




successfully improved generalization in both normal and adversar-
ial settings by biasing the training process of the networks towards
regions with smooth loss landscapes [6, 15, 34]. In this work, we

achieve a similar goal but follow a unique approach via curriculum

learning, which has been shown to produce a smoothening effect on

the objective [3].

3 ADVERSARIAL LOSS LANDSCAPE

3.1 Smoothness and Hessian

Recently, Liu et al. [22] demonstrated a theoretical correlation be-
tween the sharpness of the adversarial loss landscape and the pertur-
bation norm 𝜖 . A smaller 𝜖 implies a smoother loss landscape. We
first briefly restate this result. In this setup, Liu et al. [22] assume
that the normal loss function, ℓ (𝑥 ;𝜃 ), has Lipschitz continuous gra-
dients w.r.t. 𝜃 and 𝑥 with constants 𝐿𝜃𝜃 and 𝐿𝜃𝑥 respectively. Math-
ematically, this can be written as ∀𝑥, 𝑥1, 𝑥2 ∈ R𝑑 and ∀𝜃, 𝜃1, 𝜃2 ∈ Ω,

∥∇𝜃 ℓ (𝑥 ;𝜃1) − ∇𝜃 ℓ (𝑥 ;𝜃2)∥2 ≤ 𝐿𝜃𝜃 ∥𝜃1 − 𝜃2∥2 (4)

∥∇𝜃 ℓ (𝑥1;𝜃 ) − ∇𝜃 ℓ (𝑥2;𝜃 )∥2 ≤ 𝐿𝜃𝑥 ∥𝑥1 − 𝑥2∥2 (5)

For adversarial loss, ℓ𝜖 (𝑥 ;𝜃 ), the analogous expression includes an
extra term that depends on the perturbation norm 𝜖 as follows [22]:

∥∇𝜃 ℓ𝜖 (𝑥 ;𝜃1) − ∇𝜃 ℓ𝜖 (𝑥 ;𝜃2)∥2 ≤ 𝐿𝜃𝜃 ∥𝜃1 − 𝜃2∥2 + 2𝜖𝐿𝜃𝑥 (6)

While Eqn. (6) reveals a relationship between 𝜖 and the smooth-
ness of the adversarial loss (LHS of Eqn. 6), the upper bound is loose
and difficult to compute. This is because Eqn. (6) holds globally and
both 𝐿𝜃𝜃 and 𝐿𝜃𝑥 are also global quantities (they hold for all values
of 𝜃 and 𝑥 ). Instead, we are only interested in the local smoothness
at a particular 𝜃 in practice.

Prior works often quantified smoothness using the eigenspec-
trum of the Hessian matrix computed locally around a given 𝜃 . To
see why it makes sense to use the Hessian, note that we can upper
bound the LHS in Eqn. (6) by the spectral norm of the Hessian
matrix using the mean value theorem. In particular, let Δ𝜃 = 𝜃2−𝜃1
and 𝜃 (𝑡) = 𝜃1 + 𝑡Δ𝜃 , we know that ∃𝑡 ∈ [0, 1] s.t.

∥∇𝜃 ℓ𝜖 (𝑥 ;𝜃1) − ∇𝜃 ℓ𝜖 (𝑥 ;𝜃2)∥2 ≤




∇2
𝜃
ℓ𝜖 (𝑥 ;𝜃 (𝑡))







(2)
∥𝜃1 − 𝜃2∥2 (7)

We use ∥·∥ (2) to denote the spectral norm of amatrix to differentiate
it from ℓ2-norm of a vector. Now obviously, if we only consider 𝜃2
that are close to 𝜃1, simply choosing 𝑡 = 0 yields a good estimate
of the local smoothness around 𝜃1.

Here, we also choose to measure the smoothness locally. We use
Hessian of the adversarial loss w.r.t. 𝜃 , which is defined as Hessian
of the normal loss evaluated at the adversarial example for a given
𝜃 .2 Specifically,

Smoothness(𝜃 ) ≈ ∥𝐻𝜖 (𝑥 ;𝜃 )∥ (2) (8)

𝐻𝜖 (𝑥 ;𝜃 ) ≔ ∇2
𝜃
ℓ (𝑥∗;𝜃 ) for 𝑥∗ ∈ argmax

𝑧:∥𝑧−𝑥 ∥𝑝 ≤𝜖

ℓ (𝑧;𝜃 ) (9)

2This should be taken as an approximation rather than the true Hessian for the
following reason. Note that the adversarial loss ℓ𝜖 (𝑥 ;𝜃 ) is a maximal-value function
of the normal loss over 𝑥 (see Eqn. (2)). When the normal loss is convex, Danskin’s
Theorem states that we can use the substitution with 𝑥∗ to compute first-order deriva-
tives of an extreme-value function. However, here we are considering second-order
derivatives of a non-convex function. For a more rigorous analysis, we may need a
more generalized version of Danskin’s Theorem for Hessian [27].

Note, the above measure of smoothness, as suggested previously in
Liu et al. [22], also depend on both 𝜖 and the Hessian of ℓ (·) w.r.t.
𝜃 . However, their relationship is differently expressed as in Eqn. (9)
compared to that in Eqn. (6). Furthermore, notice that ∥𝐻𝜖 (𝑥, 𝜃 )∥ (2)
is the absolute value of the largest eigenvalue of 𝐻𝜖 (𝑥, 𝜃 ) since
any Hessian matrix is symmetric. We will refer to this quantity as
“maximal Hessian eigenvalue.ž

3.2 Curriculum Learning and Smoothness

We believe that smooth loss landscapes will benefit the adversarial
training process in two ways: generalization and convergence. First,
as mentioned in Section 2, many previous works have shown con-
nections between generalization and smoothness of the loss land-
scape. Flat minima introduce an implicit bias for SGD on deep neural
networks and has served as an explanation to the surprisingly good
generalization of over-parameterized neural networks. Examples
of factors that affect this implicit bias include batch size, learning
rate, and architecture such as residual connections [16, 17, 21, 24].
Other works also aim to “artificiallyž create such flat local minima
through more advanced training techniques [6, 15].

The second benefit of a smooth loss surface is a faster conver-
gence. It is well-known that smoother loss (e.g., smaller Lipschitz
gradient constant) allows for a large step size and hence, a faster
convergence on both convex and non-convex problems including
ERM on neural networks [18, 20]. Conversely, a sharp loss surface
is harmful to the training process. Liu et al. [22] show that a large
adversarial perturbation could increase the sharpness, i.e., make
gradients large even near the minima, and hence, slow down the
training.

In this work, we explore curriculum learning as a mechanism to
encourage smoothness of the adversarial loss surface. The original
intuition behind curriculum learning as outlined by Bengio et al.
[3] was to help smooth the loss landscape in the initial phase of
non-convex optimization. While this intuition has found accep-
tance in the community, to the best of our knowledge, this notion
of smoothness has not been used for curriculum learning. Addition-
ally, curriculum learning is particularly suitable in the adversarial
context because it can, directly or indirectly, manipulate 𝜖 , which
is a main factor affecting the smoothness as mentioned previously
(Section 3.1). In Section 4, we make this connection explicit via our
proposed algorithms.

4 SMOOTHED ADVERSARIAL TRAINING

4.1 Curriculum Learning and Difficulty Metric

It has been both empirically and theoretically (for a linear regres-
sion model) established that curriculum learning improves the early
convergence rate as well as the final generalization performance,
especially when the task is difficult (e.g., under-parameterized mod-
els, heavy regularization) [3, 12, 32]. The main challenge therefore
lies in defining an effective difficulty metric to dictate the order of
the training samples presented to the network. Luckily, the adver-
sarial setting provides several intuitive difficulty metrics that can
be easily controlled through the perturbation norm, 𝜖 .

We start by proposing a formulation of the curriculum-augmented
adversarial loss, or curriculum loss, denoted by ℓ𝜓,𝜖 where𝜓 : R𝑑 →

R is a given difficulty metric acting as an additional constraint on
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Table 1: Clean and adversarial accuracy of the defenses on two models (PreAct-ResNet-20 and WideResNet-34-10) for the

CIFAR-10 and CIFAR-100 datasets. łSumž indicates the sum of the clean and the adversarial accuracy. The largest number in

each column is shown in bold.

Defenses
CIFAR-10 (PRN-20) CIFAR-10 (WRN-34-10) CIFAR-100 (PRN-20) CIFAR-100 (WRN-34-10)

Clean Adv Sum Clean Adv Sum Clean Adv Sum Clean Adv Sum

AT [23] 80.67 45.19 125.86 86.18 49.72 135.90 51.76 21.93 73.69 60.77 24.54 85.31
TRADES [36] 80.50 45.77 126.27 88.08 45.83 133.91 54.73 20.17 74.90 58.27 23.57 81.84
DAT [30] 81.83 42.97 124.80 86.72 45.38 132.10 54.65 20.85 75.50 54.71 20.35 75.06
CAT20 [7] 86.46 21.69 108.15 89.61 34.78 124.39 49.29 13.13 62.42 62.84 16.82 79.66

H-SAT (ours) 81.85 44.88 126.73 85.56 47.25 132.81 56.64 22.25 78.89 61.33 25.43 86.76
P-SAT (ours) 83.99 44.54 128.53 86.84 50.75 137.59 57.90 22.93 80.83 62.95 24.56 87.51

Table 2: Clean and adversarial accuracy of the defenses on

MNIST dataset. Adversarial accuracy is measured by AutoAt-

tack for 𝜖 = 0.3 and 𝜖 = 0.45. The numbers in red indicate that

the network is stuck in a sub-optimal local minimum.

Defenses
𝜖 = 0.3 𝜖 = 0.45

Clean Adv Sum Clean Adv Sum

AT [23] 98.07 85.47 183.54 11.22 11.22 22.44
TRADES [36] 98.98 90.70 189.68 97.36 0.00 97.36
DAT [30] 98.93 92.24 191.17 97.98 65.71 163.69

CAT20 [7] 99.46 0.00 99.46 99.39 0.00 99.39

H-SAT (ours) 99.01 80.71 179.72 98.35 54.10 152.45
P-SAT (ours) 99.16 92.00 191.16 97.87 58.50 156.37

attacks that are collectively stronger than PGD and capable of
avoiding gradient obfuscation issue [1]. We compare our H-SAT
and P-SAT to four baselines: AT, DAT, CAT20, and TRADES.4 For
more details on the setup, see Appendix A.

6.2 Results

First, we compare the defenses in terms of their robustness, accu-
racy, and a combination of the two. We report the sum of the clean
and the adversarial accuracy as a single metric to represent the
robustness-accuracy trade-off. We do not argue that it is the only
correct (or the best) metric but rather a simple one among many
other options (e.g., a weighted sum or a non-linear function). We
highlight higher performance gains of our schemes for more diffi-
cult tasks and show that they guide the networks towards smoother
loss landscapes and improved local minima compared to AT.

6.2.1 Comparing clean and adversarial accuracy. OnMNIST (shown
in Table 2), with 𝜖 of 0.3, both the clean and the adversarial accu-
racy, fall in the same range, for all defenses except for CAT20. Our
P-SAT has very similar accuracies to DAT and outperforms the
rest of the baselines. CAT20 experiences gradient obfuscation [1],
resulting in an over-estimated adversarial accuracy against PGD
attack. However, the true robustness is very low as revealed by

4We do not include the results on Cai et al. [5] because 𝜖-scheduling has been
shown to perform worse than DAT. The scheme uses a non-differentiable component
which makes evaluation more complicated and not comparable to the other baselines.
We also found that it suffers from gradient obfuscation [1].

the stronger AutoAttack. This issue persists on CAT20 for all the
datasets we tested and is likely caused by their label smoothing.

For 𝜖 = 0.45, the difference becomes significant. Apart from
H-SAT, P-SAT, and DAT, none of the other defenses are robust,
having adversarial accuracy of ∼10% or lower. The clean and the
adversarial accuracy of AT are the same and are close to a random
guess because it outputs the same logit values for every input. This
phenomenon happens when the training gets stuck in a sub-optimal
local minimum where the network “finds an easy way outž and
resorts to learning a trivial solution. Changing the optimizer, the
learning rate, or the random seed can sometimes mitigate the prob-
lem, but we found that no combination of these changes allowed
AT to effectively train on MNIST with 𝜖 ≥ 0.35. It is likely caused
by the non-smooth loss landscape which is amplified by a large
value of 𝜖 . Importantly, the fact that only curriculum-based adver-
sarial training methods (H-SAT, P-SAT, and DAT) works in this
case suggests that they help smoothen the loss surface.

In Table 1, our scheme is more robust than all other defenses on
both PRN-20 and WRN-34-10 for CIFAR-10 and CIFAR-100 datasets
with an exception of PRN-20 on CIFAR-10 where TRADES is the
most robust. P-SAT also has the highest sum of clean and adversarial
accuracy in all cases. CAT20 generally has slightly higher clean
accuracy than the other models, but it is the least robust by a large
margin due to the false robustness issue previously mentioned.
We note that on most settings, AT is a very strong baseline. It
has roughly the same performance as TRADES and outperforms
the other curriculum-based schemes in many experiments. This
may seem surprising, but it is also observed by Rice et al. [25] and
Gowal et al. [11] that when the training is stopped early to prevent
overfitting (as in our experiments), AT performs as well as other
more complicated defenses.

As expected, P-SAT outperforms H-SAT in most settings. This
is likely due to the two limitations we mentioned in Section 4.2:
(1) additional approximations introduced to H-SAT for practical
consideration as well as (2) the fact that the Hessian eigenvalue
does not always correspond to difficulty. While P-SAT controls the
smoothness in a less direct manner, it does not suffer from these
two issues. Consequently, it is computationally cheaper and also
performs slightly better.

6.2.2 Larger Improvement with More Difficult Tasks. On CIFAR-10
with 𝜖 = 16/255 and 24/255 (Table 3), our schemes have higher clean
accuracy compared to AT and higher adversarial accuracy than
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For the multi-class case, 𝛾 is dependent on 𝛿 so Eqn. (10) does
not reduce to a similar simple form.

𝜓𝑃 (𝑥 + 𝛿) ≤ 𝜆 (31)

⇐⇒ max
𝑗≠𝑦

𝑓 (𝑥 + 𝛿) 𝑗 − 𝑓 (𝑥 + 𝛿)𝑦 ≤ 𝜆 (32)

⇐⇒ 𝑓 (𝑥 + 𝛿)𝑦 ≥ max
𝑗≠𝑦

𝑓 (𝑥 + 𝛿) 𝑗 − 𝜆 (33)

⇐⇒ − log
(

𝑓 (𝑥 + 𝛿)𝑦
)

≤ − log

(

max
𝑗≠𝑦

𝑓 (𝑥 + 𝛿) 𝑗 − 𝜆

)

(34)

⇐⇒ ℓ (𝑥 + 𝛿) ≤ 𝛾 (𝑥 + 𝛿, 𝜆) (35)

𝛾 (𝑥 + 𝛿, 𝜆) ≔ − log

(

max
𝑗≠𝑦

𝑓 (𝑥 + 𝛿) 𝑗 − 𝜆

)

(36)

Note that we can assume that the RHS on line 2,max𝑗≠𝑦 𝑓 (𝑥+𝛿) 𝑗−𝜆,
is positive. Otherwise, the constraint is automatically satisfied and
can be ignored because the LHS 𝑓 (𝑥 + 𝛿)𝑦 is always non-negative.
Similarly to the binary-class case, Eqn. (10) can be rewritten as:

max
𝛿 :∥𝛿 ∥𝑝 ≤𝜖

ℓ (𝑥 + 𝛿) (37)

s.t. (𝑥 + 𝛿) ≤ 𝜆 (38)

= max
𝛿 :∥𝛿 ∥𝑝 ≤𝜖

ℓ (𝑥 + 𝛿) (39)

s.t. ℓ (𝑥 + 𝛿) ≤ 𝛾 (𝑥 + 𝛿, 𝜆) (40)

= max
𝛿 :∥𝛿 ∥𝑝 ≤𝜖

min {ℓ (𝑥 + 𝛿), 𝛾 (𝑥 + 𝛿, 𝜆)} (41)

This objective is difficult to optimized in a few steps of PGD
because of the piecewise min and max as well as the fact that the
two terms are inversely proportional to the other. Alternatively, we
propose a heuristic to approximate the objective by treating the
second term as a constant and so not computing its gradients (we
still update it as 𝛿 changes).

B.3 Early Termination for H-SAT

The early termination can also be applied in this case. However, the
approximation of the max eigenvalue of the Hessian vary signifi-
cantly across models and datasets. Thus, setting a hard threshold is
cumbersome and requires a lot fine-tuning. Instead, we propose the
following scheme that leverages the high rank-correlation between
the true and the approximated eigenvalue to circumvent the above
issue of setting hard thresholds.

We choose 𝜆 as fraction of samples with the smallest Hessian
eigenvalue from each batch to perturb in a given PGD step. For
example, when 𝜆 = 0.3, only 30% of the samples in the batch with
the smallest ∥𝐻𝜖 (𝑥, 𝜃 )∥2 are perturbed. This method adapts to sam-
ples in the batch and is more flexible than a hard threshold. Now,
similarly to the probability gap, 𝜆 starts off with a small value and
increases to 1, which is equivalent to AT, at the end of training.
Setting 𝜆 = 0 is equivalent to normal training as no samples are
perturbed.

C MAXIMAL HESSIAN EIGENVALUE

C.1 Maximal Eigenvalue Approximation

Below we outline a series of approximations for minimizing the
overhead of computing the max. Hessian eigenvalue. We use the

second-order Taylor’s expansion to approximate the Hessian:

ℓ (𝜃 + 𝜁 ) = ℓ (𝜃 ) + 𝜁⊤∇𝜃 ℓ (𝜃 ) +
1

2
𝜁⊤∇2

𝜃
ℓ (𝜃 )𝜁 + O(∥𝜁 ∥32) (42)

Note, we can now maximize over 𝜁 to obtain the max. eigenvalue
of the Hessian. The absolute value can be omitted because we are
only concerned with the positive eigenvalues.
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2





∇2
𝜃
ℓ (𝜃 )







2
= max

∥𝜁 ∥2=1

1

2
𝜁⊤∇2

𝜃
ℓ (𝜃 )𝜁 (43)

= max
∥𝜁 ∥2=1

[

ℓ (𝜃 + 𝜁 ) − 𝜁⊤∇𝜃 ℓ (𝜃 )
]

− ℓ (𝜃 ) (44)

≤ max
∥𝜁 ∥2=1

ℓ (𝜃 + 𝜁 ) − min
∥𝜁 ∥2=1

𝜁⊤∇𝜃 ℓ (𝜃 ) − ℓ (𝜃 ) (45)

≈
1

𝛼

{

ℓ (𝜃 + 𝛼𝑔) + 𝛼 ∥∇𝜃 ℓ (𝜃 )∥2
}

− ℓ (𝜃 ) (46)

where𝑔 is a shorthand notation of𝑔(𝑥 ;𝜃 ) ≔ ∇𝜃 ℓ (𝑥 ;𝜃 )/∥∇𝜃 ℓ (𝑥 ;𝜃 )∥2.
The first and the second terms in Eqn. (46) approximate the max-
imization and the minimization in Eqn. (45) by taking a one-step
projected gradient update. We can also use a similar approximation
to lower bound Eqn. (44) by substituting 𝜁 with 𝛼𝑔 and −𝛼𝑔 and
take the maximum between the two:
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⪆

1

𝛼
max{ℓ (𝜃 + 𝛼𝑔) − 𝛼 ∥∇𝜃 ℓ (𝜃 )∥2 , (47)

ℓ (𝜃 − 𝛼𝑔) + 𝛼 ∥∇𝜃 ℓ (𝜃 )∥2} − ℓ (𝜃 )

Now we have arrived at the upper and the lower bounds as stated
in Section 5. Evaluating Eqns. (46) and (47) at the adversarial ex-
ample of 𝑥 , gives us the upper and a lower bound respectively, for
∥𝐻𝜖 (𝑥, 𝜃 )∥2. Choosing an appropriate value of 𝛼 makes the Taylor’s
series based approximation and the maximization using a single
gradient step much more accurate in practice. We choose it to be
1% of the gradient norm so the precision also automatically adapts
to the current scale. Choosing 𝛼 much smaller is not recommended
because it can blow up small numerical errors

C.2 Implementation Consideration

Note that the smoothness analysis typically computes eigenvalue
of the Hessian matrix of the loss averaged over the entire training
set, but for the purpose of curriculum learning, we want to control
the Hessian eigenvalue for individual samples. The former quantity
can be upper bounded by the average of the latter as follows:
















1

𝑛

𝑛
∑︁

𝑖=1

∇2
𝜃
ℓ𝜖 (𝑥𝑖 ;𝜃 )
















(2)

≤
1

𝑛

𝑛
∑︁

𝑖=1

∥𝐻𝜖 (𝑥𝑖 , 𝜃 )∥ (2) (48)

This shows that Hessian eigenvalue can be used as a difficulty
metric for curriculum learning and still controls the smoothness of
the loss landscape.

We have derived the lower/upper bounds of the maximal Hessian
eigenvalue in Section 5 and Appendix C.1. Nonetheless, we face
with some difficulty for combining it with AT in practice. To enable
a fine-grained sample-wise control on the difficulty metric, we must
approximate the Hessian eigenvalue per sample at every PGD step
of AT. This is an issue in practice as the automatic differentiation
software (e.g., PyTorch) does not provide an easy way to access
∇𝜃 ℓ (𝑥 ;𝜃 ), and evaluation of ℓ (𝑥 ;𝜃 + ∇𝜃 ℓ (𝑥 ;𝜃 )) cannot be paral-
lelized due to the fact that gradients are different for each sample 𝑥 .
If we ignore the parallelization and compute the perturbed loss for
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