Research Highlights (Required)

e Current approaches are driven by data-hungry deep learning algorithms which require large amounts of annotated
training data.

e Deep learning models are inductive learners where the vocabulary is fixed and do not generalize beyond their training
domain.

o We address the problem of open world action recognition (i.e., unknown vocabulary) with Pattern Theory and Concept-
Net.

o Extensive experiments show our competitive performance for open world egocentric action recognition and object
detection.
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ABSTRACT

Advances in deep learning have enabled the development of models that have exhibited a remarkable
tendency to recognize and even localize actions in videos. However, they tend to experience errors
when faced with scenes or examples beyond their initial training environment. Hence, they fail to
adapt to new domains without significant retraining with large amounts of annotated data. In this
paper, we propose to overcome these limitations by moving to an open-world setting by decoupling
the ideas of recognition and reasoning. Building upon the compositional representation offered by
Grenander’s Pattern Theory formalism, we show that attention and commonsense knowledge can be
used to enable the self-supervised discovery of novel actions in egocentric videos in an open-world
setting, where data from the observed environment (the target domain) is open i.e., the vocabulary
is partially known and training examples (both labeled and unlabeled) are not available. We show
that our approach can infer and learn novel classes for open vocabulary classification in egocentric
videos and novel object detection with zero supervision. Extensive experiments show its competitive
performance on two publicly available egocentric action recognition datasets (GTEA Gaze and GTEA
Gaze+) under open-world conditions.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Computer vision models have taken great strides in action
recognition in egocentric videos [1, 2, 3, 4, 5] and action lo-
calization [6, 7]. Success has largely been achieved with su-
pervised models driven by deep learning approaches trained in
an inductive learning setting to learn data-driven associations
between input and a fixed set of classes. However, there ap-
pears to be an implicit closed world assumption in these ap-
proaches, i.e., they assume that all observed data is composed
of a static, known set of objects (nouns), actions (verbs), and ac-
tivities (noun+verb combination) that are in 1:1 correspondence
with the vocabulary from the training data. Hence, they fail to
adapt to new domains without significant re-training with large
amounts of annotated data. We argue that this limitation stems
from two common themes: inductive learning and knowledge
representation. The former refers to their tendency to experi-
ence errors when faced with scenes or examples beyond their
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initial training environment and hence fail to adapt to new or
similar domains. The latter refers to the need for significant,
carefully curated re-training of existing models to learn new
concepts. Hence, one must account for every eventuality when
training these systems to ensure their performance in real-world
environments. The combination of these two issues means that
current systems are restricted to narrow, domain-specific envi-
ronments with specific, pre-defined rules.

In this paper, we propose to move towards a more open-
world setting by augmenting the learning process with prior
knowledge from largescale knowledgebases such as Concept-
Net [8, 9] and decoupling the ideas of recognition and rea-
soning. We leverage the compositional representation offered
by Grenander’s Canonical Pattern Theory formalism [10] and
show that attention and commonsense knowledge can be used
to enable the self-supervised discovery of novel actions in ego-
centric videos in an open-world setting. We show that our ap-
proach can be applied directly to open vocabulary classifica-
tion in egocentric videos and show that it performs competi-
tively with fully supervised and zero-shot learning baselines on
two publicly available datasets. To our knowledge, this paper
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Figure 1. The proposed framework for open world inference in egocentric
videos with zero supervision using commonsense knowledge.

presents the first work to address the problem of open-world
action recognition in egocentric videos with zero supervision.

What is an Open World? We consider an environment to be
a closed world if it only consists of concepts (i.e., objects and
actions), which have a one-to-one correspondence annotated
training data that is available to a model. This is the case for
most works trained in a supervised setting [3, 4, 11, 12] where
labeled concepts are static across training and test phases. In
an entirely open world, there are no such restrictions on the
vocabulary. Any combination of concepts can co-occur in a
given scene, beyond often what is captured in curated training
data. While there can exist varying levels of “openness” across
worlds, we consider the scenario where the set of elementary
concepts is fixed but captured in a very large vocabulary. El-
ementary recognition or detection models do not exist for all
concepts. Hence the models have access to possible concepts
that can exist in a scene but may not have encountered them
during training. Note that this is different from unsupervised
domain adaptation [13] and zero-shot learning [2, 5, 7]. In
zero-shot learning, there are seen and unseen classes that are
determined during training, but there is one key difference. The
vocabulary is still fixed under a zero-shot setting, i.e., there are
a fixed set of unseen classes, which are a combination of ele-
mentary concepts such as actions and objects. In unsupervised
domain adaptation, there is an implicit assumption that a la-
beled, source dataset and the presence of an unlabeled, target
dataset are available for both training and inference. Specifi-
cally, the target dataset is assumed to have a set of labels which
is a superset of the source dataset label space.

Contributions. We make the following contributions in this
work: (i) we are among the first to address the problem of open-
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world activity interpretation in egocentric videos with zero hu-
man supervision i.e., we do not require target domain data
or associated training annotations, (ii) we formulate a novel
approach that integrates commonsense knowledge and sym-
bolic reasoning with the representation learning capabilities of
deep neural networks to overcome the dependence on annotated
training data, (iii) we show that using compositional concept
representations with Pattern Theory can learn semantic corre-
spondences across domains and tasks, and (iv) we show that
the proposed approach can extend beyond egocentric videos to
learn novel concepts grounded in commonsense knowledge.

1.1. Related Work

Fully supervised approaches treat egocentric action recog-
nition as a supervised, classification problem and assign the se-
mantics to the video in terms of labels. Much of the recent
success in egocentric action recognition [3, 4, 11, 12] has been
through the use of deep neural networks such as two-stream ap-
proach models [11], attention-based models [4] and cascaded
feature learning approaches [12].

Zero-shot learning models [2, 5, 7] and domain adaptation
models [13] do not require as much supervision and learn se-
mantic correspondences that extend beyond training classes to
unseen test classes. The common approaches are to either use
an attribute space or embedding space that captures the seman-
tics of a scene and helps extend beyond the training label by
exploiting the semantic correspondences across classes. How-
ever, the success of such models relies on the presence of “seen”
training classes that allow it to establish semantic correspon-
dences to recognize a finite set of unseen actions. We are not
restricted by this constraint since we exploit an object’s compo-
sitionality and functionality to move beyond a fixed vocabulary.

Knowledge-driven recognition has not been extensively ex-
plored in the existing literature. The most related approaches
to ours are prior Pattern Theory-based frameworks [14, 15],
which also use a hybrid, symbolic approach to make infer-
ences about activities in videos. However, they require access
to the groundtruth annotations to train action (verb) and object
(noun) detectors for each domain. We do not have that limi-
tation since we consider a more open world where there is no
requirement for obtaining training labels for elementary con-
cepts. VideoBert [16] is another approach similar in spirit to
ours but still requires large amounts of cross-modal data to pre-
train associations to make inferences across domains.

2. Background: Building Compositional Representations

In this section, we briefly introduce the Grenander’s Pattern
Theory formalism [10, 14] for building compositional concept
structures. We represent knowledge elements (or concepts such
as actions and objects) that can be found in an environment
through the flexible representation offered by Grenander’s Pat-
tern Theory formalism [10, 14]. Each concept is represented
by the basic, atomic unit of representation called a generator
gi € Gy, where G is called the generator space. Each genera-
tor represents the presence of a concept in a given observation.
The generator space (Gy) is a finite collection of all possible



concepts required to describe a scene. Hence, it can be divided
into non-disjoint subsets G, each representing a finite set of
concepts that can exist in a given domain. For example, GK/chen
can represent the set of concepts (knife, spoon, cut, bake, bat-
ter, etc.) that are present in the kitchen domain, whereas G*°
represents the set of concepts that can exist in the zoo domain.
Hence the generator space is given by Gy = | J,eq G%, where A
represents the set of all domains. In this work, we allow A to
be unconstrained, i.e., it can span all possible domains, and « is
the generator index that specifies a domain.

Each generator has a set of links called bonds that can be
used to connect with other generators. Each generator g; has a
fixed number of bonds called the arity of a generator denoted
by w(g;)Vg; € Gs. Each bond represents a semantic assertion
that can be used to connect with other compatible generators
through bond interaction. Each bond is directed and hence al-
lows us to represent complex semantic structures that can cap-
ture the hierarchy of the semantic assertion being expressed.
Bonds are quantified using the strength of the semantic rela-
tionships using the bond energy function:

esen(B' (81,87 (g;)) = tanh(¢(g;, g))- 6]

where ¢(.) represents the strength of the expressed assertion be-
tween concepts g; and g; through their respective bonds 8" and
B”. We use the semantic knowledge encoded in knowledge-
bases to populate the values of ¢(.). tanh normalizes ¢(.) be-
tween -1 to 1 to capture negative assertions between concepts.

Expressing Complex Semantics. Generators combine with
other generators through compatible bonds to form complex
structures called configurations. Formally, a configuration ¢
is a connector graph o whose sites 1,...,n are populated
by a collection of generators gi,...,g, expressed as ¢ =
o(g1,...,8i);8 € Gs. The collection of generators g,...,g;
represents the semantic content of a given configuration c¢. We
allow the connector graph to vary and hence define a set of all
feasible connector graphs o to be Z, known as the connection
type. The probability of a configuration c is a function of its
total energy E(c), which is defined as

E@== ) enB)B"() @
(B B")ec
and the probability of the configuration is given by P(c) o
e £ Hence, lower energy indicates higher probability.
Knowledge Source: ConceptNet. While our approach is
general enough to handle multiple sources of commonsense
knowledge such as OpenlE [17], we use ConceptNet [8, 9]
as the source of general-purpose, commonsense knowledge to
populate the generator space G, the bond structure of each gen-
erator and quantify semantic assertions (¢(-)). ConceptNet en-
codes cross-domain semantic information in a hypergraph, with
nodes representing concepts connected through labeled edges,
which specify and quantify the semantic relationship (or asser-
tions) between concepts through edge weights.

3. Open World Egocentric Action Recognition

In this section, we introduce our open-world egocentric ac-
tion recognition framework, as illustrated in Figure 1. Our ap-
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proach has four core components: (i) object-centric spatial re-
gion proposal, (ii) an attention-driven localization process, (iii)
concept generator population, and (iv) an inference process to
identify the current action being performed.

3.1. Initial Concept Space: Object-centric Perception

In our approach, we begin with an initial concept space ini-
tialized by a base, source domain G* from which we expand our
vocabulary with abductive reasoning. The concepts found in the
MS COCO dataset [18] form our base source domain. We use
off-the-shelf object detection model in Faster R-CNN [19, 20]
as initial correspondence functions f; and f; to learn associ-
ations between a given input data I, and concept generators
g € G’. The former learns to localize the concepts in space,
and the latter learns to associate concept labels with localiza-
tion. We create region proposals (r; € R) in each input frame
I, of a given video segment using these functions. We set the
detection threshold to a relatively lower value (~ 0.25) to ac-
count for any uncertainties that can arise when encountering
novel scenes. We use these object-centric region proposals as
plausible regions of attention to identifying the action.

3.2. Selecting Concepts with Attention

In arriving at a representation, we face a packaging prob-
lem [21] i.e., given a novel visual scene and the many observed
objects, which should be chosen to understand the current ac-
tion? Following cognitive theories of attention [22], we use the
gaze or the attention of the person performing the task to se-
lect regions that are most relevant to the current action. We use
an energy-based selection algorithm that filters region propos-
als and returns the collection of proposals that have the highest
probability of capturing the current action context. Energy is
assigned to each bounding box (r; € R) at time ¢, and the top
k bounding boxes with the least energy are taken as the final
proposals. The energy of a bounding box r; is defined as

E(r) = wo ¢(aij, i) + wio(ri, 711 3)

where ¢(-) is a function that returns a value characteristic of the
distance between the bounding box center and gaze location,
d(-) is a function that returns the minimum spatial distance be-
tween the current bounding box and the closest bounding box
from the previous time step #;. The constants w, and w; are
scaling factors, and 6(+) is used to enforce temporal consistency.
In our experiments we set w, = 0.75,w, = 1.0 and use k = 10
bounding boxes from the previous time step.

3.3. Constructing a Contextualized Generator Space

Given the selected regions r; that have the maximum prob-
ability of association with the current action, the next step is
to construct a contextualized generator space that allows us to
transition from the COCO vocabulary G* to the target vocabu-
lary G'. First, we define a semantic mapping function f] that
returns the probability of the target object concepts §; € G'.
The semantic mapping function is designed to capture both the
semantic relatedness and the contextualized semantic similarity
of two concepts. The semantic relatedness is a measure of the



semantic relationship shared between two concepts. It is dis-
tinct from similarity, which is a more compositional measure of
the semantic relationship. Hence, the mapping function would
balance the compositional properties of concepts when com-
puting the semantic correspondences across domains without
degenerating into simple pairwise relatedness factors.

Semantic Mapping between Domains. We define the se-
mantic mapping function f} : G — G' to be a multi-valued,
bijective function that associates each generator g; € G*, the
source domain, with a set of plausible generators g; € G, in the
target (co-)domain. The mapping function f is multi-valued
i.e. it associates each generator g; € G° to one or more gen-
erators §; € G'. It is also a bijective function i.e. f is both
injective (f,g(gi) = flg(g_,-) iff. g; = g;) and surjective (i.e. there
exists function g; = f/(g)Vg; € G', where g; € G*). Hence,
each concept generator in the target domain has at least one cor-
responding function that provides provenance from the source
domain. Formally, it is defined as

fi(gi &) = 0'(

dcs i’A'
(g gj)) )

drel(gh g])

where d.(-) refers to the contextualized semantic similarity and
dy.i(+) is the semantic relatedness between g; and g;, and o is a
nonlinear function. We capture the compositional relationship
between two concept generators by using the notion of con-
textualization [23, 15, 14], which uses the relevant presuppo-
sitions from prior knowledge to help establish semantic corre-
spondences between concepts across domains. We compute the
contextualized semantic similarity d.(-) as

n

des(@n&) = ),

g/qngP(ghg/)

wd (g1, 8m) &)

where P(g;, 8;) is the shortest path between the concept gen-
erators g; and 2; in ConceptNet that has at least one compo-
sitional assertion that connects them. We only consider the
named assertions IsA and HasProperty to be compositional as-
sertions. w is a weight value that is used to penalize longer
contextualization paths and hence mitigate the effect of noise
and bias introduced due to the scale of ConceptNet. We sam-
ple w from an exponential decay function characterized by the
length of the path length between the two concepts and is de-
fined as wy = (1 — ), where k is the distance from g; in
the path P(g;, 8 ;). The relatedness d,.;(-) exploits the analogical
properties of ConceptNet Numberbatch [9] embedding and is
computed by the cosine similarity between the embeddings.

Building the Concept Space. For a given concept §; and a
detected concept g, we define its probability as

pglri- 1) * fi(8),8)
E(ri)

where f} is the contextualized semantic mapping function from
Equation 4 and I, is the input frame at time ¢. This function
allows us to quantify the probability of presence of a novel con-
cept g; in a given scene without any training data, both labeled
and unlabeled. Note that the above function only allows us to
build a concept space involving objects i.e. nouns since it is

p@jlg,m) = (6)

Algorithm 1: Open-world activity inference.

1 MCMC Simulated Annealing (R, G, U, @, p, kinax, T0);
2 ¢ « resetConfiguration(R,G, U)

3 best « ¢

4 fork « 1.. .k, do

5 t « UniformSample(0, 1)
6 if r < p then
7 ‘ ¢’ « globalProposal(R,G)
8 end
9 else
10 ‘ ¢’ « localProposal(c,G, U)
11 T « Ty xaFk
12 if E(c") < E(c) then
13 ‘ cec
14 end
15 else
16 z < UniformS ample(0, 1)
17 if z < exp(—(E(c") — E(c))/T) then
18 ‘ cec
19 end
20 if E(c) < E(b) then
21 ‘ best « ¢
22 end
23 end

24 return best

possible to define compositional relationships to establish sim-
ilarity across domains to ensure that the concepts can be used
interchangeably, particularly with respect to their affordance.
To generate action concepts that could be associated with
the constructed object concept space, we tackle this problem
through the notion of abductive reasoning through which we
generate and evaluate multiple candidate hypotheses (action or
verb concepts) in a given domain (G"). This allows us to con-
strain the search space to those concepts that share the affor-
dance of the object concepts in the given domain. Formally, we
define abductive reasoning to be an optimization process that
aims to find the optimal action generator g; € {1, 82,83, --8u}
that has the maximum affordance conditioned upon the ob-
served object generators g; € G* U G" and prior, commonsense
knowledge, C;. This can be expressed as the optimization for

argmax  p(&ilCy, &) (7
8i€{81,82:83>--8n}

where g, represents the observed object concept in the target
domain G/ and its corresponding concept from the source do-
main G'. This optimization involves the empirical computation
of the probability of occurrence for each action or verb hypoth-
esis g; given the commonsense knowledge C,, captured in Con-
ceptNet. To account for uncertainty, we use the top-K object
and action labels. The probability of each action concept g;% is
a measure of the object confidences from both the source (gi)
and target (g;) domains and is defined as

dre[(g?9 gl) : drel(g?a gj)
dm(gjv gl)

P@lg. 8) = 8)



Table 1. Object (noun) recognition performance in egocentric videos. We compare with fully supervised, zero-shot learning (ZSL), and an unsupervised
random baselines along with variations of the proposed KGL approach with no access to any target domain data. * indicates leave-one-class-out evaluation.

Method Supervision Target Domain | Target Domain | GTEA Gaze | GTEA Gaze+
p Data Annotations (Accuracy) (Accuracy)

Two-stream CNN Full v v 38.05 61.87
IDT Full v v 45.07 53.45
Action Decomposition Full v v 60.01 65.62
Action Decomposition (ZSL)* Full v v 40.65 43.44
Random (Chance) None X X 3.22 3.70
Object-based ZSL None X X 3.97 4.50
KGL (Top-1) None X X 5.12 14.78
KGL (Top-5) None X X 10.73 37.99
KGL (Top-10) None X X 21.15 56.84
KGL w/o Gaze (Top-10) None X X 15.68 3543
KGL w/ Action Oracle (Top-10) None X X 32.61 63.15

where d,(:) is the semantic similarity between two concepts
given by the cosine similarity between the ConceptNet Num-
berbatch [9] vector embedding of the two concepts. Ac-
tion probabilities are a function of object confidence and the
semantic correspondence between concepts across domains.
Candidate action concepts G/ = {21,82,83,...8,}) can be
pre-defined using domain knowledge or expanded through
ConceptNet traversal using the contextualized similarity path
P(gi, ;) ( Equation 5). The former is a closed world with a
small search space while the latter is an open world with an
unconstrained vocabulary. We experiment with both and show
that the proposed approach is a significant step towards com-
pletely open-world learning with unconstrained vocabulary.

3.4. Inference

Given the putative object and action labels, we define an in-
ference function that reasons about the semantic relationships
between these concepts to arrive at an interpretation of the
scene. Since we allow for multiple possibilities in both action
and object space, a feasible optimization solution for such an
exponentially large search space is a sampling strategy. We
follow the work in [15] and employ a Markov Chain Monte
Carlo (MCMC) based simulated annealing process, which uses
two proposal functions for inference. A global proposal func-
tion samples an underlying connector graph o for an interpreta-
tion, and the local proposal populates the sites in the connector
graph. Each jump gives rise to a configuration whose semantic
content represents a possible interpretation for the given video.
Configurations with the least energy represent possible inter-
pretations of the activity. The algorithm for the MCMC-based
simulated annealing process is shown in Algorithm 1. We begin
with the set of filtered region proposals with detected concepts
from the source domain G*, the corresponding set of plausible
target domain generators G, and concept generators from Con-
ceptNet U, that provide the background knowledge for concept
generators. We initialize the search by sampling an initial con-
figuration ¢’. The proposed configuration is used as initializa-
tion for the “best” configuration seen so far. The search is initi-
ated and performed for a fixed number of iterations k,,,, defined

in the parameters. The choice between the proposal functions
is decided by sampling from a uniform distribution. At each
step of the annealing process, the temperature is updated based
on a cooling rate given by o, where « is a predefined constant.
Each step of the simulated annealing process yields a new con-
figuration ¢’, accepted or rejected, based on its energy.

4. Experimental Evaluation

Data. We use the GTEA Gaze [1] and the GTEA Gaze+ [24]
as our test environment for open-world object, action, and activ-
ity recognition in egocentric videos. The two datasets consist of
several video sequences on meal preparation tasks by different
subjects and ground-truth annotations of their gaze positions.
The activity annotations consist of an action (verb) and the cor-
responding object (noun). GTEA Gaze contains 10 different
verbs and 38 different nouns, while GTEA Gaze+ contains 15
verbs and 27 nouns. We also test our approach’s generalization
capability to scenes beyond egocentric videos for generalized
object detection. We use a subset of Open Images [25] with
10 classes called the Open Images OW-10 dataset with 3095
images and 5686 bounding box annotations. Each of these 10
classes can be found in the GTEA Gaze dataset. It allows us
to evaluate our model beyond egocentric videos where the gaze
positions isolate the object of interest. The goal is to expand the
vocabulary beyond MS COCO without any supervision.

Metrics. We report the accuracy for action (verb) and object
(noun) recognition. For activity recognition (i.e., verb+noun
prediction), we use the concept of word accuracy in speech [26]
to measure the semantic similarity between the prediction and
ground-truth. We report the recall per 100 predictions and
the mean average precision at 0.5 overlap and the mean over
0.5 : 0.95 thresholds for object detection. Note that we re-
port accuracy for top-k predictions (k € {1, 5, 10}) for the open-
world KGL approaches, since the prediction is under an open-
world activity recognition setting. We do not predict nouns
and verbs independently but make a joint inference over the
activity (verb+noun) classes. The total number of verbs and
nouns in GTEA is 10 and 38, respectively, resulting in 380



Table 2. Action (verb) and activity (verb+noun) recognition performance in egocentric videos. We compare against supervised and zero-shot learning
(ZSL) baselines along with variations of the proposed open-world KGL approach. * indicates performance reported for leave-one-class-out evaluation.

Method Supervision Target Domain | Target Domain GTEA Gaze GTEA Gaze+
P Data Annotations | Verb | Activity | Verb | Activity

Two-stream CNN Full v v 59.54 | 53.08 | 58.65 | 44.89

IDT Full v v 7555 | 4041 66.74 | 51.26

Action Decomposition Full v v 7939 | 55.67 | 75.07 | 57.79
Action Decomposition (ZSL)" Full v v 85.28 39.63 27.68 15.98
Random (Chance) None X X 7.69 2.50 4.55 2.28
Object-based ZSL None X X 6.45 3.81 5.69 6.58

KGL (Top-1) None X X 8.21 491 6.73 10.87

KGL (Top-5) None X X 32.39 18.78 | 24.64 | 27.53

KGL (Top-10) None X X 50.72 | 3097 | 36.62 | 38.59

KGL w/o Gaze (Top-10) None X X 33.56 22.67 27.54 26.21
KGL w/ Object Oracle (Top-10) None X X 53.89 | 36.47 | 4095 | 50.78

noun+verb combinations. Similarly, the number for GTEA+ is
15 verbs, 27 nouns, and 405 noun+verb combinations. Hence
top-k accuracy over this search space is considered and not over
nouns/verbs individually. This is not an unreasonable evalu-
ation setting considering that the search space for verb-noun
pairs is quite large and can grow exponentially as the number
of the plausible nouns and verb candidates increase.

Baselines. We establish baseline approaches with different
supervision needs. We employ a two-stream CNN [11], Im-
proved Dense Trajectories (IDT) [27] and Action Decompo-
sition [5]. We consider two zero-shot learning (ZSL) base-
lines. First, we use the zero-shot variation of Action Decom-
position [5] as a standard baseline for ZSL egocentric action
recognition, where the approach has access to the target do-
main except for one unseen action. Second, we develop an al-
ternative ZSL approach called “Object-based ZSL”, with a more
open-world setting. The approach has the same initial concept
space as our approach (MS COCO). It uses cosine similarity
between ConceptNet Numberbatch embedding of object-level
labels from object detection models and the target verb+noun
combination to generate action labels during inference. For the
unsupervised, open-world setting, we use three baselines: (i) a
random prediction model, (ii) our approach without attention,
and (iii) our approach with an oracle, i.e., perfect target domain
object detection or action label. Note that the random predic-
tion model predicts a random verb+noun activity per video and
not individual actions and objects. Both the supervised and ZSL
approaches have access to both the videos and annotations from
the target domain, while our approach only has access to the set
of noun and verb concepts in the target domain. We include
two oracle models, object oracle and action oracle, to evaluate
the performance of our model when some of the training an-
notations are known, hence reducing the search space. These
two models are intended to evaluate a less open world setting,
where there is an available object detection or action recogni-
tion model whose labels are a super-set of the target environ-
ment’s label space. Given the increasing emphasis on large and
diverse datasets, such as Google Open Images [25] dataset and
Kinetics-800 [28], these oracle-based settings are likely to be-

come a very common setting in the future.

4.1. Learning to Recognize Novel Objects

We first evaluate our approach’s ability to recognize objects
across domains, i.e., transfer from MS COCO to GTEA Gaze
or Gaze+ with zero supervision. This evaluation allows us to
assess our semantic mapping function’s ability to learn corre-
spondences across tasks and domains. We summarize the re-
sults in Table 1 and compare them with both supervised and
open-world baselines. It can be seen that our approach gener-
alizes well across domains without any supervision, including
access to target domain data. This is a key difference between
our approach and other models (including ZSL approaches),
which have access to the target domain data for other known
classes and are only expected to learn correspondences for a
small number of “unseen” classes. Note that our approach uses
a general-purpose knowledge base that is not specifically tai-
lored for the kitchen domain and has no learned correspon-
dence in the target domain. However, the top-5 and top-10
accuracy metrics show that our model achieves comparable per-
formance to both fully supervised and ZSL baselines, without
using any supervision from the target domain, indicating that
the model can perform competitively in an open-world setting,
where there is no access to target data (both seen and unseen)
and annotations. These results indicate that symbolic knowl-
edgebases can be leveraged to help generalize object and activ-
ity recognition across domains with limited supervision.

4.2. Learning Novel Actions

Finally, we evaluate the model’s ability to perform reasoning
over the object’s functionality to identify the action (verb) and
the activity being performed in the scene. We evaluate on two
settings: (i) when the possible actions are known and (ii) when
the potential list of actions is unrestricted, i.e., a completely
open world. Table 2 shows the performance of the model in the
former setting. It can be seen that our approach performs com-
petitively with supervised and zero-shot baselines. We achieve
a top-1 performance of 8.21% for verb recognition on GTEA
Gaze and 6.73% on GTEA Gaze+, but it is to be noted that the



Table 3. Action recognition performance with unknown action space.

Top-K Verb Accuracy
Candidates | Top-1 Obj | Top-5 Obj | Top-10 Obj | Random
10 0.3 1.3 2.7 0.1
25 24 2.9 129 0.04
50 7.4 8.4 21.54 0.02

search space for verb-noun pairs is quite large and can grow
exponentially as more descriptive labels are imposed (subject-
verb-object, etc.). Supervised models and zero-shot learning
models do not take this into account as they assume that the la-
bel space is known and tractable (100 actions for GTEA and 44
for GTEA+). We do not have access to this information during
inference, yet obtain a reasonable prediction accuracy at top-
1. Increasing the threshold to top-5 and top-10 increases the
performance significantly, showing that the reasoning results in
relevant vocabulary despite unknown verb-noun combinations
and the resulting search space. We also experiment with an un-
restricted action (verb) space and summarize the results in Ta-
ble 3. We take a varying number of top-K object labels and their
respective top-K plausible action labels generated by traversing
the path P(- from Equation 5) and run inference to obtain an
interpretation from these inputs. We report the accuracy for
the top-25 interpretations since the task is challenging, and the
search space is rather large. As can be seen from Table 3, we
obtain a verb accuracy of 21.54% when we use top-10 object
labels and top-50 action labels for inference. Furthermore, we
find at least one action from the target vocabulary with an accu-
racy of 83.7% in the top-25 action labels. Considering that the
verb vocabulary is completely unknown, these results represent
a significant step towards open-world action recognition.

4.3. Localizing Objects beyond Egocentric Videos

We also evaluate our model to perform object detection be-
yond egocentric videos by evaluating on the Open Images OW-
10 subset. We use a Faster R-CNN model trained on MS
COCO to generate region proposals and use the predicted la-
bels to establish semantic correspondences to the target domain
labels. We summarize the results in Table 4. It can be seen
that we make a considerable improvement over a random base-
line which predicts a random class for each bounding box. It
should be noted that the classes do not have any overlap with
MSCOCO and hence constitute a set of objects that have not
been seen by the detector. Additionally, the data from Open Im-
ages were not used in the training stage at any point. This differ-
entiates us from zero-shot learning approaches which have ac-
cess to the target domain data and partial access to groundtruth.
This allows them to exploit context and feature-based similar-
ity measures to recognize/detect unseen classes. We do not have
access to any of the data and hence provides a completely novel
environment where there are novel, unseen objects present and
hence allows us to quantify the object detection capabilities
of our approach. We allow for multiple label predictions per
bounding box proposal to account for uncertainty. It can be seen
that the mAP at 0.5 IOU and the mean over IOU ranges from
0.5:0.95 are remarkable, considering that no training data was

Table 4. Open World Object detection on Open Images OW-10 Dataset.

mAP mAP
Method ‘ 10U=0.5 | I0U=0.5:0.95 ‘ Recall
Ours 1 pred/BB 0.8 0.5 59
Ours 3 pred/BB 10.2 8.0 24.6
Ours 5 pred/BB 8.1 6.2 355
| Random | 0.1 | 0.05 | 27 |

used. It is interesting to note that using each region proposal for
more than one object label results in better performance (mAP
of 10.2, IOU=0.5) but tapers off considerably when many labels
are considered per proposal. We find that generating predic-
tions using top-3 labels per proposal has the best performance,
while using top-5 labels performs worse. We attribute it to the
fact that the confidences become diluted when adding labels
obtained through semantic correspondences.

4.4. Qualitative Discussion

An interesting property of our approach is that it can han-
dle uncertainty in elementary concept recognition and is not
restricted to the vocabulary of the training annotations. Su-
pervised and zero-shot models have a more restricted vocab-
ulary that constrains the vocabulary to action-object combina-
tions seen in the training annotations. We show an example in
Figure 2, where our model was able to arrive at the correct inter-
pretation even when the target noun and verb were not the top-1
prediction. We illustrate the contextualized path (dotted circles)
for completeness. The simulated annealing-based inference al-
lows for complex reasoning to balance the object’s affordance
vs. its functionality. For example, the label peanut butter was
not in the top-5 labels for the noun initially. Still, the inference
process considered it as a possible object based on the presence
of the verb spread and helped arrive at the final interpretation,
which captures the semantics of the scene beyond semantic cor-
respondences between nouns.

5. Discussion and Future Work

In this paper, we presented one of the first works on open-
world action recognition in egocentric videos. Furthermore, we
demonstrated that commonsense knowledge could help break
the ever-increasing demands on training data quality and quan-
tity. We show that with an initial, trained vocabulary of object
(noun) concepts, we can significantly expand our vocabulary
to encompass domains and even tasks to learn novel concepts
grounded in commonsense knowledge. While we demonstrate
open-world inference on egocentric videos, we aim to integrate
advances in attention-based mechanisms and relational learning
approaches to generalize to videos beyond egocentric. Exten-
sive experiments demonstrate the applicability of the approach
to different domains and its highly competitive performance.
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Figure 2. Visualization of the reasoning process at different stages when given a video, (a) “spread peanut butter” and (b) “pour ketchup”. The first column
visualizes the scene in the initial vocabulary, the second after establishing semantic correspondence, and the last shows the final interpretation.
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