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Suppression of potential roughness in atom-chip ac Zeeman traps
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We present several toy models for predicting the character and strength of the roughness of ac Zeeman
trapping potentials generated by imperfections in wire traces on an atom chip. An ac Zeeman trapping potential
is generated by targeting a microwave or rf magnetic field at hyperfine or Zeeman ground-state transitions,
respectively, while a dc Zeeman trap uses a static magnetic field to manipulate an atom via its magnetic moment.
We find that an ac Zeeman trap suppresses potential roughness by several orders of magnitude with respect to a
comparable dc Zeeman trap. This suppression stems from the inherent differences between an atom’s response
to dc and ac (namely rf and microwave) magnetic fields, in concert with how the ac skin effect smooths out
a current distribution disturbed by a conductivity variation. For chip wires fabricated by evaporation, we find
that an ac Zeeman trap for 87Rb atoms, located 100 μm from the chip and operating on a 6.8 GHz hyperfine
transition, is expected to suppress potential roughness by a factor of 4× 105 compared with a similar dc Zeeman
trap. For a comparable ac Zeeman trap operating on a 10 MHz Zeeman transition, the suppression is 2× 104.
Conversely, the ac skin effect also slightly exacerbates potential roughness, in ac Zeeman traps, from defects in
the sidewall of a wire trace.
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I. INTRODUCTION

Atom chips offer experimenters a miniaturized, low-power,
scalable platform for producing ultracold atomic gases, while
also providing precision control and integration of magnetic,
electric, rf, microwave, and even optical fields [1]. Precision
photolithography, developed by the semiconductor industry,
enables the production of complicated wire layouts that can
be used to sculpt complex magnetic fields for trapping and
manipulating cold atoms. Atom chips have been successfully
used to produce Bose-Einstein condensates (BECs) [2] and
degenerate Fermi gases [3], one-dimensional (1D) gases [4],
atom interferometers [5–7], and to study atom-surface interac-
tions [8]. Due to all of these favorable properties, commercial
cold atom apparatuses use atom chips, including the cold atom
apparatus on the International Space Station [9]. Atom chips
are also a favored platform for atomtronics, in which ultracold
atoms are manipulated in circuit-like structures [10].
Despite all of these benefits, atom chips have not been

widely adopted by experimenters, in part due to the rough-
ness in the magnetic trapping potential that manifests itself
primarily at very low temperatures (i.e., at the onset of BEC),
or when the trap is brought close to a chip wire [11]. This
roughness limits several key functions: strong confinement in
1D potentials [11], propagation of a BEC through a trapping
waveguide [12], and atom interferometry [5,13]. The use of
evaporation deposition to manufacture high-quality atom-chip
traces has helped to reduce the degree of roughness [14].
However, small variations in the bulk conductivity of a trace
still lead to enough roughness that atoms are typically trapped
at chip distances of more than 100 μm with amp-scale cur-
rents. Notably, an oscillating trapping field (kHz range) can
suppress roughness by generating a smoother time-averaged
potential [15] but requires a more complicated apparatus.

Recently, graphene has been proposed as a two-dimensional
(2D) wire material for reducing roughness [16].
At present, atom chips use the dc Zeeman (DCZ) effect

to generate a magnetostatic potential, but the ac Zeeman
(ACZ) effect offers an alternate on-chip approach for trapping
atoms. The ACZ effect generates a spin state-specific energy
shift, i.e., a potential, when a rf or microwave magnetic field
drives one of the atom’s ground-state Zeeman or hyperfine
transitions near resonance [17,18]. Recently, ACZ potentials
based on rf near fields on an atom chip have been used to
trap atoms [19]. Furthermore, rf and microwave near fields on
atom chips have been used to translate and manipulate atoms
in a spin-specific manner [7,20,21]. ACZ potentials generate
a force with an ac field gradient and are a subset of a broader
class of rf and microwave dressed potentials [22,23]. This
paper does not consider rf or microwave adiabatic potentials,
which primarily generate a force with a dc magnetic gradient
and use an ac field to couple spin states [6].
In this paper, we show theoretically that an ACZ chip

trap should substantially suppress potential roughness due to
localized conductivity variations in an atom-chip wire, with
respect to its DCZ counterpart. This suppression is due both
to the physics of the ACZ effect for our trapping geometry and
the tendency of the current in a chip wire to hug its edges at
rf frequencies and higher (ac skin effect). The skin effect also
leads to somewhat larger potential roughness from wire edge
defects, although this increase is relatively small.
The paper is structured in the following manner: Section II

introduces the basic theory of DCZ and ACZ chip traps. In
Sec. III, we explain the roughness suppression mechanism in
a chip-based ACZ trap. Section IV presents a thin wire model
for current defects and compares the roughness of ACZ and
DCZ traps. In Sec. V, we study roughness suppression and
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enhancement versus microwave frequency due to the ac skin
effect. We conclude in Sec. VI with a summary of the results
and an outlook for future research.

II. ATOM-CHIP TRAPS

In this section, we present the basic physics and equa-
tions for calculating the trapping potentials for DCZ and ACZ
traps generated by currents in atom-chip wires. Both DCZ
and ACZ potentials for an atom are described by the Zeeman
interaction Hamiltonian between an atom’s magnetic moment
�μ and an external magnetic field �B:

HZeeman = −�μ · �B. (1)

The magnetic field �B can be static or time dependent, e.g.,
an oscillating ac field. If we neglect the nuclear spin �I , then,
for an alkali-metal atom, the magnetic moment is given by
�μ = (2μB/h̄)�S. Here, �S is the spin operator for the valence
electron, h̄ is Planck’s constant, and μB is the Bohr magneton.

A. dc Zeeman trap theory

At ultracold temperatures, the motion of an atom through a
spatially varying static magnetic field �Bdc is sufficiently slow
that the magnetic moment of the atom follows the direction of
the local magnetic field, i.e., the angle between �μ and �Bdc does
not change. At low magnetic-field strength, the total angular
momentum of the atom �F = �I + �S is a good quantum number,
and mF , the projection of �F onto the local direction of �Bdc,
does not vary as the atommoves through the magnetic field. In
this case, the dc Zeeman energy EDCZ of the atom in a specific
Zeeman state,mF , is proportional to the magnitude of the local
magnetic field and is given by

EDCZ = mF gFμB| �Bdc| (2)

where gF is the Landé g factor [24]. EDCZ represents both a
shift in the energy of the atom’s internal state and the poten-
tial energy of the atom in the magnetic field. As Earnshaw’s
theorem prevents the existence of magnetic maxima in free
space, a magnetic trap can only be used to trap “weak-field
seeker” states (with mF gF > 0) at a magnetic minimum [see
Fig. 1(a)].
In the case of an atom chip, a micromagnetic trap is formed

at the magnetic field minimum produced at the point �r0 where
an applied external magnetic field �Bext cancels the field �Bwire
of a current carrying wire trace, as shown in Fig. 1(b). An
additional uniform magnetic field �BIoffe, directed along the z
axis of the wire trace, ensures that the magnetic field minimum
(at the trap bottom) is nonzero. If �Bext is sufficiently uniform,
then the magnetic field is quadrupolar in the vicinity of the
trap bottom and harmonic in the magnitude (at lowest order):

�Bdc(x, y) � Bwire
h
(�yx̂ + �xŷ)+ BIoffeẑ, (3)

Bdc(x, y) � BIoffe + Bwire(�r0)2
2h2BIoffe

(�x2 + �y2), (4)

where �x and �y represent position with respect to the trap
minimum, and h is the distance from the wire to the trap
minimum in the xy plane. In the case of a thin infinite wire, the
distance is h = μ0Idc/2πBext, where Idc is the current in the
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FIG. 1. Basic physics of a DCZmicromagnetic chip trap. (a) Plot
of the dc Zeeman energy shift EDCZ for different mF states in the
F = 1 and F = 2 hyperfine manifolds of an alkali-metal atom with
nuclear spin I = 3/2, e.g., 7Li, 23Na, 39,41K, 87Rb. Only the states
whose dc Zeeman shift is positive can be trapped, i.e., they are weak-
field seekers. (b) A trap is formed at the magnetic minimum where
the magnetic field Bwire, generated by the chip wire current Iwire, is
canceled by an opposing uniform magnetic field Bext. An additional
magnetic field BIoffe directed along the current axis lifts the magnetic
zero at the trap to a finite value. (c) BIoffe is provided by an externally
applied uniform magnetic field directed along the ẑ direction (large
purple arrow) and the endcap wires of the Z-shaped wire (gray). The
field from the endcaps (smaller purple arrows) is strongest at the ends
of the central wire, thus providing trapping along the z axis.

wire, and μ0 is the permeability of free space. Equation (4)
gives an approximate expression for the field magnitude,
which provides the harmonic radial confinement in the xy
plane.

Axial confinement. Confinement along the axial direction (z
axis) is typically provided by “endcap” wire segments to form
a Z-shaped wire [see Fig. 1(c)]. The current in the transverse
endcap segments generates a z-axis component to the mag-
netic field that adds locally to BIoffe, so that BIoffe(z) is larger
at either ends of the central wire segment, thus providing
axial confinement. As we see later (Sec. III), spurious trans-
verse currents within the central portion of the “Z” wire can
generate unwanted localized axial confinement, i.e., potential
roughness, in DCZ chip traps.

B. ac Zeeman trap theory

The ACZ effect is generated by the same Zeeman Hamil-
tonian [Eq. (1)] as the DCZ effect. In the most basic
implementation, two Zeeman states |g〉 and |e〉 (in the atom’s
ground state) experience an ACZ energy shift, when an ac
magnetic field �Bac drives an allowed M1 transition between
these two states [see Fig. 2(a)]. Similar to the ac Stark effect,
the ACZ energy shift is a resonant effect, and its strength
depends strongly on the detuning δ = ωac − ωeg between the
driving frequency ωac and the bare transition frequency ωeg.
Furthermore, the ACZ effect mixes the |g〉 and |e〉 states,
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FIG. 2. Basic physics of an ac Zeeman chip trap. (a) ac Zeeman
shift E± in a two-level atom due to an ac magnetic field. Depend-
ing on the detuning δ of the driving field frequency ωac relative
to the bare transition frequency ωeg, the ground and excited states
are either symmetrically repelled (red-detuning) or pulled together
(blue-detuning). (b) ACZ transition polarization types (σ+, σ−, and
π ) between Zeeman states in the ground level of an alkali-metal atom
with nuclear spin I = 3/2. The |g〉- and |e〉-labeled states form an
effective two-level system, if the dc Zeeman shift between neighbor-
ing states is sufficiently large. (c) A trap is formed at the ac magnetic
zero where the ac magnetic field Bwire-ac, generated by the chip wire
current Iac, is canceled by an in-sync opposing uniformmagnetic field
Bext-ac at the same ac frequency. BIoffe is a dc magnetic field, applied
along the wire’s z axis, which provides a dc Zeeman shift to separate
the Zeeman states within the F = 1 and F = 2 hyperfine manifolds.

which results in new eigenstates for the system, |+〉 and
|−〉 (i.e., the “dressed states”), with the following eigenen-
ergies [17,25]:

E± = ± h̄

2
(−|δ| +

√
δ2 + |�|2) (5)

where � = 〈g| − �μ · �Bac|e〉/h̄ is the Rabi frequency for the
interaction between the atom and the ac magnetic field.
As we will see later, the far-detuned limit, with |δ| � |�|,

is a case that is typical in an ACZ trap. In this limit, the |g〉
and |e〉 barely mix, and they can be identified with the |±〉
eigenstates. In this case, the ACZ energy shift is similar to that
of the ac Stark shift, and Eq. (5) becomes Eg,e = ±h̄|�|2/4δ,
with + for |g〉 and − for |e〉. The state mixing decreases
significantly with increased detuning: the probability for the
atom to be found in the other state is Pother = |�|2/4δ2.
The Rabi frequency � is determined by the interaction

geometry of the ac magnetic field and the atomic spin. In a
circular polarization basis with a quantization axis along the ẑ
direction, the Rabi frequency can be written as [25]

� = −μB

h̄2
〈g|S+Bac,− + S−Bac,+ + 2SzBac,z|e〉, (6)

where S± = Sx ± iSy are the spin raising and lowering opera-
tors and Bac,± = Bac,x ± iBac,y. The matrix elements in Eq. (6)

can be calculated once the |g〉 and |e〉 states are identified
with specific |F, mF〉 states. Notably, at low magnetic-field
strength, angular momentum selection rules require that a
circularly polarized ac magnetic field Bac,± (and for �Bac along
x̂ and ŷ) can only drive σ± transitions such that �mF = ±1.
For �Bac parallel to the z axis, π transitions are allowed such
that �mF = 0. Exact expressions for calculating the Rabi
frequency � in the low dc magnetic-field limit are given in
Ref. [25].

Polarization selectivity. Figure 2(b) shows that often only
a single polarization component of the ac driving field (i.e.,
equivalent to σ+, σ−, or π type) will affect the ACZ energy
shift of a |F, mF〉 spin state, due to angular momentum selec-
tion rules and transition detunings. For example, in the case
of microwave hyperfine transitions, e.g., between the F = 1
and F = 2 hyperfine manifolds at 6.8 GHz for 87Rb, the |e〉 =
|F = 2, mF = 2〉 state can only experience an ACZ shift via a
σ+ transition with the |g〉 = |F = 1, mF = 1〉 state. The same
is true for the |g〉 state over a narrow range of driving field fre-
quencies, i.e., if the transitions of |g〉 to the |F = 2, mF = 1〉
and |F = 2, mF = 0〉 states are sufficiently off-resonance. In
this case, the |g〉 and |e〉 states form an effective two-level
system over a narrow range of driving frequencies or if the
drive field is purely left-circularly polarized.
In the case of rf Zeeman transitions between mF states

within a hyperfine manifold, only a single polarization com-
ponent is involved. Atoms in the F = 1 (F = 2) manifold
can only undergo σ− (σ+) Zeeman transitions and are thus
only affected by the right-circularly (left-circularly) polarized
component of a rf driving magnetic field. So far, we have used
a microwave hyperfine transition [i.e., |e〉 ↔ |g〉 in Fig. 2(b)]
to illustrate ACZ trapping physics, but the nearly degenerate
rf Zeeman transitions within each hyperfine manifold can be
used to form an ACZ trap as well: the ACZ physics is similar,
and Eq. (5) is qualitatively correct [19,21].

ACZ trapping scheme. A rf ACZ chip trap has recently
been demonstrated [19] and borrows many elements of a DCZ
chip trap. Figure 2(c) shows the ACZ trap architecture that
this paper will use to compare the roughness of ACZ and
DCZ trapping potentials. An ac current Iac in a wire along
the z axis generates an ac magnetic near field �Bwire-ac, while
an external ac magnetic field Bext-ac is oriented parallel to the
chip surface along the x axis. The relative phase of Bwire-ac and
Bext-ac is chosen so that these fields always oppose each other
and cancel at a point �r0 to form the local field minimum for
the trap, which is located at a distance h = μ0Iac/2πBext-ac
directly above the wire. Small shifts in the relative phase
between Bwire-ac and Bext-ac will result in small horizontal shifts
in the trap location (along ±x̂) [25], so the phase must be
stabilized to prevent position jitter and associated heating.
In practice, for rf frequencies, a roughly uniform Bext-ac can
be generated by two additional parallel chip wires on either
side of the central wire shown in Fig. 2(c) [26]. For operation
at microwave frequencies, microstrip transmission lines can
be used in place of the wires (see Sec. V) [25]. Finally,
a uniform dc magnetic field BIoffe applied along the z axis
(parallel to wire) separates the Zeeman state energies and
provides a convenient quantization axis. We note that with this
arrangement of fields, Bwire-ac and Bext-ac can only drive σ±
transitions.
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Finally, as long as h is much smaller than the wavelength
λac = 2πc/ωac (c is the speed of light), then �Bwire-ac can be
treated as a near field, i.e., it is given by its static form times
an oscillatory ac term: �Bwire-ac = �Bwire exp(iωact ). In this case,
the magnetic near field obeys Earnshaw’s theorem, and so
the chip can only generate an ac magnetic field minimum:
an ACZ chip trap can only confine weak-field seekers, i.e.,
spin eigenstates that experience a positive ACZ energy shift.
Notably, since the atoms are trapped in a region of low ac
magnetic field, with Bac = 0 and � = 0 at the trap bottom,
sufficiently cold atoms will be confined in the far-detuned
limit with |δ| � |�|. If atoms are warm enough, then they
can climb the potential and experience a larger field and �.
Setting |δ| = |�| in Eq. (5), we can see that the trapped atoms
will be in the far-detuned limit so long as their temperature is
much less than T � 0.21h̄|δ|/k (k is Boltzmann’s constant).
For example, for a detuning |δ| = 2π × 1 MHz, the atoms
will be trapped in the far-detuned limit for temperatures well
below T � 10 μK and thus will be largely in a single one of
the |F, mF〉 spin states.
Both the DCZ and ACZ chip traps tend to produce har-

monic potentials at the bottom of the traps. Figure 3 shows
the trapping potentials for similar ACZ and DCZ traps: both
traps are located at h = 100 μm above the chip wire and
have a transverse trapping frequency ωr = 2π × 1 kHz for the
|2, 2〉 ground state of 87Rb. While the potentials at the bottom
of each trap are identical, they differ away from the bottom
and have significantly different trap depths. However, in this
paper, we focus only on the potential roughness in the vicinity
of the trap bottom.

Axial confinement. While adding endcap wires or deform-
ing the ends of the wire can generate some axial confinement
for an ACZ trap, this effect is not as large as in a DCZ trap,
since the atoms are much less sensitive to π polarized mi-
crowaves or rf. One alternative is to generate a standing wave,
or microwave lattice, by directing additional microwaves of
the same frequency and amplitude from either end of the
trapping wire: If these microwaves are at a different detuning
from the transverse confinement microwaves, then they will
not affect the transverse trapping, but they will provide axial
confinement. Conveniently, the phase of the standing wave
controls the longitudinal position of the trap.

III. ACZ ROUGHNESS SUPPRESSION

In a DCZ chip trap, potential roughness originates from
deviations of the current Idc from the straight path of the wire.
As shown in Fig. 4(a), a local variation in wire resistivity
(conductivity patch) or a defect in the side wall of a wire
trace (edge defect) can cause a local deviation in the average
current direction. Improvements in atom-chip manufacturing,
notably the use of evaporation deposition, have reduced these
deviations and in particular edge defects. At present, the scale
for local deviations of a wire trace edge is 100 nm. However,
local resistivity variations persist and typically give rise to
current deviations on the order of 0.1 mrad over distances on
the order of 100 μm. These deviations are much larger than
those generated by edge defects and are the primary source of
potential roughness. Table I summarizes the current deviation
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FIG. 3. Comparison of similar ACZ and DCZ chip traps. Both
traps have a transverse harmonic trapping frequency of ωr = 2π ×
1 kHz for the |2, 2〉 ground state of 87Rb and are located at h =
100 μm directly above the current-carrying wire in the configura-
tions of Figs. 1(b) and 2(c). The DCZ trap uses Idc = 0.8796 A,
Bext = 17.592 G, and BIoffe = 5 G. The trap bottom of the DCZ trap
has been set at 0 μK, i.e., the energy offset from BIoffe has been
subtracted. The ACZ trap operates on the |2, 2〉 ↔ |1, 1〉 hyperfine
transition of 87Rb at ωac = 2π × 6.8 GHz and uses Iac = 0.543 A
(0.384 A rms), Bext-ac = 10.86 G, and detuning δ = 2π × 1 MHz;
BIoffe is not specified since it does not affect the trap (as long as
the associated DCZ shifts are much larger than δ). (a) Trapping
potentials versus x for y = 100 μm. (b) Trapping potentials versus
y for x = 0 μm.

parameters and wire defects reported for some atom chips
based on evaporation deposition.
The current deviation in a DCZ chip trap generates poten-

tial roughness by modifying the axial magnetic field (along
the z axis). If the current deviates by an angle θ away from
the current propagation direction ẑ [see Fig. 4(b)], then the
magnetic field �Bwire that it generates will now include a longi-
tudinal component B|| = Bwire sin θ along ẑ. Importantly, this
B|| component adds linearly to BIoffe. In the small-angle limit,
the current deviation makes a contribution Bwireθ to BIoffe
and thus to the potential energy at the bottom of trap [see
Eq. (4)]. In contrast, the deviation reduces only slightly the B⊥
component of �Bwire along the x axis by Bwireθ2/2. In the DCZ
trapping potential of Fig. 3, a very long 0.1 mrad deviation
(l/2 � h) will generate a potential bump or valley on the
order of 100 nK, which is of the same order as the BEC
transition temperature. The blue curve in Fig. 5 shows the
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FIG. 4. Current path due to defects in a wire. (a) Illustration of
the average path of the current in a planar wire trace due a local
variation in resistivity (conductivity patch defect) and an indentation
in the wire border (edge defect). (b) 1D current model for a wire
trace defect and corresponding magnetic field. A wire defect causes
a “bump” deviation of the dc current Idc (black) from a straight line
trajectory by an angle θ . The bump has an amplitude w and a length
l . The current generates a magnetic field Bwire (red) perpendicular
to the current, while the current bump results in a magnetic-field
component B|| parallel to the current direction, which adds locally
to BIoffe (purple). In the case of an ac current Iac, all of the magnetic
fields are ac except BIoffe.

longitudinal potential-energy profile at the original location of
the trap bottom for a DCZ chip trap with the same parameters
as Fig. 3 and for the triangular current deviation shown in
Fig. 4(b) with θ = 0.1 mrad and l = 100 μm: The positive
(negative) angle of the deviation generates the potential bump
(valley).
In the case of an ACZ chip trap, the longitudinal ac devia-

tion component B|| � Bwire-acθ (along ẑ) cannot contribute to

TABLE I. Summary of typical current-bump deviation dimen-
sions and wire trace defect parameters for atom chips fabricated by
evaporation deposition.

Defect Representative
parameter value Range

30–70 nm [27,28]
Grain size 90 nm 100 nm [29], <100 nm [11]

70 nm [30]

Edge defect 100 nm <100 nm [29], 100 nm [11,31]

0.04–0.16 mrad rms [27]
Bump angle θ 0.1 mrad 0.1–0.4 mrad pk-pk [27]

<0.1 mrad [11]

Bump length l 100 μm 10–50, 79, 90, 300 μm [27]

(a)

(b)

FIG. 5. ACZ and DCZ potential distortion at the original trap
location due to a single current deviation located at z = 0. The
potential distortion is plotted versus axial position z along the wire
trace. (a) Potential distortion from a small current deviation based
on Table I: current bump with w = 5 nm, l = 100 μm, and θ = 0.1
mrad. The inset shows a zoom-in on the much smaller ACZ potential
perturbation. (b) Potential distortion due to a large current deviation:
current bump with w = 2.5 μm, l = 100 μm, and θ = 50 mrad.
The inset shows a zoom-in on the ACZ potential perturbation. The
potential distortions are based on calculations described in Sec. IV
for the same ACZ and DCZ traps used for Fig. 3.

BIoffe, which remains a dc field. Instead, B|| can only contribute
to the ACZ potential by driving a π transition with angular
momentum selection rule �mF = 0. As the trap operates on
σ± transitions, π transitions will either be unavailable or
far off-resonance, and so the B|| component will contribute
much less or not at all to the ACZ trapping potential. For
example, in the energy-level diagram of Fig. 2(b), an ACZ
trap operating on the microwave σ+ hyperfine transition for
the |e〉 state has no π transition that can be spuriously driven.
In the case of a similar trap for the |g〉 state, a π transition
exists but is suppressed, since it is far off resonance (if BIoffe
is sufficiently large). In the case of an ACZ trap based on rf
Zeeman transitions, there are no π Zeeman transitions that
can be driven by a spurious B|| component. However, a π

hyperfine transition to the other hyperfine manifold is possi-
ble, but it is very far off resonance with a detuning δπ given
by the hyperfine splitting (i.e., δπ = 6.8 GHz for 87Rb): if
the allowed π and σ± transitions have comparable couplings,
then the contribution to the ACZ potential from the spurious
π transition is suppressed by roughly θ2δ/δπ .

Simplified model. In the rest of the paper, we ignore
the contributions of these spurious transitions to the ACZ
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potential, since they are either not possible or can be made
sufficiently far off resonance to be strongly suppressed. For-
mally, we are modeling the ACZ potential using an atom with
only two states, which simplifies the treatment significantly,
but also implies that the associated ACZ roughness is some-
what underestimated with respect to a real atom with many
hyperfine states, e.g., 87Rb with eight hyperfine ground states.
However, this simplified model is exact for an alkali-metal
atom with no hyperfine structure (nuclear spin I = 0) and only
two ground states, e.g., 78Rb with a single F = 1/2 hyperfine
manifold (18 minute half-life) [32].
The reduction in the perpendicular component B⊥ of

Bwire-ac due to the current deviation does not significantly
affect the ACZ trapping potential. At the trap location, Bwire-ac
and Bext-ac cancel exactly (both are along the x axis) in the
case of no current deviation. With a current deviation, the
x̂ component of the wire’s near field is Bwire-ac(1− θ2/2) at
the original trap location (to lowest order), and the total mi-
crowave field is then Bwire-acθ2/2. The Rabi frequency� at the
original trap location is thus proportional to Bwire-acθ2/2. In
the far-detuned limit (|δ| � |�|), the ACZ trapping potential
E+ is proportional to |�|2, so the change in E+ is proportional
to B2wire-acθ

4/4. Due to the θ4 dependence, this contribution to
the ACZ trapping potential is relatively unimportant for small
θ .
The current bump also leads to a shift in the trap location

along the x̂ direction. This trap position shift �x is on the
order of the x axis excursion w of the current, with �x ∝ w

[see Fig. 4(b)]. Thus at the original trap location, the trapping
potential increases by �E = (1/2)ω2r �x2, which is propor-
tional to w2, and also proportional to θ2 for fixed bump length
l (in the small-angle limit). This position shift is true for both
the ACZ and DCZ traps, but this contribution to the potential
roughness is the dominant one for the ACZ trap, since the
axial contribution of the DCZ potential is much larger (and
scales like θ ). Figure 5 shows a comparison of the distortions
of the DCZ and ACZ trapping potentials for two current
deviations: Fig. 5(a) shows a small current deviation given by
the parameters of Table I (θ = 0.1 mrad, l = 100 μm, w = 5
nm), and Fig. 5(b) shows an unusually large current deviation
(θ = 50 mrad, l = 100 μm, w = 2.5 μm). Notably, the ACZ
potential deviation is always positive [E+ > 0 in Eq. (5)] and
does not depend on the sign of θ , and so it is symmetric around
the current deviation. In contrast, the DCZ potential deviation
depends on the sign of θ and is antisymmetric around the
current deviation.

IV. 1D WIRE MODEL

In this section, we simulate the potential roughness of
comparable ACZ and DCZ chip traps based on a simple thin
wire model. While the analytic description in Sec. III provides
basic scalings for the roughness of ACZ and DCZ trapping
potentials, a quantitative assessment of the roughness requires
a numerical calculation of the magnetic near field generated
by a specific current-deviation model.
For simplicity, we construct a model for the trapping po-

tential based on 1D current segments. As shown in Fig. 4(b)
the current deviation bump is modeled as a small triangular
deviation in the plane of the chip (xz plane). The triangle is

symmetric (isosceles) and has base length l and transverse
deviation w. The triangular deviation is also characterized by
the bump angle θ = tan−1(2w/l ). Unless specified otherwise,
in this section we will use the values for the current-bump
triangle given in Table I: l = 100 μm and θ = 0.1 mrad (with
w = 5 nm).
We use the Biot-Savart law to calculate the magnetic near

field (dc or ac) for a current segment. The total magnetic
field at a given point (x, y, z) is then the sum of the fields
generated by all the individual segments, e.g., four segments
in the Fig. 4(b) layout. For a segment of current I starting at
position (a, b, c), with length L, and oriented at an angle θ

from the z axis (in the xz plane), the magnetic field �B(x, y, z)
is given by

�B = μ0I

4π

1

x̃2 + ỹ2
(x̃ŷ − ỹ cos θ x̂ + ỹ sin θ ẑ)

×
(

z̃√
x̃2 + ỹ2 + z̃2

+ L − z̃√
(x̃2 + ỹ2 + (L − z̃)2

)
, (7)

where the intermediate coordinate variables x̃, ỹ, and z̃ are
defined as

x̃ = −(z − c) sin θ + (x − a) cos θ, (8)

ỹ = y − b, (9)

z̃ = (z − c) cos θ + (x − a) sin θ. (10)

To study the effect of the current deviation bump, we calcu-
late the trapping potential with and without the bump and then
take the difference of the two potentials to obtain its effect. By
this method, we find that the potential roughness for an ACZ
trap is substantially smaller than its DCZ counterpart.
In addition, in this section, we also study the case of a string

of current deviations, i.e., connected serially one after another.
All of these deviation bumps are identical and in the xz plane
of the chip, although we alternate the sign of the angle θ of
the deviations, as shown in Fig. 8(a). Typically, in the case of
multiple current bumps, an ACZ trap further suppresses the
potential roughness with respect to its DCZ counterpart.

A. Single defect

In this section, we investigate the effect of a single cur-
rent deviation bump, i.e., a single defect (see Fig. 4), on
the trapping potential at its unperturbed location. However,
the current defect also shifts the location of the trap, and
so we study the trapping potential at this new location as
well, including the trapping potential minimum and the trap
frequency.
We examine the effect of the single current deviation bump

by subtracting the “with defect” and the “no defect” trapping
potentials at the “no defect” trap location (i.e., the minimum
of the unperturbed potential). Figure 5(a) shows this trapping
potential difference for the ACZ and DCZ traps of Fig. 3
located at h = 100 μm directly above the chip wire. The
potential difference is plotted as a function of position along
the wire trace (z axis), with the defect located at z = 0. The
current defect triangle is given by the representative values in
Table I, i.e., θ = 0.1 mrad, l = 100 μm, and w = 5 nm. The
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FIG. 6. Trap location deviation in 3D due to a single current-
bump deviation. The unperturbed trap (same as in Fig. 3) is located
along the z axis (at x = 0, y = 0). The wire defect is the same as
in Fig. 5(a), i.e., θ = 0.1 mrad, l = 100 μm, and w = 5 nm. Blue
(dashed): DCZ trap bottom position. The trap deviates in both the
x and y directions. Red (solid): ACZ trap bottom position. The trap
only experiences a shift along the x direction. Green (solid): Current
path with the x-axis scale shrunk by a factor of two for illustration
purposes. In this plot, the current path is located at y = −100 μm
position, but has been placed at y = −1 nm for illustration purposes.
The inset shows the potential energy at the trap minimum position for
the ACZ (solid red) and DCZ (dashed blue) traps. The unperturbed
trap minimum energy has been subtracted.

DCZ trap experiences a bipolar potential-energy excursion of
roughly ±10 nK, while the ACZ trap experiences a much
smaller potential increase of about 1 pK: The perturbation
of the ACZ potential is about 104 times smaller than the
corresponding perturbation in the DCZ potential. Figure 5(b)
shows the potential perturbation for a larger current defect
triangle with θ = 0.05 rad, l = 100 μm, and w = 2.5 μm.
In this case, the ACZ potential perturbation is only 24 times
smaller than its DCZ counterpart, i.e., a 0.25 μK increase
versus a ±5.5 μK excursion. In both Figs. 5(a) and 5(b),
the roughness of the ACZ trap is much smaller than for the
DCZ trap. Furthermore, the ACZ potential experiences the
perturbation as a positive single-sided bump, while the DCZ
potential experiences the perturbation as a much larger bipolar
excursion (see explanation in Sec. III).
The current deviation distorts the trapping potential suf-

ficiently to displace the trap locally. Figure 6 shows a
three-dimensional (3D) plot of the (x, y) location of the poten-
tial minimum in the xy plane as a function of axial z position,
for a current deviation bump located at z = 0. Both the ACZ
and DCZ traps experience small transverse displacements in
the xy plane. The ACZ potential’s (x, y) minimum is only
shifted in the direction of the current bump, along the x direc-
tion: the minimum’s position essentially mimics the current
bump. The DCZ potential minimum is displaced in both x and
y directions and traces out a spiral whose maximum x-axis
displacement equals that of the ACZ potential.
The inset of Fig. 6 shows the value of the potential energy

at the (x, y) minimum location as a function of the z position.
The potential energy at the ACZ potential minimum along z
remains at zero and is unchanged by the presence of the cur-
rent bump (a zoom-in shows that it remains at zero to within
the numerical error of our computations). Consequently, the

(a)

(b)

FIG. 7. Trap frequency deviations � fx,y due to a single current
bump at z = 0. The current bump is the same as in Figs. 5(a) and 6,
i.e., θ = 0.1 mrad, l = 100 μm, and w = 5 nm. The trap frequency
deviation � f for the (a) ACZ case is roughly 500 times smaller than
for the (b) DCZ case. The deviation � f is strongest along the x axis
(bump direction). The unperturbed trap is the same as in Fig. 3.

current bump does not impose any axial confinement on the
ACZ trap and only perturbs its layout. However, the potential
energy at the DCZ potential minimum varies significantly
along z over the course of its spiral path near the current bump.
This variation in the potential is comparable to that in Fig. 5(a)
and necessarily results in axial confinement: The result is
that atoms congregate at the point with the lowest potential,
generated by the current bump (i.e., just to the right of z = 0).
This mechanism generates BEC cloud fragmentation in DCZ
traps, but according to this analysis it should not occur for
ACZ traps.
In addition to displacing the trap, the current deviation

bump also perturbs the transverse trapping frequencies (i.e.,
the curvature of the trapping potential). We define the trap
frequency deviation as � f = (ωdefect − ωr )/2π , where ωr is
the radial trap frequency without any current defect (i.e.,
ωr = 2π × 1 kHz for the trap of Fig. 3) and ωdefect is the trap
frequency with the defect. The trap frequency deviation � f
is different in the x and y directions and depends on the axial
position z. Figure 7 shows the trap frequency deviations � fx

and� fy as a function of axial position z for the ACZ and DCZ
traps. For both traps, the change in trap frequency is quite
small, although the change for the ACZ trap is three orders
of magnitude smaller than for the DCZ trap. In the case of the
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ACZ trap, the current bump results in a minute reduction in
the trap frequencies along both transverse direction by a few
tens of μHz, with the largest decrease along the x axis (bump
direction). The DCZ trap experiences small bipolar changes in
its transverse trap frequencies of a few tens of mHz, with the
largest again along the bump direction (x axis). In both cases,
the change in trap frequency is sufficiently small to have little
impact (for this small current bump).

B. Multiple defects

In this section, we investigate the effect of multiple current
deviation bumps on the trapping potential. In the case of
a single current deviation bump, the magnetic near field is
distorted beyond the immediate vicinity of the bump itself.
Multiple current defects can thus be expected to contribute to
the distortion of the trapping potential at a given point. No-
tably, we find that multiple bumps typically suppress the ACZ
potential roughness but enhance the DCZ potential roughness.
We construct a model with multiple current bumps by

stringing together a series of identical single bumps with
alternating±θ deviation angles. Figure 8(a) shows a multiple-
bump model with 50 current bumps. The multiple-bump
model is spatially periodic with period λ = 2l (there is no
space between neighboring bumps).
In Fig. 8(b), we show the ACZ trapping potential distortion

at the location of the original ACZ trap using the same bump
parameters as in Fig. 5(a). Each ±θ current bump results
in alternating trap displacements in the ±x̂ directions of a
little less than ±w. The net effect is that each current bump
results in a single positive ACZ trapping potential bump that
is somewhat smaller in strength than a single isolated bump,
e.g., as shown in Fig. 5(a). If we define the ACZ potential
roughness �Erough-ac as the peak-to-peak deviation of the dis-
torted trapping potential in the central section of the model,
then we see that �Erough-ac � 1 pK in Fig. 5(a) has decreased
to�Erough-ac � 0.5 pK in Fig. 8(b). Furthermore, there are two
ACZ potential bumps for every period λ (for a total of 50).
The DCZ trapping potential is distorted in a different man-

ner by the presence of multiple current bumps. Figure 8(c)
shows the DCZ trapping potential deviation at the location of
the original DCZ trap, based on the same multibump model
as Fig. 8(b). Within the series of current bumps, each an-
gled current segment (of length l) at angle +θ generates a
corresponding positive bump in the trapping potential, while
segments at angle −θ generate negative dips in the potential.
The net effect of the alternating ±θ current bumps is to pro-
duce trapping potential variations that are somewhat larger in
strength than a single isolated bump [see Fig. 5(a)]. The DCZ
potential roughness �Erough-dc is the peak-to-peak deviation
of the distorted trapping potential in the central portion of
the model: in the single bump of Fig. 5(a), �Erough-dc � 20
nK, while for the multibump model of Fig. 8(c) the roughness
increases to �Erough-dc � 30 nK. Notably, there is only one
DCZ potential bump (and dip) for every period λ (for a total
of 25 bumps).
To quantify the comparison of the ACZ and DCZ trap-

ping potential roughness, we introduce the suppression factor,
which is the ratio of the two roughnesses for a same multiple-

(a)

(b)

(c)

ac
dc

FIG. 8. Trapping potential distortion for a wire with multiple
periodic current bumps. (a) Schematic of a chip wire with 50 current
deviation bumps with alternating orientations (in the xy plane). The
diagram is shown for a dc current Idc but is identical in the case of
a microwave ac current Iac. The parameters for each current bump
are the same as in Fig. 5(a), i.e., θ = ±0.1 mrad, w = ±5 nm,
and l = 100 μm. The unperturbed trap is the same as in Fig. 3.
(b) Deviation of the ACZ trapping potential versus axial position z at
the original trap location. (c) Deviation of the DCZ trapping potential
versus z at the original trap location.

bump model:

suppression factor = �Erough-dc
�Erough-ac

. (11)

In the case of the model in Fig. 8, the suppression factor is
about 6× 104.
We can use the suppression factor to compare how the

ACZ and DCZ roughness vary relative to each other as the
parameters of the multiple-bump model are varied. Figure 9
shows the suppression factor for a model with 500 current
bumps as the trap height h is varied, Fig. 9(a), as the bump
widthw is varied, Fig. 9(b), and as the bump length l is varied,
Fig. 9(c). In all three cases, the suppression factor is larger
with multiple bumps than with a single current bump.
First, the magnetic roughness falls off at larger trap heights,

and the ACZ roughness falls off faster than the DCZ rough-
ness. Figure 9(a) shows that the roughness falls off faster for
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FIG. 9. Suppression factor for a wire with periodic current deviation bumps. The computations for the plots are based on the periodic
current deviation model of Fig. 8 with 500 alternating current bumps. The plots show the single-bump suppression factor for comparison
(dashed lines), based on the model of Fig. 4(b) with the same bump parameters as the multibump case (solid lines). The ACZ and DCZ trap
frequencies are maintained at ωr = 2π × 1 kHz for all of the trap heights (for all the curves in the plots). The unperturbed trap at h = 100 μm
is the same as in Fig. 3. (a) Suppression factor versus trap height h, with bump parameters θ = ±0.1 mrad, w = ±5 nm, and l = 100 μm.
(b) Suppression factor versus bump width w for various trap heights; the bump length is held constant at l = 100 μm. (c) Suppression factor
versus bump length l for various trap heights; the bump width is kept constant at w = ±5 nm.

the ACZ trap than for the DCZ trap, since the suppression fac-
tor grows quickly as the trap height h increases. Furthermore,
the multiple-bump model results in somewhat more roughness
suppression than the single-bump one.
Second, the suppression factor also depends on the current

deviation bump width. In the case of a single bump the sup-
pression factor is proportional to 1/wl . This basic behavior
is expected since the DCZ roughness is proportional to θ ,
which in the small-angle limit is given by θ = 2w/l , while the
ACZ roughness is proportional to w2 and depends much less
on l . Figure 9(b) shows the suppression factor as a function
of current deviation width w, while keeping the deviation
length fixed at l = 100 μm: The plot shows that the suppres-
sion factor falls off as 1/w in the single- and multiple-bump
cases, with the latter benefiting from additional suppression of
roughness.
Third, the suppression factor depends on the bump length.

Figure 9(c) shows the suppression factor versus bump length
l for a fixed bump width of w = ±5 nm. In the case of a
single bump, the suppression factor falls off roughly as 1/l
(at short l , the falloff is a little faster). In the case of multiple
periodic current bumps, the suppression factor is again larger
than the single-bump case, but also falls off faster than 1/l ,
thus further suppressing short l bumps. The faster-than-1/l
falloff is accentuated for larger trap heights.

V. ac SKIN EFFECT

The distribution of current in a wire depends on its fre-
quency. A dc current propagates uniformly in a wire, except
for deviations due to internal wire defects, e.g., Fig. 4(a). In
contrast, an ac current tends to hug the lateral edges of a trace
as the frequency is increased, due to the ac skin effect [33],
as shown in Fig. 10(a). While the previous section investi-
gated differences in DCZ and ACZ potential roughnesses for
a given current deviation, in this section, we study how the ac
skin effect can suppress or enhance different types of current

deviations. In particular, at high frequencies, the ac skin effect
strongly suppresses current deviations due to spatial conduc-
tivity variations in a wire trace. However, the ac skin effect
can also somewhat exacerbate current deviations arising from
defects in the edges of a wire trace.
We use a commercial electromagnetic simulation solver

(FEKO by Altair, Inc.), based on the method of moments, for
accurate modeling of the ac skin effect [33]. The use of such a
solver also allows us to replace our simple thin wire model
with a microstrip transmission line, which is a convenient
building block for sculpting microwave near field structures,
such as an ACZ trap [25]. Used to convey microwave signals,
a microstrip is a form of transmission line consisting of a
conducting trace separated from a conducting ground plane
by a dielectric layer (substrate) [34]. Figure 10(a) shows a
schematic of our microstrip transmission line (used for all
simulations in this section) and the resulting current distribu-
tion due to the ac skin effect at 6.8 GHz. Our microstrip model
has a 50 � impedance and consists of a 54 μm wide copper
trace on a 50-μm-thick aluminum nitride (AlN) dielectric
substrate with a copper ground plane. High-frequency ac skin
effect computations require a very fine discretization mesh,
which in turn requires substantial computational resources, so
we only use a very fine mesh over a central section of the mi-
crostrip trace’s length. As shown in Fig. 10(a), the microwave
current hugs the inside lateral edges of the microstrip trace.
The ac skin effect is due to the generation of eddy currents

from the ac magnetic field of the microwave current, which
concentrates the ac current along the skin of the conduc-
tor [33]. The skin depth characterizes the length scale for the
thickness of the current “skin” and is given by

√
2/σμωac. For

example, at ωac = 2π × 6.8 GHz, the skin depth is 0.8 μm
in copper with conductivity σ = 5.813× 107 (�m)−1 and
magnetic permeability μ � μ0. In the case of a ribbon-
like conductor, such as the microstrip trace, the skin of the
lateral current distribution is typically several skin depths
wide [33].
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FIG. 10. Microstrip transmission line model showing the ac skin
effect and the conductivity patch model. (a) Microstrip transmission
line model used for all simulations in Sec. V. The copper microstrip
trace is 1 mm long, 54μmwide, and 5μm thick and lies on a 50-μm-
thick aluminum nitride (AlN) substrate with a 5-μm-thick copper
ground plane. The AlN substrate has dimensions 1 mm × 0.8 mm,
dielectric constant ε = 8.9, and a loss tangent of 0.0005. The trace
uses a fine mesh with roughly 1.6 μm triangular elements (or finer)
over its central 0.4-mm-long section, while the rest of the trace uses
a coarser mesh with roughly 9 μm triangular elements. The current
density is shown at 6.8 GHz and is only accurate in the central high-
mesh section. (b) Close in view of the conductivity patch (light blue)
located in the central high-mesh section of the trace (dark blue). The
patch is also visible as a black rectangular outline in panel (a).

The input and output ports of the microstrip trace have
50 � source and load impedances, respectively, to match the
broadband 50 � impedance of the trace (dc–20 GHz) and
to suppress any standing waves. In all of the simulations
presented in this section, we use a 1 V rms source, which
corresponds to 20 mW of microwave power and a rms current
of 20 mA. However, the roughness results in this section do
not depend on the specific input power, e.g., the average
transverse position of the current and fractional change in the
magnetic near field are independent of the current magnitude.
We compute such quantities over the range of 1 MHz to
10 GHz to determine their frequency dependence. We use
1 MHz as a stand-in for dc, since the skin depth at this
frequency is larger than the trace width, resulting in a largely
uniform transverse current distribution (in the absence of wire
defects).
In the next two sections, we study the role of the ac skin

effect in determining the current distribution, and associated
magnetic roughness, in the presence of two types of defects
[35]: (a) a local conductivity variation in the bulk of the
microstrip trace, and (b) a small geometric defect in one of
the edge walls of the trace.

FIG. 11. Current distribution in a copper microstrip due to an
unusually large ±50% conductivity patch defect. The microstrip is
nominally 50 � and driven with 20 mW of power at 1 MHz or
6.8 GHz. The performance at 1 MHz is representative of the current
distribution for a dc current. (a) Low-frequency current distribution
for a +50% conductivity patch. (b) High-frequency current distri-
bution for a +50% conductivity patch. (c) Low-frequency current
distribution for a −50% conductivity patch. (d) High-frequency cur-
rent distribution for a −50% conductivity patch.

A. Conductivity-patch model

In this section, we model the current flow and the resulting
magnetic near field due to a local conductivity variation, i.e.,
a “conductivity patch.” In particular, we focus on how the
current flow and magnetic near field vary as a function of
frequency.
At dc and low frequencies, current flows according to

Ohm’s law. However, for an ac current, the ac skin effect
redistributes the current towards the edges of a wire trace [33].
In the presence of a local conductivity variation defect, this
ac skin effect competes with Ohm’s law to determine the
current distribution in the trace. For illustrative effect, Fig. 11
shows the current distribution for a rectangular patch with an
unusually large ±50% conductivity change at both high and
low frequencies. At low frequency, the current distribution is
dominated by Ohm’s law, resulting in a patch that effectively
repulses [low conductivity, Fig. 11(a)] or attracts currents
[high conductivity, Fig. 11(c)]. At very high frequencies, the
ac skin effect modifies the current distribution significantly
and pushes the current to the trace edges, while also making
the currents along the two edges more symmetric [Figs. 11(b)
and 11(d)]. In turn, these changes in the current distribution
affect the magnetic-field roughness and the trapping-potential
roughness.
More specifically, we can determine how a current devi-

ation, due to a conductivity patch, varies as a function of
frequency. The center of current (COC) represents the average
transverse current deviation. In terms of the parameters of
the 1D wire model of Sec. IV, the COC is equivalent to
the transverse deviation w of the wire current. The current
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FIG. 12. Current and magnetic-field distortions due to the ±0.1% conductivity patch. (a) Center-of-current (COC) deviation along x axis,
evaluated halfway down the length of the microstrip at z = 0. In the case of no conductivity patch, the COC is zero. The magnetic distortion δB
is computed at the trap location, which is 100 μm above the geometric center of the trace. (b) The magnetic distortion δB(x,y,z) of the linearly
polarized magnetic-field components at z = 0. (c) The magnetic distortion δB± of the circularly polarized magnetic-field components at z = 0.
(d) The distortion δB(x,y,z) of the magnetic-field components at z = 50 μm (edge of conductivity patch). The σ + 0.1%σ and σ − 0.1%σ cases
are indistinguishable at the resolution of plots (b)–(d) and so are plotted as a single curve.

deviation, in turn, generates a corresponding deviation in the
ac magnetic near field at the location of the trap, which we
take to be located at h = 100 μm above the wire trace center.
We use a rectangular conductivity patch, shown in

Fig. 10(b), based on the parameters of Table I and Ref. [27].
The patch has a conductivity variation of ±0.1%, which
accounts for actual conductivity variations or an equivalent
change in the thickness of the trace over the patch area [27].
By placing the patch on one edge of the trace, the resulting
COC deviation is maximized. The patch is located mid-
way along the length of trace. We set the patch length at
l = 100 μm and then use a simulation at low frequency
(1 MHz), with negligible skin effect, to determine the patch
width that results in a transverse COC deviation of roughly
5 nm [see Fig. 5(a)], consistent with Table I: we settle on a
patch width of 15 μm, which results in a COC of δx = 5.7
nm.
Formally, the COC is the average x-axis position of

the surface current-density magnitude K (x) (in A/m), i.e.,
COC = ∫

K (x)xdx/
∫

K (x)dx, where the integrals are taken
over the 54 μm width of the microstrip trace. In practice,
extracting a sufficiently smooth surface current density K (x)
from the simulation software is difficult given the triangular
mesh, so instead we use the surface magnetic field Bx(x)
evaluated just 20 nm above the surface of the trace. In very

close vicinity of the surface current, the surface magnetic field
(in the x̂ direction) is a good proxy for K (x) since the two are
related by Bx(x) � μ0K (x)/2 [33]. This relation is accurate as
long as Bx(x) is evaluated at a distance much closer than the
characteristic length scale for spatial variations of K (x), e.g.,
the skin depth or a local defect.
Figure 12(a) shows the COC due to the conductivity patch,

evaluated halfway down the length of the microstrip trace at
z = 0. The current distribution shifts towards the patch for a
higher-conductivity patch (σ + 0.1%σ case) and shifts away
from the patch for a lower-conductivity patch (σ − 0.1%σ

case). In the two cases, the COC deviations are essentially
equal and opposite. Importantly, the magnitude of the COC
deviation remains constant at about 6 nm up to 10 MHz, after
which it decreases steadily by roughly an order of magnitude
as the frequency increases up to 1 GHz. From 1 GHz to
10 GHz, this decrease continues, but at a lower rate. For
example, the COC deviation at 6.8 GHz is roughly 20 times
smaller than at 10 MHz. The main conclusion for the COC
plot in Fig. 12(a) is that current deviations due to conductivity
variations are suppressed at high frequencies, potentially by
an order of magnitude or more.
The current deviation of the conductivity patch also gener-

ates a distortion of the ac magnetic near field. We define this
distortion as the difference δB between the magnetic near field
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Bk,defect (with k = x, y, z) with the conductivity of the patch set
at σ ± 0.1%σ and the magnetic near field Bk,no-defect with the
conductivity set to σ :

δBk = |B̃k,defect − B̃k,no-defect|. (12)

We use a tilde to denote a complex quantity, such as B̃,
which incorporates magnitude and phase distortions associ-
ated with the conductivity patch. Importantly, we use the same
computation mesh for simulating B̃k,defect and B̃k,no-defect.
Since the hyperfine transitions used for ACZ trapping re-

quire circularly polarized magnetic fields, we also compute
the magnetic distortion δB± associated with the B± compo-
nents:

δB± = |B̃±,defect − B̃±,no-defect|. (13)

The complex B̃± circular polarization components are
computed according to the expressions

B̃±,defect = B̃x,defect ± iB̃y,defect, (14)

B̃±,no-defect = B̃x,no-defect ± iB̃y,no-defect. (15)

The magnetic distortion δB is evaluated at a trap height
of h = 100 μm above the geometric center of the trace (i.e.,
centered on the length and width of trace). For simplicity, the
external magnetic field Bext-ac and the Ioffe field BIoffe are not
included.
We compute the fractional distortion δB/Btotal using the

total magnetic field Btotal (undistorted):

Btotal =
√ ∑

k=x,y,z

|B̃k,no-defect|2. (16)

Figures 12(b)–12(d) show that the fractional distortion
δB/Btotal of the magnetic near field is suppressed at high
frequencies above 10 MHz, with a falloff similar to that for
the COC in Fig. 12(a). Consequently, potential roughness
from bulk conductivity variations is suppressed by using high-
frequency currents.
Figure 12(b) shows the magnetic distortion for a trap lo-

cated halfway down the microstrip trace, i.e., at the middle
of the conductivity path (z = 0). At this position, δBz = 0
due to symmetry (i.e., z = 0 is located midway along the
patch length). Furthermore, the By component of the mag-
netic near field has a much larger distortion than the Bx

component, which is consistent with a small translation δx
of the COC: In a simplified picture where all the current is
at the COC (1D wire model), then from geometric projection
we expect δBy/Bx = δx/h and δBx/Bx = (1/2)(δx/h)2, with
Btotal � Bx. At low frequency, we have δx � 5.7 nm for the
COC at 1 MHz, so for h = 100 μm, we expect δBy/Btotal =
5.7× 10−5, which is roughly consistent with δBy/Btotal =
6.5× 10−5 in the plot of Fig. 12(b) at 1 MHz.
At high frequency (i.e., 10 GHz), the y-axis distortion

δBy/Btotal in Fig. 12(b) is somewhat larger than expected from
the COC result: The COC has a deviation of about δx = 0.25
nm, which corresponds to a fractional magnetic distortion of
2.5× 10−6, but δBy/Btotal � 4× 10−6. The simulation gives
a magnetic distortion 60% larger than expected from a sim-
ple model where all the current is located at the COC, thus

FIG. 13. Microstrip edge-defect models. The edge defect consist
of a square with a 100 nm side that is either missing or that protrudes
from the conducting trace’s edge. (a) Defect-in model. (b) Defect-out
model. The defect is located midway down the length of the trace at
z = 0. Due to the very small size of the edge defect, we use a finer
computation mesh within it (and in its vicinity) with triangles on the
order of 20 nm in size.

showing that the full current distribution must be taken into
account.
Figure 12(c) shows that the conductivity patch does not

just modify the magnitude of the current distribution but also
the phase. The plot shows that the δB+ and δB− components
[given by Eqs. (13)–(15)] are similar but not identical in mag-
nitude, thus indicating that the Bx and By components have
accumulated a small phase difference between them due to
the conductivity patch.
Finally, Fig. 12(d) shows the magnetic distortion at the

edge of the conductivity patch (z = 50 μm). In this case,
the longitudinal magnetic distortion δBz is nonzero and also
follows the trend of suppressed roughness at high frequen-
cies. At low frequency (1 MHz), δBz/Btotal = 2.6× 10−5 is
roughly consistent with the performance observed for the 1D
wire model with w = 5 nm. Indeed, Fig. 5(a) shows a DCZ
trapping potential deviation of 20 nK, which corresponds to a
fractional deviation of δBz/Btotal � 1.7× 10−5 (or 1.9× 10−5
when adjusted for a COC deviation of δx = w � 5.7 nm).

B. Edge-defect model

In this section, we show that an ac current experiences a
larger deviation from a localized defect in the sidewall of a
trace than a dc current. The ac skin effect concentrates the
current along the inside edges of the microstrip, thus making
the current distribution more susceptible to defects in the trace
edges, i.e., edge defects. Furthermore, we find that an edge
defect in which material is missing from the sidewall, referred
to as “defect in,” has a larger impact on the ac current path
than a defect where the sidewall sticks out, referred to as
“defect out.” However, this high-frequency ac roughness due
to sidewall imperfections is only about a factor of two larger
than the dc case, for edge defects based on Table I. At high fre-
quency (10 GHz), a defect in generates a COC deviation that is
comparable in magnitude to that from the conductivity patch.
We study the effect of edge defects on the current path

and the magnetic near field roughness with the simple edge
defect model shown in Fig. 13. A 100 nm× 100 nm square
conducting patch is either added to the sidewall of the trace
(i.e., defect out) or removed from it (i.e., defect in). Figure 14
shows the current density in the vicinity of the edge defect
at low frequency (1 MHz) and high frequency (6.8 GHz).
In the case of a defect-in, the current cannot enter the area
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FIG. 14. Current distribution in the vicinity of an edge defect for
a microstrip trace. (a) Defect-in model at low frequency (1 MHz),
which is representative of dc performance. (b) Defect-in model at
high frequency (6.8 GHz). (c) Defect-out model at low frequency
(1 MHz). (d) Defect-out model at high frequency (6.8 GHz). The
color bar shows the magnitude of the current density and is the same
for all four panels. The arrows show the direction of the current-
density magnitude. Displacement currents are not shown.

of missing conductor, and so the current experiences a fairly
significant disruption to its average path. In the case of a
defect-out, the current does enter the conducting protrusion,
but not significantly so, and thus the current experiences a
much smaller deviation. However, in both of these cases, the
ac skin effect ensures a larger current deviation at high fre-
quency than at low frequency: at higher frequency, the current
becomes increasingly concentrated on the lateral edges of the
trace, leading to a larger fraction of the current that can be
deviated by an edge defect.
We evaluate the COC by the same method used for the

conductivity patch. The COC is the average transverse shift
δx in the microstrip current due to the edge defect, and it
represents the current deviation width parameter w in the 1D
wire model. Figures 15(a) and 15(b) show that the COC shifts
away from a defect-in and towards a defect-out, as expected.
This shift increases by a factor of two from dc to 10 GHz.
The largest shift is for the defect-in case, which varies from
1 to 2 nm: this COC shift is larger than the one generated by
the conductivity patch above 100 MHz [see Fig. 12(a)], albeit
over a much shorter axial length. In contrast, the COC shift for
the defect-out case is more than an order of magnitude smaller
and varies from 40 to 80 pm (factor of ≈25 smaller).
We calculate the distortion of the magnetic field δB due to

an edge defect with the same method as for the conductivity
patch model, i.e., using Eqs. (13)–(16). Figures 15(c)–15(f)
shows the magnetic-field distortion for edge defects as a
function of frequency. Similar to the COC deviation, the
defect-in generates a magnetic-field distortion that is over an

order of magnitude larger (factor of ≈25) than the defect-
out. At higher frequencies, the magnetic distortion generally
increases: the δBx distortion increases by a factor of two to
three from 1 MHz to 10 GHz, while the larger δBy distortion
sees only a modest increase over this frequency range. The
longitudinal magnetic field Bz should be null by symmetry,
and indeed δBx is negligible at low frequencies. However,
for frequencies above 1 GHz, δBz develops a nonzero value
(mechanism not investigated) and becomes comparable to δBx

(albeit smaller) at frequencies above 1 GHz.
Similar to the conductivity patch model, the ŷ component

of the magnetic field experiences the largest distortion from
the edge defects, while the x̂ component distortion is generally
2–10 times smaller. However, in comparison with the conduc-
tivity patch model, the edge defects generate a magnetic-field
distortion that is typically an order of magnitude or more
smaller at low frequencies. For example, at 1 MHz the con-
ductivity patch generates a δB distortion that is 30 times larger
than the largest edge-defect distortion (defect-in). However,
at high frequencies, the conductivity patch and edge defect
distortions become comparable, even though the edge defect
is more than three orders of magnitude smaller in size than
the conductivity patch: at 10 GHz, the COC deviation for
the defect-in is somewhat larger than the conductivity patch
COC deviation, while the magnetic-field distortion for the
conductivity patch is only two times larger than the defect-in
distortion.
Finally, at high frequencies, the edge defect induces a

phase difference between the x and y magnetic components,
thus leading to different B+ and B− circular polarization com-
ponents of the near field. This effect is most apparent in the
case of the defect-out above 1 GHz, which is clearly visible in
Fig. 15(f).

VI. SUMMARY AND OUTLOOK

In summary, we have shown that potential roughness for an
ACZ chip trap is expected to be strongly suppressed relative
to a similar DCZ chip trap. The character of the roughness
differs between the two traps. In a DCZ trap, the roughness
primarily modifies the local strength of the potential at the
bottom of the trap due to a magnetic-field component along
the wire axis. In an ACZ trap, the roughness manifests itself
primarily as a small local shift in the transverse location of the
trap in the plane parallel to the chip.
The roughness suppression is due to two main mechanism:

(1) Roughness in the ac magnetic near field contributes only
modestly to the ACZ trapping potential since it tends to drive
transitions that are not allowed by selection rules or that are
suppressed because they are far off resonance; and (2) at
high frequencies, the ac skin effect suppresses current devi-
ations due to bulk conductivity variations in the chip wires.
Table II summarizes the suppression of roughness for ACZ
traps operating at low and high frequencies due to these two
effects. Furthermore, multiple defects tend to smoothen out
the roughness from any one defect, thus resulting in further
suppression of ACZ potential roughness. However, we also
find that at high frequencies the ac skin effect leads to a small
increase in roughness (factor of two or less) due to defects in
the edges of a chip wire trace.
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FIG. 15. Current and magnetic-field distortions due to “in” and “out” edge defects. The defect is located at z = 0. (a) Center-of-current
(COC) deviation for the defect-in. (b) COC deviation for the defect-out. The COC deviation is along the x axis passing through the center
of the edge defect. The magnetic distortion δB is computed at the trap location, which is 100 μm above the geometric center of the trace
and at z = 0. (c) The magnetic distortion δB(x,y) of the linearly polarized magnetic near field components for the defect-in. (d) The magnetic
distortion δB(x,y,z) for the defect-out, as well as δBz for the defect-in. (e) The magnetic distortion δB± of the circularly polarized magnetic-field
components for the defect in. (f) The magnetic distortion δB± for the defect-out. For panels (c)–(f), we use ribbons to show the max-min range
of values obtained from multiple simulations with different mesh layouts in the vicinity of the edge defect.

TABLE II. Summary of roughness suppression for an ACZ trap,
relative to a comparable DCZ trap, located at a distance h = 100 μm
from the chip wire. The roughness is generated by a single cur-
rent deviation with dc parameters w = 5 nm and l = 100 μm, due
to a bulk conductivity variation of ±0.1%. The suppression factor
contributions are based on Fig. 5(a), the 1/w scaling in Figs. 9(b)
and 12(a).

Suppression factor
contribution

Suppression rf trap Microwave trap
mechanism 10 MHz 6.8 GHz

ACZ physics 2× 104 2× 104
(Secs. III–IV)

ac skin effect, cond. patch 1 20
(Sec. V A, COC deviation)

Combined suppression 2× 104 4× 105

While the increase in current deviations due to edge defects
is small, it becomes comparable to deviations due to bulk
conductivity variations at high frequency (1 GHz and above).
However, the short length of edge defects (≈100 nm) limits
the resulting roughness of traps that are sufficiently far from
the chip. Furthermore, edge defects are easier to observe and
correct in the chip manufacturing process, since they can be
observed by visual inspection, unlike bulk-conductivity varia-
tions.
We note that the microstrip transmission line approach to

ACZ trapping opens up two new sources of roughness that
are not studied in this paper. Defects in both the dielectric
substrate and the ground plane could contribute to the po-
tential roughness in a microwave ACZ trap. These roughness
mechanisms are a topic for future research and have no analog
in DCZ chip traps.
We recall that the roughness of the ACZ potential in

this paper is based on a simplified two-level model of the
atom’s hyperfine ground states. A more accurate treatment
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should include the role of far-off-resonance transitions (e.g.,
π transition), which can result in a small ACZ energy shift
of the untrapped state [i.e., |g〉 in Fig. 2(b)]. This small
level shift will then generate a roughness-induced, position-
dependent shift of the detuning δ(z) on the |e〉 ↔ |g〉 trapping
transition. In this way, current deviations can drive far-off-
resonance transitions, which can exacerbate the ACZ potential
roughness, although this contribution is suppressed by the
far-off-resonance nature of the transitions. This roughness
mechanism depends on the atom’s specific hyperfine struc-
ture, the DCZ energy shifts from the axial magnetic field
BIoffe, and the detuning δ and is a topic for future, more
detailed theoretical work.
To conduct an experimental verification of roughness sup-

pression, the DCZ and ACZ traps must be generated from the
same source wires. A chip with three parallel wires generates
a trap without the need for an externally applied magnetic field
Bext, as the two outer wires generate Bext on-chip. These wires
can support dc or rf currents, and so the same three wires can
generate an ACZ trap or a comparable DCZ trap. In the case
of a microwave ACZ trap, the three wires must be replaced by
microstrips [25], which can also support dc currents.
A qualitative observation of roughness suppression can be

conducted by the same method used in Ref. [11,36], whereby
the trapping potential and its roughness are extracted from in
situ images of the atomic density profile. In the case of chip
traces with current deviations consistent with the parameters
of Table I, the DCZ trap roughness can be observed with
a thermal gas with a temperature of 10–100 nK or a BEC.
However, the ACZ roughness is expected to be in the pK
range [see Fig. 5(a)], which is too small to be observable with

this method. Such an experiment will only a provide a qual-
itative observation of roughness suppression, unless another
roughness mechanism exists beyond those considered in this
paper. To measure both DCZ and ACZ roughness, the simplest
method is to use an unusually large defect (e.g., an engineered
artificial defect), such as the one in Fig. 5(b).
If the predictions for the suppression roughness are con-

firmed by experiment, then an ACZ trap can be operated
closer to the chip traces without suffering from significant
roughness. Operating closer to the chip will result in lower
microwave power requirements, and will also benefit from
steeper and deeper trapping potentials. In an atomtronics
context, operation closer to the chip can be done with nar-
rower traces for denser integration. In a physics context,
operation closer to the chip also opens up the possibility
of using other potentials for manipulating atoms, such as
the ac Stark potential generated by a microwave electric
near field and eventually evanescent optical fields. Looking
forward, the ac Stark potential of a microwave near field
will also include roughness and so is an avenue for future
investigation.
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