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Abstract: We propose and analyze a room-temperature photon-number-resolving detection scheme

based on cascaded sum-frequency generation. We measure an effective |n2| of 6x10712 cm?/W
in lithium niobate, which is 600x larger than the intrinsic value. © 2022 The Author(s)

Photon number resolving (PNR) detection represents a critical capability for many quantum computing and metrology
applications, including type-I fusion gates, non-Gaussian state generation, and Boson sampling. State-of-the-art PNR
detectors are based on superconducting effects that operate at cryogenic temperatures. Nevertheless, most quantum
photonic devices operate at room temperature due to the excellent coherence properties of photons. A room-
temperature on-chip PNR detector would greatly reduce the size and cost of quantum photonic systems and allow
quantum technologies to be more accessible to real-world applications, such as sensing and computing acceleration.
It has been shown theoretically [1-3] that PNR detection can be realized through cross-phase-modulation (XPM) and
interferometric measurement [Fig. 1(a)]. However, the typical nonlinear refractive indices (12) of photonic materials
range from 1071 to 1013 cm*W, which corresponds to a phase shift < 10® m™! for a 1-ns long single-photon pulse in
a photonic waveguide. More importantly, the probe beam also experiences self-phase modulation (SPM) due to its
own photon-number uncertainty [1], significantly increasing the detection noise floor.

Here, we demonstrate theoretically and experimentally that exceptionally large XPM can be achieved by replacing
the typically used ¥ material with #?-based periodically-poled lithium niobate (PPLN), which can impart effective
XPM through cascaded sum-frequency generation (SFG) [4-5]. This replacement offers two critical improvements.
First, a much larger effective nonlinear coefficient can be achieved than with standard photonic materials (e.g., silicon
nitride). Second, the relative strengths of XPM and SPM depend on the phase-matching conditions and can be
engineered to enhance or suppress either process. Furthermore, by using microresonators to enhance nonlinear
interactions, our analysis shows that single-photon-level sensitivity can be achieved with ~ 10-MHz cavity linewidths,
which are achievable with the state-of-the-art fabrication capabilities [6].
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Fig. 1. (a) Measurement schematics. (b,c) Choices of nonlinear media. (d) Level diagram for the SFG process which enables
effective XPM interaction. (e) Simulated input signal and time-resolved measurement outcome of proposed scheme. (f) Comparison
of signal and noise strengths for different integration time.

We model the dynamics of the cavity-based SFG with the following equations:
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where @, b, and ¢ are the annihilation operators for probe, signal and idler modes, respectively, x is the nonlinear
coefficient, A% is the photon flux of the probe beam, § and p are the detunings, a, 8, and y are the bus-ring coupling
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rates, and @;,,, b;,, and &;, are annihilation operators for the incoming quantum fields. We solve Eqns. (1) — (3) using
perturbation methods. For photons with a bandwidth sufficiently smaller than the ring we can derive a simplified result
for the phase quadrature,
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which represents the measurable quantity to determine the number of photons in the signal field. For small A4, this
quadrature value scales proportional to A which represents a constant phase shift. However, the A% term on the
denominator indicates that the effective XPM becomes less efficient when the probe power is high. For a high-Q
microresonator, this corresponds to nanowatts of power. Using a classical probe beam at (sub)nanowatt level, the
measurement sensitivity is limited by shot noise, while the intrinsic SPM noise and thermal noise are much weaker.

We numerically model the system based for a z-cut PPLN microresonator with a 1-THz free spectral range and a
cavity linewidth of 15 MHz at all resonances. We choose probe and detuning parameters to maximize Eqn. (4), which
corresponds to p = 100 MHz, § = 33 MHz, and a probe power of 61 pW. The input photon profile and temporal
response of the measurement is shown in Fig 1(e). We compare the strength of signal versus shot noise for various
integration times, which are shown in Fig 1(f). We observe that a signal-to-noise ratio (SNR) of 1 can be achieved
with the suitable parameters. Further improvement of SNR can be achieved by improving the Q. Alternatively, we
can apply quantum metrology techniques on the probe beam, such as using squeezed states, to boost the SNR.
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Fig. 2. (a) Temporal measurement of induced phase shift by a modulated pump laser. (b) Amount of induced phase shift versus
pump wavelength and the corresponding SFG efficiency. (c) Amount of induced phase shift versus pump power.

As a proof-of-principle demonstration, we use a bulk 4-cm-long PPLN crystal as our nonlinear medium and
perform the experiment using a shot-noise-limited free-space interferometer. The laser for probe and local oscillator
(LO) is chosen to be 1563 nm with a split power of I mW and 12.4 mW, respectively. We focus the beam in the crystal
such that its beam waist and Rayleigh range are 37 um and 6.1 mm, respectively. Due to a lack of waveguide
confinement and cavity enhancement, the strength of XPM in the PPLN crystal is many orders of magnitude weaker
than that in the proposed PPLN microresonator. However, we can use this system to characterize the effective n2
coefficient which is independent of mode volume and cavity Q. We use 36 mW (peak power) of square-wave pump
[green beam in Fig. 1(a)] to impart phase shift on the probe beam and perform a balanced measurement. Figure 2(a)
shows the temporal change of probe phase when the pump is modulated by the clock signal. The shot-noise level is
measured by blocking the pump and probe beams, and the interferometer noise level is measured by only blocking the
pump beam. The excellent agreement of the two noise measurements indicates that the interferometer is shot-noise
limited. As we change the pump wavelength, we observe both positive (1541.06 nm) and negative (1539.54 nm) phase
shifts, which is due to the sign of phase mismatch. We measure a maximum phase shift of -0.38 mrad, which is
equivalent to that induced by a #® medium with n2 = -6x10"'2 cm?/W. This value is 600x larger than the intrinsic 72
of 1x10°1° cm?W. We verify that the magnitude of the phase shift is a function of phase mismatch by sweeping the
pump wavelength [Fig. 1(b)]. The asymmetry between the positive and negative phase shifts is due to the wide spread
of k-vectors in the focusing region, which results in complicated phase mismatching profiles. We further verify that
the amount of phase shift scales linearly against pump power, which is the case before the saturation power is reached.
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