THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August
© 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/1538-3881/ac77fb

CrossMark

The Astronomy Commons Platform: A Deployable Cloud-based Analysis Platform for

Steven Stetzler!

Astronomy

, Mario Juri¢! , Kyle Boone' , Andrew Connollyl , Colin T. Slater! , and Petar Zedevié™?
! DiRAC Institute and the Department of Astronomy, University of Washington, Seattle, USA; stevengs @uw.edu
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
3 Visiting Fellow, DIRAC Institute, University of Washington, Seattle, USA
Received 2022 January 13; revised 2022 June 6; accepted 2022 June 11; published 2022 July 26

Abstract

We present a scalable, cloud-based science platform solution designed to enable next-to-the-data analyses of
terabyte-scale astronomical tabular data sets. The presented platform is built on Amazon Web Services (over
Kubernetes and S3 abstraction layers), utilizes Apache Spark and the Astronomy eXtensions for Spark for parallel
data analysis and manipulation, and provides the familiar JupyterHub web-accessible front end for user access. We
outline the architecture of the analysis platform, provide implementation details and rationale for (and against)
technology choices, verify scalability through strong and weak scaling tests, and demonstrate usability through an
example science analysis of data from the Zwicky Transient Facility’s 1Bn+ light-curve catalog. Furthermore, we
show how this system enables an end user to iteratively build analyses (in Python) that transparently scale
processing with no need for end-user interaction. The system is designed to be deployable by astronomers with
moderate cloud engineering knowledge, or (ideally) IT groups. Over the past 3 yr, it has been utilized to build
science platforms for the DiRAC Institute, the ZTF partnership, the LSST Solar System Science Collaboration, and
the LSST Interdisciplinary Network for Collaboration and Computing, as well as for numerous short-term events
(with over 100 simultaneous users). In a live demo instance, the deployment scripts, source code, and cost
calculators are accessible.”*

Unified Astronomy Thesaurus concepts: Astronomy databases (83); Astronomy data analysis (1858); Cloud

computing (1970); Light curves (918)

1. Introduction

Modern astronomy is undergoing a major change. Histori-
cally a data-starved science, it is being rapidly transformed by
the advent of large, automated, digital sky surveys into a field
where terabyte and petabyte data sets are routinely collected
and made available to researchers across the globe.

The Zwicky Transient Facility (ZTF; Bellm et al. 2019; Masci
et al. 2019; Graham et al. 2019; Dekany et al. 2020) has engaged
in a 3 yr mission to monitor the Northern sky. With a large
camera mounted on the Samuel Oschin 48 inch Schmidt
telescope at Palomar Observatory, the ZTF is able to monitor the
entire visible sky almost twice a night. Generating about 30 GB
of nightly imaging, ZTF detects up to 1,000,000 variable,
transient, or moving sources (or alerts) every night, and makes
them available to the astronomical community (Patterson et al.
2018). Toward the middle of 2024, a new survey, the Legacy
Survey of Space and Time (LSST; Ivezi¢ et al. 2019), will start
operations on the NSF Vera C. Rubin Observatory. Rubin
Observatory’s telescope has a mirror almost seven times larger
than that of the ZTF, which will enable it to search for fainter
and more distant sources. Situated in northern Chile, the LSST
will survey the southern sky taking ~1000 images per night with
a 3.2 billion-pixel camera with a ~10 deg?” field of view. The
stream of imaging data (~6 PB/yr) collected by the LSST will

* hup: //hub.astronomycommons.org/

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

yield repeated measurements (~100 yr~') of over 37 billion
objects, for a total of over 30 trillion measurements by the end of
the next decade. These are just two examples, with many others
at a similar scale either in progress (Kepler, Pan-STARRS, DES,
GAIA, ATLAS, ASAS-SN; Kaiser et al. 2010; Shappee et al.
2014; Gaia Collaboration et al. 2016; Dark Energy Survey
Collaboration et al. 2016; Tonry et al. 2018) or planned (Roman,
Euclid; Scaramella et al. 2014; Spergel et al. 2015). They are
being complemented by numerous smaller projects (S$1M
scale), contributing billions of more specialized measurements.

This 10-100x increase in survey data output has not been
followed by commensurate improvements in tools and platforms
available to astronomers to manage and analyze those catalogs.
Most survey-based studies today are performed by navigating to
archive websites, entering (very selective) filtering criteria to
download “small” (~10s of millions of rows; ~10GB) subsets
of catalog products. Those subsets are then stored locally and
analyzed using custom routines written in high-level languages
(e.g., Python or IDL), with the algorithms generally assuming in-
memory operation. With the increase in data volumes and
subsets of interest growing toward the ~100 GB—1 TB range,
this mode of analysis is becoming infeasible.

One solution is to provide astronomers with access to the
data through web portals and science platforms—rich gateways
exposing server-side code editing, management, execution and
result visualization capabilities—usually implemented as note-
books such as Jupyter (Kluyver et al. 2016) or Zeppelin (Cheng
et al. 2018). These systems are said to bring the code to the
data, by enabling computation on computational resources
colocated with the data and providing built-in tools to ease the
process of analysis. For example, the Rubin Observatory /LSST
has designed (Dubois-Felsmann et al. 2017; Juri¢ et al. 2017)

https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
mailto:stevengs@uw.edu
http://astrothesaurus.org/uat/83
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/1970
http://astrothesaurus.org/uat/1970
http://astrothesaurus.org/uat/918
https://doi.org/10.3847/1538-3881/ac77fb
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac77fb&domain=pdf&date_stamp=2022-07-26
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac77fb&domain=pdf&date_stamp=2022-07-26
http://creativecommons.org/licenses/by/4.0/
http://hub.astronomycommons.org/

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

and implemented a science platform suitable for accessing and
visualizing data from the LSST, with deployments hosted on
both on-premises hardware and Google Cloud (O’Mullane
et al. 2021).> While such science platforms are a major step
forward in working with large data sets, they still have some
limitations when deployed on on-premises hardware or
traditional HPC systems. These systems can suffer from having
insufficient computing next to the data: all users of shared HPC
resources are familiar with “waiting in the queue” due to over
subscription. Science platforms built on cloud computing
resources will find it much easier to provide computing
resources according to user demand: this is the promise of
“elastic” computing in the Cloud.

Second, even when surveys deploy distributed SQL
databases for serving user queries (e.g., Qserv in the case of
LSST; Wang et al. 2011), user analysis is still not easily
parallelized—query requests and results are bottlenecked at one
access point which severely limits scalability. In contrast, the
system we describe and implement provides direct, distributed
access to data for a user’s analysis code. Finally, current
science platforms do not tackle the issue of working on
multiple large data sets at the same time—if they are in
different archives, they still have to be staged in the same place
before work can be done. In other words, they continue to
suffer from the availability of computing, being I/O-bound,
and geographic dislocation.

We therefore need to not only bring the code to the data but
also bring the data together, and colocate it next to an (ideally
limitless) reservoir of computing capacity, with 1/O capabilities
that can scale accordingly. Furthermore, we need to make this
system usable, by providing astronomer-friendly frameworks
for working with extremely large data sets in a scalable fashion.
Finally, we need to provide a user interface that is accessible
and familiar, with a shallow learning curve.

We address the first of these challenges by utilizing the
Cloud to supply data storage capacity, effective data set
colocation, I/O bandwidth, and (elastic) compute capability.
This work utilizes the Amazon Web Services (AWS) cloud,
leveraging Amazon Simple Storage Service (Amazon S3) for
storage and access to TB+ sized tabular data sets (catalogs) and
Amazon Elastic Cloud Compute (Amazon EC2) for elastic
computing. Bektesevic et al. (2020) have investigated using the
same services for scalable storage, access, and processing of
image data. The second challenge is addressed by extending the
Astronomy eXtensions for Spark (AXS; Zecevi€ et al. 2019), a
distributed database and map-reduce-like workflow system
built on the industry-standard Apache Spark (Zaharia et al.
2010) engine, to work in this cloud environment. Spark allows
the execution of everything from simple ANSI SQL-2011
compliant queries to complex distributed workflows, all driven
by Python. When using Spark, data can be sourced from a
number of storage solutions and a variety of formats, including
FITS (Peloton et al. 2018). Finally, a JupyterHub facade
provides a user-friendly entry point to the system. Additionally,
we make it possible for IT groups (or advanced users) to easily
deploy this entire system for use within their departments, as an
out-of-the-box solution for cloud-based astronomical data
analysis.

The combination of these technologies allows the researcher
to migrate “classic” subset-download-analyze workflows with

5 See as well https: //data.lsst.cloud/.

Stetzler et al.

little to no learning curve while providing an upgrade path
toward large-scale analysis. We validate the approach by
deploying a cloud-based platform for accessing and analyzing a
1 billion+ light-curve catalog from the ZTF (a precursor to
LSST) and demonstrate it can be successfully used for
exploratory science.

2. A Platform for User-friendly Scalable Analysis of Large
Astronomical Data Sets

We begin by introducing the properties of cloud systems that
make them especially suitable for scalable astronomical
analysis platforms and discuss the overall architecture of our
platform, its individual components, and its performance.

2.1. The Cloud

Traditionally, computing infrastructure was acquired and
maintained close to the group utilizing the resource. For
example, a group led by a faculty member would purchase and
set up one or more machines for a particular problem, or (on a
larger scale) a university may centralize computing resources
into a common cluster, shared with the larger campus
community. These acquisitions—so-called “on-premise” com-
puting—are capital heavy (require a large initial investment),
require local IT knowledge, and allow for a limited variety of
the systems being purchased (e.g., a generic Linux machine for
a small group, or standardized types of nodes for an HPC
cluster).

Cloud services move this infrastructure (and the work to
maintain it) away from the user, and centralize it with the cloud
provider. The infrastructure is provided as a service: individual
machines, entire HPC clusters, as well as higher-order services
(databases, file systems, etc.) are rented for the time the
resource is needed rather than purchased.

They are billed proportionally to usage: virtual machines are
typically rented by the second, virtual networks are priced by
bandwidth usage, and virtual storage is priced by storage size
per unit time. These components are provisioned by the user on
demand, and are built to be “elastic.” One can typically rent
several hundred virtual machines and provision terabytes of
storage space with an expectation that it will be delivered
within minutes and then release these resources back to the
cloud provider at will. This usage and pricing model offers the
unique benefit of providing access to affordable computing at
scale. One can rent hundreds of virtual machines for a short
period of time (just the execution time of a science workflow)
without investing in the long-term support of the underlying
infrastructure. In addition, cloud providers typically offer
managed storage solutions to support reading/writing data
to/from all of these machines. These so-called “object stores”
are highly available, highly durable, and highly scalable stores
of arbitrarily large data volumes. For example, Amazon Simple
Storage Solution (Amazon S3) provides scalable, simultaneous
access to data through an Application Programming Interface
(API) over a network.® S3 supports very high throughput at the
terabit-per-second level assuming storage access patterns are
optimized.” Once a solution for scalable storage is added to the
mix, cloud computing systems start to resemble the traditional

5 Amazon S3 uses a REST API with HTTP.

This is detailed in the S3 documentation: https://docs.aws.amazon.com/
AmazonS3/latest/dev /optimizing-performance.html.

https://data.lsst.cloud/
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance.html

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

supercomputers many scientists are already familiar with for
running simulations and performing large-scale data analysis.

2.2. Orchestrating Cloud Applications: Kubernetes

The pain point that remains in managing and developing
applications for the Cloud is the problem of orchestration: it
can become burdensome to write custom software for
provisioning and managing cloud resources, and there is a
danger of cloud “lock-in” occurring when software applications
become too strongly coupled with the cloud provider’s APL
The open source community has developed orchestration tools,
like Kubernetes, to address this issue.®

Kubernetes is used to schedule software applications
packaged in Docker images and run as Docker containers on
a cluster of computers (physical or virtual machines) while
handling requests for and the provisioning of cloud resources to
support running those containers.” Kubernetes provides a
cloud-agnostic API, accessible over a network using HTTP(S),
to describe cloud resources as “representational state transfer”
(REST) objects. For example, cluster storage is described using
“Persistent Volume” objects, requests for that storage use
“Persistent Volume Claim” objects, and networking utilities
like routing, port forwarding, and load balancing use “Service”
objects. An application that runs using one or more containers
is specified using a “Pod” object. If the application requires it,
the Pod object can reference storage objects and service objects
by name to link an application to these resources. In addition,
the Pod object allows one to impose CPU and memory limits
on an application or assign the application to a certain node,
among other features. Each Kubernetes object is described
using YAML, a human-readable format for storing configura-
tion information (lists and dictionaries of strings and
numbers).'” Figure 1 shows an example set of YAML-
formatted text describing Kubernetes objects that together
would link a Jupyter notebook server backed by a 10 GiB
storage device to an internet-accessible URL.

The Kubernetes core service, a set of software called the
control plane, is responsible for maintaining an API server
accessible within (and potential externally to) the cluster,
maintaining a database of the objects created so far, assigning
pods (applications) to nodes in the cluster in a way that respects
their constraints, keeping track of the general state of the
cluster, and handling aspects of networking within the cluster
and through the cloud provider. Additional components of the
Kubernetes core code (or third-party plugins) handle the
provisioning of virtual hardware from the cloud provider to
satisfy requirements that cannot be met by current cluster
resources. As an example on AWS, an outstanding request for a
Service requiring a load balancer will be fulfilled by creating an
AWS Elastic Load Balancer (ELB) or Application Load
Balancer (ALB). Similarly, an outstanding request for a
Persistent Volume will be fulfilled by creating an Amazon
Elastic Block Store (EBS) volume. Finally, applications can be
scheduled on the cluster that modifies the cluster state. In
particular, the Kubernetes Cluster Autoscaler interacts with the

8 The Kubernetes documentation provides a thorough and beginner-friendly

introduction to the software: https://kubernetes.io/docs/.

° Docker isolates software programs at the level of the operating system, in
contrast to virtual machines which isolate operating systems from one another
at the hardware level. See https://www.docker.com/ and https://docs.docker.
com/ for more information.

10 See https://yaml.org/ for specifications and implementations.

Stetzler et al.

cloud provider to terminate underutilized nodes or add new
nodes when there are pods that cannot be scheduled given the
current number of nodes.'' The handling of hardware
provisioning from the cloud provider by administrative
software in the Kubernetes control plane, through Kubernetes
plugins, and through applications running in the cluster allows
additional user applications to remain decoupled from the cloud
provider’s APL

2.3. System Architecture

Cloud systems offer unique infrastructure elements that help
support a system for scalable science analysis. Virtual
machines can be rented in the hundreds or thousands to
support large computations, each accessing data in a scalable
manner from a managed service. Orchestration layers, like
Kubernetes, ease the process of running science software on
cloud resources. In this section, we discuss how we leverage
cloud infrastructure to build such a platform. Underlying this
platform are four key components:

1. An interface for computing. We use the Jupyter ecosystem:
a JupyterHub deployment based on the zero-to-
jupyterhub project that creates Jupyter notebook
servers on our computing infrastructure for authenticated
users. A Jupyter notebook server provides a web interface
to interactively run code on a remote machine alongside a
set of preinstalled software libraries.'>

2. A scalable analytics engine. We use Apache Spark, an
industry-standard tool for distributed data querying and
analysis, and the Astronomy eXtensions to Spark (AXS).

3. A scalable storage solution. We use Amazon Simple
Storage Solution (S3). Amazon S3 is a managed object
store that can store arbitrarily large data volumes and
scale to an arbitrarily large number of requests for
this data.

4. A deployment solution. We’ve developed a set of Helm
charts and bash scripts automating the deployment of this
system onto the AWS cloud."?

Each of these components is largely disconnected from one
another and can be mixed and matched with other drop-in
solutions.'* Aside from the deployment solution, each of these
components are comprised of simple processes communicating
with each other through an API over a network. This means
that each solution for (1), (2), and (3) is largely agnostic to the
choice of running on a bare-metal machine, inside a virtual
machine (VM), inside a Linux container, or using a managed
cloud service as long as each component is properly networked.

Figure 2 shows the state of the Kubernetes cluster during
normal usage of a platform created with our Helm chart as well
as the pathway of API interactions that occur as a user interacts
with the system. A user gains access to the system through a
JupyterHub, which is a log-in portal and proxy to one or more

" hitps: //github.com/kubernetes /autoscaler

12 See https:/ /zero-to-jupyterhub.readthedocs.io/ and https://github.com/
jupyterhub/zero-to-jupyterhub-k8s.

'3 For Helm, see https://helm.sh/.

14 Zepplin notebooks, among other tools, compete with Jupyter notebooks for
accessing remote computers for analysis and data visualization. Dask is a
competing drop-in for Apache Spark that scales Python code natively. A Lustre
file system could be a drop-in for Amazon S3. Amazon EFS, a managed and
scalable network file system, is also an option. Kustomize is an alternative
to Helm.

https://kubernetes.io/docs/
https://www.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://yaml.org/
https://github.com/kubernetes/autoscaler
https://zero-to-jupyterhub.readthedocs.io/
https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://helm.sh/

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

Network

Application

Stetzler et al.

apiVersion: vl
kind: Service

targetPort: 8888

Storage

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name:
spec:
resources:
requests:
storage: 10Gi
storageClassName: ebs

apiVersion: apps/vl
kind: Deployment

metadata: metadata:

name: my-load-balancer name: jupyter-notebook
spec: spec:

type: LoadBalancer replicas: 1

ports: selector:

- port: 80 matchlLabels:

app: notebook-pod

protocol: TCP template:
name: http metadata:
selector: labels:
app: notebook-pod app: notebook-pod
spec:
containers:

- name: notebook
image: jupyter/scipy-notebook
ports:
- containerPort: 8888
volumeMounts:
- mountPath: “/home/jovyan”
name:

volumes:
- name:

persistentVolumeClaim:
claimName:

Figure 1. An illustration of the structure and composition of YAML-formatted text specifying Kubernetes objects that together create a functional and internet-
accessible Jupyter notebook server. The Jupyter notebook application is created as a Pod on the cluster (right). Networking objects (top left) specify how a public-
facing load balancer can be connected to the Jupyter notebook Pod (notebook-pod) on a certain port (8888). Storage objects trigger the creation of, for example,
hard drive disk space from the cloud provider (bottom left). Colored text indicates how the files are linked to support one another: blue indicates how network and
application are linked, orange how application and storage are linked, and green how storage volumes are mounted into the file system of the application.

managed Jupyter notebook servers spawned by the Jupyter-
Hub. This notebook server is run on a node of the Kubernetes
cluster, which can be constrained by hardware requirements
and/or administrator-provided node labels. A proxy forwards
external authenticated requests from the internet to a user’s
notebook server. Users can use the Apache Spark software,
which is preinstalled on their server, to create a Spark cluster
using the Spark on Kubernetes API. The user can also access

their running notebook server using a Secure Shell (SSH)

client.

2.3.1. An Interface to Computing

The Jupyter notebook application, and its extension Jupyter
lab, provide an ideal environment for astronomers to access,
manipulate, and visualize data sets. The Jupyter notebook /lab

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

User

Stetzler et al.

Pods

(a)

<y hub
W jupyter-user-1

ssh-server = .~

(h)

user-n-pyspark-exec-1 ‘

1
0 '
° I

1
A 1

jupyter-user-n

JupyterHub

user-n-pyspark-exec-m ‘

B

.. Spark Cluster

Legend

HTTP / Jupyter API
= Spark API

‘ mariadb-server ‘

== Kubernetes API

(9)

\

‘ nfs-server-provisioner ‘

Resource
“~._ Managers .~

\
\
\

N

‘ cluster-autoscaler ‘ |

i

AWS API
OpenSSH API

(a): User’s web connection to system
(b): Create notebook pods

(c): Create Spark executor pods

(d): Spark driver and executor
communication

(e): Access to catalog metadata

(f): List unscheduable pods

(9): Request more virtual machines
(h): User's SSH connection to server

Figure 2. A diagram of the essential components of the Kubernetes cluster when the science platform is in use. Each box represents a single Kubernetes Pod scheduled
on the cluster. The colors of the boxes and the dashed ovals surrounding the three groups are for visualization purposes only; each Pod exists as an independent entity
to be scheduled on any available machines. The colored paths and letter markers indicate the pattern of API interactions that occur when users interact with the system.
(a) shows a user connecting to the JupyterHub from the internet. The JupyterHub creates a notebook server (jupyter-user-1) for the user (b). The user creates a
Spark cluster using their notebook server as the location for the Spark driver process (c). Scheduled Spark executor Pods connect back to the Spark driver process
running in the notebook server (d). The Spark driver process accesses a MariaDB server for catalog metadata (e). In the background, the Kubernetes cluster autoscaler
keeps track of the scheduling status of all Pods (f). At any point in (a)—(d), if a Pod cannot be scheduled due to a lack of cluster resources, the cluster autoscaler will
request more machines from AWS to meet that need (g). Optionally, the user can connect to their running server with SSH (h).

applications, although usually run locally on a user’s machine,
can run on a remote machine and be accessed through a
JupyterHub, a web application that securely forwards authenti-
cated requests directed at a central URL to a running notebook
server.'> The authentication layer of JupyterHub allows us to
block unauthenticated users from the platform. Our science
platform integrates authentication through GitHub, allowing us
to authenticate both individual users by their GitHub usernames
and groups of users through GitHub Organization membership.
For example, the implementation of this science platform
described in Section 3 restricts access to the platform and its
private data to members of the dirac-institute and
ZwickyTransientFacility GitHub organizations.
Users can choose to bypass the Jupyter computing environ-
ment by accessing their running notebook server with an SSH
client. The SSH client also facilitates file transfers between the

15 As an example, one may access a JupyterHub at the URL https://hub.
example.com which, if you are an authenticated user, will forward through a
proxy to https://hub.example.com/user/username. When running a notebook
on a local machine, there is no access to a JupyterHub and the single-user
server is served at (typically) http://localhost:8888.

user and their notebook server when using utilities such as scp
or rsync. Access through SSH is implemented using a “jump
host” setup: a single, always-running container on the cluster
runs an OpenSSH server that is networked to the internet.
When the user’s notebook server is running, it additionally runs
an OpenSSH server in the background. The user adds a
cryptographic public key to a file system shared between the
notebook server and jump host. The user connects to the jump
host with their username and a cryptographic private key stored
on their local machine. From the jump host, the user can
connect to their running notebook server with no additional
configuration. A properly formatted invocation of the ssh
command can do this in one step. Additional public and private
keys are generated automatically for each host and each user
and placed on a shared file system with correct permissions.

Finally, a Virtual Network Computing (VNC) desktop is
made available to the user for using graphical applications
outside of the Jupyter notebook. The VNC desktop is provided
through the Jupyter Remote Desktop Proxy software, an
extension to the Jupyter notebook server. The in-browser
desktop emulation offers reasonable interaction latencies over a
typical internet connection.

https://hub.example.com
https://hub.example.com
https://hub.example.com/user/username
http://localhost:8888

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

2.3.2. A Scalable Analytics Engine

Apache Spark (Spark) is a tool for general distributed
computing, with a focus on querying and transforming large
amounts of data, that works well in a shared-nothing,
distributed computing environment. Spark uses a driver/
executor model for executing queries. The driver process splits
a given query into several (1 to thousands) independent tasks
which are distributed to independent executor processes. The
driver process keeps track of the state of the query, maintains
communication with its executors, and coalesces the results of
finished tasks. Since the driver and executor(s) only need to
communicate with each other over the network, executor
processes can remain on the same machine as a driver, to take
advantage of parallelism on a single machine, or be distributed
across several other machines in a distributed computing
context.'® The API for data transformation, queries, and
analysis remains the same whether or not the Spark engine
executes the code sequentially on a local machine or in parallel
on distributed machines, allowing code that works on a laptop
to naturally scale to a cluster of computers.

To support astronomy-specific operations, Zecevi¢ et al.
(2019) have developed the Astronomy eXtensions to Spark
(AXS), a set of additional Python bindings to the Spark API to
ease astronomy-specific data queries such as crossmatches and
sky maps in addition to an internal optimization for speeding
up catalog crossmatches using the ZONES algorithm,
described in Zelevié¢ et al. (2019). AXS is included in our
science platform to ease the use of Spark for astronomers and
also provide fast crossmatching capability between catalogs.

AXS requires that tabular data be stored in Apache Parquet
format, a compressed column-oriented data storage format.'’
The columnar nature and partitioning of the files in Parquet
format allows for very fast reads of large tables. For example,
one can obtain a subset of just the “RA” column of a catalog
without scanning through all parts of all of the files. Apache
Spark’s flexible functionality for accessing data of different
formats, exposed in Python through pyspark.sqgl.Data-
Frame.read, allows one to convert a broad range of catalogs
in different formats—including FITS (Peloton et al. 2018)—to
Parquet. AXS additionally requires that catalogs stored in
Parquet be similarly partitioned in order to perform fast
crossmatches. AXS provides a single function, exposed in
Python as AxsCatalog.save, that will repartition a data
frame read using Spark, save it in Parquet format, and make the
table available to a user through its Apache Hive metastore
database.'®

2.3.3. A Scalable Storage Solution

Amazon S3 is a scalable object store with built-in backups
and optional replication across geographically distinct AWS
regions. Files are placed into an S3 bucket, a flat file system
that scales well to simultaneous access from thousands of
individual clients. Files are accessed over the network using a
REST API over HTTP, supporting actions to retrieve and
create new objects in the bucket. The semantics of the S3 API
are not compliant with the POSIX specification that typical file

16 Creating executor processes on a single machine is not done in practice;
instead, Spark supports multithreading in the driver process that replaces the
external executor process(es) when using local resources.

17 See https://parquet.apache.org/.
18 See https://hive.apache.org/.

Stetzler et al.

systems adhere to. However, there are projects, such as s3fs,
that allow for mounting of the S3 object store as a traditional
file system and provide an interface layer that makes the file
system largely POSIX compliant.'” The names of S3 buckets
are globally unique, which makes public and private sharing of
data in a bucket easy: a user anywhere in the world can access
public data from an S3 bucket by specifying only its name. To
access private data, the user must additionally authenticate
themself with AWS. Access control lists provide object-level
permissions for read/write access to certain users and the
public. Additionally, there is no limit to the amount of data that
can be stored, although individual files must be no larger than
5TB, and individual upload actions cannot exceed 5 GB. In
this platform, we store and access TB+ tabular data sets stored
in Parquet format with a common partitioning scheme, making
the data AXS compatible.

2.3.4. A Deployment Solution

We have created a deployment solution for the organized
creation and management of each of these three components.
The code for this is stored in a GitHub repository.”’ Files
referenced in the following code snippets assume access at the
root level of this repository.

To create and manage our Kubernetes cluster, we use the
eksctl software.”’ This software defines the configuration of
the Amazon Elastic Kubernetes Service (EKS) from YAML-
formatted files. An EKS cluster consists of a managed
Kubernetes master node that runs the control plane software
along with a set of either managed or unmanaged node groups
backed by Amazon Elastic Compute Cloud (EC2) virtual
machines which the applications scheduled on the cluster.?

To help us manage large numbers of Kubernetes objects, we
use Helm, the “package manager for Kubernetes.” Helm allows
Kubernetes objects described as YAML files to be templated
using a small number of parameters or “values,” also stored in
YAML. Helm packages together YAML template files and
their default template values in Helm “charts.” Helm charts can
have versioned dependencies on other Helm charts to compose
larger charts from smaller ones. After cluster creation, we use
Helm to install the cluster-autoscaler-chart, which
deploys the Kubernetes Cluster Autoscaler application. The
cluster autoscaler scales the number of nodes in the Kubernetes
cluster up or down when resources are too constrained or
underutilized.

We have created a Helm chart to manage and distribute
versioned deployments of our platform. This chart depends on
three subcharts:

1. The zero-to-jupyterhub chart, a standard and
customizable installation of JupyterHub on Kubernetes.
The zero-to-jupyterhub chart uses Docker images
from the Jupyter Docker Stacks by default and uses the
KubeSpawner for creating Jupyter notebook servers
using the Kubernetes API directly.”

19 See https://github.com/s3fs-fuse /s3fs-fuse.
20 hitps:/ /github.com/astronomy-commons /science-platform
2l See https://eksctl.io/.

Managed nodes are EC2 virtual machines with a tighter coupling to an EKS
cluster. Unmanaged nodes allow for more configuration by an administrator.
2 See https: //jupyter-docker-stacks.readthedocs.io/ and https://jupyterhub-
kubespawner.readthedocs.io/.

https://parquet.apache.org/
https://hive.apache.org/
https://github.com/s3fs-fuse/s3fs-fuse
https://eksctl.io/
https://jupyter-docker-stacks.readthedocs.io/
https://jupyterhub-kubespawner.readthedocs.io/
https://jupyterhub-kubespawner.readthedocs.io/

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

2. The nfs-ganesha-server—-and-external-pro-
visioner chart, which provides a network file system
server and Kubernetes-compliant storage provisioner.**

3. A mariadb chart, which provides a MariaDB server and
is used as an Apache Hive metadata store for AXS.*

The Helm chart contains the configuration of the three
subcharts. For example, the chart is configured to use a Docker
image with installations of Spark/AXS, the OpenSSH client/
server, and Jupyter notebook server extensions like the Jupyter
Remote Desktop Proxy when the JupyterHub starts a notebook
server. Additional configuration in the chart provides instruc-
tions for mounting the network file system, instructions for
setting up the Hive metastore, defines reasonable defaults for
using Spark on Kubernetes, and defines notebook server start-
up scripts that start the SSH server and set up the user’s space
on the file system (such as copying example notebooks to the
user’s home directory).

2.4. Providing a Shared File System with Granular Access
Control

We found it to be critically important to provide a way for
users to easily share files with one another. The default Helm
chart and KubeSpawner configuration create a Persistent
Volume Claim backed by the default storage device configured
for the Kubernetes cluster for each single-user server, allowing
a user’s files to persist beyond the lifetime of their server. For
AWS, the default storage device is an EBS volume, roughly
equivalent to a network-connected SSD with guaranteed input/
output capabilities. By default, this volume is mounted at the
file system location /home/jovyan in the single-user
container. This setup makes it difficult for the users’ results
to be shared with others because: a) they are isolated to their
own disk, and b) by default all users share the same username
and IDs, making granular access control extremely difficult.

To resolve these issues, we provisioned a network file
system (NFSv4) server using the nfs-ganesha-server-
and-external-provisioner Helm chart, creating a
centralized location for user files and enabling file sharing
between users. To solve the problem of access control, each
notebook container is started with two environment variables:
NB_USER set equal to the user’s GitHub username, and
NB_UID set equal to the user’s GitHub user id. The start-up
scripts included in the default Jupyter notebook Docker image
using the values of these environment variables to create a new
Linux user, move the home directory location, update home
directory ownership, and update home directory permissions
from their default values. Figure 3 shows how the NFS server is
mounted into single-user pods to enable file sharing. The NFS
server is mounted at the /home directory on the single-user
server, and a directory is created for the user at the location
/home/(username). Each user’s directory is protected
using UNIX-level file permissions that prevent other users
from making unauthorized edits to their files. System
administrators can elevate their own permissions (and access
the back-end infrastructure arbitrarily) to edit user files at will.
The UNIX user ids (UIDs) are globally unique, since they are
equal to a unique GitHub ID.

2 See https: //github.com/kubernetes-sigs /nfs-ganesha-server-and-external-
provisioner.

%5 See hitps://mariadb.org/ and https://github.com /bitnami/charts /tree/
master/bitnami/mariadb.

Stetzler et al.

In initial experiments, we used the managed AWS Elastic
File System (EFS) service to enable file sharing. Using the
managed service provides significant benefits, including
unlimited storage, scalable access, and automatic backups.
However, EFS had a noticeable latency increase per Input/
Ouput operation compared to the EBS-backed storage of the
Kubernetes-managed NFS server. In addition, EFS storage is
3 x more expensive than EBS storage.”

In addition to storing home directories on the NFS server, we
have an option to store all of the science analysis code
(typically managed as conda environments) on the NFS
server. This has several advantages relative to the common
practice of keeping the code in Jupyter notebook Docker
images. The primary advantage is that this allows for updating
of installed software in real time, and without the need to restart
user servers. A secondary advantage is that the Docker images
become smaller and faster to download and start up (thus
improving the user experience). The downside is decreased
scalability: the NFS server includes a central point, shared by
all users of the system. Analysis codes are often made up of
thousands of small files, and a request for each file when
starting a notebook can lead to large loads on the NFS server.
This load increases when serving more than one client, and
may not be scalable beyond serving a few hundred users.

For systems requiring significant scalability, a hybrid
approach of providing a base conda environment in the
Docker image itself in addition to mounting user-created and
user-managed conda environments and Jupyter kernels from
the NFS server is warranted. This allows for fast and scalable
access to the base environment while also providing the benefit
of shared code bases that can be updated in-place by individual
users.

2.5. Providing Optimal and Specialized Resources

Some users require additional flexibility in the hardware
available to match their computing needs. To accommodate
this, we have made deployments of this system that allow
users to run their notebooks on machines with more CPU or
RAM or with specialty hardware like Graphics Processing
Units (GPUs) as they require. This functionality is restricted
to deployments where we trust the discretion of the users and
is not included in the demonstration deployment accompa-
nying this manuscript.

Flexibility in hardware is provided through a custom
JupyterHub options form that is shown to the user when they
try to start their server. An example form is shown in Figure 4.
Several categories of AWS EC2 instances are enumerated with
their hardware and costs listed. Hardware is provisioned in
terms of vCPU, or “virtual CPU,” roughly equivalent to one
thread on a hyperthreaded CPU. In this example, users can pick
an instance that has as few resources as two vCPU and 1 GiB
of memory at the lowest cost of $0.01 /hr (the t3.micro EC2
instance), to a large-memory machine with 96 vCPU and 768
GiB of memory at a much larger cost of $6.05/hr (the
r5.24xlarge EC2 instance). In addition, nodes with GPU
hardware are provided as an option at moderate cost (four
vCPU, 16 GiB memory, one NVIDIA Tesla P4 GPU at $0.53/
hr; the g4dn.xlarge EC2 instance). These GPU nodes can

%6 The cost of EFS is $0.30/GB-Month versus $0.10/GB-Month for EBS.
Lifecycle management policies for EFS that move infrequently used data to a
higher-latency access tier can reduce costs to approximately the EBS level.

https://github.com/kubernetes-sigs/nfs-ganesha-server-and-external-provisioner
https://github.com/kubernetes-sigs/nfs-ganesha-server-and-external-provisioner
https://mariadb.org/
https://github.com/bitnami/charts/tree/master/bitnami/mariadb
https://github.com/bitnami/charts/tree/master/bitnami/mariadb

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August Stetzler et al.

jupyter-user-1 UID: 1, GID: 100
Block Storage
/
on Host
i /home Notebook / Data sharing
/home/user-1
——
Network File /opt/conda/envs Code / Environment sharing
System
/opt/conda/share/jupyter/kernels
user-1-pyspark-exec-1 UID: 1, GID: 100
Block Storage
/
on Host
(| /home
/home/user-1
EEEEE—

/opt/conda/envs

/opt/conda/share/jupyter/kernels

jupyter-user-2 UID: 2, GID: 100

Block Storage
on Host

/
T (e

/home/user-2

/opt/conda/envs

/opt/conda/share/jupyter/kernels

Figure 3. An illustration of the file system within each container spawned by the JupyterHub (jupyter-user-1 and jupyter-user-2) and by the user in the
creation of a distributed Spark cluster. Most of the file system (the root directory/) exists on an ephemeral storage device tied to the host machine. The home
directories, conda environment directories, and Jupyter kernel directories within each container are mounted from an external NFS server. This file structure allows
for sharing of Jupyter Notebook files and code environments with other users and with a user’s individual Spark Cluster. UNIX user ids (UID) and group ids (GID) are
set to prevent unauthorized data access and edits.

be used to accelerate code in certain applications such as image 2.6. Multicloud Support

processing and machine learning. For this deployment, the

form is configured to default to a modest choice with four It is unlikely, and perhaps undesirable, that all scientists and
vCPU and 16 GiB of memory at a cost of $0.17/hr (the t3. organizations will agree to use a single cloud provider when
xlarge EC2 instance). This range of hardware options and storing data, accessing computing resources, or deploying our
prices will change over time; the list provided is simply an system. There are many clouds outside of AWS that scientists
example of the on-demand heterogeneity provided via AWS. may have already chosen for computing and data storage based

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

Server Options

Stetzler et al.

Customize...
Compute optimized
C5
Size CPU Memory Price Network Extra
Hardware
O large 2 4 GiB $0.09/hour Up to 10 Gigabit
O xlarge 4 8 GiB $0.17/hour Up to 10 Gigabit
O 2xlarge 8 16 GiB $0.34/hour Up to 10 Gigabit
O 4xlarge 16 32 GiB $0.68/hour Up to 10 Gigabit
O 12xlarge 48 96 GiB $2.04/hour 12 Gigabit
O 24xlarge 96 192 GiB $4.08/hour 25 Gigabit
GPU instance
G4DN P3
Size CPU Memory Price Network Extra
Hardware
O xlarge 4 16 GiB $0.53/hour Up to 25 Gigabit 1 GPUs and
125 GB
NVMe SSD
O 2xlarge 8 32 GiB $0.75/hour Up to 25 Gigabit 1 GPUs and
225 GB
NVMe SSD
O 4xlarge 16 64 GiB $1.20/hour Up to 25 Gigabit 1 GPUs and
225 GB
NVMe SSD

Figure 4. A screenshot of the JupyterHub server spawn page. Several options for computing hardware are presented to the user with their hardware and costs
enumerated. Of note is the ability to spawn GPU instances on demand. When a user selects one of these options, their spawned Kubernetes Pod is tagged so that it can
only be scheduled on a node with the desired hardware. If a node with the required hardware does not exist in the Kubernetes cluster, the cluster autoscaler will

provision it from the cloud provider (introducing a ~5 minute spawn time).

on factors such as the availability of compute credits, academic
institutional tie-ins, convenience, familiarity, or differences in
product offerings.”’ Therefore, it is necessary to think about

2 Google Cloud Platform (GCP), Microsoft Azure, IBM Cloud, DigitalOcean,
and the National Science Foundation-funded Jetstream Cloud are a short list of
cloud providers.

and accommodate multicloud support in our architecture. The
system architecture outlined in 2.3 is sensitive in two places to
the choice of cloud provider: the deployment solution and the
storage solution.

The deployment solution we use is tied to the choice of
cloud provider only during the creation of the Kubernetes
cluster with the deployment scripts. Helm interacts with the

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

Kubernetes cluster directly and not the cloud provider, so it
remains cloud agnostic. For cloud providers that offer a
managed Kubernetes service, then they typically offer
command-line interface (CLI) tools for creating and managing
a Kubernetes cluster. In other cases, tools like kops and
Kubespray enable cluster creation on a wide variety of
public clouds as well as on private computing clusters. Our
deployment scripts can be extended in the future to
accommodate other clouds using these tools.

The storage solution has a tighter coupling to the cloud
provider that leads to potential lock-in with the cloud provider
as well as issues with sharing data across clouds. While we
have chosen Amazon S3 as our storage solution, similar object
storage products from other cloud providers can be used.
Apache Spark can access data stored in any object store that
uses the S3 APIL. Some cloud providers offer object storage
products that expose APIs that are compliant or complementary
to the S3 API, which makes accessing data between clouds
feasible. For example, both Google Cloud Platform (GCP) and
DigitalOcean provide storage services that have some or full
interoperability with S3. This means a user can expect to
deploy our system on a cloud with a compatible object store
and use that object store with few or no changes in how the
data are accessed. However, transferring large amounts of data
between clouds through the internet (referred to as “egress”)
remains very costly, making multicloud data access infeasible
in practice. AWS quotes data transfer fees of $0.05-$0.09 per
GB depending on the total volume transferred in a month. This
means that a user who has deployed our system in a cloud other
than AWS cannot expect to access large amounts of data stored
within Amazon S3. This sets the expectation that our system
will be deployed in the Cloud where a user’s data and
potentially other relevant and desirable data sets are located.
Notably, this challenge persists, at a smaller scale, within an
individual cloud due to data transfer costs between geographi-
cally distinct data centers (often called regions). AWS quotes
data transfer costs between regions at $0.01-$0.02 per GB.
However, unless very low latency for data access from many
countries/continents is required, a user or organization can
likely choose and stick to a single region when storing data and
acquiring computing resources.

Slightly different system architectures allow for easier
multicloud data access. For example, the Jupyter Kernel
Gateway and Jupyter Enterprise Gateway projects can be used
to access computing resources that are distributed across
multiple clusters.”® Both of these projects provide a method to
create and access a running process in a remote cluster. This
allows one to create several Kubernetes clusters in different
clouds where desirable data sets are located and use a single
JupyterHub as an entry point to access data stored in multiple
clouds. While this proposed solution does not bring the data
closer together, which would be desirable for applications that
require jointly analyzing data sets from multiple sources in
different clouds, it does allow for baseline multicloud data
access. True multicloud data access is likely to remain
infeasible without significant decreases in egress costs or prior
agreement on where to store data from data set stakeholders.
New services, such as Cloudflare R2, that provide cloud
storage with zero or near-zero egress cost brighten the

28 See hitps: //github.com/jupyter-server/kernel_gateway and https://github.
com/jupyter-server/enterprise_gateway.

10

Stetzler et al.

Table 1
Sizes of Catalogs Available on the ZTF Science Platform and Total Data
Volume
Name Data Size (GB) # Objects 10%
SDSS 65 0.77
AlIWISE 349 0.81
Pan-STARRS 1 402 22
Gaia DR2 421 1.8
ZTF 4100 1.2
Total 5337 8.9

prospects for cheap, multicloud data transfer and would lift
the requirement for consensus among stakeholders.

3. A Deployment for ZTF Analyses

To demonstrate the capabilities of our system and verify its
utility to a science user, we deployed it to enable the analysis of
data from the Zwicky Transient Facility (ZTF). Section 3.1
describes the catalogs available through this deployment,
Section 3.2 demonstrates the typical access pattern to the data
using the AXS API, and Section 3.3 showcases a science
project executed on this platform.

3.1. Catalogs Available

Table 1 enumerates the catalogs available to the user in this
example deployment. We provide a catalog of light curves from
ZTF, created from deduplicated match files. The most recent
version of these match files have a data volume of ~ 4TB
describing light curves of ~ 1 billion+ objects in the “g”, “7’, and
“i” bands. In addition, we provide access to catalogs from the data
releases of the SDSS, Gaia, AIIWISE, and Pan-STARRS surveys
for convenient crossmatching. The system allows users to upload,
crossmatch, and share custom catalogs in addition to the ones
provided, using the method described in 2.3.2.

3.2. Typical Workflow

Users can query the available catalogs through the AXS /Spark
Python API. For example, a user loads a reference to the ZTF
catalog like so:

import axs

from pyspark.sgl import SparkSession

spark = SparkSession.builder.getOrCreate ()
catalog = axs.AxsCatalog (spark)

ztf = catalog.load(‘‘'ztf’’")

The spark object represents a Spark SQL Session and a
connection to a Hive metastore database, which stores metadata
for accessing the catalogs. This object is used as a SQL back
end when creating the AxsCatalog, which acts as an
interface to the available catalogs. Catalogs from the metastore
database are loaded by name using the AXS API Data subsets
can be created by selecting one or more columns:

ztf_subset =
‘dec’’, ‘mag_r’’)

ztf.select(‘‘ra’’,

AxsCatalog Python objects can be crossmatched with one
another to produce a new catalog with the crossmatch result:

gaia = catalog.load(‘gaia’’)
xmatch = ztf.crossmatch (gaia)

https://github.com/jupyter-server/kernel_gateway
https://github.com/jupyter-server/enterprise_gateway
https://github.com/jupyter-server/enterprise_gateway

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

The =xmatch object can be queried like any other
AxsCatalog object. Spark allows for the creation of User-
Defined Functions (UDFs) that can be mapped onto rows of a
Spark DataFrame. The following example shows how a Python
function that converts an AB magnitude to its corresponding
flux in janskys can be mapped onto all ~63 billion r-band
magnitude measurements from ~1 billion light curves in the
ZTF catalog (in parallel):

from pyspark.sqgl.functions import udf
from pyspark.sqgl.types import ArrayType
from pyspark.sqgl.types import FloatType
import numpy as np

@udf (returnType=ArrayType (FloatType ()))
def abMagToFlux (m) :

flux = ((8.90-np.array(m))/2.5)*x10
return flux.tolist ()

ztf _flux r = ztf.select(

abMagToFlux (ztf[‘''mag_r’’]) .alias

(M flux_r’’")

)

3.3. Science Case: Searching for Boyajian Star Analogs

We test the ability of this platform to enable large-scale
analysis by using it to search for Boyajian star (Boyajian et al.
2016) analogs in the ZTF catalog. The Boyajian star,
discovered with the Kepler telescope, dips in its brightness in
an unusual way. We intend to search the ZTF catalog for
Boyajian-analogs, other stars that have anomalous dimming
events, which will be fully described in Boone K. et al. 2022,
(in preparation); here we limit ourselves to aspects necessary
for the validation of the analysis system. The main method for
our Boyajian-analog searches relies on querying and filtering
large volumes of ZTF light curves using AXS and Apache
Spark in search of the dimming events. Objects of interest are
then spatially crossmatched against the other catalogs available,
for example to the Gaia catalog to create a color—magnitude
diagram and the AIIWISE catalog to identify if there is excess
flux in the infrared. This presents an ideal science case for our
platform: the entire ZTF catalog must be queried, filtered,
analyzed, and compared to other catalogs repeatedly in order to
complete the science goals.

We wrote custom Spark queries that search the ZTF catalog
for dimming events. After filtering the light curves, we created
a set of UDFs for model fitting that wrap the optimization
library from the scipy package. These UDFs are applied to
the filtered light curves to parallelize least-squared fitting
routines of various models to the dipping events. Figure 5
shows an outline of this science process using AXS.

The use of Apache Spark speeds up queries, filtering, and
fitting of the data tremendously when deployed in a distributed
environment. We used a Jupyter notebook on our platform to
allocate a Spark cluster consisting of 96 t3.2xlarge EC2
instances. Each instance had access to eight threads running on
an Intel Xeon Platinum 8000 series processor with 32 GiB of
RAM, creating a cluster with 768 threads and 3072 GiB of
RAM. We used the Spark cluster to complete a complex
filtering task on the full 4 TB ZTF data volume in ~3 hr. The
underlying system was able to scale to full capacity within
minutes, and scale down once the demanding query was
completed just as fast, providing extreme levels of parallelism

11

Stetzler et al.

at minimal cost. The total cost over the time of the query
was ~$100.

This same complex query was previously performed on a
large shared-memory machine at the University of Washington
with two AMD EPYC 7401 processors and 1024 GiB of RAM.
The query utilized 40 threads and accessed the catalog from
directly connected SSDs. This query previously took a full two
days to execute on this hardware in comparison to the ~3 hr on
the cloud-based science platform. Performing an analysis of
this scale would not be feasible if performed on a user’s laptop
using data queried over the internet from the ZTF archive.

In addition, the group was able to gain the extreme
parallelism afforded by Spark without investing a significant
amount of time writing Spark-specific code. The majority of
coding time was spent developing science-motivated code/
logic to detect, describe, and model dipping events within
familiar Python UDFs and using familiar Python libraries. In
alternative systems that provide similar levels of parallelism,
such as HPC systems based on batch scheduling, a user would
typically have to spend significant time altering their science
code to conform with the underlying software and hardware
that enables their code to scale. For example, they may spend
significant time rewriting their code in a way that can be
submitted to a batch scheduler like PBS/Slurm, or spend time
developing a leader/follower execution model using a
distributed computing/communication framework such as
OpenMPI. Traditional batch scheduling systems running on
shared HPC resources typically have a queue that a user’s
program must wait in before execution. In contrast, our
platform scales on demand to the needs of each individual user.

This example demonstrates the utility of using cloud
computing environments for science: when science is
performed on a platform that provides on-demand scaling
using tools that can distribute science workloads in a user-
friendly manner, time to science is minimized.

4. Scalability, Reliability, Costs, and User Experience

Our system is expected to scale both in the number of
simultaneous users and to the demands of a single user’s
analysis. In the former case, JupyterHub and its built-in proxy
can scale to access by hundreds of users as its workload is
limited to routing simple HTTP requests. In the latter case, data
queries by individual users are expected to scale to very many
machines, allowing for fast querying and transformation of
very large data sets. Section 4.1 summarizes tests to verify this
claim.

4.1. Scaling Performance

We performed scaling tests to understand and quantify the
performance of our system. We tested both the “strong scaling”
and “weak scaling” aspects of a simple query. Strong scaling
indicates how well a query with a fixed data size can be sped up
by increasing the number of cores allocated to it. On the other
hand, weak scaling indicates how well the query can scale to
larger data sizes; it answers the question “can I process twice as
much data in the same amount of time if I have twice as many
cores?”’

Figure 6 shows the strong and weak scaling of a simple
query, the sum of the “RA” column of a ZTF light-curve
catalog, which contains ~3 x 10° rows, stored in Amazon S3.
This catalog is described in more detail in Section 3.1. In these

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

[1]

catalog = axs.AxsCatalog(spark)

Stetzler et al.

df = catalog.load("ztf")
[2] dippers = find _and filter_dips(df)
objid 88480000290704349 ey objid 139842927158005673
—0.4 -0.6 - f'
]
o « —0.4 () $. .:
§-o2 S el T FEEELIE
S ©-02) ¢ f} “‘ . *:.ito y b
g o andl KX v/ I
= £ ‘ B
5 5 0.2 %“& ¢ ?}’
s 02 s ‘w
0.4 "
+ ZTF-r §+ + ZTF-r
0.4 4 ZTFg 0.6] ¢ ZTF-g
58300 58400 58500 58600 58200 58300 58400 58500 58600 58700 58800 58900
MJD MJD
[3] fits = fit light curves(dippers)

objid 154942970669521633

objid 154942970669521633

H Skew = 1.61 = H
12.6 ' 12.6 '
) +
12.7 ¢ !* 12.7 ¢ { !*
¢ $ t E{
[)] (]
¢ b o Ay ¢ 3
3128 I S128 ' ‘
g‘ } ft " ﬁ % | '
©
= 12.9
= 12.9 b* * R | '
#3814 ¥s 34/ 14 Yy
13.0 13.0
; —— model
13.1 E } b ZTFr 13.1 b ZTFr
57800 58000 58260 58400 58600 58800 59000 57800 58000 58200 58400 58600 58800 59000
MD MJD

Figure 5. An example analysis (boiled down to two lines) that finds light curves in the ZTF light-curve catalog with a dimming event. (1) shows how the ZTF catalog
is loaded as a Spark DataFrame (df), (2) shows the product of filtering light curves for dimming events, and (3) shows the result of fitting a model to the remaining
light curves. This process exemplifies that analyses can often be represented as a filtering and transformation of a larger data set, a process that Spark can easily

execute in parallel.

experiments, speedup is computed as
ey

where 7. is the time taken to execute the query with a reference
number of cores while ¢, is the time taken with N cores. For the
weak scaling tests, scaled speedup is computed as

speedup = tef /ty

2

which is scaled by the problem size Py with respect to the
reference problem size P..;. We chose to scale the problem size
directly with the number of cores allocated; the 96-core query
had to scan the entire catalog, while the 1-core query had to
scan only 1/96 of the catalog. Typically, the reference number
of cores is 1 (sequential computing); however, we noticed

scaled speedup = tier /ty X Py /Pt

12

anomalous scaling behavior at low numbers of cores, and so we
set the reference to 16 in Figure 6.

In our experiments, we used m5.large EC2 instances to
host the Spark executor processes, which have two vCPU and 8
GiB of RAM allocated to them. The underlying CPU is an Intel
Xeon Platinum 8000 series processor. The Spark driver process
was started from a Jupyter notebook server running on a t3.
xlarge EC2 instance with four vCPU and 16 GiB of RAM
allocated to it. The underlying CPU is an Intel Xeon Platinum
8000 series processor. Single m5. large EC2 instances have a
network bandwidth of 10 Gbit s~' while the t3.xlarge
instance has a network bandwidth of 1 Gbit s~'. Amazon S3
can sustain a bandwidth of up to 25 Gbit s ' to individual
Amazon EC2 instances. Both the data in S3 and all EC2
instances lie within the same AWS region, us-west-2. The m5.

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

Strong Scaling

100
751 *
}
S 5
© 50/ ¢
(O]
) .
251
()
O,o'
0 50 100
vCPUs
6,
S4
©
! +
& 21 ;o + ‘
ole” | | |
0 2 4 6
vCPUs / 16

Stetzler et al.

Weak Scaling

o600/ t Experiments
A Speedup ~ Cores
Q
L 400"
m [J
ks
f200
m ° S
01 PR B
’ >0 100
vCPUs

56/ P

o

8 /”,,/

o 41

< o/,/

D L

S2

wn /‘.,

0l &*
0 3] .
vCPUs / 16

Figure 6. Speedup computed in strong scaling (left) and weak scaling (right) experiments of a simple Spark query that summed a single column of the ZTF catalog, ~
3 x 10° rows. Speedup is computed using Equation (1) and scaled speedup is computed using Equation (2). For each value of vCPU, the query was executed several
(3+) times. For each trial, the runtime was measured and speedup calculated. Each point represents the mean value of speedup and error bars indicate the standard
deviation. The first row shows speedup computed using sequential computing (vCPU = 1) to set the reference time and reference problem size. The second row shows
speedup computed using 16 vCPU to set the reference. With sequential computing as the reference, we observe speedup that is abnormally high in both the strong and
weak scaling cases. By adjusting the reference point to vVCPU = 16, we find that we can recover reasonable weak scaling results and expected strong scaling results for
a small to a medium number of cores. Using the adjusted reference, we observe in the strong scaling case diminishing returns in the speedup as the number of cores
allocated to the query increases, as expected. The weak scaling shows optimistic results; the speedup scales linearly with the catalog size as expected.

large EC2 instances were spread across three “availability
zones” (separate AWS data centers): us-west-2a, us-west-2b,
and us-west-2c. This configuration of heterogeneous instance
types, network speeds, and even separate instance locations
represent a typical use-case of cloud computing and offers
illuminating insight into the performance of this system with
these “worst-case” optimization steps.

The weak scaling test showed that scaled speedup scales
linearly with the number of cores provisioned for the query;
twice the data can be processed in the same amount of time if
using twice the number of cores. In other words, for this query,
the problem of “big data” is solved simply by using more cores.
The strong scaling test showed expected behavior up to vCPU/
16 =5. Speedup increased monotonically with diminishing
returns as more cores were added. Speedup dropped from 2.50
with vCPU/16 =5 to 2.05 with vCPU/16 = 6, indicating no
speedup can be gained beyond vCPU/16=5. Drops in
speedup in a strong scaling test are usually due to real-world
limitations of the network connecting the distributed compu-
ters. As the number of cores increases, the number of
simultaneous communications and the amount of data shuffled
between the single Spark driver process and the many Spark

13

executor processes increases, potentially reaching the latency
and bandwidth limits of the network connecting these
computers.

4.2. Caveats to Scalability

As mentioned in Section 2.4, the use of a shared NFS can
limit scalability with respect to the number of simultaneous
users. We recommend the administrators of new deployments
of our platform consider the access pattern of user data and
code on NFS to guarantee scalability to their desired number of
users. Carefully designed hybrid models of code and data
storage that utilize NFS, EFS, and the Docker image itself
(stored on EBS) can be developed that will likely allow the
system scale access from hundreds of users.

4.3. Reliability

In general, the system is reliable if individual components
(i.e., virtual machines or software applications) fail. Data stored
in S3 are in practice 100% durable; at the time of writing, AWS
quotes “99.999999999% durability of objects over a given
year.” Data stored in the EBS volume backing the NFS server

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

are similarly durable—99.999% at the time of writing. We
choose to back up these data using Amazon EBS snapshots on
a daily basis so we can recover the volume in the event of
volume deletion or undesirable changes.

Kubernetes as a scheduling tool is resilient to failures of
individual applications. Application failures are resolved by
rescheduling the application on the cluster, perhaps on another
node, until a success state is reached. When the Kubernetes
cluster autoscaler is used, then the cluster becomes resilient to
the failure of individual nodes. Pods that are terminated from a
node failure will become unschedulable, which will trigger the
cluster autoscaler to scale the cluster up to restore the original
size of the cluster. For example, if the user’s Jupyter notebook
server is unexpectedly killed due to the loss of an EC2 instance,
it will relaunch on another instance on the cluster, with the loss
of only the memory contents of the notebook server and the
running state of kernels. The same is true of each of the
individual JupyterHub and Spark components. Apache Spark is
fault tolerant in its design, meaning a query can continue
executing if one or all of the Spark executors are lost and
restarted due to the loss of the underlying nodes. A similar loss
of the driver process (on the Jupyter notebook server) results in
the complete loss of the query.

We have run different instances of this platform for
approximately 3 yr in support of science workloads at UW,
the ZTF collaboration, a number of hackathons, and the LSST
science collaborations. Over that period, we have experienced
no loss of data or nodes.

4.4. Costs

This section enumerates the costs associated with running
this specific science platform. Since cloud computing costs can
be variable over time, the costs associated with this science
platform are not fixed. In this section, we report costs at the
time of manuscript submission as well as general information
about resource usage so costs can be recomputed by the reader
at a later date.

We describe resource usage along two axes: interactive
usage and core hours for data queries. Interactive usage
encompasses using a Jupyter notebook server for making plots,
running scripts and small simulations, and collaborating with
others. Data queries encompass launching a distributed Spark
cluster to access and analyze data provided on S3, similarly to
the methods described in Section 3.3. Equation (3) provides a
formula for computing expected monthly costs given the
number of users N, the cost of each user node C,, the cost of
the Spark cluster nodes C;, the estimated time spent per week
on the system t,, and the number of node hours used by each
user for Spark queries in a month z:

Costyomge = Ny X 200 x 0.08 x (t, x (30/7) + 1),
COStmachines = Nu X (Cu X Iy X (30/7) + Cs X tx),
Cost = COStslorage + Costmachines-

3)

Fixed in the equation are constants describing the amount (200
GB) and cost of ($0.08/GB/month) of EBS-backed storage
allocated for each virtual machine. Additionally, the term (30/
7) converts weekly costs to monthly costs. Node hours can be
converted to core hours by multiplying #; by the number of
cores per node.

Table 2 enumerates the fixed costs of the system as well as
the variable costs, calculated using Equation (3), assuming

14

Stetzler et al.

different utilization scenarios, varying the number of users
(N,), the amount of interactive usage per week (z,), and amount
of Spark query core hours each month (z;). The fixed costs of
the system total $328.51/month, paying for:

1. a small virtual machine, t3.medium, for the Jupyter-
Hub web application, proxy application, and NFS server
($29.95/month) with 200 GB EBS-backed storage
($16.00 /month);

2. two reserved nodes for incoming users at the default
virtual machine size of t3.xlarge ($119.81/month)
with 200 GB EBS-backed storage each ($32.00/month);

3. EBS-backed storage for the NFS server for user files
($8.00/month);

4. and storage of 5337 GB of catalog data on Amazon S3
($122.75 /month).

Variable costs are harder to estimate, but Table 2 outlines
several scenarios to get a sense of the lower/upper limits to
costs. 10 scientists using the platform for 4 hr per day 3 days
per 7 day week, each using 512 core hr for Spark queries each
month (equivalent to 16 hr with a 32 core cluster) adds a cost of
$189.32/month. On the other hand, 100 scientists using the
platform for 8 hr per day 5 days per 7 day week, each using
2048 core hr for Spark queries each month (64 hr with a 32
core cluster) adds a cost of $6,926.18/month. There are
additional costs on the order of ~$10 that we do not factor into
this analysis. Specifically:

1. network communication between virtual machines in
different availability zones, introduced when scaling a
Spark cluster across availability zones;

2. data transfer costs in the form of S3 GET API requests
(data transfer to EC2 virtual machines in the same region
is free), introduced in each query executed against
the data;

3. and network communication between virtual machines
and users over the internet, introduced with each
interaction in the Jupyter notebook through the user’s
web browser.

Each of these costs is minimal, so we do not include them in
our analysis. However, they are worth mentioning because
they can scale to become significant. Spark queries requiring
GB/TB data shuffling between driver and executors should
restrict themselves to a single availability zone to avoid the
costs of (1). Costs from (2) are unavoidable, but care should
be taken so no S3 requests occur between different AWS
regions and between AWS and the internet. Finally, (3) can
balloon in size if one allows arbitrary file transfers between
Jupyter servers and the user or allows large data outputs to
the browser.

The number of core hours for queries is a parameter that will
need to be calibrated using information about the usage of this
type of platform in the real world. The upper limit guess of
2048 core hr per user per month is roughly equivalent to each
user running an analysis similar to that described in Section 3.3
each month. By monitoring interactive usage of our own
platform and other computation tools, we estimate that realistic
usage falls closer to the lower limits we provide; few users will
use the platform continuously in an interactive manner, and
even fewer will be frequently executing large queries using
Spark.

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

Stetzler et al.

Table 2
Fixed and Variable Costs Associated with Running this Analysis Platform on AWS

Virtual Machines

Type Unit Cost

Amount Total

Services (t3.medium®) $0.0416/hr/node

1 node $29.95/month

Users (t3.xlarge) $0.1664 /hr/node

2 nodes + variable $119.81/month + variable

Spark Clusters (t3.xlarge Spot®) $0.0499 /hr/node variable variable
Storage
Type Unit Cost Amount Total
Catalogs (S3°) $0.023/GB /month 5,337 GB $122.75 /month
NFS (EBSY) $0.08/GB /month 100 GB $8.00/month
Node Storage (EBS) $0.08/GB /month/node 200 GB/node $48.00/month + variable

Fixed Costs

Type Total

Virtual Machines $149.76 /month
Storage $178.75 /month
All $328.51/month

Variable Costs

Number of Users Interactive Usage (hours/week /user) Spark Query Core Hours (/user/month) Total
10 12 512 $189.32 /month
2048 $466.27 /month
40 512 $415.67 /month
2048 $692.62 /month
100 12 512 $1,893.22 /month
2048 $4,662.71 /month
40 512 $4,156.69 /month
2048 $6,926.18 /month

Notes. This summary provides cost estimates for renting a virtual machine and storing data. Additional costs on the order of ~ $10 due to network communication and
data transfer are excluded from these results. Reasonable low and high estimates are chosen for the number of active users and the amount of interactive usage they
have with the system. The number of Spark query core hours used by each user per month is a guess, but the high-end estimate is similar to the core hours used during

the analysis in Section 3.3.

? On-demand pricing in region us-west-2: https://aws.amazon.com/ec2/pricing/on-demand,.

Spot pricing in region us-west-2: https://aws.amazon.com/ec2 /spot/pricing /.

© For the first 50 TB: https://aws.amazon.com/s3 /pricing//.
4 General purpose SSD (gp3): https: //aws.amazon.com/ebs/pricing /.

4.5. Dynamic Scaling

Recent versions of Apache Spark provide support for “dynamic
allocation” of Spark executors for a Spark cluster on Kuber-
netes.”’ Dynamic allocation allows for the Spark cluster to scale
up its size to accommodate long-running queries as well as
scale down its size when no queries are running. Figure 7
shows pictorially this scaling process for a long-running query
started by a user. This feature is expected to reduce costs
associated with running Spark queries since Spark executors

2 Since Spark version 3.0.0 by utilizing shuffle file tracking on executors as
an alternative to an external shuffle file service, which is awaiting support in
Kubernetes. See: https://spark.apache.org/docs/3.0.0 /configuration.
html#dynamic-allocation.

15

are added and removed based on query status, not cluster
creation. This means the virtual machines hosting the Spark
executor processes will be free more often either to host the
Spark executors for another user’s query or be removed from
the Kubernetes cluster completely.

4.6. User Experience

While the experience of using the science platform is largely
identical to using a local or remotely hosted Jupyter notebook
server, the use of containerized Jupyter notebook servers on a
scalable compute resource introduces a few notable points of
difference. First, similarly to using a remotely hosted Jupyter
notebook, the file system exposed to the user has no direct

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/ebs/pricing/
https://spark.apache.org/docs/3.0.0/configuration.html#dynamic-allocation
https://spark.apache.org/docs/3.0.0/configuration.html#dynamic-allocation

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

Executors
Added

Executor 4 added

Executor 3 added

Stetzler et al.

Executor 8 removed
Executor 7 removed
s oo
| x4 o]
)|
o2 o
Executor 16 removed
Eror tremors|
Executor 12 removed
| tor 1]
Executor 1 removed

Executor 9 added
Executor 16 added
Executor 15 added
Executor 14 added
Executor 7 added Executor 13 added
Executor 6 added Executor 12 added
Executor 5 added Executor 11 added

Executor 8 added Executor 10 added

[Removed
Executor driver added
Executor 1 added Executor 2 added
Jobs
Succeeded
[Failed
Running (collect at /opt/axs/python/axs/axsframe.py:511 (Job 0)

35 40 45 50 55 0 5 10
19 January 22:54 19 January 22:55

000
20 25 30 35 40 45 50 55 0 5 10

19 January 22:56

Figure 7. A screenshot of the job timeline from the Spark UI when dynamic allocation is enabled. A long-running query is started, executing with a small number of
executors. As the query continues, Spark adds exponentially more executors to the cluster at a user-specified interval until the query completes or the max number of
executors is reached. Once the query completes (or is terminated, as shown here), the Spark executors are removed from the cluster.

connection to their personal computer, an experience that can be
unintuitive to the user. File uploads and downloads can be
facilitated through the Jupyter interface, but the process remains
clunky. For streamlined file transfer, the user must fall back to
using an SSH client and utilities like scp or rsync. In future
deployments of this system, it is likely that new user interfaces
will need to be produced to maximize the usability of the file
system.

Additionally, in order to allow for scale-down of the cluster,
notebook servers are typically shut down after a configurable
period of inactivity using the jupyterhub-idle-culler
service. A period of ~1-8 hr is typical for deployments of this
science platform. This has the positive effect of reducing costs but
at a detriment to the user experience. At the time of writing,
inactivity is determined in terms of browser connectivity, so a user
cannot expect to leave code running longer than the cull period
e.g., overnight. Juric et al. (2021) have implemented functionality
to checkpoint the memory contents of the notebook server to disk
before stopping with the ability to restore the server to a running
state at will. Such checkpoint/restore functionality solves the issue
of interrupting running code when culling servers; however, this
still does not allow for codes to run longer than the cull period. At
the time of writing, additional functionality is being added to the
jupyterhub-idle-culler service to allow for fine-grained
control over which servers are culled and when.

Finally, the underlying scalable architecture introduces server
start-up latencies that are noticeable to the user. Virtual machines
that host notebook servers and Spark cluster executors are
requested from AWS on demand by the user. The process of
requesting new virtual machines from AWS, downloading
relevant Docker images to that machine, and starting the
notebook /Spark Docker container can take up to ~5 minutes.*’

30 This time is dependent on the individual cloud provider. DigitalOcean,
another cloud provider, can provision virtual machines in ~1.5 minutes based
on the experience of the authors.

16

The user can encounter this latency when logging onto the
platform and requesting a server. They also encounter this
latency when creating a distributed Spark cluster, as many
machines are provisioned on demand to run Spark executors.
The log-in latency can be mitigated by keeping a small number
of virtual machines in reserve so that an incoming user can
instantly be assigned to a node. The zero-to-jupyterhub
Helm chart implements this functionality through its user-
placeholder option. This functionality schedules place-
holder servers on the Kubernetes cluster that will be
immediately evicted and replaced when a real user requests a
server. Additionally, to avoid Docker image download times,
relevant Docker images can be cached inside a custom-built
virtual machine image (in AWS lingo, the Amazon Machine
Image or AMI) that the virtual machine is started from. An
alternative solution to this would be to place all incoming users
on a shared machine, an equivalent to a “log-in node”, before
moving them to a larger machine at the user’s request or
automatically once a new server is provisioned from the cloud
provider—a process known as live migration. Juric et al.
(2021) provides a path toward live migration of containerized
Jupyter notebook servers, but this advanced functionality
remains to be implemented with a JupyterHub deployment on
Kubernetes.

5. Conclusions

In this paper, we have described an architecture of a cloud-
based science platform as well as an implementation on
Amazon Web Services that has been tested with data from the
Zwicky Transient Facility. The system is shown to scale to and
allow parallel analysis with O(10TB) sized tabular, time-series
heavy, data sets. It has enabled a science project that utilizes a 1
billion+ ZTF light-curve catalog in full while requiring
minimal effort from domain scientists to scale their analysis
from a single light curve to the full catalog. The system

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

demonstrates the utility of elastic computing, the I/O capacity
of the Cloud, and distributed computing tools like Spark
and AXS.

This work should be viewed in the context of exploring the
feasibility of making more astronomical data sets available on
cloud platforms, and providing services and platforms—such
as the one described here—to combine and analyze them.
Using this platform, it is both feasible and practical to perform
large-scale cross-catalog analyses using any catalog uploaded
to AWS S3 in the AXS-compatible format.”" This enables any
catalog provider—whether large or small—to make their data
available to the broad community via a simple upload.
Additionally, other organizations can stand up their own
services on the Cloud—either use-case-specific services or
broad platforms such as this one—to access the data using the
same S3 storage APL

In this regime, the roles of data archive and data user can
be further differentiated, to the benefit of the user and
perhaps at a reduced cost. Data archivers upload their data to
the Cloud and bear the cost of storage. These costs are
manageable, even for small organizations; storing 1 TB of
data in S3 costs ~$25 per month. Cost scales dramatically
when considering data sets at the PB level and timescales
extending over years: a 1PB data set will cost ~$3,000,000
over 10 yr assuming storage costs do not decrease. At these
scales, special pricing contracts may have to be negotiated
between the cloud provider and the archive. Additional cost
scales with the number of requests for this data and the
amount of data transferred. So-called “requester-pays”
pricing models, supported by some cloud providers, can
offload access and data transfer costs to the user. A user—or
perhaps an organization of users—can deploy a system like
ours at a reasonable cost to access the data in a given cloud.
In this case, the cost of analysis decouples from the cost of
storage: it is the user who controls the number of cores
utilized for the analysis, and any additional ephemeral
storage used for the analysis. It is easy to imagine the user—
as a part of their grant—being awarded cloud credits for their
research, which could be applied toward these costs (Norman
et al. 2021). Finally, an intermediary role may appear: the
science platform provider, which has an incentive toward
continuous improvements of science platforms and asso-
ciated tools, which are now best viewed as systems utilized
by astronomers to enable the exploration of a multitude of
data sets available. The incentive of a science platform
provider is to maximize science capability while minimizing
the cost to the user, who now has the ability to “shop around”
with their cloud credits for a system most responsive to their
needs.

This material is based upon work supported by the National
Science Foundation under grant No. AST-2003196. A.
Connolly is partially supported by NSF-1739419.

The authors acknowledge the support from the University
of Washington College of Arts and Sciences, the Department
of Astronomy, and the DiRAC Institute. The DiRAC Institute
is supported through generous gifts from the Charles and Lisa

31 For additional practicality, catalogs must also be uploaded to the same AWS
region due to constraints on data transfer costs between AWS data centers.
However, given the advent of cloud storage solutions such as Cloudflare R2
with zero data transfer costs, it seems plausible that this practicality constraint
may soon be lifted.

17

Stetzler et al.

Simonyi Fund for Arts and Sciences and the Washington
Research Foundation. M. Juri¢ wishes to acknowledge the
support of the Washington Research Foundation Data
Science Term Chair fund, and the University of Washington
Provosts Initiative in Data-Intensive Discovery.

Based on observations obtained with the Samuel Oschin
Telescope 48 inch and the 60 inch Telescope at the Palomar
Observatory as part of the Zwicky Transient Facility project.
ZTF is supported by the National Science Foundation under
Grant No. AST-1440341 and a collaboration including Caltech,
IPAC, the Weizmann Institute for Science, the Oskar Klein
Center at Stockholm University, the University of Maryland,
the University of Washington, Deutsches Elektronen-Synchro-
tron and Humboldt University, Los Alamos National Labora-
tories, the TANGO Consortium of Taiwan, the University of
Wisconsin at Milwaukee, and Lawrence Berkeley National
Laboratories. Operations are conducted by COO, IPAC,
and UW.

The authors thank AWS Cloud Credits for Research program
for supporting this project.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, and Department of Energy
Computational Science Graduate Fellowship under Award
Number DE-SC0019323.

The authors thank the anonymous referee for their helpful
review of this manuscript. S. Stetzler thanks Juan CV.
Barboza, Hannah V. Bish, Thomas R. Quinn, and Jessica K.
Werk for their helpful comments and assistance in preparing
this manuscript.

ORCID iDs

Steven Stetzler ® https: //orcid.org,/0000-0002-7712-6678
Mario Juri¢ @ https: //orcid.org/0000-0003-1996-9252

Kyle Boone @ https: //orcid.org/0000-0002-5828-6211
Andrew Connolly @ https: //orcid.org/0000-0001-5576-8189
Colin T. Slater ® https: //orcid.org,/0000-0002-0558-0521
Petar Zecevié @ https: //orcid.org /0000-0002-2651-243X

References

Bektesevic, D., Chiang, H.-F., Lim, K.-T., et al. 2020, arXiv:2011.06044

Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002

Boyajian, T. S., LaCourse, D. M., Rappaport, S. A., et al. 2016, MNRAS,
457, 3988

Cheng, Y., Liu, F. C., Jing, S., Xu, W., & Chau, D. H. 2018, Proceedings of the
Practice and Experience on Advanced Research Computing, PEARC ’18
(New York: ACM), 1

Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016,
MNRAS, 460, 1270

Dekany, R., Smith, R. M., Riddle, R., et al. 2020, PASP, 132, 038001

Dubois-Felsmann, G., Lim, K.-T., Wu, X., et al. 2017, Science Platform
Design (Elqui Province: Rubin Observatory), http://1s.st/1dm-542

Gaia Collaboration, Prusti, T., & de Bruijne, J. H. J. 2016, A&A, 595, Al

Graham, M. J., Kulkarni, S. R., Bellm, E. C., et al. 2019, PASP, 131, 078001

Ivezié, Z., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111

Jurié, M., Ciardi, D., & Dubois-Felsmann, G. 2017, LSST Science Platform
Vision Document (Elqui Province: Rubin Observatory) http://Is.st/lse-319

Juric, M., Stetzler, S., & Slater, C. T. 2021, arXiv:2101.05782

Kaiser, N., Burgett, W., Chambers, K., et al. 2010, Proc. SPIE, 7733, 77330E

Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in Positioning and Power
in Academic Publishing: Players, Agents and Agendas, ed. F. Loizides &
B. Scmidt (Amsterdam: IOS Press), 87

Masci, F. J., Laher, R. R., Rusholme, B., et al. 2019, PASP, 131, 018003

Norman, M., Kellen, V., Smallen, S., et al. 2021, Practice and Experience in
Advanced Research Computing, PEARC "21 (New York: ACM)

https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0002-7712-6678
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0003-1996-9252
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0002-5828-6211
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0001-5576-8189
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
https://orcid.org/0000-0002-2651-243X
http://arxiv.org/abs/2011.06044
https://doi.org/10.1088/1538-3873/aaecbe
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8002B/abstract
https://doi.org/10.1093/mnras/stw218
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.3988B/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.3988B/abstract
https://doi.org/10.1093/mnras/stw641
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.1270D/abstract
https://doi.org/10.1088/1538-3873/ab4ca2
https://ui.adsabs.harvard.edu/abs/2020PASP..132c8001D/abstract
http://ls.st/ldm-542
https://doi.org/10.1051/0004-6361/201629272
https://ui.adsabs.harvard.edu/abs/2016A&A...595A...1G/abstract
https://doi.org/10.1088/1538-3873/ab006c
https://ui.adsabs.harvard.edu/abs/2019PASP..131g8001G/abstract
https://doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I/abstract
http://ls.st/lse-319
http://arxiv.org/abs/2101.05782
https://doi.org/10.1117/12.859188
https://ui.adsabs.harvard.edu/abs/2010SPIE.7733E..0EK/abstract
https://ui.adsabs.harvard.edu/abs/2016ppap.book...87K/abstract
https://doi.org/10.1088/1538-3873/aae8ac
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8003M/abstract

THE ASTRONOMICAL JOURNAL, 164:68 (18pp), 2022 August

O’Mullane, W., Economou, F., Huang, F., et al. 2021, arXiv:2111.15030

Patterson, M. T., Bellm, E. C., Rusholme, B., et al. 2018, PASP, 131, 018001

Peloton, J., Arnault, C., & Plaszczynski, S. 2018, arXiv:1804.07501

Scaramella, R., Mellier, Y., Amiaux, J., et al. 2014, in IAU Symp. 306,
Statistical Challenges in 21st Century Cosmology, ed. A. Heavens et al.
(Cambridge: Cambridge Univ. Press), 375

Shappee, B., Prieto, J., Stanek, K. Z., et al. 2014, AAS Meeting Abstracts, Vol.
223, 236

Spergel, D., Gehrels, N., Baltay, C., et al. 2015, arXiv:1503.03757

18

Stetzler et al.

Tonry, J. L., Denneau, L., Heinze, A. N., et al. 2018, PASP, 130, 064505

Wang, D. L., Monkewitz, S. M., Lim, K.-T., & Becla, J. 2011, in SC *11: Proc.
of 2011 Int. Conf. for High Performance Computing, Networking, Storage
and Analysis (New York: IEEE), 1

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, 1. 2010,
Proc. of the 2nd USENIX Conf. on Hot Topics in Cloud Computing,
HotCloud’10 (Berkeley, CA: USENIX Association), 10, https://dl.acm.
org/doi/10.5555/1863103.1863113

Zecevié, P., Slater, C. T., Juri¢, M., et al. 2019, AJ, 158, 37

http://arxiv.org/abs/2111.15030
https://doi.org/10.1088/1538-3873/aae904
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8001P/abstract
http://arxiv.org/abs/1804.07501
https://ui.adsabs.harvard.edu/abs/2014IAUS..306..375S/abstract
http://arxiv.org/abs/1503.03757
https://doi.org/10.1088/1538-3873/aabadf
https://ui.adsabs.harvard.edu/abs/2018PASP..130f4505T/abstract
https://dl.acm.org/doi/10.5555/1863103.1863113
https://dl.acm.org/doi/10.5555/1863103.1863113
https://doi.org/10.3847/1538-3881/ab2384
https://ui.adsabs.harvard.edu/abs/2019AJ....158...37Z/abstract

	1. Introduction
	2. A Platform for User-friendly Scalable Analysis of Large Astronomical Data Sets
	2.1. The Cloud
	2.2. Orchestrating Cloud Applications: Kubernetes
	2.3. System Architecture
	2.3.1. An Interface to Computing
	2.3.2. A Scalable Analytics Engine
	2.3.3. A Scalable Storage Solution
	2.3.4. A Deployment Solution

	2.4. Providing a Shared File System with Granular Access Control
	2.5. Providing Optimal and Specialized Resources
	2.6. Multicloud Support

	3. A Deployment for ZTF Analyses
	3.1. Catalogs Available
	3.2. Typical Workflow
	3.3. Science Case: Searching for Boyajian Star Analogs

	4. Scalability, Reliability, Costs, and User Experience
	4.1. Scaling Performance
	4.2. Caveats to Scalability
	4.3. Reliability
	4.4. Costs
	4.5. Dynamic Scaling
	4.6. User Experience

	5. Conclusions
	References

