be seen as an efficient,
robust surrogate learning model for optimization solvers.

We make the following contributions in this work:

(1) We provide a novel architecture to solve the DCOPF prob-
lem with both linear and quadratic costs. Resulting data-driven
duality-based approach provide extremely efficient ways to iden-
tify the active constraints.

(2) Our method can be thought as decoding a system where the
codebook is given by the KKT conditions of the DCOPF. It is error
correcting, since even if output of the neural network is noisy, the
correct set of active constraints at optimal solutions can still be
identified.

(3) We show that our method can provide more than an order of
magnitude speedup compared to current state-of-the-art iterative
solvers and much better performance in terms of feasibility and
optimality compared to other learning approaches.

(4) LMPs can be learned accurately since they serve as the interme-
diate step of our approach. Given a set of forecasted loads, their
corresponding LMPs at the buses can be computed extremely
efficiently.

2. Model and problem formulation
2.1. DCOPF formulation

We use the standard single period DC power flow model in this
paper [24]. We assume the power system is connected and it has » buses
and m lines. Let x € R” denote the generation at the buses and # € R”
denote the load at the buses. The generation at bus i is bounded by 0
and x;,' and the upper bound for a load bus is set to be 0.

1 The lower bound is set to be 0 for notional simplicity and without loss of
generality, since the generation can always be shifted to make it 0.

We use the idea of fundamental flows to model the line flows be-
tween buses to make the subsequent derivations more succinct. Because
of Kirchhoff’s voltage law, a weighted linear combination of the flows in
a cycle is always 0. Therefore, all of the flows lie in a n—1 subspace and
the basis of this subspace is called the fundamental flows. Let f € R"~!
denote the set of fundamental flow. Let K € R”™"~! be the mapping
from the fundamental flows to all flows. We use the fundamental flows
to represent the physical constraints in the power grids, as we will
show such formulation enjoys more structured identification processes
of binding constraints. See Appendix A for an example and more details.

With the above notations, the power balance equations can be
written as x + Af = £, where A is the modified admittance matrix from
the fundamental flows to the buses. The DCOPF problem is:

n

J(@) = r;ufn ; %x? +¢x; (1a)
st. 0<x<X (1b)
—-f<Kf<f (1)

x+Af =2, ad)

where ¢; and ¢; are the cost coefficients. The value of the optimization
problem is denoted by J. And we sometimes write it as J(¢) to
emphasis it is a function of the load.

In practice, both the quadratic costs and purely linear costs (with
g; = 0 for all i) are used [25]. These are also qualitatively different from
an optimization perspective, since the solution for a linear program will
be at an extreme point while the solution under a quadratic cost can
be in the interior of the feasible space. It turns out that the solution
methods are not exactly the same for these two cases, and we treat
them separately in the later sections with detailed descriptions.

2.2. Price forecasting

In addition to the optimal solutions, the LMPs are often of inter-
est in power system operations [25]. In this paper, we consider the
setting of scenario-based price forecasting. We assume that a set of
load scenarios is given (e.g., coming from a probabilistic load fore-
casting algorithm [26,27]). A straightforward method to compute the
LMPs is to repeatedly solve the DCOPF problem, but that maybe too
computationally inefficient.

2.3. Using machine learning

The central problem addressed in this paper is to replace the it-
erative solver block in Fig. 2(a) with faster blocks in Fig. 2(b). The
input of the problem is a load vector and the output is the set of
generation levels for the DCOPF problem and the LMPs for the price
forecasting problem. The performance metrics are the computation
speed, the feasibility of the output and their optimally.

As stated in the introduction, it is tempting to directly learn the
optimal solution or the active constraints. However, both are nontrivial
to learn, even for moderately sized systems experiencing high levels

Y. Chen et al

()
Iterative SN Optimal
Solver Solution
(b) P
Neural &, & .
R Network 5~ . J*(€)
1 \—
| —
| Optimal
t----» Decoding ----- o Active

Fig. 2. Compared to standard optimization workflow (a), we propose to use trained
neural network to give codewords for decoding active constraints at optimal solutions

(b).

of uncertainty. The next section describes a learning methodology
that circumvents the challenges of directly learning high dimensional
outputs.

3. Solution architecture

Our solution architecture proceeds in two steps as shown in the right
side of Fig. 1. The first step is to learn the dual variables associated with
the load balance constraint in (1d). The second step is using the dual
variables to find the active constraints. In this section we discuss how
to learn the dual variables, and Sections 4 and 5 show how they are
used to identify the active constraints.

3.1. Interpretation of dual variables

We use the following fact from power system engineering and linear
programming:

Theorem 1. Suppose the optimization problem in (1) is feasible for a
given load ¢. Let u* € R" denote the optimal dual variables associated with
equality constraints (1d). Then V,J = u*, where J is the optimal value of
(1) and V is the gradient operator.

This theorem states that the multipliers associated with the power
balance constraint in the DCOPF problem are the LMPs: the incremental
cost of providing one more unit of power at the buses.” The proof of
Theorem 1 is standard and can be found in [2,25].

The usefulness of Theorem 1 for our problem is that if the multipli-
ers are known, then the set of optimal active constraints can be easily
discovered. For example, consider DCOPF with linear costs (¢, = 0
for all i in (1a)). We have the following corollary about the active
generation constraints:

Corollary 1. Let u* be the optimal multipliers of (1d) for a given
load ¢. Then the optimal generations are associated with the following
active/inactive constraints:

X ifu; —c; >0
x; =40 ifpuf —¢; <0 (2)
(0,%,). otherwise

The proof of the corollary is immediate from economic interpre-
tations of the dual variable. If the LMP at a bus is higher than the
cost of the bus, then the upper bound must be binding. Conversely,

2 Technically Theorem 1 holds for all most all feasible load (except for a
set of measure zero). For loads that are at the exact boundary when binding
constraint changes, the gradient need to be replaced by a subgradient.

Electric Power Systems Research 213 (2022) 108595

if the LMP is lower than the cost at a bus, the lower bound must be
binding. Otherwise, the generator is on the margin and neither bounds
are binding.

Determining the binding line flow constraints and binding generator
constraints for quadratic costs are more complicated than Corollary 1,
but not by much. We will cover how to find those constraints in
Sections 4 and 5. We describe the learning methodology to find the
optimal multiplier in the rest of this section.

3.2. Learning the LMPs

We do not directly use a neural network to learn u*, although it
may seem to be the natural thing to do. Since p* is not continuous
in # but most neural networks are continuous in their inputs, a direct
regression approach is hard to use while practical issues exist like
data class imbalances. We can also think of learning u* directly as a
classification problem, but the problem is difficult because the large
number of possible values as the system scales up.

Rather, we fit a neural network (parameterized by 6) g,(¢) that
maps optimization model input # to the value of the optimization
problem J(#). The value is a scalar function of the load. It is continuous
and piecewise linear, with distinct “breakpoints”, where the derivative
changes value. Therefore, it is naturally parameterized by using ReLU
activation units. To train the neural network, we use regression loss on
two terms:

(1) Regression loss defined between g,(¢) and J*(¢) over the neural
network’s output;

(2) Regression loss for optimal dual variable defined between
Vyge(?) and p*.

The training loss is the sum of these terms
Z©0) = llgg@) = T* @5 + 111IV28o(®) — u*l3- 3

3.3. Fast adaptation to operating conditions

In Fig. 2(c), we show a practical use case for the proposed algorithm.

Once g, is trained, its gradient V,g, is our estimate of the LMPs
u. Taking the derivative of a neural network is equivalent to back
propagation, which is highly optimized in modern machine learn-
ing platforms. For instance, such operations can be implemented via
tf.gradients () in Tensorflow or autograd.grad () in PyTorch,
while the computational cost is less than a millisecond thanks to
automatic differentiation.

4. Linear costs

In this section, we assume that the LMPs have been learned, and we
will describe how it can be used to determine both the active generator
and line constraints when the cost is linear.

4.1. Lagrangian dual

The dual of (1) under linear cost (¢; = 0) is

max pl - ATE-1"F-V"x (4a)
wAAv.y
st. c—pu-yv+v=0 (4b)
~ATu-K"2+K"i=0 (4¢)
v20,v>0,1>0,1>0. (4d)

If p is given, the dual problem decouples into two separate parts: one
for generators and the one for line flows.
The part of the dual associated with generators is

max —v'x (5a)

vy

Y. Chen et al

st. c—pu-v+v=0 (5b)

v>0,v>0. (50
By inspection, the optimal solution of (5) follows the structure given in
Corollary 1.

Identifying the binding line flows is a more interesting problem. The
part of the dual associated with the flows is

max - ATE-1"F (62)
A4

st. KT(A—2) =ATy* (6b)

120,120 (60)

The solution structure of (6) is not as apparent as the one for generators.
It turns out to be useful to transform (6) into an equivalent LP using
the following lemma.

Lemma 1. The problem (6) is equivalent to
min Iyl (7a)
st. KTy=ATy* (7b)

where y, = f,- X — [- A, |yl = |fi - & = [; - 4, and K = diag(1/ f;. ...,
1/fK.

The proof of Lemma 1 is given in Appendix B. The importance of the
transformed £, minimization problem in (7) is that it is extremely well
studied. This problem is actually the canonical form of the sparse signal
recovery in compressed sensing, where signal y needs to be recovered
via observation AT yu*. For more information, please see [28-30] and
the references within. Note that in sparse recovery, £, minimization
is a surrogate problem where the ultimate goal is to find the sparsest
solution to the problem. For us, (7) is the exact problem we want to
solve to finish the active constraints identification.

Because there are limited number of active constraints which is
equivalent to limited number of nonzero entries in y, while K is
very sparse, there are many algorithms that can solve (7) extremely
efficiently. We use a family of greedy algorithms such as iterative hard
thresholding can be used to find y [31] in a fixed number of iterations.

4.2. Solving for the optimal solutions

Assuming that the DCOPF problem with linear cost is not degener-
ate, there are exactly the same number of binding constraints as there
are variables [32]. That is, we would have 2n — 1 equations from the
binding generators and the line flow constraints, corresponding to the
n generation variables and n— 1 fundamental flow variables. This linear
equation can be solved to find the optimal x* and f*.

This linear system of equations is much easier to solve than the full
DCOPF. Firstly, it has 2n — 1 equations, much smaller than the 3n + 2m
constraints in the DCOPF problem. Secondly, the system is quite sparse,
allowing us to use a variety of techniques. In Section 6 we show that
the speedup in computation time is significant.

4.3. Robustness to errors

Because we are dealing with continuous values, the prediction J(#)
of the neural network will invariably have errors. Therefore, it is
important that the errors made do not add up and cause incorrect
identification of the active constraints. Using an analogy from com-
munication theory, we think of the derivatives of the learned neural
network g,(¢) as noisy versions of a codeword. We are essentially pro-
viding an error-correcting approach to decode active constraints that is
robust to errors made by the neural network.

Observe that for a given u* and some noise 8, though the optimal
solution for the optimization problem (6) may be different for u* and
p* + 8, the set of active constraints at optimal solutions can remain the

Electric Power Systems Research 213 (2022) 108595

same. Therefore, there exists a region around a ground truth optimal
dual solution where as long as the noise does not push the solution
outside of this region, the set of active constraints remains the same.
It turns out these regions are polytopes and easily characterized by
solving another linear program. This falls under the well studied area
of linear programming sensitivity analysis [32,33], and is formalized
by the next Lemma

Lemma 2. Consider a given ¢ and its associated optimal dual variables
u*. There exists a polytope 2, around p* such that if i — u* € ®,., then
the active constraints determined using i is correct. The set ®,» is computed
by a linear program.

The proof of this lemma is given in Appendix C. It shows that solu-
tions are robust, since we do not require that the value of predictions
V¢ 8y(€) to be exact, and there is no compounding of errors as compared
to other end-to-end learning approaches. It also provides a way to check
whether training is good enough: we can compare the error between
the learned p and the actual p*, and if it falls within the polytope 2,
then we are confident that the training results would be accurate.

4.4. Augmenting neural network training

We can augment the training loss in (3) to include the accuracy of
detecting the active constraints. Let h(g,(¢)) denote the binary vector
indicating the active constraints determined by learner’s solution based
on the procedure described in the last section. We can add the hamming
distance between h(gy(¢)) and s*(¢), where s*(-) is the binary vector
indicating the true active constraints. The new training loss is

L) =llgg®) = T* @5 + 711V ego®) — W13 ®
+12[1A(gg(€)) — s @)l

where y|, y, are tuning parameters. For detailed implementation, please

refer to https://github.com/chennnnnyize/Neural-Decoding-for-OPF.

5. Quadratic costs

As in Section 4, we assume that the LMPs have been learned and
describe how it can be used to determine the active constraints when
cost is quadratic. If ¢;’s are not zero, the dual of (1) is

max p’ - ATE-1"F-V"x (92)
A4y
st. Qx+c—pu—v+v=0 (9b)
~ATu-K"21+K"i=0 (9¢)
v20,v>0,1>0,1>0, (od)

where Q is a diagonal matrix with the value of g; on the i’th diagonal.
There are two differences between (4) and (9). The first is that the
constraint associated with the generations, (9b), also include the primal
variables x. The second is that unlike a linear program, a quadratic
program may not have the same number of binding constraints as the
variables.

5.1. Binding constraints
Again we assume yu is known (coming from the gradient of the
learned J). We use the following lemma to determine whether a

generator constraint is binding:

Lemma 3. Given the optimal LMP u*, x; is associated with the following
active/inactive constraints:

X5 ifpuf —ci—q% >0
x; =140 ifuf —¢; <0 10$)
(0, %), otherwise

https://github.com/chennnnnyize/Neural-Decoding-for-OPF

Y. Chen et al

This lemma shows that the binding generation constraints can again
be found through simple comparisons.

Proof. The rule in (10) follows from simple economic principles. If
a generator is marginal, then its LMP is u = ¢; + 2¢;x;. Otherwise, a
generator is binding at its upper bound if u} > ¢;+2¢;%; and at its lower
bound if pf < ¢;. [

The binding line constraints can be recovered through the same
process as the linear cost case. Once u is known, the dual problem
associated with A and A is the same as (6).

5.2. Finding the optimal solutions

Once we identify all of the binding constraints, we can encode it
into a matrix of the form My = a, where y is the concatenation of x
and f. For a quadratic program, the number of constraints (rows of M)
can be less then the number of variables. Therefore, we still need to
solve the following optimization problem:

min %yTQy +ely (11a)

s.t. My = a, (11b)

where Q is a diagonal matrix with (¢y,...,q,,0,...0) on its diagonal
and é = (¢, ..., ¢,,0,...,0). They come from the fact that costs are not
assigned to the flows. Fortunately (11) can be solved as a linear system:

Lemma 4. Let t* be the optimal Lagrangian multiplier of (11b), then the
optimal solution of (11) is given by the following linear system

Q M| [y]_[-¢
[M 0[] |a]’ (12)
The significance of the lemma is that solving the problem with
quadratic costs is no more difficult than solving it with linear costs.

Once the active constraints are identified, a linear system of equations
can be solved to find the optimal solutions.

Proof. The Lagrangian of (12) is

%yTQy +¢&y+ 7" My —a),

and differentiating with respect to y gives the stationarity condition
Q +é-M'z=0. (13)

Combining (13) with the equality constraint (11b) gives the system of
equations in (12). [

6. Case studies
6.1. Experiment setup

We evaluate the proposed learning approach, the Neural Decoder, on
the IEEE 14-Bus and 39-Bus system [34] for both linear and quadratic
costs. Specifically, over a wide range of problem input settings, we
examine (1) solution quality in terms of constraint satisfaction and
optimality and (2) computational efficiency over existing convex opti-
mization solvers. Simulations are run on an unloaded Macbook Pro with
Intel Core i5 8259U CPU @2.30 GHz. The code and simulation data
can be found at https://github.com/chennnnnyize/Neural-Decoding-
for-OPF.

To generate the training set, we use CVXPY [35] powered by a
CVXOPT solver [36] to solve (1). For each setting, we generate # by
sampling from uniform distribution, with variations of 20%, 50% and
80%. We solve 60,000 data samples using CVXPY for each network
model under each variance setting, and split 20% of the data as test
samples.

We train and compare three other learning models in terms of
finding optimal solutions while satisfying all constraints:

Electric Power Systems Research 213 (2022) 108595

= NeuralDeco 14.88 X 19.85 X
0.05 CPLEX
WEN CVXOPT
T
g
g oo 13.78 X
< 19.82X
17
< 0.03 11.24 X
g LA 1523 X
E 16.78 X
& 0.024
g
=3
£
500
(o]
0.00
14bus-Linear 14bus-Quadratic 39bus-Linear 39bus-Quadratic

Fig. 3. Average solving time per instance along with speedup statistics comparison for
Neural Decoder, iterative solvers CVXOPT and CPLEX.

(a) LMP Prediction

7 4 — NeuralDeco Predicted
—— LMP Truth
6
5
a
3,
3
2
0 5 10 15 20 25 30 35
. Bus Number
(b) LMP Prediction Errors
Emm NeuralNets
mmm NeuralDeco
0.08 1 i
0.06 II I 1
g ||II| | I
£ 0l T il
0.02 1

0.00 -
[5 10 15 20 25 30 35

Bus Number

Fig. 4. Simulation results on LMP forecasting on 39-bus system with 80% load
variations. (a) LMPs of a single sample and (b). Average MAPE across all testing samples
compared with neural network-based forecasts.

(1) Nearest neighbor for active constraints: This benchmark is a sanity
check on whether a deep neural network is needed or a simpler
method would suffice. We fit and find a 3-nearest neighbor algo-
rithm achieves the highest classification accuracy in predicting
the active constraints.

(2) End-to-end regression: Following [12], we construct a 4-layer
neural network to fit the regression task of predicting optimal
solution based on input #. Mean squared error is used as training
loss.

(3) Classification for active constraint sets: Following [37], we con-
struct a 4-layer neural network to predict the set of active
constraints at optimal solution. We use one-hot encoding for
different set of active constraints, and use cross-entropy as the
loss function.

We term our framework the Neural Decoder and use a 3-layer
neural network with 200 neurons on the first layer. For all machine
learning models, we keep a validation dataset and avoid training over-
fitting during the training stage. We feed load vector # as the input for
all of the methods. Once the active constraints are predicted, a linear
equation solver is used to find final solutions.

https://github.com/chennnnnyize/Neural-Decoding-for-OPF
https://github.com/chennnnnyize/Neural-Decoding-for-OPF
https://github.com/chennnnnyize/Neural-Decoding-for-OPF

Y. Chen et al

Electric Power Systems Research 213 (2022) 108595

Table 1
Performance comparison on linear cost case with different load input variations.
80%-120% 50%-150% 20%-180%
NeuralDeco E-to-E Class Neighbor NeuralDeco E-to-E Class Neighbor NeuralDeco E-to-E Class Neighbor
Generator 98.49 96.36 94.64 89.03 96.15 96.04 78.07 88.92 93.19 90.39 71.37 73.65
14-Bus Line 99.91 96.06 98.52 92.44 98.16 95.78 98.06 89.68 93.47 93.77 94.07 84.33
Infeasibility 0.77 3.36 6.63 11.28 1.86 3.86 21.92 18.17 4.03 13.69 24.62 29.19
Generator 99.91 93.30 98.95 93.40 96.39 70.95 95.28 77.98 93.95 44.38 90.19 63.90
39-Bus Line 99.91 94.85 99.24 59.68 96.33 88.03 95.96 78.64 93.48 72.22 86.28 71.34
Infeasibility 0.02 11.07 0.01 29.38 0.56 46.53 2.62 21.68 4.25 61.25 13.49 38.71
Table 2
Performance comparison on quadratic cost case with different load input variations.
80%-120% 50%-150% 20%-180%
NeuralDeco E-to-E Class Neighbor NeuralDeco E-to-E Class Neighbor NeuralDeco E-to-E Class Neighbor
Generator 93.43 95.39 89.73 92.44 92.06 68.26 69.63 73.52 94.19 78.68 68.71 65.18
14-Bus Line 98.61 93.81 98.85 92.90 92.02 79.69 92.00 86.78 81.01 72.55 67.51 74.51
Infeasibility 2.12 6.01 4.07 5.82 2.48 50.08 9.37 28.56 8.18 31.87 17.81 29.64
Generator 97.95 96.87 98.12 97.99 86.56 46.16 31.32 40.34 85.08 36.71 29.06 14.28
39-Bus Line 99.08 99.18 99.45 98.97 85.85 38.51 32.18 33.67 84.32 42.82 56.18 21.07
Infeasibility 0.38 2.84 0.42 1.14 7.82 63.24 46.59 53.72 11.63 73.52 58.62 78.92

6.2. Simulation results

Results on learning for the 14-bus and 39-bus OPF problem with

linear costs and quadratic costs are listed in Tables 1 and 2 respectively,
where we report the accuracy of active generators’ constraints and
lines’ constraints separately. Note that these simulation load samples
are not sufficient to cover the input space and some test samples that
do not reside in the same region as the training samples. Our method
generalizes and has the lowest infeasibility across all test settings. For
feasible test instances, the mean solution costs compared to optimal
solutions provided by CVXPY is within 0.5%.
Feasibility and Optimality. Interestingly, our proposed method (Neu-
ralDeco) can provide solutions with lower percentage of infeasibility
than the sum of error on active generator and line constraints pre-
dictions. This is because identification steps of active generators and
active lines are performed in sequence and we are making use of the
information on total number of active constraints in the linear case,
so the error on each step does not compound and lead to infeasible
solutions.

The other methods perform much poorer. The nearest neighbor

approach is not able to achieve good performance when the input
variations are greater, showing that more sophisticated learning ap-
proaches are needed. The end-to-end prediction is hard to use for
higher load variances, mainly because it does not explicitly include line
flow constraints, so it tends to produce infeasible flow solutions. The
classification approach is also not a proper learning strategy for larger-
scale optimization problems, since the growing number of possible
combination of active constraints leads to huge one-hot encodings at
the classifier’s output.
Computation Time. Compared to the solving process of optimization
solvers, our proposed solver provides significant speed-up in all testing
benchmarks as shown in Fig. 3. Compared to state-of-the-art commer-
cial solvers, it can provide an order of magnitude in efficiency. We
are using standard Python packages for neural network derivations
and equation solvers, while further acceleration can be achieved by
taking a batch of evaluating samples to calculate V,g,(¢), or adopting
special linear equation solvers to solve the resulting sparse linear
equations once all active constraints are identified. Please see [38]
for more details and statistics, as well as just comparing the “core”
computation times. That is, we discount the overhead in problem
conversion, constraint translation and so on, and only record the time
used by lower level linear algebra packages. The relative speeds remain
virtually unchanged in this comparison from Fig. 3.

Price Forecasting. The results are shown in Fig. 4 with forecasted
prices and forecasting errors. For the case of 39-bus with 80% input
variations, the overall LMP forecasting mean absolute percentage error
(MAPE) on test samples is 2.15%. We also compare proposed method
to a straightforward forecasting method, where we trained a neural
network with nodal electricity demand as input and LMP as output,
whose error is about 50% larger.

7. Discussion and conclusion

In this paper, we propose a novel machine learning paradigm to
tackle both the computation and feasibility challenges in OPF. Built
upon the foundations of convex optimization and algorithmic under-
standing of DCOPF, proposed method is able to efficiently find the OPF
solutions given load vectors with large fluctuations. We demonstrate
its speed advantage over conventional iterative solvers and better
feasibility performances compared to other machine learning meth-
ods. We show that by incorporating the underlying grid topology
and parameters, it is possible to design machine learning algorithms
with guarantee. In the future work, we will explore the potentials of
using machine learning for ACOPF problems by again leveraging the
interpretations of active constraints and the dual variables (LMPs),
and design fast learning-based decision-maker for safe power system
operations.

CRediT authorship contribution statement

Yize Chen: Conceptualization, Methodology, Software. Ling
Zhang: Data curation, Review & editing. Baosen Zhang:
Supervision, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Fundamental flows

In the DC power flow model the power flow on the lines are
determined by the angle differences. Let 6, be the angle of bus i and
fij = b;;(0; — 0;) be the flow along the line connecting i and ;. If a
network has cycles, let buses 1, ...,n, be the buses in a cycle, counted

Y. Chen et al

fi

f
3

Fig. 5. Example of DC power flow model.

in either the clockwise or counterclockwise direction. Consider the
weighted sum

fn,l
f12 +@+...+_‘

by by by,
=(0) — 0y) + (6, — 03) + - + (6, —0y)
=0.

Therefore, the flows lie in a subspace and are not independent from
each other. Repeating the above calculation for every cycle gives that
the flows lie in a subspace of dimension n — 1 for a connected network
with n buses. A basis of this subspace is called a set of fundamental
flows. A basis can be constructed by choosing a spanning tree and
consider the flows on the branches as fundamental, and everything else
can be derived from these flows.

Fig. 5 shows an example. Assuming that all the line susceptances
are 1 p.u, i.e, b; = 1, and taking the line flows fy, f,, f4 to the
fundamental flows. Then the matrix K mapping the fundamental flows
to all line flows and the matrix A mapping fundamental flows to bus
injections are:

1 0 0 2 1 0
0 1 0 - -1 1 1
K= -1 -1 o/ A= -1 =2 0
0 0 1 0 0 -1

Appendix B. Proof of Lemma 1

Proof. The original optimization problem is reproduced below:

max - ATf-A'F (14a)
n: At

st. KT(A—2) =ATy* (14b)

1>20,4>0 (140)

Lety=fo1+foland v =1- 1, where © is component-wise
multiplication. Then the optimization problem in (6) becomes

min ; v (15a)
s.t. K'v=ATpy* (15b)
y>fov (15¢)
y>-fov, (15d)

where the last two inequalities come from the nonnegativity constraint
of A. Suppose y, v are optimal solutions. Because we are minimizing the
sum of the components of y, y; = f; max(v;, —v;). This is equivalent to

i =]F,|U1| O
Appendix C. Proof of Lemma 2
We use the following lemma:

Lemma 5. For an LP problem {x* = argmin, ¢/ x|Ax = b,x > 0} with
A € R™ x € R",m < n, let (1),(2),...,(m) be the indices of selected

Electric Power Systems Research 213 (2022) 108595

columns of A, such that Bx* = b with B = [a, ... a,,] € R™™ as an
invertible basis. For any b = b + 8, the optimal solution is still given by B if
and only if B-'b+ B~'6 > 0.

The proof of Lemma 2 follows from Lemma 5 by converting our LP
of interest to the standard form. Despite the latter being a known result
in linear programming, we have not been able to find the proof of the
vector form in existing literature (the component by component result
can be found in [32,33]). Therefore we provide the following proof for
completeness.

Proof. To find the region where b = b + & has the same set of active
constraints at the optimal solution, denote the new optimal solution as
%* that satisfies Ax = b. So the new optimization problem involving b
becomes

X = argmin cI'x (16a)
sit. AXx=b+6 (16b)
x>0 (16c)

Since we have x* = B~'b > 0 with input b, and since x* and % can
be represented by the same basis B € R”™*", we have

B 'b+6)>0 an

to ensure the optimal solution’s feasibility. So the resulting 6 must
satisfy (17).
On the other hand, if B~!(b + 6) > 0, while & = B~!(b + §)

satisfies both equality and inequality constraints. By checking the
KKT conditions, it is also the optimal solution, which completes the
proof. []

References

[1] H.W. Dommel, W.F. Tinney, Optimal power flow solutions, IEEE Trans. Power
Appar. Syst. (10) (1968) 1866-1876.

[2] R. Baldick, Applied Optimization: Formulation and Algorithms for Engineering
Systems, Cambridge University Press, 2006.

[3]1 J.D. Glover, T.J. Overbye, M.S. Sarma, Power System Analysis and Design,
CENGAGE Learning, 2017.

[4] B. Stott, J. Jardim, O. Alsa¢c, DC power flow revisited, IEEE Trans. Power Syst.
24 (3) (2009) 1290-1300.

[5] R.D. Zimmerman, C.E. Murillo-Sdnchez, R.J. Thomas, MATPOWER: Steady-
state operations, planning, and analysis tools for power systems research and
education, IEEE Trans. Power Syst. 26 (1) (2010) 12-19.

[6] F. Milano, An open source power system analysis toolbox, IEEE Trans. Power
Syst. 20 (3) (2005) 1199-1206.

[7] F. Li, R. Bo, DCOPF-based LMP simulation: algorithm, comparison with ACOPF,
and sensitivity, IEEE Trans. Power Syst. 22 (4) (2007) 1475-1485.

[8] A. Hauswirth, S. Bolognani, G. Hug, F. Dorfler, Projected gradient descent on
Riemannian manifolds with applications to online power system optimization,
in: 2016 54th Annual Allerton Conference on Communication, Control, and
Computing, Allerton, IEEE, 2016, pp. 225-232.

[9] Y. Zhang, E. Dall’Anese, M. Hong, Dynamic ADMM for real-time optimal power
flow, in: 2017 IEEE Global Conference on Signal and Information Processing,
GlobalSIP, IEEE, 2017, pp. 1085-1089.

[10] S. Huang, V. Dinavahi, Fast batched solution for real-time optimal power flow
with penetration of renewable energy, IEEE Access 6 (2018) 13898-13910.

[11] W. Deng, Y. Ji, L. Tong, Probabilistic forecasting and simulation of electricity
markets via online dictionary learning, 2016, arXiv preprint arXiv:1606.07855.

[12] X. Pan, T. Zhao, M. Chen, Deepopf: Deep neural network for dc optimal power
flow, in: 2019 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids, SmartGridComm, IEEE, 2019, pp. 1-6.

[13] R. Canyasse, G. Dalal, S. Mannor, Supervised learning for optimal power flow
as a real-time proxy, in: 2017 IEEE Power & Energy Society Innovative Smart
Grid Technologies Conference, ISGT, IEEE, 2017, pp. 1-5.

[14] Y. Ji, Operation Under Uncertainty in Electric Grid: A Multiparametric
Programming Approach (Ph.D. thesis), Cornell University, 2017.

[15] S. Taheri, V. Kekatos, H. Veeramachaneni, Strategic investment in energy
markets: A multiparametric programming approach, 2020, arXiv preprint arXiv:
2004.06483.

[16] S. Taheri, M. Jalali, V. Kekatos, L. Tong, Fast probabilistic hosting capacity
analysis for active distribution systems, IEEE Trans. Smart Grid 12 (3) (2020)
2000-2012.

http://refhub.elsevier.com/S0378-7796(22)00681-2/sb1
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb1
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb1
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb2
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb2
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb2
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb3
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb3
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb3
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb4
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb4
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb4
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb5
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb5
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb5
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb5
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb5
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb6
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb6
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb6
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb7
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb7
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb7
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb8
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb8
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb8
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb8
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb8
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb8
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb8
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb9
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb9
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb9
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb9
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb9
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb10
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb10
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb10
http://arxiv.org/abs/1606.07855
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb12
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb12
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb12
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb12
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb12
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb13
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb13
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb13
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb13
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb13
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb14
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb14
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb14
http://arxiv.org/abs/2004.06483
http://arxiv.org/abs/2004.06483
http://arxiv.org/abs/2004.06483
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb16
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb16
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb16
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb16
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb16

Y. Chen et al

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Amos, J.Z. Kolter, Optnet: Differentiable optimization as a layer in neural
networks, in: Proceedings of the 34th International Conference on Machine
Learning-Volume 70, JMLR. org, 2017, pp. 136-145.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, J.Z. Kolter, Differentiable
convex optimization layers, in: Advances in Neural Information Processing
Systems, 2019, pp. 9558-9570.

X. Pan, T. Zhao, M. Chen, Deepopf: A deep neural network approach for
security-constrained dc optimal power flow, 2019, arXiv preprint arXiv:1910.
14448.

L. Zhang, Y. Chen, B. Zhang, A convex neural network solver for dcopf with
generalization guarantees, IEEE Trans. Control Netw. Syst. (2021).

M.K. Singh, S. Gupta, V. Kekatos, G. Cavraro, A. Bernstein, Learning to optimize
power distribution grids using sensitivity-informed deep neural networks, in:
2020 IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids, SmartGridComm, IEEE, 2020, pp. 1-6.

T. Zhao, X. Pan, M. Chen, A. Venzke, S.H. Low, DeepOPF+: A deep neural
network approach for DC optimal power flow for ensuring feasibility, in: 2020
IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids, SmartGridComm, IEEE, 2020, pp. 1-6.

P.L. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with
hard constraints, in: International Conference on Learning Representations, 2020.
J.D. Glover, M.S. Sarma, T. Overbye, Power System Analysis & Design, SI Version,
Cengage Learning, 2012.

D.S. Kirschen, G. Strbac, Fundamentals of Power System Economics, John Wiley
& Sons, 2018.

J. Xie, T. Hong, Temperature scenario generation for probabilistic load
forecasting, IEEE Trans. Smart Grid 9 (3) (2016) 1680-1687.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Electric Power Systems Research 213 (2022) 108595

Y. Chen, Y. Wang, D. Kirschen, B. Zhang, Model-free renewable scenario
generation using generative adversarial networks, IEEE Trans. Power Syst. 33
(3) (2018) 3265-3275.

D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (4) (2006)
1289-1306.

J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via
orthogonal matching pursuit, IEEE Trans. Inform. Theory 53 (12) (2007)
4655-4666.

Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications,
Cambridge University Press, 2012.

T. Blumensath, M.E. Davies, Iterative thresholding for sparse approximations, J.
Fourier Anal. Appl. 14 (5-6) (2008) 629-654.

D. Bertsimas, J.N. Tsitsiklis, Introduction to Linear Optimization, Vol. 6, Athena
Scientific Belmont, MA, 1997.

B. Jansen, J. De Jong, C. Roos, T. Terlaky, Sensitivity analysis in linear
programming: just be careful!, European J. Oper. Res. 101 (1) (1997) 15-28.
T. Athay, R. Podmore, S. Virmani, A practical method for the direct analysis of
transient stability, IEEE Trans. Power Appar. Syst. (2) (1979) 573-584.

S. Diamond, S. Boyd, CVXPY: A python-embedded modeling language for convex
optimization, J. Mach. Learn. Res. 17 (1) (2016) 2909-2913.

M.S. Andersen, J. Dahl, L. Vandenberghe, CVXOPT: A python package for convex
optimization, version 1.1. 6, 2013, 54 Available At Cvxopt. Org.

Y. Ng, S. Misra, L.A. Roald, S. Backhaus, Statistical learning for DC optimal power
flow, in: 2018 Power Systems Computation Conference, PSCC, IEEE, 2018, pp.
1-7.

Y. Chen, B. Zhang, Learning to solve network flow problems via neural decoding,
2020, arXiv:2002.04091.

http://refhub.elsevier.com/S0378-7796(22)00681-2/sb17
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb17
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb17
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb17
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb17
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb18
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb18
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb18
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb18
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb18
http://arxiv.org/abs/1910.14448
http://arxiv.org/abs/1910.14448
http://arxiv.org/abs/1910.14448
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb20
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb20
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb20
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb21
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb21
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb21
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb21
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb21
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb21
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb21
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb22
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb22
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb22
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb22
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb22
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb22
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb22
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb23
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb23
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb23
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb24
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb24
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb24
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb25
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb25
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb25
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb26
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb26
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb26
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb27
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb27
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb27
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb27
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb27
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb28
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb28
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb28
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb29
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb29
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb29
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb29
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb29
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb30
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb30
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb30
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb31
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb31
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb31
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb32
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb32
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb32
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb33
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb33
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb33
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb34
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb34
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb34
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb35
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb35
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb35
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb36
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb36
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb36
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb37
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb37
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb37
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb37
http://refhub.elsevier.com/S0378-7796(22)00681-2/sb37
http://arxiv.org/abs/2002.04091

	Learning to solve DCOPF: A duality approach
	Introduction
	Model and problem formulation
	DCOPF formulation
	Price forecasting
	Using machine learning

	Solution architecture
	Interpretation of dual variables
	Learning the LMPs
	Fast adaptation to operating conditions

	Linear costs
	Lagrangian dual
	Solving for the optimal solutions
	Robustness to errors
	Augmenting neural network training

	Quadratic costs
	Binding constraints
	Finding the optimal solutions

	Case studies
	Experiment setup
	Simulation results

	Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Fundamental Flows
	Appendix B. Proof of Lemma 1
	Appendix C. Proof of Lemma 2
	References

