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ABSTRACT 1 INTRODUCTION
Adversarial training (AT) has become a popular choice for training It is well-known that machine learning models are easily fooled by
robust networks. However, it tends to sacrifice clean accuracy heav- adversarial examples, generated by adding carefully crafted pertur-
ily in favor of robustness and suffers from a large generalization bation to normal input samples [4, 10, 28]. This raises serious safety
error. To address these concerns, we propose Smooth Adversarial concerns for systems and solutions that rely on machine learning as
Training (SAT), guided by our analysis on the eigenspectrum of a crucial component (e.g., identity verification, malware detection,
the loss Hessian. We find that curriculum learning, a scheme that self-driving vehicles). Among numerous defenses proposed, Adver-
emphasizes on starting “easy” and gradually ramping up on the sarial Training (AT) [23] is one of the most widely used algorithm
“difficulty” of training, smooths the adversarial loss landscape for to train neural networks that are robust to adversarial examples.
a suitably chosen difficulty metric. We present a general formula- While the formulation of AT as a robust optimization problem is
tion for curriculum learning in the adversarial setting and propose theoretically sound, solving it for neural networks is indeed tricky.
two difficulty metrics based on the maximal Hessian eigenvalue Here, we focus on two problems from which models trained by AT
(H-SAT) and the softmax probability (P-SAT). We demonstrate that tend to often suffer. First, it tends to sacrifice accuracy on benign
SAT stabilizes network training even for a large perturbation norm samples, by a large margin, to gain robustness or accuracy on adver-
and allows the network to operate at a better clean accuracy versus sarial examples. This is undesirable for applications that requires
robustness trade-off curve compared to AT. This leads to a signifi- high accuracy when operating in the normal settings. Second, mod-
cant improvement in both clean accuracy and robustness compared els trained with AT often have a large generalization gap between
to AT, TRADES, and other baselines. To highlight a few results, their train and test adversarial accuracies. This gap is typically
our best model improves normal and robust accuracy by 6% and larger than the generalization error in non-adversarial settings. In
1% on CIFAR-100 compared to AT, respectively. On Imagenette, a some cases, neural networks are reduced to trivial classifiers that
ten-class subset of ImageNet, our model outperforms AT by 23% outputs a constant label for all inputs as they fail to learn any better
and 3% on normal and robust accuracy respectively. robust decision boundary that actually exists.
Since the objective of AT is sound, we believe that these problems

CCS CONCEPTS can be mitigated by optimization techniques. Intuitively, we posit
+ Security and privacy — Domain-specific security and pri- that both the above problems stem from the model being presented
vacy architectures. with adversarial examples that are “too difficult to learn from” at

the very beginning of the training which, in turn, causes the model
KEYWORDS to overfit to such samples. To this end, we observe that the concept

of curriculum learning [3], which advocates that model training be
initiated with “easy” samples before introducing the “hard” ones,
can naturally help overcome the above problems.
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(a) Adversarial Training (AT)

(b) H-SAT (ours)

(c) P-SAT (ours)

Figure 1: Loss landscapes of three PreAct-ResNet-20 models adversarially trained on CIFAR-10 using perturbation ¢ = 8/255.
The x-axis and y-axis represent two orthogonal random directions in the network parameter space. The z-axis represents the
adversarial loss computed with the same normalization proposed by Li et al. [21]. Applying our algorithms, (b) H-SAT and (c)
P-SAT, results in a much smoother loss landscape than (a) AT.

We make the following contributions. First, we unify the prior
works on curriculum-based adversarial training under a single for-
mulation. Second, we derive techniques to quickly approximate
the two difficulty metrics used in H-SAT and P-SAT so that they
can be combined with adversarial training efficiently. Finally, we
systematically compare our proposed method against the baselines
using multiple datasets (MNIST, CIFAR-10, CIFAR-100, Imagenette)
and network architectures. Both our proposed schemes outper-
form state-of-the-art defenses including TRADES [37] and other
curriculum-inspired algorithms [5, 7, 30] in term of robustness
while maintaining competitive clean accuracy in most settings. Our
best model improves normal and robust accuracy by 6% and 1%
on CIFAR-100 compared to AT, respectively. On Imagenette with
€ = 16/255, our model outperforms AT by 23% and 3% on normal
and robust accuracy respectively.

2 BACKGROUND AND RELATED WORK

Adversarial examples. Adversarial examples are a type of evasion
attack against machine learning models generated by adding small
perturbations to clean samples [4, 10, 28]. The desired perturbation,
constrained to be within some £,-norm ball, is typically formulated
as a solution to the following optimization problem:

x™ = x+ 5 where " = argmax £(x +68;0) (1)

81811, <e

where £(-;0) : R? — R is the loss function of the target neural
network, parameterized by 6, with respect to its input. The pertur-
bation is bounded in an £,-norm ball of radius € and treated as a
proxy for imperceptibility of the perturbation. Projected gradient
descent (PGD) is a popular technique used to solve Eqn. (1) [23].

Defenses against adversarial examples. In a nutshell, the adver-
sarial training (AT) algorithm, iteratively generates adversarial ex-
amples corresponding to every batch of the training data by solving
Eqn. (1) and then trains a model by minimizing the expected loss
over the adversarial samples. AT is formulated as an optimization
of the saddle point problem where 0 are the model parameters, and
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{(xi,yi) }I, denotes the training set:

n

1
argmin — 3 £c(xi36) @
=\
where fe(x;0) = max £(x+6;0) (3)
8151, <e

Several prior works have attempted to improve AT in terms of
computation time [26, 33] and robustness gain [11, 34]. Others have
tried different loss functions that are better suited to adversarial
training [9, 31, 37].

Curriculum learning and adversarial training. In curriculum ad-
versarial training (CAT18) [5], the authors create a curriculum by
slowly increasing the number of PGD steps during training. But
their empirical results suggest that curriculum alone is not effective
and it must be combined with other techniques such as quantiza-
tion and batch mixing. Wang et al. [30] (DAT) defined convergence
score, motivated by the Frank-Wolfe optimality gap, as a metric
to imitate a curriculum. Two recent works, Balaji et al. [2] (IAAT)
and Cheng et al. [7] (CAT20), use an adaptive and sample-specific
perturbation norm during training. Their motivation is that not
all samples should be at a fixed distance from the decision bound-
ary as encouraged by AT. Instead, margins should be flexible and
data-dependent. In fact, this effect is a by-product of our scheme
which perturbs naturally easier samples more than harder ones .
Concurrent to our work, Zhang et al. [38] proposed a formulation
of an upper bound of the adversarial loss and, similarly to ours, used
early stopping as a realization. However, their criterion is based
on the number of PGD steps, while ours, inspired by curriculum
learning, relies on a concrete difficulty metric. Furthermore, we
also perform extensive evaluation over a number of bench marking
datasets to validate our approach.

Smoothness of Loss Landscapes. There is a long-standing hypothe-
sis regarding the correlation between smoothness of the loss surface
and the network generalization error [13, 17]. Previous works have

!Naturally easy samples can be thought of as clean inputs that a given network
classifies correctly with high confidence. In other words, easy samples are on the
correct side of the decision boundary and are also far from it.
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successfully improved generalization in both normal and adversar-
ial settings by biasing the training process of the networks towards
regions with smooth loss landscapes [6, 15, 34]. In this work, we
achieve a similar goal but follow a unique approach via curriculum
learning, which has been shown to produce a smoothening effect on
the objective [3].

3 ADVERSARIAL LOSS LANDSCAPE

3.1 Smoothness and Hessian

Recently, Liu et al. [22] demonstrated a theoretical correlation be-
tween the sharpness of the adversarial loss landscape and the pertur-
bation norm €. A smaller € implies a smoother loss landscape. We
first briefly restate this result. In this setup, Liu et al. [22] assume
that the normal loss function, £(x; 0), has Lipschitz continuous gra-
dients w.r.t. 6 and x with constants Lgg and Ly, respectively. Math-
ematically, this can be written as Vx, x1, x2 € R and V0, 01,05 € Q,

IVt (x:; 61) = Vot (x;62)ll, < Log 161 — 02, (4)
IVot(x1;0) = Vot(x2;0)l2 < Loy llx1 = x2|l2 (5

For adversarial loss, £ (x; 0), the analogous expression includes an
extra term that depends on the perturbation norm e as follows [22]:

IVole(x;01) — Vole(x;02)l5 < Log 101 — 02|l + 2€Lgy  (6)

While Eqn. (6) reveals a relationship between € and the smooth-
ness of the adversarial loss (LHS of Eqn. 6), the upper bound is loose
and difficult to compute. This is because Eqn. (6) holds globally and
both Lyg and Ly, are also global quantities (they hold for all values
of 0 and x). Instead, we are only interested in the local smoothness
at a particular 6 in practice.

Prior works often quantified smoothness using the eigenspec-
trum of the Hessian matrix computed locally around a given 6. To
see why it makes sense to use the Hessian, note that we can upper
bound the LHS in Eqn. (6) by the spectral norm of the Hessian
matrix using the mean value theorem. In particular, let AG = 02 — 61
and 0(t) = 61 + tA9, we know that 3t € [0,1] s.t.

IVote (x;01) — Vole(x;02) |15 < ||V§fe(X;9(t))||(2) 161 = 621l (7)

We use [|-|| () to denote the spectral norm of a matrix to differentiate
it from £;-norm of a vector. Now obviously, if we only consider 6
that are close to 01, simply choosing t = 0 yields a good estimate
of the local smoothness around 6;.

Here, we also choose to measure the smoothness locally. We use
Hessian of the adversarial loss w.r.t. 8, which is defined as Hessian
of the normal loss evaluated at the adversarial example for a given
6.2 Specifically,

®)
©

SmooTHNESS(0) ~ [|He (x;0) || (2)
He(x;0) = VZ[(x*;G) forx* € argmax £(z;0)

z:||zfx||P$e

2This should be taken as an approximation rather than the true Hessian for the
following reason. Note that the adversarial loss £ (x; 0) is a maximal-value function
of the normal loss over x (see Eqn. (2)). When the normal loss is convex, Danskin’s
Theorem states that we can use the substitution with x* to compute first-order deriva-
tives of an extreme-value function. However, here we are considering second-order
derivatives of a non-convex function. For a more rigorous analysis, we may need a
more generalized version of Danskin’s Theorem for Hessian [27].
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Note, the above measure of smoothness, as suggested previously in
Liu et al. [22], also depend on both € and the Hessian of £(-) w.r.t.
0. However, their relationship is differently expressed as in Eqn. (9)
compared to that in Eqn. (6). Furthermore, notice that ||He (x, 0) | 2
is the absolute value of the largest eigenvalue of He(x, 0) since
any Hessian matrix is symmetric. We will refer to this quantity as
“maximal Hessian eigenvalue”

3.2 Curriculum Learning and Smoothness

We believe that smooth loss landscapes will benefit the adversarial
training process in two ways: generalization and convergence. First,
as mentioned in Section 2, many previous works have shown con-
nections between generalization and smoothness of the loss land-
scape. Flat minima introduce an implicit bias for SGD on deep neural
networks and has served as an explanation to the surprisingly good
generalization of over-parameterized neural networks. Examples
of factors that affect this implicit bias include batch size, learning
rate, and architecture such as residual connections [16, 17, 21, 24].
Other works also aim to “artificially” create such flat local minima
through more advanced training techniques [6, 15].

The second benefit of a smooth loss surface is a faster conver-
gence. It is well-known that smoother loss (e.g., smaller Lipschitz
gradient constant) allows for a large step size and hence, a faster
convergence on both convex and non-convex problems including
ERM on neural networks [18, 20]. Conversely, a sharp loss surface
is harmful to the training process. Liu et al. [22] show that a large
adversarial perturbation could increase the sharpness, i.e., make
gradients large even near the minima, and hence, slow down the
training.

In this work, we explore curriculum learning as a mechanism to
encourage smoothness of the adversarial loss surface. The original
intuition behind curriculum learning as outlined by Bengio et al.
[3] was to help smooth the loss landscape in the initial phase of
non-convex optimization. While this intuition has found accep-
tance in the community, to the best of our knowledge, this notion
of smoothness has not been used for curriculum learning. Addition-
ally, curriculum learning is particularly suitable in the adversarial
context because it can, directly or indirectly, manipulate €, which
is a main factor affecting the smoothness as mentioned previously
(Section 3.1). In Section 4, we make this connection explicit via our
proposed algorithms.

4 SMOOTHED ADVERSARIAL TRAINING

4.1 Curriculum Learning and Difficulty Metric

It has been both empirically and theoretically (for a linear regres-
sion model) established that curriculum learning improves the early
convergence rate as well as the final generalization performance,
especially when the task is difficult (e.g., under-parameterized mod-
els, heavy regularization) [3, 12, 32]. The main challenge therefore
lies in defining an effective difficulty metric to dictate the order of
the training samples presented to the network. Luckily, the adver-
sarial setting provides several intuitive difficulty metrics that can
be easily controlled through the perturbation norm, e.

We start by proposing a formulation of the curriculum-augmented
adversarial loss, or curriculum loss, denoted by £y . where ) : RY -
R is a given difficulty metric acting as an additional constraint on
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the adversarial loss. We call it the curriculum constraint.

le(xd) = £(x +6) (10)

max
8|6l <€

st P(x+8) <A

This general formulation above unifies prior works on curriculum-
inspired adversarial training (see Table 4 in Appendix B). Without
the curriculum constraint, the curriculum loss reduces to the normal
adversarial loss in Eqn. (1). The difficulty parameter A should be
scheduled to increase as the training progresses such that it reaches
its maximal value well before the end of training. This is to ensure
that the curriculum loss converges to the original adversarial loss.

As mentioned in Section 3.2, we propose two difficulty metrics
that directly aim to smoothen the loss landscape: Maximal Eigen-
value of the Hessian and Softmax Probability Gap.

4.2 Maximal Eigenvalue of the Hessian

To encourage smoothness, we can directly control the largest eigen-
value of the Hessian throughout the training. In Section 3.1, we
described the correlation between the largest eigenvalue of the
Hessian and adversarial strength and explained its usage as a cur-
riculum constraint. We now use it as a difficulty metric,

YH(x) = [|He(x: 0l (2)

for our Hessian-Based Smooth Adversarial Training (H-SAT).

This direct control on the Hessian, however, has two limitations.
First, computing {7 (x) requires calculating the maximal eigenvalue
of the Hessian which is very expensive to execute at every PGD step
or even training step. To mitigate this problem, we devise several
approximations which significantly speed up the calculation (see
Section 5). Second, the maximal Hessian eigenvalue is small not
only when the input is easy but also when it is hard, i.e., when the
probability of the correct class is close to either 1 (for easy) or 0
(for difficult). This might lead to an undesirable side effect where
keeping the maximum Hessian eigenvalue small does not guarantee
that only easy samples are presented in the early phases of training.
We illustrates this effect for logistic regression in Fig. 2a. Note, the
second derivative value is small both when the logit value is large
and when it is small (a large negative number), corresponding to
the green and orange arrows respectively.

(11)
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(a) Second derivatives (b) True-class probability
Figure 2: Relationship between logistic loss, (a) its second
order derivative w.r.t. logit, and (b) the true-class (positive)
probability. Small second derivative can correspond to dif-
ficult inputs (i.e., high loss, small logit, small probability,
orange arrow) which is undesirable.
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As shown in Fig. 2b, one way to circumvent this limitation of
H-SAT is to directly control the class probability of a sample instead.
If the class probabilities are large, it ensures that the samples are
easy, and it is likely that the second derivative (and hence, the
maximal Hessian eigenvalue) is also small. Since class probability
for a sample is available after every PGD step, we will also solve
the first problem simultaneously. We will explore this option for
the difficulty metric in the next section below.

4.3 Softmax Probability Gap

To overcome some of the limitations of H-SAT, we propose softmax
probability gap—difference between the true class probability and
the largest softmax probability excluding the true class—as the
second difficulty metric for our scheme. Formally, it is defined as

yp(x) = l}lf;f(X)j - f(x)y (12)

where y € {1, ..., ¢} is the ground-truth label of x, and f : RY — R¢
is the softmax output of a neural network.

The probability gap has an intuitive interpretation and is bounded
between —1 and 1. A perturbed input with a large gap, i.e., Yp(x) =
1, means that it has been incorrectly classified with high confidence
by the network, suggesting that it is a “hard” sample. On the other
hand, if yp(x) ~ —1, the input must be “easy” since the network
has classified it correctly with high confidence. When the gap is
zero, the input is right on the decision boundary of the classifier.

When used as a curriculum constraint ¢/p(x) < A, softmax prob-
ability gap is also directly related to traditional adversarial training.
When A = 1, the constraint is always satisfied for any x and 8. Thus,
the curriculum loss reduces to the normal adversarial loss. The
curriculum loss is also a lower bound of the adversarial loss for any
A with equality for A > 1.

YA, £ye(x,4) < fe(x) and
VYA 21, £y e(x,A) = Lle(x)

(13)
(14)

With the above interpretation in mind, we create a curriculum
for adversarial training by progressively increasing A from 0 to
1 during the training (illustrated in Fig. 3). First, we expose the
model to a weak adversary, or equivalently an easy objective, in the
early stage of the training (small 1). Progressively, the curriculum
objective becomes more difficulty (large 1) and eventually reach
the original adversarial loss when A = 1. This algorithm is named
Probability-Based Smooth Adversarial Training (P-SAT).

4.4 Early Termination of PGD

Both the curriculum constraints are non-convex and thus it is diffi-
cult to solve Eqn. (10) directly as a constrained optimization prob-
lem. Conceptually, we can satisfy the constraint by terminating
PGD as soon as the constraint is violated. This is a heuristic for most
choices of the difficulty metric ¢/, but in the case of P-SAT, the early
termination solves the optimization exactly for the binary class case
as stated in Proposition 1 below. For H-SAT, the early termination
is slightly more complicated and is described in Appendix B.3.

Proposition 1. In a binary-class problem, an optimum of the cur-
riculum loss with yp(-) as the curriculum constraint can be found
by a projected gradient method that terminates when the curriculum
constraint is violated.
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epoch t, >t
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X €

—— Decision boundary (level set ¥p(x +8) = 0)
------- Level set p(x + §) = A for some 1 > 0

Figure 3: Comparison between the perturbed samples gener-
ated by AT and P-SAT. The blue and red arrows represents
PGD updates. For P-SAT, the process stops when the curricu-
lum constraint is violated (blue cross). As A increases, P-SAT
approaches AT.

Algorithm 1: P-SAT
Input : Training set (X, Y), neural network weights 0
Parameters : PGD steps K, step size 7, difficulty scores
{/V}IT:l, projection II as a function of p and e
1 fort=1....Tdo

2 Sample {(x;, yi)}?=1 from (X, Y).

3 Initialize all §;’s at random.

4 # Generating adversarial examples with curriculum
5 fork=1,....Kdo

6 # Mask out updates that violate the constraint
7 mask; =1 {lﬁ(xi) < )L’}

8 # Projection step

° O  I(x; + nVxt(xi)) — xi

10 # Update samples with the given mask

11 xj < xj + mask; * 5;

12 end
13 # Network training step
14 Compute £(x;) and update weights 7.

15 end

Below we will explain the intuition behind this proposition and
defer the complete derivation to Appendix B.2 for improved read-
ability. Note, the loss function (negative log-likelihood) is a mono-
tonic function of the output class probability. This allows us to
simplify the curriculum loss in Eqn. (10) as follows:

5 ||rgﬁ2(35 min{¢(x +8), —log ((1 - 1)/2)}

bye(x,A) = (15)
The second term of the piecewise minimization in Eqn. (15) is just a
constant. This modified problem can be solved with PGD, similarly
to the adversarial loss, and terminated as soon as the first term
is larger than the second—which is equivalent to the curriculum
constraint being violated. The curriculum loss is slightly more
complicated for the multi-class case, but we propose to solve it
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approximately using the same early termination as a heuristic.
Algorithm 1 summarizes the implementation of P-SAT.

5 COMPUTING MAXIMAL HESSIAN
EIGENVALUES

In this section, we detail techniques to compute the maximal Hes-
sian eigenvalue for 5 (-) efficiently. Computing the full Hessian
matrix for neural networks with millions of parameters is compu-
tationally expensive and, in fact, unnecessary. We apply the power
method [19] to compute the top eigenvalues of the Hessian directly.
The method generally converges in a few iterations each of which
requires two backward passes.

However, the power method is still too expensive to run for
every PGD step and training iteration of the already computation-
intensive adversarial training. Therefore, to significantly minimize
the computational overhead, we approximate the maximal Hessian
eigenvalue using the second-order Taylor’s expansion,

1
£0+9) = (0) +{TVpe(6) + 5§TV§f(9)§+O(II§II3) (16)
combined with the fact that
1 1
= |IV3eo)|,., = ~|{TV3e(0)C].
3 960l ) = max 2 1ETV5e(0)]
As we are only interested in the largest positive eigenvalue, we can
ignore the absolute value sign.? Letting g = Vot (0)/1IVot(9)ll,,
we can now approximate the upper bound (o7) and the lower bound

(01) of the maximal eigenvalue of the Hessian (o) by appropriately
setting { = +ag for some small constant a:

17)

g9 = ||V29€(9)||(2) g 01 (18)

o1 == max{¢(0 + ag) — @ |[Vpt(O)ll,, (19)
€0 - ag) +a[I5t(O)]l,} - £(0)

57 = {0+ ag) + alIVet(O)l} - £(0) (20)

Again, for improved readability, the full derivation and the imple-
mentation considerations are provided in Appendix C.1.

Evaluating Eqn. (20) and (19) at the adversarial example of x,
gives us the upper and alower bound respectively, for || He (x, 0) [l (2).-
It is also important to note that setting  sufficiently small makes
our approximation more accurate in practice. In fact, we empirically
validated that the lower bound is indeed very tight (within 15%
from the true value).

6 EXPERIMENTS
6.1 Setup

We train and test the robustness of our proposed schemes as well
as the baselines on four image datasets, namely MNIST, CIFAR-
10, CIFAR-100, and Imagenette [14], a more realistic and higher-
dimensional dataset containing a 10-class subset of the full Im-
ageNet samples. We use a small CNN for MNIST, Pre-activation
ResNet-20 (PRN-20) and WideResNet-34-10 (WRN-34-10) for CIFAR-
10/100, and ResNet-34 for Imagenette. For evaluation, we use Au-
toAttack [8], a novel attack based on an ensemble of four different

3 Assuming that we are near local minima, most (if not all) eigenvalues should be
positive with only a few very small negative eigenvalues.
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Table 1: Clean and adversarial accuracy of the defenses on two models (PreAct-ResNet-20 and WideResNet-34-10) for the
CIFAR-10 and CIFAR-100 datasets. “Sum” indicates the sum of the clean and the adversarial accuracy. The largest number in

each column is shown in bold.

CIFAR-10 (PRN-20)

CIFAR-10 (WRN-34-10)

CIFAR-100 (PRN-20)  CIFAR-100 (WRN-34-10)

Defenses

Clean Adv Sum Clean Adv Sum Clean Adv Sum Clean Adv Sum
AT [23] 80.67 45.19 125.86 86.18 49.72 135.90 51.76 21.93 73.69 60.77 24.54 85.31
TRADES [36] 80.50 45.77 126.27 88.08 45.83 133.91 54.73 20.17 74.90 58.27 23.57 81.84
DAT [30] 81.83 42.97 124.80 86.72 45.38 132.10 54.65 20.85 75.50 54.71 20.35 75.06
CAT20 [7] 86.46 21.69 108.15 89.61 34.78 124.39 49.29 13.13 62.42 62.84 16.82 79.66
H-SAT (ours) 81.85 44.88 126.73 85.56 47.25 132.81 56.64 22.25 78.89 61.33 25.43 86.76
P-SAT (ours) 83.99 4454 128.53 86.84 50.75 137.59 57.90 2293 80.83 62.95 24.56 87.51

Table 2: Clean and adversarial accuracy of the defenses on
MNIST dataset. Adversarial accuracy is measured by AutoAt-
tack for € = 0.3 and € = 0.45. The numbers in red indicate that
the network is stuck in a sub-optimal local minimum.

Defenses €=0.3 €=0.45

Clean Adv Sum Clean Adv Sum
AT [23] 98.07 85.47 183.54 11.22 11.22 22.44
TRADES [36] 98.98 90.70 189.68 97.36 0.00 97.36
DAT [30] 98.93 92.24 191.17 9798 65.71 163.69
CAT20 [7] 99.46 0.00 99.46  99.39 0.00 99.39
H-SAT (ours) 99.01 80.71 179.72 98.35 54.10 152.45
P-SAT (ours) 99.16 92.00 191.16 97.87 58.50 156.37

attacks that are collectively stronger than PGD and capable of
avoiding gradient obfuscation issue [1]. We compare our H-SAT
and P-SAT to four baselines: AT, DAT, CAT20, and TRADES.* For
more details on the setup, see Appendix A.

6.2 Results

First, we compare the defenses in terms of their robustness, accu-
racy, and a combination of the two. We report the sum of the clean
and the adversarial accuracy as a single metric to represent the
robustness-accuracy trade-off. We do not argue that it is the only
correct (or the best) metric but rather a simple one among many
other options (e.g., a weighted sum or a non-linear function). We
highlight higher performance gains of our schemes for more diffi-
cult tasks and show that they guide the networks towards smoother
loss landscapes and improved local minima compared to AT.

6.2.1 Comparing clean and adversarial accuracy. On MNIST (shown
in Table 2), with € of 0.3, both the clean and the adversarial accu-
racy, fall in the same range, for all defenses except for CAT20. Our
P-SAT has very similar accuracies to DAT and outperforms the
rest of the baselines. CAT20 experiences gradient obfuscation [1],
resulting in an over-estimated adversarial accuracy against PGD
attack. However, the true robustness is very low as revealed by

*We do not include the results on Cai et al. [5] because e-scheduling has been
shown to perform worse than DAT. The scheme uses a non-differentiable component
which makes evaluation more complicated and not comparable to the other baselines.
We also found that it suffers from gradient obfuscation [1].
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the stronger AutoAttack. This issue persists on CAT20 for all the
datasets we tested and is likely caused by their label smoothing.

For € = 0.45, the difference becomes significant. Apart from
H-SAT, P-SAT, and DAT, none of the other defenses are robust,
having adversarial accuracy of ~10% or lower. The clean and the
adversarial accuracy of AT are the same and are close to a random
guess because it outputs the same logit values for every input. This
phenomenon happens when the training gets stuck in a sub-optimal
local minimum where the network “finds an easy way out” and
resorts to learning a trivial solution. Changing the optimizer, the
learning rate, or the random seed can sometimes mitigate the prob-
lem, but we found that no combination of these changes allowed
AT to effectively train on MNIST with € > 0.35. It is likely caused
by the non-smooth loss landscape which is amplified by a large
value of €. Importantly, the fact that only curriculum-based adver-
sarial training methods (H-SAT, P-SAT, and DAT) works in this
case suggests that they help smoothen the loss surface.

In Table 1, our scheme is more robust than all other defenses on
both PRN-20 and WRN-34-10 for CIFAR-10 and CIFAR-100 datasets
with an exception of PRN-20 on CIFAR-10 where TRADES is the
most robust. P-SAT also has the highest sum of clean and adversarial
accuracy in all cases. CAT20 generally has slightly higher clean
accuracy than the other models, but it is the least robust by a large
margin due to the false robustness issue previously mentioned.
We note that on most settings, AT is a very strong baseline. It
has roughly the same performance as TRADES and outperforms
the other curriculum-based schemes in many experiments. This
may seem surprising, but it is also observed by Rice et al. [25] and
Gowal et al. [11] that when the training is stopped early to prevent
overfitting (as in our experiments), AT performs as well as other
more complicated defenses.

As expected, P-SAT outperforms H-SAT in most settings. This
is likely due to the two limitations we mentioned in Section 4.2:
(1) additional approximations introduced to H-SAT for practical
consideration as well as (2) the fact that the Hessian eigenvalue
does not always correspond to difficulty. While P-SAT controls the
smoothness in a less direct manner, it does not suffer from these
two issues. Consequently, it is computationally cheaper and also
performs slightly better.

6.2.2  Larger Improvement with More Difficult Tasks. On CIFAR-10
with e = 16/255 and 24/255 (Table 3), our schemes have higher clean
accuracy compared to AT and higher adversarial accuracy than



Session 1: Adversarial Machine Learning

AlSec ’21, November 15, 2021, Virtual Event, Republic of Korea

Table 3: Clean and adversarial accuracy of the defenses on CIFAR-10 and Imagenette datasets trained on PreAct-ResNet-20 and
ResNet-34 respectively. Here, we use a larger perturbation norm ¢ of 16/255 and 24/255.

CIFAR-10 Imagenette
Defenses € =16/255 € = 24/255 € =16/255 € = 24/255
Clean Adv Sum Clean Adv Sum Clean Adv Sum Clean Adv Sum
AT [23] 63.66 23.78 87.44 41.68 15.21 56.89 49.10 28.00 77.10 42.55 21.05 63.60
TRADES [36] 68.70 17.20 8590 58.83 574 64.57 78.05 8.90 86.95 68.50 1.90 70.40
DAT [30] 57.28 18.94 76.22 31.21 14.36 45.57 66.20 30.30 96.50 52.50 24.50 77.00
H-SAT (ours) 64.27 23.19 87.46 49.85 13.35 63.20 69.10 35.45 104.55 47.50 27.75 75.25
P-SAT (ours) 66.99 2242 89.41 52.58 12.24 64.82 72.20 31.25 103.45 62.15 20.00 82.15
g 10°
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Figure 4: (CIFAR-10) Plots of three quantities typically used to measure the smoothness of the loss landscape of neural networks.
Each is calculated exactly at each epoch during the training for the same subset of randomly chosen training samples.

TRADES. The difference has increased compared to the experiments
with € = 8/255. The sum of the two accuracies of P-SAT also
continues to beat that of the other defenses. In the same table,
the benefit of our scheme is even more prominent on the more
difficult and realistic classification task on Imagenette dataset. On
this dataset, H-SAT and P-SAT outperform the baselines (we omit
CAT20 since it is beaten by the other baselines) by a large margin,
even larger than the results on CIFAR-10/100.

The improvement grows larger with an increase in the value of
€. This is because when ¢ is small, the early termination of PGD is
not necessary, and the curriculum does not play a big role. Hence,
P-SAT runs are very similar to those of AT. Alternatively, this also
agrees with the observation made by Bengio et al. [3] and Weinshall
et al. [32] that curriculum learning contributes more when the task
is more difficult. A larger perturbation norm means a stronger
adversary and a higher adversarial loss, representing a harder task.

6.2.3 Smoother Loss Landscape. We empirically confirm that our
schemes, both H-SAT and P-SAT, increase smoothness of the ad-
versarial loss landscape. To measure smoothness, we plot in Fig. 4
the maximal Hessian eigenvalue, trace of the Hessian, and norm
of the gradients on the adversarial examples generated by PGD
during training. There is a significant change in the trend of the
three quantities at epoch 40 which is where the learning rate is
reduced from 0.05 to 0.005. SGD almost converges to a local minima
at this point, i.e., the loss no longer changes significantly. Prior to
epoch 40, all three quantities behave erratically and vary abruptly.

However, after epoch 40, H-SAT and P-SAT consistently reach
smoother local minima. Specifically, P-SAT has the smallest eigen-
value and trace of the Hessian. H-SAT is the second smallest while
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AT comes in last. For the gradient norm, only H-SAT and P-SAT
switch place, but the general trend remains the same. This plot is
consistent with the visualization in Fig. 1 and helps explain why
H-SAT and especially P-SAT perform better than the baselines.
We also measure the generalization gap by computing the dif-
ference between training and testing adversarial accuracies over
the last 20 epochs of training. On CIFAR-10 with € = 8/255, the
gaps are 2.42 + 0.18, 2.08 + 0.21, and 2.33 + 0.24 for AT, H-SAT,
and P-SAT, respectively, where the error denotes a 95%-confidence
interval. The ordering of the generalization gaps is again consistent
with that of spectral norm and trace of the Hessian in Fig. 4(a), (b).

7 CONCLUSION

We proposed a curriculum-based formulation of adversarial train-
ing. Keeping the optimization objective unmodified, we focused our
analysis on difficulty measures that could guide the model training
to smooth regions of the loss landscape, improving generalization.
Towards this end, we proposed H-SAT and P-SAT, robust training
algorithms that achieved high clean accuracy and a small generaliza-
tion gap, addressing the two key problems of AT. Using extensive
evaluation, we showed that H-SAT and P-SAT outperforms AT,
TRADES, as well as other curriculum-inspired defenses on both
clean and adversarial accuracies in most of the settings.
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We provide below detailed explanations, comparative empiri-
cal results, and theoretical analysis of our proposed approach. We
begin with description of the experiments (datasets, model archi-
tecture, training parameters, and algorithm-specific parameters) in
Section A. In Section B, we detail our curriculum loss framework
which unifies the prior works, and then we justify our early ter-
mination techniques for P-SAT (Proposition 1) and H-SAT. Next,
in Section C, we describe our approximation of the Hessian eigen-
value and additional experiments that compare smoothness of the
loss landscape of multiple training schemes. Lastly, we finish with
examples of the adversarial images from the Imagenette dataset in
Section D.

A DETAILED DESCRIPTION OF THE
EXPERIMENTS

The neural networks we experiment with all use ReLU as the acti-
vation function and are trained using SGD with a momentum of
0.9 and batch size of 128. We use early stopping during training,
i.e., models are evaluated at the end of each epoch and only save
the one with the highest adversarial validation accuracy thus far.
Dataset-specific details of the training as well as brief descriptions
of the model architectures are provided below.

MNIST. All experiments use a three-layer convolution network
(8x8-filter with 64 channels, 6x6-filter with 128 channels, and 5x5-
filter with 128 channels respectively) with one fully-connected
layer. Models are trained for 70 epochs with a batch size of 128. The
initial learning rate is set at 0.01 and is decreased by a factor of 10
at epochs 40, 50, and 60. Weight decay is 5 x 1074, During training,
we run PGD for 40 steps with a step size of 0.02 and use a uniform
random initialization within the f-ball of radius e.

CIFAR-10/CIFAR-100. We use both pre-activation ResNet-20 [29]
and WideResNet-34-10 [35], which are trained for 100 epochs with
a batch size of 128. We use 10-step PGD with step size of 2/255 and
random restart. The initial learning rate is set at 0.05 for ResNet
and 0.1 for WideResNet and is decreased by a factor of 10 at epochs
40, 60, and 80. Weight decay is set to 5 x 10™% for CIFAR-10 and
2 % 10~ for CIFAR-100. Standard data augmentation (random crop,
flip, scaling, and brightness jitter) is also used.

Imagenette. The hyperparameters are almost identical to those
for CIFAR-10. We train ResNet-34 for 100 epochs with a batch size
of 128. The initial learning rate is 0.1 and is decreased by a factor
of 10 at epochs 40, 60, and 80. Weight decay is set to 5 X 1074,

For TRADES, we set § = 6 for all of the experiments on CIFAR-
10, CIFAR-100, and Imagenette, which is the value suggested in the
original paper. For MNIST, we did a grid search on the values of
B including = 6. However, we did not find any value of § that
resulted in a robust model at € = 0.45 on MNIST, so we only report
results for f = 6 in the table.

For DAT, we followed the schedule used in the original paper,
i.e., the convergence score is initialized at 0.5 and is reduced to zero
in 80 epochs for CIFAR-10 and CIFAR-100. For the other datasets,
we found that the adversarial accuracy improved and is more com-
parable to the other defenses when the convergence score reached
zero earlier. So we reduced the number of epochs over which the
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Figure 5: Plots of multiple schedules of the difficulty pa-
rameter A used by H-SAT and P-SAT. (a) displays three step
schedules for MNIST, CIFAR-10, and CIFAR-100. (b) shows
the linear schedules used in all datasets.

decay occurred from 80 to 30 for MNIST, 50 for CIFAR-10 with
€ = 16/255,24/255, and 40 for Imagenette.

For CAT20, we used the original code which is provided by the
authors, and we only experimented with the recommended default
hyperparameters.

For H-SAT and P-SAT, we used slightly different schedules for
the difficulty parameter A depending on the setting (Fig. 5). For
MNIST, we only used a step schedule wherein we increased 1 is
steps of 0.3333 at epochs 30, 45, and 60. On PRN-20, we used a
similar step schedule, i.e., A is increased at epochs 40, 60, and 80. On
WRN-34-10, we found that it is beneficial to increase A in earlier
epochs. So we increased A at epochs 30, 40, and 50 instead. In
addition to the step schedules, we also use two linear schedules,
one for H-SAT and the other for P-SAT. For H-SAT, A starts off at
0.8 and increase to 1 by epoch 30. For P-SAT, A increases from 0 to
1 between epoch 30 and 70.

All of the codes are written in PyTorch and run on servers with
multiple Nvidia 1080ti and 1080 GPUs. On a single Nvidia 1080ti
GPU with 12 cores of Intel i7-6850K CPU (3.60GHz) and 64 GB
of memory, P-SAT with an MNIST model takes 2 hours to train,
PRN-20 takes about 6 hours, and WRN-34-10 uses about 24 hours.
P-SAT is slightly faster than AT due to the early termination. On the
contrary, H-SAT uses approximately 50% additional computation
time because of the Hessian eigenvalue computation.

B CURRICULUM CONSTRAINTS
B.1 The Curriculum Loss Framework

Our formulation of the curriculum loss and in particular, the cur-
riculum constraint generalize the curriculum learning approach
used by the prior works. Table 4 lists the different curriculum con-
straints used by each approach together with their method of choice
to satisfy the corresponding constraints. CAT18 controls the diffi-
culty by setting the number of PGD steps for generating adversarial
examples. DAT terminates PGD early once the convergence score
is lower than the specified value.

The maximum perturbation norm is also an intuitive difficulty
metric that can be scheduled manually or can be automatically
adjusted based on some condition. Both IAAT and CAT20 explicitly
use sample-specific perturbation norm, €*(x), to control the diffi-
culty. In addition, both methods approximate and schedule €*(x)



Session 1: Adversarial Machine Learning

AlSec ’21, November 15, 2021, Virtual Event, Republic of Korea

Table 4: Comparison of constraints and implementations of different curriculum-based AT schemes unified under the form of
Eqn. (10). Note that CAT18 uses the number of PGD steps as the constraint which cannot be written analytically.

Implemented Methods

(5, Ve(x+8)) —e||Ve(x+8)[l; <A

Schemes Curriculum Constraints
Perturbation norm |6l < A

CAT18 [5] n/a

DAT [30]

IAAT [2] Yp(x+38) <0

CAT20 [7] Up(x+38) <0

H-SAT (ours) Y (x+6) <A

P-SAT (ours) Yp(x+98) <A

Projection: |5, < A
Setting PGD steps

Early termination
Projection: ||8]|o, < €*(x)
Projection: |6 < € (x)
Subset updates

Early termination

0.030

s A VA e
g 0.025

bl

>

~0.020

.2

S 0.015

E

0,010 . HSAT
[a W) P-SAT

0 20 40 60 80 100

Epochs

Figure 6: (CIFAR-10) Mean of the perturbation norm (¢) of the
adversarial examples generated by H-SAT and P-SAT. max. €
is set to 8/255, and no random restart is used to emphasize
the trend. Note that H-SAT and P-SAT use different linear
schedules on A.

based on the true curriculum constraint (which is designed to keep
the perturbed sample on the decision boundary and not push it
further inside the boundary of an incorrect class, p(x + ) < 0).

Initially, € (x) is set to a small value. If the perturbed sample
is correctly classified, then €*(x) increase and adds difficulty for
the next epoch. Conversely, if the perturbed sample is incorrectly
classified, €*(x) is decreased for IAAT or left unchanged for CAT20.
If this approximation works well, then €*(x) should be close to
the shortest distance from the decision boundary for each training
sample. Also due to the choice of the constraint ¢/p(x + §) < 0,
CAT20 to have high accuracy but low robustness. The other dif-
ference between IAAT and CAT20 is that CAT20 also uses label
smoothing which could be the cause of the gradient obfuscation
that we observed in our experiments.

We claimed that H-SAT and P-SAT implicitly and adaptively
increased the effective perturbation norm as training progressed.
Intuitively, the perturbation norm increases for two reasons. First,
when the difficulty parameter is increased, the curriculum con-
straint is relaxed and thus, the samples can be perturbed more
on average before the constraint is violated or before PGD is ter-
minated. Second, as the network becomes more robust, a larger
perturbation is required to generate adversarial examples with
the same level of difficulty. We empirically verify this statement
by training networks using H-SAT and P-SAT on CIFAR-10 with
€ = 8/255 and tracking the mean of the perturbation norm for 10
batches each with 128 randomly chosen training samples (Fig. 6).
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B.2 Early Termination for P-SAT

Here, we justify the early termination of PGD as a way to solve the
curriculum loss for P-SAT. First, we restate and prove Proposition 1
for the binary-class case. Then, we extend it to our heuristic for the
multi-class case.

Proposition 1. In a binary-class problem, an optimum of the cur-
riculum loss with {p(-) as the curriculum constraint can be found
by a projected gradient method that terminates when the curriculum
constraint is violated.

Proor. First, we rewrite the curriculum objective such that it
includes the normal loss function. We consider a fixed 6 here so we
drop the dependence on 6 to declutter the notation.

Yp(x+5) <A (21)
= r]1;¢a;<f(x+5)j—f(x+5)y§/1 (22)
= 1-f(x+8)y—flx+d)y <A (23)
= f(x+d)y >(1-1)/2 (24)
= —log (f(x+6)y) <-log((1-24)/2) (25
— {(x+) <y (26)

y = —log ((1-2)/2) (27)

Now we can rewrite the optimization in Eqn. (10) as
5 I\Iglzljl:Se t(x +90) = Mngﬁt:ﬁg t(x+0) (28)
st. Yp(x+45) <A st. £(x+8) <y (29)
= \Tgﬁ:g min {£(x +),y} (30)

Now we have arrived at the modified optimization problem that
only has one convex constraint on the norm of §. This problem
can then be solved with PGD (we call it PGD, but it is a projected
gradient ascent). Given a particular sample (x, y), let’s consider two
possible cases. First, A8 such that ||5||o, < € and £(x+8) > y. In this
case, the new problem reduces to the adversarial loss whose local
optima can be found by PGD with a sufficient number of iterations.

The second scenario, 38 such that ||§||,, < € and £(x+J) > y, can
be solved if we can find any § that satisfy the two conditions. Since
projected gradient methods satisfy the first condition by default,
we only have to run PGD until the second condition is satisfied.
Equivalently, PGD can be terminated as soon as the curriculum
constraint is violated. O
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For the multi-class case, y is dependent on § so Eqn. (10) does
not reduce to a similar simple form.

Yp(x+8) <A (31)
— Ijnia;(f(x+§)j—f(x+5)ysl (32)
— f(x+5)y21}1f;<f(x+5)j—l (33)
= —log (f(x+6)y) S—log(mfxf(x+5)j—)t) (34)

J*Y
& (x+0) <y(x+48,1) (35)
y(x+06,4) = —log (maxf(x +90)j - )L) (36)
J#y

Note that we can assume that the RHS on line 2, max £y f(x+8);-4,
is positive. Otherwise, the constraint is automatically satisfied and
can be ignored because the LHS f(x + §) is always non-negative.
Similarly to the binary-class case, Eqn. (10) can be rewritten as:

N ”rgﬁi(gs t(x+9) (37)
st. (x+8) <A (38)

= N ”rg‘zlljgs t(x+9) (39)
st. £(x+06) <y(x+6,1) (40)

= max min{f(x+9),y(x+38,1)} (41)

8:15ll, <e

This objective is difficult to optimized in a few steps of PGD
because of the piecewise min and max as well as the fact that the
two terms are inversely proportional to the other. Alternatively, we
propose a heuristic to approximate the objective by treating the
second term as a constant and so not computing its gradients (we
still update it as § changes).

B.3 Early Termination for H-SAT

The early termination can also be applied in this case. However, the
approximation of the max eigenvalue of the Hessian vary signifi-
cantly across models and datasets. Thus, setting a hard threshold is
cumbersome and requires a lot fine-tuning. Instead, we propose the
following scheme that leverages the high rank-correlation between
the true and the approximated eigenvalue to circumvent the above
issue of setting hard thresholds.

We choose 1 as fraction of samples with the smallest Hessian
eigenvalue from each batch to perturb in a given PGD step. For
example, when A = 0.3, only 30% of the samples in the batch with
the smallest ||He (x, 6)||, are perturbed. This method adapts to sam-
ples in the batch and is more flexible than a hard threshold. Now,
similarly to the probability gap, A starts off with a small value and
increases to 1, which is equivalent to AT, at the end of training.
Setting A = 0 is equivalent to normal training as no samples are
perturbed.

C MAXIMAL HESSIAN EIGENVALUE
Ci1

Below we outline a series of approximations for minimizing the
overhead of computing the max. Hessian eigenvalue. We use the

Maximal Eigenvalue Approximation
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second-order Taylor’s expansion to approximate the Hessian:

00+0) =£(0) +{TVpt(0) + %{TVéf(9)§+0(II§II§) (42)

Note, we can now maximize over { to obtain the max. eigenvalue
of the Hessian. The absolute value can be omitted because we are
only concerned with the positive eigenvalues.

1 2 _ 1 2

2 V6Ol = max SCTV5e(6)¢ (43)
= max [6(0+2) - {TVe(0)] - £(6) (44)
< jmax, 0O+0) - min, {TVe(0) - £(0) (45)
= = {0+ ag) +al|pt(O) ]} - £(0) (46)

where g is a shorthand notation of g(x; 0) = Vf(x;0)/||Vet(x;0)]|,.
The first and the second terms in Eqn. (46) approximate the max-
imization and the minimization in Eqn. (45) by taking a one-step
projected gradient update. We can also use a similar approximation
to lower bound Eqn. (44) by substituting { with a¢g and —ag and
take the maximum between the two:

SIv3e@l, = 47)

émax{t’(e +ag) - a|Vee(d)ll,,
(0 —ag) +a||Vot(9)Il,} — £(6)

Now we have arrived at the upper and the lower bounds as stated
in Section 5. Evaluating Eqns. (46) and (47) at the adversarial ex-
ample of x, gives us the upper and a lower bound respectively, for
[[He (x, 0)]|2. Choosing an appropriate value of & makes the Taylor’s
series based approximation and the maximization using a single
gradient step much more accurate in practice. We choose it to be
1% of the gradient norm so the precision also automatically adapts
to the current scale. Choosing @ much smaller is not recommended
because it can blow up small numerical errors

C.2 Implementation Consideration

Note that the smoothness analysis typically computes eigenvalue
of the Hessian matrix of the loss averaged over the entire training
set, but for the purpose of curriculum learning, we want to control
the Hessian eigenvalue for individual samples. The former quantity
can be upper bounded by the average of the latter as follows:

1 n
=D Vote(xi:0)
i=1 (@)

This shows that Hessian eigenvalue can be used as a difficulty
metric for curriculum learning and still controls the smoothness of
the loss landscape.

We have derived the lower/upper bounds of the maximal Hessian
eigenvalue in Section 5 and Appendix C.1. Nonetheless, we face
with some difficulty for combining it with AT in practice. To enable
a fine-grained sample-wise control on the difficulty metric, we must
approximate the Hessian eigenvalue per sample at every PGD step
of AT. This is an issue in practice as the automatic differentiation
software (e.g., PyTorch) does not provide an easy way to access
Vot(x;0), and evaluation of £(x; 0 + Vgf(x;0)) cannot be paral-
lelized due to the fact that gradients are different for each sample x.
If we ignore the parallelization and compute the perturbed loss for

(48)

1 n
< = > IHe(xi.0)ll z)
i=1
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Figure 7: (CIFAR-10) The exact and the approximate maximal eigenvalue of the Hessian computed on three ResNet models: (a)
AT, (b) H-SAT, and (c) P-SAT. Each point corresponds to one randomly chosen training sample.

Figure 8: (Imagenette) Randomly selected images from the Imagenette dataset. The first row is the original images while the
second and the third are adversarial examples generated with € of 16/255 and 24/255 respectively.

every x in the batch in a sequential manner, the computation time
becomes prohibitively expensive (linear in minibatch size).

To reduce the computation, we approximate gradients of individ-
ual samples with the minibatch gradient. Obviously, if the minibatch
size were set to one, this approximation is exact. The smaller the
minibatch size, the more accurate and more expensive this gradient
approximation becomes. However, we want to keep the minibatch
size fixed across all the defenses we experiment with for a fair com-
parison. Thus, we avoid the issue by fixing the minibatch size for
the weight update to be 128 (same as the other schemes) but using
a smaller minibatch size for computing the Hessian eigenvalue.

We determine that a minibatch size of 32 for the Hessian com-
putation is sufficiently accurate and does not introduce too much
overhead. We measure the Spearman rank-correlation for the sam-
plewise Hessian eigenvalue computed exactly by the power method
and approximately by the upper bound and the heuristic we in-
troduced above. The correlation is above 0.6 in all the cases we
test. In Fig. 7, we plot the eigenvalue for 10 batches each with 128
randomly chosen training samples computed on three ResNet’s
trained with AT, H-SAT, and P-SAT. The correlations are 0.6419,
0.6097, and 0.6456 for the three models respectively.
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D EXAMPLES OF ADVERSARIAL IMAGES

Fig. 8 shows 10 examples of the images from the Imagenette dataset,
which is a ten-class subset of the ImageNet dataset. The images in
the second and the third rows are adversarial examples that are
perturbed with € of 16/255 and 24/255 respectively. This figure
illustrates that while the choices of perturbation norm we experi-
ment with may seem large compared to 8/255 for CIFAR-10/100,
they are very much imperceptible to humans because the images
are of much higher resolution (224 by 224 pixels).
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