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ABSTRACT

Traditional taxonomy provides a hierarchical organization of bacte-
ria and archaea across taxonomic ranks from kingdom to subspecies.
More recently, bacterial taxonomy has been more robustly quanti-
fied using comparisons of sequenced genomes, as in the Genome
Taxonomy Database (GTDB), resolving down to genera and species.
Such taxonomies have proven useful in many contexts, yet lack
the flexibility and resolution of a more fine-grained approach. We
apply our Life Identification Number (LIN) approach as a com-
mon, quantitative framework to tie existing (and future) bacterial
taxonomies together, increase the resolution of genome-based dis-
crimination of taxa, and extend taxonomic identification below the
species level in a principled way. We utilize our existing concept of
a LINgroup as an organizational concept for microorganisms that
are closely related by overall genomic similarity, to help resolve
some of the confusions and unforeseen negative effects of nomen-
clature changes of microbes due to genome-based reclassification.
Our results obtained from experimentation demonstrate the value
of LINs and LINgroups in mapping between taxonomies, translat-
ing between different nomenclatures, and integrating them into a
single taxonomic framework.
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1 INTRODUCTION

Taxonomy is the science of classifying and organizing biological
organisms into named units to facilitate their identification via
some notion(s) of similarity. Traditional taxonomy utilizes a hier-
archical organization into taxonomic ranks, where each node in
the hierarchy is a taxon. The lowest formal ranks are species and
subspecies, and the latinate genus-species nomenclature for plants
and animals is well established and is employed even in common
parlance. The species concept for prokaryotes is much more prob-
lematic [1, 4, 13, 18] and is the subject of debate primarily because
of reticulate evolution or horizontal gene transfer [4, 7, 11, 16] and
the challenge of defining principles for establishing prokaryotic
species boundaries. Indeed, it is more appropriate to view the hier-
archy of prokaryotic taxa as a network rather than a tree [3, 6]. A
pragmatic approach to identify species boundaries through whole
genome sequence similarity began with the introduction of Average
Nucleotide Identity (ANI), where a threshold ANI of approximately
95% or greater is often taken to characterize the boundary of a
single species [10].

The two most widely-used taxonomic schemes for bacteria are
the NCBI taxonomy, and the Genome Taxonomy Database (GTDB).
The NCBI taxonomy organizes prokaryotes into two trees (bac-
teria and archaea) using the taxonomic nomenclature developed
over the years by traditional methods [19] and collected in the
List of Prokaryotic Names with Standing in Nomenclature (LPSN;
https://www.bacterio.net/). More recent efforts have sought to orga-
nize taxa through genomic sequence, primarily of cultivated species,
although some fastidious or difficult to cultivate organisms have
only been identified through metagenomics. GTDB organizes its
taxonomic hierarchy by construction of a phylogenetic tree from
120 marker genes and the use of Relative Evolutionary Divergence
(RED, a normalized measure of branch length) to establish taxo-
nomic rank thresholds, followed by application of ANI to establish
similarity between sequenced genomes and place additional organ-
isms at species level, within that framework [2, 14]. For the future,
we may expect revisions of existing taxonomies and creation of new
taxonomies based on new principles. This raises the challenge of
this paper, namely, to integrate our knowledge of genomic sequence
across multiple taxonomies in a fashion most useful to the biologist.
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In addition, we address the challenge of extending genome-based
taxonomy both between current taxonomic ranks and well below
the species level.

Then we argue the need for biologists to have access to a broader
conceptual framework that merges, to the extent possible, multiple
taxonomies and that supports taxonomy below the species level.

Finally, we briefly describe characteristics of such a framework
and point to the next section for our approach.

2 THE LIN CONCEPT

To properly explicate the Life Identification Number (LIN) con-
cept, it is essential to first discuss the term “genome”. In biology,
the genome of an organism is the complete collection of genetic
material in the cells of the organism. Modern DNA sequencing
technology provides us with some access to details concerning this
genetic material in the form of large numbers of either short or
long DNA reads, though these reads alone need not exactly match
the genetic material due to incomplete coverage, sequencing errors,
contamination, and the challenge of piecing together the actual
completed genome. Consequently, the set of reads, after process-
ing by a suitable genome assembly program, will result in a set of
contigs, which we optimistically call the assembled genome. These
assembled genomes constitute the basis for the LIN concept and
are what we mean henceforth by the term “genome”.

The LIN concept is a general mechanism for organizing se-
quenced genomes according to a measure of similarity. By se-
quenced genomes, we mean a sequence file containing assembled
contigs from a collection of DNA reads obtained from some se-
quencing technology. The better the quality of the reads and the
contigs, the more successful the application of the LIN concept
will be. A number of our prior publications have proposed LINs,
applied them to existing sequenced genomes of particular classes of
organisms, and demonstrated their broad utility [12, 20-26]. Here
we describe the LIN concept in full mathematical generality for the
first time demonstrating their robustness.

We are interested in organizing a dynamic universe U of se-
quenced genomes, denoted Gy, G, . . .; our notion is that the uni-
verse utilized is fixed at any instant in time but, of course, expands
as we add additional sequenced genomes. This organization re-
quires one or more genome similarity measures. We use functional
notation s(Gj, Gj) for the similarity between genomes as measured
by the similarity measure s. We require 0 < s(G;,G;) < 1 and
often speak of a similarity as a percentage. Examples of similarity
measures include: average nucleotide identity (ANI) as computed
by pyani [17] or approximated by FastANI [8]; Jaccard similarity
as approximated by sourmash [15]; split k-mer analysis for SNP-
level similarity as computed by SKA [5]; and Average Amino Acid
Identity (AAI) as computed by EzAAI [9]. It is essential to be aware
of the diversity of these and other similarity measures in terms of
characteristics and resolution; there is no “one size fits all” measure.
In particular, while it would be ideal to have one similarity measure
that satisfactorily covered the entire interval [0, 1] and was efficient
to compute, this is not the case: in practice, it is necessary to employ
multiple similarity measures to cover multiple subintervals and/or
enhance computational efficiency.
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For illustration, we start with just one similarity measure s,
which we will employ to resolve similarity for some subinter-
val [ty, 1] of the entire interval [0, 1]. (A subinterval is chosen
because high similarity values are generally more accurate than
low ones.) In the LIN concept, we subdivide that interval into m + 1
nonoverlapping, exhaustive subintervals by selecting a sequence
0=ty t1,t2, ..., tm, tm+1 = 1 of thresholds such that

<t <ty <---<typ<tm1=1;
the sequence t1,tg,...,tn is a LIN scheme. The subintervals
defined are then

[to, t1], (21, 2], (2, £3], . .., (tm, tm1]

and are called percentage (subintervals). Consequently, s(G;, G;)
falls into exactly one percentage. A Life Identification Number (LIN)
is an (m + 1)-tuple £ = (ng, ny, ..., nm,) of non-negative integers,
while the p LIN prefix of £ is £ = (ng, n1,...,np), where0 < p < m.
We call the location of n; in £ position i, or we simply call n; position
i. The goals of the LIN concept are twofold. First, each unique
genome sequence is assigned a unique LIN; in particular, we assign
f; to genome G;j. As there are an infinite number of LINSs, this
goal can certainly be met. Second, and more importantly, the LINs
are chosen in such a manner that the LINs ¢ and ¢; of G; and
Gj provide evidence of the similarity of G; and G; according to
similarity measure s. More specifically, LINs identify position p + 1
as the leftmost position of ¢; and #; where they differ. This implies
that t’f’ = t’f ; they share their p LIN prefix. Then, the goal is that
$(Gi, Gj) occurs in the interval (¢, tp+1].

To achieve the two goals of the LIN concept, we provide simpli-
fied pseudocode for the core LIN algorithm in Figure 1.

(1) Assign genome G the LIN (1,0,0,...,0).

(2) For each subsequent genome Gij41, find the genome Gj, 1 <
Jj £ i, which minimizes s(G;, Gj).

(3) Find the leftmost position where they differ and make sure
the LIN assigned to Gj4; differs from all other LINs and
differs from ¢; at that position first.

(4) Continue with the next genome (Step 2) until all genomes
have been assigned LINs.

Figure 1: Pseudocode for our original, naive implementation
of a prototype of the LIN concept. Note that it is straight-
forward to make this an online algorithm that accepts new
genomes as they are sequenced and assembled.

Depending on the characteristics of the similarity measure, the
core algorithm is not guaranteed to achieve the second goal in
all cases. However, we have successfully employed a 20-position
scheme in our LINbase database [20] using ANI as the similarity
measure and have demonstrated that the second goal is indeed
achieved in practice [12, 23, 25, 26]. The original naive implementa-
tion of the core algorithm is quite slow, given the time complexity of
algorithms for computing ANI, but we have sped up the algorithm
immensely by employing sourmash [15], a tool for rapid searching
of a database of sequences using sets of k-mer based signatures,
called sketches, in our LINflow implementation [21].
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Once some portion of the universe U of genomes has been as-
signed LINs, all the genomes that share a LIN prefix are called a LIN-
group. A LINgroup with a percentage of about 95% often contains
exactly the genomes from a recognized prokaryotic species. The
power of LINgroups, however, goes far beyond describing species,
as the percentage can be any one present in the current scheme.
Moreover, as additional genomes are added, they will automatically
fall into the proper LINgroups.

We now identify a number of characteristics and advantages of
the LIN concept and of LINgroups. As demonstrated in the formal
description above, the LIN concept is highly flexible in several
ways: the similarity measure utilized can be selected to achieve the
desired ends of a particular implementation and to be as efficient as
possible; new sequenced genomes can be incorporated into a LIN
database in a natural, online fashion; and the implied taxonomic
ranks of the LIN scheme are not fixed by the LIN concept, in contrast
to existing taxonomies. The resolution of LINs can extend well
below that of the traditional species rank, making fine distinctions
a natural implication of using LINs. LIN assignment can be quite
rapid computationally, leading to near instantaneous feedback to
the group that provided the sequenced genome in the first place.
Multiple similarity measures can be employed to span a large range
of percentage similarities. One or more LINgroups together can
represent a known taxonomic rank, especially one that was not
originally characterized by genomic sequence similarities; we will
informally call such a collection of LINgroups a cluster. The LIN
concept organizes genomes into a hierarchy, much as traditional
taxonomy employs hierarchy as its organizational principle. Finally,
any given LIN scheme and associated database is stable in the sense
that no recomputation is required in the event of the acquisition
of additional data. In one of our prior works [21] we have shown
implementation details, computational speed and memory usage
hence, now we focus on other aspects of the approach.

Because LINs have many more thresholds of similarity (20 in
our current implementation) than the two taxonomic ranks genus
and species, LINgroups can be used to precisely circumscribe (or
define or delineate) genera and species of different breadth from
different taxonomies (such as GTDB and NCBI) and thus allow to
integrate and compare taxonomies with each other. Our current
intervals of similarity (LIN scheme) described in Section 3.2 cover
genus and species at the lower and middle thresholds. For example,
95% is a useful standard ANI for determining species. But, as the
thresholds extend to 99.999%, the LIN scheme allows for far higher
taxonomic resolution than either the NCBI or GTDB hierarchies.
Moreover, a taxon in either of the other hierarchies corresponds
to one or more LINgroups in this LIN scheme. Hence, the LIN
concept successfully spans and connects multiple taxonomies in a
neutral setting depending only on the available sequenced genomes.
Moreover, with additional similarity resolution, higher taxonomic
ranks can be incorporated as well.

3 MATERIALS AND METHODS
3.1 Data Sets

We have selected a set of 1207 genomes close to the Agrobacterium
genus with their corresponding NCBI and GTDB (version R07-
RS207) taxonomic lineages as our data set. Using the computed
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LINs as described in Section 2, we can perform a three-way com-
parison among the NCBI taxonomy, GTDB, and the computed LINs.
Figure 2 shows an overview of the number of distinct lineages
(taxonomic clusters) considering each method. All genomes in the
data set have identical taxonomic ranks from kingdom to order
and are mainly positioned within two and three families in NCBI
and GTDB respectively. Hence, we have combined results for the
ranks kingdom through order, favoring result simplicity. Conse-
quently, we focus on taxonomies at the family rank and below,
which provide more variation allowing us to better compare the
three taxonomic methods. When comparing taxonomies at each
rank, we are only able to compare them when the ranks are de-
fined and ordered. Below are the major taxonomic ranks that we
considered, when available, in order of consideration: (1) kingdom,
(2) phylum, (3) class, (4) order, (5) family, (6) genus, (7) species, and
(8) subspecies.

Taxonomy Clusters
1250

@ NeBl GTDB LIN

1000

Number of LIN clusters

250

[

70 75 80 8 9 9 9% 97 9 985 99 9925 95 9975 990 99925 99.95 99975 99.99 99999
Percent ANI similarity

Figure 2: The number of potential taxonomic ranks cur-
rently segmenting the Agrobacterium data set. Family, Genus,
Species, and Phenotype ranks, when available, were assigned
to 70, 80, 95, and 96% ANI similarity respectively.

3.2 Experiments

Figure 3 provides a complete overview of our LIN assignment pro-
cess. Our LINflow [21] implementation utilizes a combination of
Jaccard similarity computations using sourmash and ANI compar-
isons using pyani to reduce the number of comparisons done by
ANI, which in turn reduces the overall runtime. First, with the as-
sumption of genomes of similar species having about 95% ANI, we
create an initial measurement layer to identify species represen-
tatives using Jaccard (Species separator scheme). At this step, we
decide whether to create a new species cluster (case A in Figure
3), when Jaccard similarity is low to existing species representative
genomes, or we find the closest species cluster to our genome. Next,
we compare genomes within the species cluster using Jaccard and
choose the top three genomes as references to compare the new
genome against using ANI The genome with the top ANI similarity
and at least 20% genome coverage is considered the closest genome.
In certain cases, Jaccard might be computed a second time with a
higher stringency (case B in Figure 3) if genomes are highly similar.
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2. Average Nucleotide Identity (ANI)
BLAST aligner, average two-way similarity
Legend

Special case (low genome coverage):
<20% genome coverage —» similarity = 0

O Scheme independent processes

Result: top(1) genome(s)

SchemeSet: Manages flow between schemes

Scheme: Effective within a range of similarity
and manages flow between filters

Filter: Measures similarity between genomes
directly or through reduced representations.

Figure 3: Process of assigning LIN to a single genome sequence using the current LINbase.org LIN scheme. All scheme and
measure related criteria can be modified at will to best fit one’s needs.

Finally, given the closest genome, or the lack thereof where sim-
ilarity is set to zero, we use the algorithm in Figure 1 to assign a
LIN to the genome. We are using a set of threshold similarities (LIN
scheme) with 20 percentage ANI thresholds creating clusters at 70,
75, 80, 85, 90, 95, 96, 97, 98, 98.5 , 99, 99.25, 99.5, 99.75, 99.9, 99.925,
99.95, 99.975, 99.99, and 99.999. The LIN of the closest genome
is assigned as a prefix of the new LIN up to the highest scheme
threshold, given the similarity between the genomes is less than or
equal to that threshold. For example if the similarity is 96.1% the
two genomes will share identical LINs up to the 96% threshold and
differ at the 97% threshold.

After the LIN assignment process is complete, we look into the
correspondence between the LINs and their corresponding lineages
within different methods. Based on our prior work [12, 20-26], we
are aware that different lineages at the same taxonomic rank do not
necessarily diverge at the same ANI similarity threshold. Therefore,
we consider all unique taxonomic lineages at each rank (taxonomic
cluster) to all unique LIN clusters at each threshold. For example, we
analyze the uniqueness of the species rank both when considering
the first LIN threshold and all 20 LIN thresholds. Figure 4 illustrates
the full process of comparing all the available taxonomy pairings
and the eventual results that manifest from the analysis.

3.3 Evaluation

Evaluating the LIN-based taxonomy can be done by observing how
taxonomic lineages such as ones defined by NCBI and GTDB can
also be defined by LINs reliably. Simply put, we can measure how
the clusters made by LINs conform with the lineages. One simple

method to measure conformance is to compute how unique the
LINs are when compared to one unique lineage. This is done for
every combination of lineage and every LIN length. For instance, if
we consider all the genomes with the lineage Agrobacterium at the
genus rank, for a fixed LIN length, we can place the LINs in three
groups.

The first group consists of Unique LINs. These LIN(s) are unique
to the lineage, at the genus rank and do not identify any genomes
with a different lineage. Furthermore, if all LINs are unique to the
lineage, we can rely on the LIN(s) to reliably identify/separate this
lineage within GTDB from the others.

The second group consists of Dominant LINs. These LIN(s) are
not unique to the lineage however, 90% of the genomes within each
LIN are members of the lineage. This allows for a more relaxed
identification of lineages while keeping taxonomy conformance
above a threshold. Depending on how strict this conformity needs to
be the threshold can be increased where 100% is the same as unique
LINs. Higher thresholds mainly affect taxonomy conformance on
shorter LIN lengths since they are shared by more genomes. On
longer length LINs though the chance of conformity tends to zero
the higher the threshold and the lower the number of genomes
sharing that LIN.

The third group consists of Non-unique LINs. Any LIN(s) not
unique (including dominants) are part of this group. Any lineages
corresponding to LINs within these groups cannot be reliably iden-
tified/separated from the other lineages within this group. The
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Figure 4: Process of pairing lineage and LIN(s) and how grouping (aggregating) by different parameters results in different
views of relation between LIN clusters and the taxonomic lineage. The last three nodes before the end are the three figures

included in Section 4.

number of genomes within this group can be decreased by increas-
ing the length of the LIN, decreasing the dominance threshold, or
considering a higher-level lineage.

Now given the unique LINs only or their union with dominant
LINs, we can analyze how well LINs can identify lineage clusters
already defined by the reference taxonomies and whether the lin-
eage clusters can potentially be further broken down into smaller
clusters when considering the LIN clusters. In Section 4, we mainly
focus on unique LINs when analyzing our results so as to present the
most conservative results when considering lineage conformance.

4 RESULTS

Looking at the number of clusters at each taxonomic rank that has
varying values in our data set, NCBI having four such taxonomic
ranks and GTDB having three, we can look at the available clusters.
Figure 2 illustrates the number of clusters at each rank. Although
the taxonomic ranks family and genus do not correspond to set
ANI thresholds, in Figure 5 we equated family with 70% ANI and
genus with 75% ANI to best fit the number of LIN clusters to their
corresponding rank. We used the established 95% ANI threshold
for species and 96% for phenotype (when this rank was used by
NCBI). We can easily see the number of LIN clusters and how the
two taxonomic methods diverge at the 95% ANI (species) rank
while, interestingly, the number of LIN and GTDB clusters match
perfectly. Another interesting trend is the roughly linear increase

in LIN clusters despite the nonlinear ANI ranks. Normally, with a
linear ANI scheme one would see an exponential increase in clusters
at the latter ranks, assigning many LIN clusters to subspecies ranks.
This continuous increase of LIN clusters is an indication that the
selected scheme captures the range of genomic distances in our data
set. Simply put, we can define subspecies ranks simply through a
few short (taxonomically speaking) LIN clusters, rather than many
long LIN clusters.

Just focusing on cluster counts, however, does not illustrate
how well the LIN clusters match current taxonomic ranks. Figure
5 illustrates how well genomes can be grouped into their unique
taxonomic cluster at different taxonomic ranks with only a limited
number of thresholds used in the LIN scheme. It is expected that
higher-level ranks will be easier to identify than lower ranks, which
holds mostly true, with the exception of NCBI’s genus and species
ranks at scheme ranks 6-10 (95-98.5). Furthermore, identification
of GTDB ranks is more easily achieved through fewer LIN ranks
compared to NCBI. This indicates GTDB ranks are more aligned
to sequence similarities, which is expected based on how GTDB
species clusters are defined [14]. Additionally the LIN ranks 2, 5,
and 9 improve identification significantly for genus and species in
both taxonomies; hence, they are meaningful ranks for this set of
genomes.
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Figure 5: Fraction of genomes that can be uniquely identified
using their LIN cluster(s) given how many thresholds can
be used for clustering. For both NCBI and GTDB, taxonomy
levels Kingdom through Family can all be uniquely identi-
fied since our genomes all are part of one Order. The GTDB
taxonomic ranks on the Genus and Species levels are more
easily separable than the NCBI ranks using the ANI-based

LIN clusters.

Breaking down the ranks and comparing the lineages at each
rank, we can analyze the LIN clustering behavior. We have specif-
ically selected genera that have more than 10 genome sequences
associated with them to allow flexibility in cluster formations in
Figure 6. Note that not all genera at the final rank (20) have LIN clus-
ters equivalent to the number of genome sequences (y < 1). This
means that some genome sequences share their full LIN with others.
This indicates that, within these genera, there exist sequences that
have ANI similarities above the maximum threshold (99.999%). This
could be easily mitigated by increasing the maximum threshold of
the LIN scheme.

Furthermore, the different rates of cluster formation between
genera shows more insight into each lineage. The slope of the lines
at certain LIN thresholds is a good indicator of internal clusters,
specific to the lineage. When studying that lineage exclusively, we
need to focus on these threshold ranges to further see the internal
clustering of the genomes. We could similarly decrease focus on
ranges with low or zero slope. This can be seen in Sinorhizobium,
where it would be best to increase focus on thresholds 12-13 since
the number of clusters almost doubles from 56 to 109 having a total
of 231 genomes assigned to the lineage.

Given the same information, we also hypothesize that lineages
that have fewer clusters at the first few thresholds than others could
be lacking sample diversity. Simply put, highly similar (less diverse)
genomes lead to many clusters on the latter LIN ranks, while less
similar (highly diverse) genomes do the opposite. Hence, the lack
of diversity is apparent when comparing the genus Esnifer with
Neorhizobium or Pararhizobium despite their roughly equivalent
genome count. Genera with high genome counts in the data set,
namely Rhizobium, Agrobacterium, and Sinorhizobium, also show
a lack of sample diversity, which stems from their low diversity

with respect to genome count.
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5 DISCUSSION
Taxonomy has been an indispensable tool for biologists to struc-
ture and simplify the abundance of variation among organisms.
However, with the emergence of inexpensive DNA sequencing and
the tremendous increase in genome sequence availability, the tra-
ditional methods of taxonomic identification are benefitting from
data-driven methods. In this paper, we have proposed our concept of
Life Identification Numbers (LINs) to integrate and compare multi-
ple taxonomies based on genome similarity. LINs provide a powerful
system to structure the similarity relationships among genomes and
can be flexibly implemented utilizing any set of similarity measures.
For example, a LIN implementation may use the most precise mea-
sures (for example, a single nucleotide polymorphism (SNP) based
similarity measure) for contexts where the genomes are known to
be highly similar, since such measures are more sensitive to sin-
gle mutations occurring between almost identical genomes. Even
though these measures are sometimes computationally expensive,
they are needed for only a fraction of the comparisons, which has
little effect on the overall runtime.

Basing a LIN implementation on ANI, we created clusters that
were not only able to uniquely identify the current taxonomic
lineages up to the species rank, but also identify clusters at the
subspecies level. Using the variation of these clusters, we also com-
pared the sample diversity among genera and identified thresholds
of importance for studying their subspecies groupings.

LINs provide a conceptually simple approach to organize se-
quenced genomes into a hierarchy based strictly on sequence simi-
larity. The resulting taxonomy can serve as a starting point for auto-
mated placement of new genomes as well as a common coordinate
system for conversion between other taxonomies. The increased
granularity offered by LINs over the more traditional seven-point

system of kingdom and phylum through species also provides op-
portunities to more finely resolve relationships as new genome
sequences are introduced. Finally, the availability of well-defined
ranks beyond those of species will be a critically important tool
for the rapid analysis and characterization of many closely related
genomes during a pathogenic outbreak. The overall framework
provided by the LIN concept is further enhanced by a relatively
simple set of algorithmic tools for building LINs.
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