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Breakdown of quantum-classical correspondence and dynamical generation of entanglement
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The exchange interaction arising from particle indistinguishability is of central importance in the physics of
many-particle quantum systems. Here we study analytically the dynamical generation of quantum entanglement
induced by this interaction in an isolated system, namely, an ideal Fermi gas confined in a chaotic cavity, which
is described by a non-Gaussian pure state and evolves unitarily from it. We find that the breakdown of the
quantum-classical correspondence of particle motion, via the dramatic change in the spatial structure of the
many-body wave function, leads to profound changes of the entanglement. Furthermore, for a class of initial
states, the changes engender the approach to thermal equilibrium everywhere in the cavity, with the well-known
Ehrenfest time in quantum chaos as the thermalization time. Specifically, the quantum expectation values of
various correlation functions at different spatial scales are all determined by the Fermi-Dirac distribution. In
addition, by using the reduced density matrix (RDM) and the entanglement entropy (EE) as local probes, we find
that the gas inside a subsystem is in equilibrium with that outside, and that its thermal entropy is the EE, even

though the whole system is in a pure state.
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I. INTRODUCTION

Quantum entanglement is a fundamental and counter-
intuitive property of quantum many-body systems, that is
increasingly being applied in diverse branches of science and
technology [1-5]. Remarkably, it has been found [6-8] to give
rise to the emergence of thermal equilibrium phenomena in
a system coupled to an environment from the overwhelming
majority of pure states describing the isolated composite,
namely, the system + the environment. This finding, called
“canonical typicality”, sheds new light on the long-debated
foundational issue of statistical physics [9], namely, whether
and how an isolated system undergoing unitary pure-state
evolution can exhibit thermal phenomena, commonly con-
ceived to be the long-time behavior of a virtual ensemble
of isolated systems prepared under identical macroscopic
conditions. There has been increasing interest in finding the
relations between quantum entanglement and the fundamen-
tals of statistical physics and applications of such relations
in various modern topics [10,11]. Notwithstanding this, many
key aspects remain largely unexplored.

First, there are diverse sources that can generate quan-
tum entanglement. The canonical typicality crucially relies
on a system and its environment being entangled via a di-
rect interaction, which accounts for an interaction term in
the total Hamiltonian. Yet, even when the direct interaction
is absent, quantum entanglement can still arise, provided
the constituting particles are indistinguishable, i.e., identical.
This (particle) indistinguishability-induced entanglement can-
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not be attributed to a Hamiltonian, rather, it is attributed to
the (anti)symmetry of many-particle wave functions upon ex-
changing two particles, namely, the exchange interaction [12]
of indistinguishable bosons (fermions). (Note that whether a
state is entangled or not depends on how the system is parti-
tioned. Throughout this work we consider the spatial partition,
but not the particle partition leading to the so-called particle
entanglement, in which case whether particle indistinguisha-
bility leads to entanglement or not remains a controversial
issue [13].) Although there have been many theoretical and
experimental investigations of this type of quantum entangle-
ment (see, e.g., Refs. [13-15]) and its potential applications
have even been proposed [16,17], not until recently have
the studies of its roles in pure-state equilibrium [18-24] and
nonequilibrium [25,26] statistical physics been initiated. In
particular, kinematic studies based on both numerical experi-
ments and analytical theories [19,20,24] have shown that this
entanglement leads the overwhelming majority of Fock states
to behave like a statistical ensemble at thermal equilibrium.
This pure-state statistical phenomenon, called “eigenstate
typicality” (see Sec. II for detailed introduction), has deep
connections to the so-called limit shape of random geometric
objects discovered by mathematicians [27-30], and is concep-
tually different from the canonical typicality. Thus advancing
the fundamental principle of standard, ensemble-based, statis-
tical physics, namely, that many-particle system’s statistical
behavior depends strongly on the exchange interaction, to
pure-state statistical physics potentially opens up a highly
interdisciplinary research area.

Second, the canonical typicality addresses the kinematic
aspect of the roles of quantum entanglement. It makes no
references to system’s dynamical properties, notably, inte-
grable or chaotic. This situation is similar to that in standard
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equilibrium statistical physics [12], but is in sharp contrast
to that in other proposals [31-35] for pure-state equilibrium
statistical physics, all of which have many-body chaos aris-
ing from the direct interaction as the starting point. Thus
investigations of the dynamic aspect, more precisely, the roles
of the dynamics of quantum entanglement, especially the
indistinguishability-induced entanglement, in the emergence
of pure-state equilibrium statistical physics, are of urgent and
fundamental importance.

In fact, on the numerical side, there have been consid-
erable studies of the EE dynamics in a variety of chaotic
or integrable quantum systems [36—41]. However, all those
systems are subjected to a direct interaction. On the analytical
side, to address the entanglement dynamics in generic systems
remains an intellectual challenge. It is often assumed that a
quantum system has some strong properties, €.g., (quantum)
integrable, conformal, holographic, one-dimensional (1D)
[39,40,42—-44], few-body systems [37], and (or) that a quan-
tum state is Gaussian (see Refs. [45,46] and references
therein). However, in realistic systems these properties are
often (partially) absent.

Third, kinematic studies based on various typicality con-
siderations [6-8,19,24,49] have established thermalization so
far only for a subsystem. This differs from the (original ver-
sion of) eigenstate thermalization [31-33] in a fundamental
aspect. That is, the latter is for the whole system. An exception
[20] is that, for chaotic systems, both short- and long-ranged
one-particle correlation at a typical eigenstate are thermal, in
contrast to that only the short-ranged correlation is thermal for
integrable systems [19,24]. This difference may be regarded
as a precursor that in a chaotic (an integrable) system, ther-
malization can be established for whole system (a subsystem).
Most importantly, it implies dramatic impacts of the dynamic
aspects of entanglement on thermalization.

While the dynamics of the indistinguishability-induced en-
tanglement and its impacts on the emergence of pure-state
equilibrium statistical physics remain a largely unexplored
realm, in this work we investigate those subjects in an ideal
quantum gas confined in a two-dimensional (2D) chaotic cav-
ity of volume V. This is motivated by that on one hand in
standard statistical physics ideal quantum gases play impor-
tant roles in understanding the roles of indistinguishability,
while on the other hand the studies of the foundations of
classical statistical physics are often reduced to a particle
undergoing chaotic motion; see Ref. [50] and references
therein. In addition, the ideal gas allows us to isolate effects
of the indistinguishability-induced entanglement from those
of other types of entanglements such as that induced by di-
rect interaction. The gas considered is composed of N(>>1)
indistinguishable free fermions. They are subjected to the
exchange interaction only and thus is truly ideal. As such, the
chaoticity of this isolated many-particle system arises solely
from the collision between a particle and the cavity boundary.
So this chaoticity is of one-body nature, in sharp contrast
to many-body chaos arising from direct interaction between
particles. While many-body chaos has been widely adopted
as a starting point in the studies of the foundations of sta-
tistical physics [31-35,51], not until recently have one-body
chaos and exchange interaction been seen to have intriguing
combined statistical effects [52,53,54].

We develop for different classes of initial states an analyti-
cal theory of the dynamics of the indistinguishability-induced
entanglement accompanying the pure-state evolution. This
theory allows us to calculate various particle correlations, the
RDM—of arbitrary location, size and geometry—and the EE
and thus to probe the dynamical generation of the entangle-
ment. These quantities have different mathematical structures
and describe different aspects of the entanglement. Moreover,
they serve as probes of thermal properties of the gas at differ-
ent spatial scales.

We find that the entanglement is generated in the course
of pure-state evolution, and, strikingly, all probes of entan-
glement equilibrate at a timescale signaling the breakdown of
the quantum-classical correspondence of the particle motion,
with profound changes of the spatial structure of many-body
wave function and the entanglement. Moreover, for a broad
class of initial states we find that the whole gas is thermal-
ized and, strikingly, the thermalization time is the Ehrenfest
time tg [55-57]. Thus it is suggested that the combination of
one-body chaos and the exchange interaction suffices to give
rise to quantum thermalization. This is conceptually different
from other scenarios for thermalization of an isolated quantum
system [31-35], for which many-body chaos arising from
the direct interaction is indispensable. Moreover, our findings
suggest that the approach to thermal equilibrium in an isolated
quantum system is accompanied by the dynamical generation
of the indistinguishability-induced entanglement, resembling
the second law of thermodynamics.

The rest of the paper is organized as follows. We start from
a brief review of the notion of the eigenstate typicality in
Sec. II. This allows us to introduce two classes of initial states
and discuss their experimental preparations in Sec. III, and
to formulate three problems that are closely related and to be
studied in this work: they concern respectively the dynamics
of the spatial correlation of particles, the RDM and the EE. In
Sec. IV, we summarize the main analytical results and discuss
their physical implications. The analytical theory is developed
in Secs. V=VIL. In Sec. VIII we compare the thermalization
scenario implied by our results with the paradigm of standard
statistical physics. We make concluding remarks in Sec. IX.
Some additional technical details and further discussions are
given in Appendices A-I.

II. EIGENSTATE TYPICALITY

We start from a brief review of the kinematic notion of
eigenstate typicality of free fermion systems. This notion is
important for providing a mathematical description of the ini-
tial state F'(0) and a proposal of its experimental realization,
which will be performed in the next section.

The Fock space is a basic tool for the studies of quan-
tum many-particles systems. Yet, not until recently, has it
been found to carry a hidden thermal structure, the eigenstate
typicality [19], for a simple many-particle integrable system,
namely, free fermions on a torus. Originally, it states that
for a generic local Hamiltonian an overwhelming majority
of (thereby typical) highly excited many-body eigenstates
(namely, those whose excitation energy scales with system
size, or with a finite excitation energy density), also known
as Fock states, the RDM of a sufficiently small subsystem
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FIG. 1. [(a) and (c)] The occupation number pattern of an indi-
vidual Fock state has a fine structure, m, which is resolved by an
observable violating the condition Eq. (2). [(b) and (d)] Because
a generic observable satisfies that condition, a less fine structure,
A(m), is resolved instead. (b) For typical m, A(m) = A* and is
thermal (schematically shown by gradual change in the cluster color
representing the value of N /G,, of the subspace G,,). (d) For atypical
m, A(m) is athermal (schematically shown by nongradual change in
the cluster color). Solid (open) circles denote (un)occupied eigen-
states v.

is thermal, with a temperature corresponding to that of the
excitation energy density, and other parameters (like chemical
potential) determined by the density of all conserved quan-
tities in general (if any). The eigenstate typicality is closely
related to the eigenstate thermalization [31-33], but there are
also some important differences. In fact, it was called the
subsystem eigenstate thermalization [49] or the weak ver-
sion of eigenstate thermalization [24] later on. The notion
of eigenstate typicality has been extended to more general
translation-invariant and nontranslational-invariant systems,
even in the presence of direct interaction, and other quanti-
ties, notably, nonlocal observables [20,24]. In particular, the
extension to nonlocal observables opens a door to investigate
thermalization of the whole system instead of a subsystem
from typicality perspectives.

Here we restrict ourselves to the ideal Fermi gas confined
in a chaotic cavity. For this system, because of chaoticity
there is only one good quantum number associated to the
single-particle quantum motion, namely, the single-particle
eigenenergy ¢&,, with v labeling the corresponding single-
particle eigenstate. Then, each Fock state, m, is represented
by a specific occupation number pattern {n,}, exemplified by
Figs. 1(a) and 1(c) (thus we shall not distinguish {n,} and m
hereafter.) where n, = 0, 1 is the occupation number at the
eigenstate v.

At first glance, it seems impossible to associate an indi-
vidual Fock state m or occupation number pattern {n,} to
any thermodynamic notions, since the pattern is seemingly
quite arbitrary. Yet, as shown analytically and confirmed by
numerical experiments in Refs. [19,20], this is not true. A
key observation is that there are two structures associated to
each pattern: one is the fine structure, the occupation number
pattern m [Figs. 1(a) and 1(c)], and the other, denoted as
A(m), is less fine and can be resolved only through observ-
ables properly chosen but forming a broad class, thus dubbed
“the observable-resolved structure” [Figs. 1(b) and 1(d)]. For

illustrations let us take a general one-body observable ©. Its
quantum expectation value at the Fock state m has the general

form
Zn 9, (1)

where 9, depends on v. Provided 9, varies rapidly with v
[Figs. 1(a) and 1(c)], a fine tuning in the pattern {n, } alters sig-
nificantly the right-hand side of Eq. (1). Thus the expectation
value (m|ﬁ)|m) can detect the fine tuning in {n,}. However,
it turns out that for chaotic cavity generic ) behaves in the
opposite way [20], i.e., ©,, varies smoothly with v so that

Dv ~ Dv’a

(m|O|m) =

for nearest v, v'. 2)

Because of this the space of v can be naturally decomposed
into many subspaces, denoted as G,, and represented by the
clusters in Figs. 1(b) and 1(d): in each subspace (labelled by
m), both O, and ¢, are approximately constant, denoted as
9,, and &,,, respectively, and there is a large number of single-
particle eigenstates. With this decomposition Eq. (1) reduces

to
ZN O, Ny = Zn 3)

vem

From this expression we see that a fine tuning in the pattern
{n,} does not lead to essential changes in the quantum expec-
tation value. This implies that as long as the condition Eq. (2)
is satisfied, the expectation value (m|O|m) cannot resolve
the fine structure {n,}, but a less fine structure {N,,} = A(m)
represented by the set of clusters in Figs. 1(b) and 1(d). {N,,}
is constrained by

ZNm =N= va,
ZN sm_E~vasU_Em, )

where Ey, is the exact many-body eigenenergy corresponding
to the eigenstate m, and E is its approximation. Note that
although there are no degenerate many-body eigenstates, i.e.,
Yo mey #y o ne, for {n,}# {n)}, different many-body
eigenstates can have the same value of ), N,,&,,. It should be
emphasized that A(m) does not depend on the explicit form
of 9, except that it has to satisfy the condition Eq. (2).

We remark that the above decomposition of the single-
particle eigenstate (v) space into subspaces resembles von
Neumann’s grouping of eigenstates in the presence of
“macroscopic observations”; see pp. 209-210 in the English
translation [9] of the original paper. The essence of such
grouping is that in each group of states “every macroscopic
operator possesses the same eigenvalue, for otherwise carrying
out all macroscopically possible observations would allow us
to distinguish completely between all of the wy, w,, . . . (i.e., an
absolutely precise determination of the state, which in general
is not the case)” (w1, wy, ... stand for system’s eigenstates
in the original paper). Von Neumann’s state, “macroscopic
operator,” and group of states may regarded respectively as
the single-particle eigenstate, the operator O satisfying the
criterion Eq. (2), and the subspace G,, in the present work. The
only difference is that in von Neumann’s work, the eigenstates

m|O|m) =
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are those of the Hamiltonian describing the whole system,
which thus are m in the present context. However, because of
Eq. (1) this difference is inessential here. It should be empha-
sized that the decomposition and the criterion Eq. (2) for the
operator O to resolve A(m) are regardless of chaoticity. Of
course, for integrable systems the index v should be replaced
by the set of conserved quantities or good quantum numbers;
see Appendix A for example, where results about A(m) ob-
tained by numerical experiments and their connections to the
limit shape in number theory are reviewed. In fact, the orig-
inal decomposition, criterion and O introduced in Ref. [19]
have been found to play important roles in the approach to
steady states in a driven integrable system [25], which is
very different from systems studied in either Ref. [19] or the
present work. This decomposition, or the observable resolved
structure A(m), is essentially a coarse graining in the good
quantum number space, but at the level of an individual Fock
state or many-body eigenstate.

It is easy to see that the number of m carrying the same A
is[], W = W[A], where G,, is the number of single-
particle eigenstates in the subspace G,,. This number, when
viewed as a functional of A, exhibits a sharp peak at some
A* = {N;}. That is, an overwhelming number of Fock states
carry the same observable-resolved structure A*. To find A*
explicitly we define S = In W[A]. By definition of A* we then
have

as
ON,,

where «, 8 are the Lagrange multipliers introduced by the two
constraints in Eq. (4), and

=+ Ben, (&)

A=A*

aS aS
— =8, — =q. 6)
With the substitution of W[A] into Eq. (5), we find that
NG = ™
m m — eﬁsm_a + l'

Equations (6) and (7) give the thermodynamic relation and
the Fermi-Dirac distribution ngp, with 8 = 1/T, o = —u/T
and S =InW[A*] being the thermal entropy. (In general,
for finite particle number the temperature in the Fermi-Dirac
distribution and the thermodynamic temperature can be dif-
ferent [35]. But this is not the case here.) It is crucial that the
thermodynamic relations and the Fermi-Dirac distribution can
be probed only if observables satisfy the condition Eq. (2),
whereas standard statistical physics makes no reference to
observables. This is a very reflection of the fundamental dif-
ferences between pure-state statistical physics and standard
statistical physics.

Let the Fock space constrained by Eq. (4) be equipped
with a uniform probability measure, and m be drawn ran-
domly from this measure. Equation (3) and the analysis above
suggest that (m|O|m) has a typical value with respect to
this measure, because an overwhelming number of m satisfy
A(m) = A*. This is the mathematical basis of eigenstate (of
the ideal quantum gas) typicality. A Fock state m is said to
bear this typicality and thus be typical, if it satisfies A(m) =
A* [Fig. 1(b)], otherwise is said to be atypical [Fig. 1(d)]. It
should be emphasized that this typicality merely refers to the

individual Fock state, namely, the many-body eigenstate of the
ideal Fermi gas, and thus is of kinematic nature. Nevertheless,
the eigenstate typicality is expected to have fundamental dy-
namical consequences, which is a main topic of this work. Let
us also mention that the eigenstate typicality is completely dif-
ferent from the canonical typicality [6—8], which has nothing
to do with the particle indistinguishability.

III. NOTIONS AND SETTINGS

In this section, we first provide a mathematical description
of the initial state ' (0) and a proposal of its experimental re-
alization. With these preparations, we formulate three closely
related problems to be studied in this work, that address dif-
ferent dynamic aspects of entanglement.

A. Description and experimental preparation of initial states

We now introduce a space of pure states using a subset of
Fock states as the bases, defined as

; = (F|F spanned by m € s}, 8

where .%g is a microcanonical energy shell with center en-
ergy E and the particle number for each m is N. This
shell is narrow but includes many Fock states m. Let
IF) = Y ez, Cmlm), where the coefficients Cp, are complex
numbers satisfying Y. » |Cn|* = 1. With the eigenstate
typicality introduced in Sec. II, we construct two discon-
nected sets % and %%, of J#%. In 4, the majority of
weight |Cy|? goes to typical m, i.e., Zatypica]me% ICnl? <
1; whereas in 7%;, the weight of atypical m is significant,
i, Y iypicaimez; [Cml> < 1. Within each set, the N-body
wave function (ry, ..., rN|F), where ry, ..., ry are coordi-
nates of N particles, can have very different spatial structures.
In this work we shall focus on the structures such that
(i) the amplitude profile of (ry,...,ry|F) strongly peaks
at (ry ~rf,...,ry~ry), and (ii) for any i, the length
scale (|0, F |2);f{%r;, where (-)p:..r stands for the local
spatial average near (r},...,ry), is much smaller than the
characteristic value of |r} — r§| (,j=1,...,Nandi # j).
The spatial structure defined by (i) and (ii) is dubbed the
structure. In words, it means that F' is the superposition of N
localized wave packets (of different widths and localization
centers in general), and for most of wave packet pairs the
constituting wave packets do not overlap (cf. Fig. 2).

Then the initial state F(0) considered in this work belongs
to either the set

P = {F(0)|F(0) € 7 and has * structure} )
or
P = {F(0)|F(0) € 5, and has * structure}. (10)
By definition these two sets are disconnected,
PNP =4. (11)

Physically, &7 and &' represent two limiting cases of out-of-
equilibrium highly excited states: the former are composed
of typical Fock states while the latter atypical Fock states;
moreover, the x structure leads to a low entanglement level
initially. It is obvious that F'(0) is non-Gaussian. We also note
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FIG. 2. Dynamical generation of entanglement of an ideal Fermi
gas confined in a chaotic cavity. (Left) Initially, the overlap of dif-
ferent particle wave packets (green spots) and that between a wave
packet and the boundary of the subsystem A (dashed line) are small,
resulting in a low-level entanglement and a small EE. (Right) As the
quantum-classical correspondence of particle motion breaks down,
particle waves spread over the entire cavity and strongly overlap
with each other as well as with the boundary of A, resulting in a
high-level entanglement and a large EE. Undergoing this change in
the entanglement, the entire Fermi gas is thermalized, if the initial
state F(0) is in &2, while equilibrates if F(0) is in &’. See the text
for details.

that due to the Pauli principle for large N the center energy of
Zs has to be sufficiently large.

The preparation of the initial state F(0) € & or &' may
be well within the experimental reach of state-of-the-art
ultracold-atom techniques, and a protocol is as follows. At
the first step, the experimental technique [58] based on holo-
graphic, phase only method allows one to produce 2D optical
traps of arbitrary shape. This is particularly useful for creating
a stadium-like cavity; the motion of a particle trapped by this
cavity is chaotic. At the second step, we load a number of
cesium atoms in the chaotic cavity, with desired total kinetic
energy. The atoms are subjected to a short-ranged interaction,
and the interaction strength is tuned by the magnetic field that
controls the distance from the Feshbach resonance [59]. Let
this interacting Fermi gas equilibrate. Since this interacting
system is chaotic, it thermalizes following the scenario of
the eigenstate thermalization [31-33]. Moreover, it can be
shown (see Appendix B) that the particle number distribution
over the single-particle eigenstates of the cavity, namely, the
eigenenergy spectrum {¢,}, is Fermi-Dirac. At the third step,
we slowly turn off the interaction by tuning the magnetic field
and a state results, which is a superposition of some typical
m with close total energy belonging to the energy shell Zs.
As such, we achieve a state in J75;. At the last step, we use
the light scattering method to measure atom’s positions with
a spatial resolution, which is controlled by the wavelength
and intensity of the light. The resolution is required to be
much larger than the de Broglie wavelength of the atom. This
measurement projects each atom onto a localized wave packet,
but does not affect the energy distribution of the gas because
the resolution is much larger than the de Broglie wavelength.

So the * structure is achieved and we realize a F(0) € £.
Provided that at the second step we do not let the interacting
Fermi gas equilibrate, we realize a F(0) € &’ instead (see
Appendix B for further discussions).

B. Formulation of the problem set

An initial state F'(0) evolves unitarily, following

IFO) > |F@0) = Y e ™/ Cum).  (12)

meﬁs

From this, an elementary but important fact follows. Namely,
the unitary evolution neither annihilates any Fock state com-
ponent of F(0) nor creates any new Fock state component.
However, this provides no knowledge about the spatial struc-
ture of F(¢). The evolution of this structure has fundamental
consequences on the entanglement, as we will see below.

Owing to its * structure, it is obvious that F (0) is far from
equilibrium and, as at such state a generic particle is away
from and thereby does not overlap with most of the others, the
initial entanglement induced by the indistinguishability must
be low. Below we will study how such entanglement evolves
with F(1).

The first problem has the particle correlation as the probe
of that entanglement. Specifically, the quantum expectation
value of the spatial correlation of j (1 < j < N) particles,
that are annihilated at spatial points {r} = {r;, r», ..., r;} and
created at {r'} = {r|, r}, ..., r’}, where r, r’ can be anywhere
in the cavity, at the evolving state F (¢), is defined as

M@ = (FOlal, - -alas - [F@©),  (13)

where a, (aIf) is the annihilation (creation) operator at the
spatial point r;. Then the problem is formulated as follows.

Problem 1. Picking up a F(0) from & or &' and letting
it evolve unitarily, how do the particle correlation functions
defined by Eq. (13) behave in the course of time?

Furthermore, we wish to use the RDM and the correspond-
ing EE as the probes of that entanglement. To this end, let
the 2D space be divided into a number of small plaquettes or
squares, each of which has a size a. These plaquettes are the
building blocks of a discrete 2D lattice. In this lattice space
the space occupied by the cavity is Z> N ¢, with & being
the continuous cavity space. Then we divide the cavity into
two parts, a subsystem A, which is far away from the cavity
boundary, and its complement. The volume, namely, the total
number of the lattice points of A is N4. (We are not able to
formulate the two problems below in the continuous space.
However, we shall show that the continuum limit of their
solutions is well-defined.)

Following Ref. [60], we can expand the RDM of A, p4(¢),
at (the lattice version of) the evolving state F(¢) in terms of
bases of the form |\W;) (W, |, where W, is a state describing an
occupation number pattern of fermions at some single-particle
state, e.g., the eigenstate of the position operator f; at a site
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r; € A. So Eq. (22) is cast into

Pat) =Y Tr(p()[ W) (W, )W) (W . (14)
1.J

By definition of W; we can rewrite |\W;)(W,| as

(W) (Wl = [T |/ (15)

where n! (n]) is the occupation number at the aforementioned
single-particle state i at ¥; (W;). It is easy to check that

al = 10,1, @ =0:)(L,],
ala; = [1)(Li],  aal =0;)(0;], (16)

1

where a; (aj') is the annihilation (creation) operator at single-
particle state i and 0; (1;) stands for that the state i is not
occupied (occupied by a single particle). By these expres-
sions, we can trade the expansion in terms of |W;)(¥,| in
Eq. (14) to an expansion in terms of []; O;, with O; taking
an operator value from the set: {af, a;, a}a,-, a,-al.T}. This gives

pat) =) Tt (ﬁ(t) I1 0;-") [To
{01} i i
=Y (Fol[JolIFo) [ o (17)
{0i} i i

where the sum is over all allowed operator values of O;. So
the second problem is

Problem 2. Letting F (0) be the same as that in Problem 1,
how does pa(t) given by Eq. (17) behave in the course of time?

Equations (12) and (17) provide a framework for the study
of the dynamics of all macroscopic observables defined on the
subsystem A. In particular, it allows us to study the EE defined
as

Sa(t) = —=Tra(Pa(t) In pa (1)), (18)

where the trace Tr, is restricted on A. Initially, because of the
* structure most particles do not overlap with the boundary of
A (for generic geometry). As a result, the initial EE, S4(0),
is small, for which a (sub)area law might be expected. So the
third problem arises naturally.

Problem 3. Letting F (0) be the same as that in Problems 1
and 2, how does Sy (t) defined by Eq. (18) behave in the course
of time?

In Sec. V, we solve Problem 1 for the initial state in
&2. That section is a substantial extension of our earlier
preprint [52]. A preliminary result reported in that work is
strengthened significantly by improving the original deriva-
tions. Armed with the results obtained in Sec. V, we solve
Problems 2 and 3 in Sec. VI for the initial state in &2. In
Sec. VII, we use the scheme developed in Secs. V and VI to
study Problems 1-3 for the initial state in &'.

Let us make several remarks on the three problems above.

First, although the formulation of Problem 1 to some extent
resembles von Neumann’s ideology for a statistical descrip-
tion of isolated quantum systems [9], which is also built upon
the dynamics of the quantum expectation value of observ-
ables, none of his results can be used here for two reasons.
(i) Because those results deal with long-time behavior, they

are mute on short-time dynamics and are of kinematic nature
[61]. (ii) For the present system, owing to the absence of a di-
rect interaction, there exist many-body eigenstate quadruples:
(m;, my, mj, m)), such that any two of them are different
and they satisfy: Ey, — Em, = Em; — Emé. This spoils a key
condition (see Eq. (77) in Ref. [9]) for establishing von Neu-
mann’s results. The formulation of Problem 1 also resembles
the setup of the celebrated numerical experiment on quan-
tum thermalization [33]. However, there is a key difference,
namely, the absence of a direct interaction in the present
system. Thus one may expect the mechanism for thermaliza-
tion in the present system, if it does happen, to have many
conceptual differences from previous scenario [31-33] for
thermalization in isolated quantum systems.

Second, Problem 2 pushes the studies of the statistical
behavior of macroscopic observables in a subsystem forward
to the studies of the more complete statistical object, namely,
the reduced density of matrix. In this sense, Problem 2 is in
spirit parallel to Boltzmann’s kinetic theory, which addresses
the evolution of the statistical distribution. The fundamental
difference is that the statistical distribution here concerns only
the subsystem, while the entire system is described by a pure
state, rather than a statistical distribution.

Third, for F(0) € &2, some thermal properties are already
hidden in F (0), because the majority of the weight |Cpy|? goes
to typical m. As we will see, it is to make those properties vis-
ible that appropriate macroscopic observables £ and its time
evolution are required. In other words, the dynamics of appro-
priate O might convert those properties hidden in microscopic
F(0) into genuine thermal equilibrium phenomena occurring
at the macroscopic level. In fact, one may regard pa(¢) as a
macroscopic observable as well, since according to Eq. (17)
it is a linear combination of quantum expectation values:
(FOITL; Oj' |F(¢)) (with operator-valued coefficients). So ap-
propriate © and its dynamics are indispensable ingredients
for the formulation of a statistical description of an isolated
quantum system, consistent with von Neumann’s ideology [9].
Because of

(FOIOIF@®) = Y B t/iCr Cofm'|Om), (19)

m,m’'eZg

the dynamics of a macroscopic observable is closely related
to dephasing as the phase (Eyy — En )t/ (m # m') increases
with ¢. This raises the fundamental issue of whether quan-
tum thermalization or equalibration arises from dephasing in
the present context, as what was proposed for the eigenstate
thermalization of interacting systems [33,34]. To address this
issue it is important to understand whether and to what extent
the thermalization or equilibration time depends on the initial
state and the observable, because the characteristic time of
dephasing is the Heisenberg time, namely, the time to resolve
individual many-body eigenstate, which has no such depen-
dence. In fact, whether the Heisenberg time provides a sharp
upper bound for the thermalization or equilibration time is
currently under investigations for interacting many-particle
systems (see, e.g., Ref. [62] and the references therein). In
this work, we provide some analytical results to this problem.
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IV. SUMMARY OF MAIN ANALYTICAL RESULTS
AND THEIR PHYSICAL IMPLICATIONS

A. Results for F(0) € &

We first summarize the main analytical results for the ini-
tial state F(0) € &2. We find that, as the pure state follows
the Schrodinger equation to evolve: F(0) — F(t), various
probes of quantum entanglement relax at the timescale of the
Ehrenfest time, well known to signal the breakdown of the
quantum-classical correspondence of wave packet dynamics
in quantum chaos [55-57],

1. A

g = ™ In n (20)
Here, Ay is the Lyapunov exponent characterizing the ex-
ponential instability of the classical single-particle motion,
and A is the characteristic classical action which is much
larger than 7. Both A; and A are determined by the average
single-particle energy, the particle mass m, and the cavity size
L~ 4V, and Az is order of the inverse free flight time at
that energy. Very recently, experimental [63] and theoretical
[64,65] investigations on physics occurring at the timescale
of ¢z in a variety of quantum systems have been boosted.
However, we are not aware of any reports on the roles of g
in the entanglement dynamics. Moreover, very little [52] has
been known about its roles in pure-state statistical physics,
despite that in as early as 1940s N. S. Krylov realized the
fundamental importance of ¢z in the foundations of standard
statistical physics [51].

We analytically study the quantum expectation value of
the spatial correlation of j (1 < j < N) particles defined by
Eq. (13), and show below that

i >t
Ml @) =5 Y o (P)
P

J ’
1 |rk - rp(k)|)
— | d Jo| ———— v)-
X k|:|] v / m(v) 0( T nep(&y)

@1

Here the sum is over all permutations P, with o (P) being the
signature of P. J;(x) denotes the Bessel function of order b.
M 1s particle’s de Broglie wavelength at energy ¢. v labels the
single-particle eigenstate with corresponding eigenenergy &,,.
Importantly, the relaxed value (namely, the right-hand side)
depends on only few parameter, namely, the temperature T
and the chemical potential © in the Fermi-Dirac distribution:
ngp(e) =1/ (e% + 1) (throughout this work the Boltzmann
constant is set to unity.), which are determined by the central
energy of the microcanonical shell E, the particle number N,
and the spectral density dm(v) and the volume V of the cavity.
This relaxed value is irrespective of the detailed constructions
of F(0) and the system. Therefore, the whole confined gas is
thermalized.

Then, we study the RDM for the subsystem A of arbitrary
location, size and geometry, defined as

pa(t) =Trz(p(®)), p@)=[FONF@)l, (22

where the trace Trj; is restricted on the complement of the
subsystem, A. Using Eq. (21), we find that the RDM relaxes

to a Gaussian state, although before the relaxation the RDM
is non-Gaussian. Moreover, the relaxed (operator) value is
determined completely by the relaxed one-particle correlation
function given by Eq. (21) (for j = 1). Formally,

0at) el Gaussian RDM [T, i, dm(v), V] 23)

with the bracket standing for the set of parameters on which
the relaxed RDM depends, and the explicit form of the right-
hand side is given by Eq. (83). We emphasize that, unlike other
works [45,66], here T, i in the relaxed RDM are not the effec-
tive temperature and chemical potential which are determined
by the eigenvalues of the one-particle correlation—when
viewed as an operator—restricted on A and depend on sub-
system’s size and geometry in general [45]. As pointed out
in Ref. [45], a Gaussian RDM with an effective tempera-
ture “is not a true Boltzmann operator.” Instead, T, i in
Eq. (23) are genuine thermodynamic parameters characteriz-
ing thermal properties of the entire gas at equilibrium, and
are determined completely by E, N. We also emphasize that
the relaxed RDM in Eq. (23), though being Gaussian and gov-
erned by thermal properties of the entire gas, is not necessarily
a thermal (canonical or grand canonical) ensemble, because
its covariance matrix has a very complicated dependence on
subsystem’s size and geometry and thermal parameters 7, i
in general. As we will discuss in Sec. IV D, the reduction of
such Gaussian RDM to the thermal ensemble arises only in
some special cases, e.g., when the subsystem A is deep inside
the cavity.

Using the results for the relaxed RDM and one-particle
correlation function, we find that the EE associated to p4(t)
relaxes, i.e.,

Sa(t) % thermal value [T, u,dm(v), V], 24)

and the explicit expression of the relaxed value, which is
thermal, depends on the location, the geometry and the size
of A in general.

Furthermore, we find the closed form of the relaxed EE
for a special but broad class of subsystems A. It requires A
to be deep inside the bulk, so that its volume V4 < V but is
sufficiently large, and to be either a polygon or convex (such
as a disk). The condition regarding the geometry is likely
technical but not physical. We perform the calculations for the
discrete lattice space (with a lattice constant a smaller than all
particle wavelengths), and then pass to the continuum limit
a — 0, obtaining

>t [NaS, = (Va/a?)S,, a>0;
SA(I) — {VASO, a = 0,

where N, is the subsystem volume in the lattice. Equation (25)
implies that the relaxed EE obeys the volume law, with S, and
So being the relaxed EE density corresponding to the lattice
and continuous space, respectively. For the lattice space, we
find that the relaxed EE density

T d6,do
si=- [ e OIS
(1= C@L0) I —COL0)),  (6)

(25)
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with

2
_a (110, +1262)
C61,6,) = T E el

nl,nQEZ

X /dm(v)Jo(ki,/n%+n§>nFD(8v), 27

&y

which is thermal. In the continuum limit ¢ — 0, we find that,
strikingly, S,/a is identical to

S = dp p’ | p’
()2
2 2

(eome(E) ()]

which is the thermal entropy density of an unconfined ideal
Fermi gas in standard statistical physics [12]. The Fermi-Dirac

distribution has the familiar form, npD(%;), corresponding
to the unconfined ideal gas. This special Fermi-Dirac distri-
bution was analytically derived for a many-body eigenstate
before [32], as a key characteristic of eigenstate thermaliza-
tion. Contrary to the present work, that result holds only for
systems where the constituting fermions have direct interac-

tion. In Ref. [19], the distribution nFD(%) was derived for
a many-body eigenstate of free Fermi gas on a torus, which,
however, has an important difference from the present system,
i.e., exhibits translation invariance with p as the corresponding
good quantum number. We are not aware of any reports on
this result for chaotic systems, and will discuss its physical
implications in Sec. IV D. We shall also see in Sec. VIC 3 that
this result is connected to Widom’s theorem for the Fredholm
determinant of the high-dimensional integral equation with
translational kernels [67].

The results summarized above suggest that, despite that
the pure-state evolution is unitary and that the fermions have
no direct interaction, the system exhibits quantum thermal-
ization, and the thermalization time is ¢gz. Because the entire
gas is at thermal equilibrium, this is different from subsystem
thermalization at a pure state for systems with [6—8] or with-
out [19,49] a direct interaction. Also, here the Fermi-Dirac
distribution emerges in a way different from earlier works
[32,35,68,69], where a direct interaction is required.

B. Results for F(0) € &’

For the initial state F(0) € &2, we find that the parti-
cle correlation, the RDM and the EE all relax also, but at
a different timescale fr(). This timescale also signals the
quantum-classical correspondence breakdown in the presence
of one-body chaos, and, similar to #g, has a logarithmic depen-
dence on /. However, for #7 (o), the prelogarithm factor and the
action rescaling /i depend on the details of the constructions
of F(0). The relaxed values of various probes of quantum en-
tanglement depend on the details of the constructions of F'(0)
also; see Egs. (135) and (136) for their explicit expressions.
These results imply that the system equilibrates, but is not
thermalized.

C. Dynamical generation of entanglement

The results summarized above indicate that the breakdown
of the quantum-classical correspondence of particle motion
gives rise to profound changes in the entanglement, due to
significant changes in the spatial structure of many-body wave
function (Fig. 2). For illustrations, we focus on F(0) € & in
this subsection.

Let us start from the EE. At short time, the particles are
localized wave packets, which do not overlap with the bound-
ary of the subsystem A in general. So we may ignore this
overlap and obtain a product state F(¢) = W4 (¢)W;(¢), where
the factors: W, (r), W;(¢) is the many-body wave function
in A and A, respectively. So the EE vanishes. Owing to the
quantum-classical correspondence, i.e., that each quantum
particle behaves essentially as a classical one, the unitary
pure-state evolution merely results in the change of the con-
figuration of the wave packet centers, namely, the detailed
form of W4 () and W;(¢), but does not destroy the product
structure of F'(¢). Thus the quantum-classical correspondence
leads to a low-level entanglement of fermions, although they
are indistinguishable. As the time increases, more and more
wave packets spread out of A or vice versa. So the product
structure is destroyed and the EE increases. Eventually, when
the quantum-classical correspondence breaks down, all wave
packets spread, owing to the chaoticity, to the entire cavity.
This gives rise to a high-level entanglement, with the EE
saturation as a manifestation.

Furthermore, from Fig. 2, we see that initially not only the
EE vanishes, but also many parts of the gas are disentangled.
The situations are changed completely when the quantum-
classical correspondence breaks down. Indeed, because the
observation and source points in the correlation function are
arbitrary, the relaxed correlation function given by Eq. (21)
implies that when the thermal equilibrium is established, any
two parts of the gas are entangled, otherwise letting the ob-
servation point be in one part and the source point be in the
other the correlation function would depend on the detailed
constructions of wave function, that is contradictory to the
expression of Eq. (21).

So we may consider that the pure-state dynamics corre-
sponds to the evolution from a “semiclassical state” whose
entanglement level is low to a “quantum state” whose entan-
glement level is high. Also, we have seen that the * structure
makes F'(0) possess certain semiclassical features.

D. Reduction of relaxed RDM to thermal ensembles
For t > tz Eq. (21) reduces to (15 = ai, - ~a: Ay, ** - Ax;)
1 i

Tr({)efﬁ(fofu‘ﬁ))

(F@ > p)|OF @ > 1)) = Tr(e P30

(29)
Here the trace is on the entire cavity space €, the many-
particle Hamiltonian $) = —% [ drafdia, with $p, being
its matrix element, and the particle number operator 9 =
fc drala,. The right-hand side of Eq. (29) may be formally

interpreted as the average of O with respect to the grand
canonical ensemble. Letting £ be $ and 1, the left-hand side
is E and N, correspondingly. In this way, we can determine
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the thermal parameters 8 and w as functions of E, N as well
asV.

Then, we project (£ — u91) onto a subsystem A deep in-
side the cavity but sufficiently large. The ensuing operator

. . 7?92
bu -y = [ ard] (— i —M)ar
A

dp h2p2
= (2nh>2<ﬁ_“ )a:’a*” (30)

where in the second line we have taken the advantage of large
subsystem size to pass to the continuous Fourier representa-
tion. On the other hand, according to Eq. (23) po(t > tg) is
Gaussian, and Egs. (28) and (30) further enforces its explicit
expression to be

A e PHa—nTL)

palt > tp) = W (€2))]
Therefore the relaxed RDM reduces to the grand canonical
ensemble.

Note that F(t > tg) is a superposition of many eigen-
states (which are Fock states). Consider a special case, where
F (t > tg) has only single eigenstate component, and set . =
0 (namely, the canonical ensemble) in Eqs. (29) and (31). Such
simplified Eqgs. (29) and (31) for general local and nonlocal
operators O in nonintegrable systems have been expected
in Ref. [70]. Thus our findings not only provide a concrete
example to support the conjecture made in Ref. [70], but
also suggest its stronger version. That is, the eigenstate in
the original statement, namely, Eq. (2b) in that work, can be
replaced by a pure state evolving for sufficiently long time,
and the canonical ensemble by the grand canonical ensemble.

Closing this section, it is worth mentioning that, strictly
speaking, these results hold only for # much smaller than the
quantum recurrence time. However, the latter is extremely
large (see Appendix C) and therefore we ignore the quantum
recurrence throughout.

V. DYNAMICS OF CORRELATION FUNCTIONS: F(0) € &

In this and the next sections, we consider the initial state
F(0) € . In this section, we study the spatial correlation
functions of j particles.

A. One-particle correlation
1. General formalism
We first develop a general formalism for analytical stud-
ies of the one-particle correlation function. According to

Eq. (13), the one-particle correlation function between two
spatial points r, r’ at the state F (¢) is

M (@) =My (1) = (F(1)|alar| F (1)), (32)

rr’

where the superscript: (1) is omitted henceforth. We also de-
fine M(t) = {My(¢)}. In Appendix D we show that the latter
follows the von Neumann equation,

M) = —%[H(q, p). M (1)1, (33)

where the single-particle Hamiltonian H (§, p) = 2m + V(q),
with V(q) being the potential that effects a 2D cavity to
confine particles and § (p) being the position (momentum)
operator. Equation (33) is implemented by the initial condition

> Conthu (Y (). (34)

v'v

M, (0) =

Here ¥, (r) is the wave function of the single-particle eigen-
state v, and the coefficients C,,, depend on the initial state
F(0) [for its explicit form, see Eq. (D2)]. Passing to the
Wigner representation,

My (1) = / dpe” 1" PON(q, p;1) (35)

r’

with q = r+ , we can rewrite Eq. (33) as

0 — {H(q, p), - Im)M(q, p;t) =0. (36)

Here {H, - }u stands for the Moyal bracket [71]

2 . (h « —
{H, - }m = EH sin (5( dq p- 0 q)>(-), (37)
<« -

with the derivatives 0 g p acting on H(q,p) and 9 qp on a
function on the phase space. We assume V and all phase-space
functions involved to be analytic so that the Moyal bracket is
well defined; this assumption is technical and inessential to
physical results presented in this paper. Note that this quan-
tum evolution is of single-particle nature, and the many-body
properties of F enter into the initial condition 2(q, p;0).
It is important that, unlike the previous investigations of the
second law of thermodynamics [72], here no decoherence
terms, which arise from, e.g., the interaction between a quan-
tum chaotic system and a reservoir, are added to the Moyal
bracket: the quantum dynamics here is strictly unitary.

Upon being expanded in 7, the Moyal bracket reads

{H, -m={H, -}p +6H, (38)
where {-, -}p stands for the Poisson bracket and
4)"
SH = Z 7 /4) e (8- B p— 9y 82 (39)

2n+1)!

In the classical limit # — 0, we keep only the leading ex-
pansion, namely, the Poisson bracket. Consequently, Eq. (36)
reduces to the Liouville equation. With the help of Egs. (38)
and (39) it can be readily shown that the evolutions at different
phase-space energy shell, no matter classical (4 = 0) or quan-
tum (% > 0), are independent. This is a consequence of energy
conservation. So we can decompose the four-dimensional
phase space into infinite number of three-dimensional phase-
space energy shells (to be distinguished from .%y), each of
which is labeled by the single-particle energy €. Thus we have
the following change in the coordinate systems:

(q,p) — (&,x)), (40)

where x| is the coordinate of the phase point in the energy
shell. Correspondingly, we rewrite 91(q, p;¢) in the new co-
ordinate system as

M(q, p;t) :m(é‘,XH;Z)EME(XH;l), “41)
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where ¢ is put in the subscript as a bookkeeping of its invari-
ance during the evolution.

To proceed we introduce two Green’s functions,
G. (x|, xf‘ ;) and g.(xy, xil;t), for motion in the energy
shell ¢, defined as

o —{H, -} Ge /

The second equation is the Liouville equation, which can be
rewritten as

dx /
(Bt + d—tH : ax)gs = 8(xj —x))5(0), “43)

where ddx” is the phase-space velocity. By further introducing
the o-product: (A o B:)(x), X|) = [ dx|Ac(x), X|)Bc (x|, x|
which is essentially the convolutlon and can be readily shown
to be associative, i.e., (A, o By) 0o C; = A, o (B, o C,), we ob-
tain

Gg(t)zgg(t)Jr/ dt'g.(t —t) o SHG.(t') (44
0

from Eq. (42). It carries the same structure as the Dyson
equation, with 8H playing the role of the interaction. We
suppress the phase-space coordinates of the energy shell to
make formulas compact. Iterating Eq. (44), we can formally
expand G,(r) in 8H,

Galt) = gg(r)+fdngs(t —1)osHg (1)

+ f/ dtidhg.(t — 1) o SHg.(t; — ) 0 SHg.(t2)

TR (45)

where the first term corresponds to the classical Liouville
evolution and the other terms are quantum. Equation (45)
gives an expansion of M, (¢) forz > 0,

Me(t) =D M x41(1),

K=0
K=0: gﬁs,l(t) = g.(t) o M, (0),

t
K eN: M, g(t) =/ dty - -dtgg.(t —t1)
0

0 8H g (1) o M (0).
(46)

Equations (35) and (46) provide a general formalism for cal-
culating the one-particle correlation function.
For the 2D motion, it is convenient to choose

X = (q, '19), (47)

where the angle ¥ denotes the direction of p. With this choice
Eq. (35) reduces to

08Hg.(t; — 1) 0 SHge(th —13) 0 - - -

My (t) = m f ded9e i TP@NIN (q,9;0),  (48)

where p is a function of q and ¢. For N > 1, thanks to the
Pauli principle most particles occupy highly excited single-
particle eigenstates, and thus have very large . Consequently,
the contributions from small ¢ to the energy integral are small
and will be ignored hereafter.

2. Quantum-classical correspondence breakdown
and the Ehrenfest time

Equation (46) expresses the quantum evolution 91, (¢) in
terms of the classical Liouville evolution, i.e., Green’s func-
tion g,, and its “interaction” with the quantum operator §H.
Because of the dynamical instability associated to classical
(single-particle) trajectories, a volume element expands expo-
nentially in the unstable direction with a rate Az (¢), namely,
the Lyapunov exponent. Thanks to the Liouville theorem, this
volume element shrinks exponentially in the stable direction
with the same rate. The shrinking process makes 91, display
finer and finer structures during the Liouville evolution, and
thus varies more and more rapidly along the stable direction,
over a scale decaying exponentially ~e~*+() We now show
that this has an important consequence.

For the present system, Eq. (39) reduces to

/ ) s = o

SH = Z(Zn 1)'V(8q 3 p) L (49)
The characteristic value of [9qV/ aé”“V | % may be estimated
as L. Thanks to the * structure, the momentum scale over
which 91, varies may be estimated as +/2me for t = 0, while
as +/2mee=*+®® for later t because the momentum is a fast
varying variable (see further discussions in the end of this
part). Taking these into account, we have [73]

[e'e) 2 n
SHAM.(1) =) (=7°/4)

< = 2n+1
G (T O

> (—1/4)" <heh<5>f>2”
~ O3V - M (1)),
; Cn+ D'\ Ae) a P

(50)

where A(g) = Lv/2me = RL /). In principle, A(e) depends
on n. However, it turns out that this dependence does not
change the physical results below. (In fact, the analysis here
can be generalized to treat this dependence.) So we shall not
discuss it further and assume the n-independence of A(g)
throughout this work. Most importantly, [for those & that
dominate the integral in Eq. (48)] A(g) > h because L > A,.

In Eq. (50), the coefficient *5—~ het™ 35 & 1 for short time: ¢ <

TAG)
A(S) =t.

In However, it grows exponentially in time.

AL (S)
Provided that

et ) A(s) =

Eq. (50) becomes comparable to 94V - 9,90,. This signals
that the quantum terms in Eq. (46) start to dominate over
the classical term, i.e., the quantum-classical correspondence
breaks down. Because F (0) is superposed mainly by typical
Fock states, the distribution of most particles over different
phase-space energy shells leads to a weak variation of Az (¢) ~
J/€/m/L with ¢. Thus we may let ¢ at A;(¢) be the average
single-particle energy, and ignore the variation of A; with &
hereafter. The logarithm of #, has even weaker dependence on
e, and thus its variation with ¢ is ignored also. As such, f,
reduces to the Ehrenfest time ¢z given by Eq. (20).

Owing to the equivalence between the Liouville and
the Hamiltonian equation, the above picture of the

o)=t~t,, (51
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FIG. 3. We partition the energy shell into small grids (left), each
of which is deformed in the course of the Liouville evolution (right).

quantum-classical correspondence breakdown is equivalent to
the canonical picture based on classical trajectories. Indeed,
consider a classical trajectory in a chaotic cavity. Because
of the Heisenberg uncertainty the direction of the initial mo-
mentum has a small angular resolution 8%y, which may be
estimated as /i/.A on general grounds. Whenever the trajec-
tory hits the cavity wall, the resolution acquires a sudden
increment: this justifies that the momentum is a fast varying
variable, and is the origin of dynamical instability. When the
trajectory hits the cavity wall repeatedly, the resolution grows
exponentially as 8§, = §pe*!. When 8%, is comparable to
27, the direction of the momentum cannot be resolved and
the concept of a classical trajectory ceases to work. This time
is given by A; ! In(27 /89), which is just 7.

3. The correlation function for short time
Using Eqgs. (20) and (50), we find that

SAM. (1) =Y ™0V, M(n)}p).  (52)

n=1

The exponents on the right-hand side render 8 0, (r) negligi-
bly small for t < tg. In this regime we can ignore all quantum
terms in Eq. (46), obtaining M, (t) = M. 1 (t). Substituting it
into Eq. (48) gives for t < 1z,

My (1) =m f dedde” i TP (q, 031). (53)
From the Liouville equation it is equivalent to
Mg (t) = m f ded9e i TP (g, 0 ;0),  (54)

where (q-;, 9_,) stands for the energy-shell coordinates, such
that a trajectory initiating from them evolves to (q, ¥) at
time 7.

To calculate Eq. (54) we partition the energy shell ¢ into
small grids (Fig. 3, left), within each of which 9),(0) is
approximately a constant. The number of grids is denoted as
N. Because the momentum is a fast varying variable the scale
over which 9, (q—;, ¥_;; 0) varies in ¥ shrinks exponentially
as e . So we divide the angular () interval: [0, 27r] into
a number of subintervals, each of which has a size of e .
Furthermore, because all points in a subinterval evolve from
the same grid, within such subinterval 9.(q—;, ¥_;;0) is a
constant. So to perform the ¢ integral in a subinterval, we
can pull 9. (q—,, ¥—,;0) out of the integral and then use La-
grange’s mean-value theorem. Consequently, Eq. (54) reduces
to

My (1) = e h(r,r';t) (55)

(for 1, ' <t « tg) with
h(r,r';t) = /dahg(r, r';t)

he = Y e HEEORAION (Qy Ly, Dy i:0). (56)
k

Here k labels the subinterval. The angular value ¥; results
from the application of Lagrange’s mean-value theorem in the
subinterval k. (Qg,—;, U% ) stands for the coordinates of the
center of the grid, a trajectory initiating from which evolves
to (q, ¥x) att. M. (Qx.—s, Vx.—; 0) is the constant value in the
subinterval k. Finally, due to chaoticity the grids are randomly
sampled from A grids. Thus k. must vary randomly with 7,
whose explicit form depends on r, ¥’ and F (0) and thereby is
nonuniversal.

4. The correlation function for long time

We first study the impacts of quantum terms in Eq. (46) on
the correlation function for long time, i.e., t > fg. According
to Eq. (52) it is necessary to study the quantum terms, namely,
the terms with K € N, in the expansion Eq. (46). For the
(K + 1)th term with K > ¢ /tg, which is an integral of K time
variables t;(s =1,...,K), because of t >t > --- > tx >
tx+1 = 0 there must be at least one s such that t;, — t,1 | < tg
(otherwise t 2 Ktp violating the condition: K > ¢ /tg for K).
For such s, thanks to Eq. (52) when SH g:(t; —ts11) actson a
phase-space function, a negligibly small quantum correction
results. So the expansion Eq. (46) is truncated.

Consider the (K + 1)th term in the truncated expansion,
with every t;, — t,1 2 tg. By the energy-shell partition above
and that 8H is a differential operator with respect to p [cf.
Eq. (49)], §Hg.(tx) o 9, (0) does not vanish, at most, only in
the boundary regime of two grids and oscillates around zero in
¥. Because the classical motion of phase points gives rise to
the deformation of a grid (Fig. 3, right), at tx 2 t£ the bound-
ary regime is deformed, with a width ~e =i < =1t ~ L
in ¥ axis. When the product of the sequence {SH g, (t; — f,11)}
[cf. Eq. (46)] acts on sH 8. (tx) o M, (0), the oscillations in the
boundary regime remain. However, the width is smaller by a
factor of e~ "1 =) = O((%)(’( ~D). Therefore, at given q, the
considered quantum term includes many oscillations, each of
which takes place in an extremely narrow regime. Because
e~ 1 T=)PW@.?) yaries with @ over a scale Z%, when the quan-
tum term is multiplied by this factor and the integral over ¢ is
performed, the oscillations are averaged and disappear. As a
result,

m/del?e*%(r’r’)'p(qﬁ)fmakﬂ(q, #;t) =0, fort > 1z.

(57)

So the quantum evolution of My, (¢t )—but not M. (q, ¥; ¢)—at
t > tg is still determined by the first term in the expansion
Eq. (46).

So to find the behavior of M, (¢) att > tx we just need to
extend the studies of Eq. (54), which is determined by the Li-
ouville evolution, to the long-time regime ¢ >> tg. Recall that a
grid in the phase-space energy shell is deformed in the course
of Liouville evolution (Fig. 3, right). For ¢ > tg, all grids
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intersect with the line for which # varies from 0 to 2z while
q is fixed, and the measure of its intersection with a deformed
grid equilibrates, which is ~N~! and scales as some positive
power of i/ A. Because of N~!/e™*! = N(t) > 1 such a
measure must be contributed by N (¢) disconnected sets in
that line. In other words, a grid is deformed so highly that it
has A (¢) intersections with that line. Owing to the mixing
property, these intersections are uniformly distributed. As a
result, when we partition that line, namely, the angular interval
[0, 2] into subintervals in the same way as the short-time
case, we find that the subinterval size e~ ! is smaller than
the angular scale over which ¢~ ®*~*)P(@?) varies. Thus, for
Ni(t) ~ e*' (with the prefactor being time independent and
thus omitted) nearest ¥, e~ 7®~F)P takes the same value. So,
we can organize the subinterval indices {k} into %: O(1)
groups; each group, labeled by G, includes N> (¢) nearest ¥
corresponding to the same value of e~ #®*~*)P_ denoted as
e~ i T)P@%) Ag such, h, in Eq. (56) is replaced by

he =y e HETP@ID NN ON (Qp B 0). (58)

G keG

As the mixing property renders the grids uniformly sampled
by the N>(t) > 1 coordinates: (Qy._;, %), the second fac-
tor can be simplified as

1 t>>t5// / ’ / /
—_— m M 0) ~ dq'do' o ,0750),
ng Qi s, O —130) q +(q )

(59)

where in the second line, we omit an irrelevant normalization
factor. With its substitution, Eq. (58) reduces to

he ~ eALl Ze—%(r—r/).p(q,ﬁc) // dq/dﬁ/ime(q’, 19/;0),
G

fort > tg. (60)

Combining it with the expressions of M, (¢) given in Eq. (55),
we find that the exponentially growing factor balances the
exponentially decaying one, giving

Mo (2) 2% const.. 61)
This implies the relaxation of My (t).

It should be emphasized that, unlike Eq. (55) which in-
volves only the leading classical term in Eq. (45), Eq. (61)
involves the entire expansion in §H in Eq. (45), and results
from that all quantum corrections to the right-hand side of
Eq. (53) vanish. This phenomenon is of quantum origin and
resembles a phenomenon in level statistics at the frequency
scale much smaller than the inverse Ehrenfest time [74],
where all quantum terms of the level-level correlator vanish
and only classical terms remain. Moreover, the explicit ex-
pressions of the right-hand sides of Eqgs. (55) and (61) differ
because the former (latter) is for short (long) time.

Let us summarize the result obtained in this subsection
and make some remarks. We have found that, for ¢t > 1z, the
contributions of all quantum terms of 91, (¢) to My (¢) vanish,
i.e., My (t) is governed by the Liouville evolution of 91.(¢),
and as a result M, (¢) relaxes. It should be emphasized that
this relaxation process refers to the macroscopic observable

M. (1), but not to the phase-space function 91, (¢). Indeed, to
pass from the latter to the former integrating out (some) phase-
space coordinates is inevitable, and we have seen above that
the ¢ integral in Eq. (35) is essential to justify the relaxation
of My (t). That M. (¢t) relaxes but M. (¢) not resembles a
well-known result in the studies of the foundations of classical
statistical physics [50]. There, when a probability distribution
in phase space evolves, a macroscopic observable can relax to
an equilibrium value which is the average with respect to some
smooth probability distribution, but the distribution does not
relax to that smooth probability distribution.

5. Relaxed value of the correlation function

Having shown the relaxation of My (¢) at ¢, we proceed
to find its relaxed value. In principle, it is possible to use
Egs. (55), (56), and (60) to find this value. Below we adopt
a simpler method.

Let us substitute Eq. (12) into Eq. (32) to obtain

M (t) =) Gy Cne =5 af el m) — (62)

m,m’

and perform the time average: limy,_, fOT“ %Mrr/ (t). This
gives the relaxed value, i.e.,

Mee(6) =% " |Cul*(mla] ac|m). (63)
mefs

The remaining task is to calculate the right-hand side.
It is easy to show that

(mlaarlm) =Y n, 9, () (). (64)
With its substitution Eq. (63) reduces to
M (1) =5 Y G2 Y mCo(r, ), (65)
me g v

which relates the relaxed value to the occupation number
pattern {n,} corresponding to the Fock state m and the au-
tocorrelation of a single-particle eigenfunction defined as
Co(r, ') = ¥, (0¥ (r).

Note that C,(r, ') satisfies the relation Eq. (2), with O =
ai,ar and 9, = C,(r, ") [20]. Using this result it has been
shown [20] that for typical m,

ZnuCu(r, r)= fdm(V)Cu(l‘, r)nep (&) (66)

follows, where dm(v) gives the number of single-particle
eigenstates in the interval: (v, v +dv) of the v space. In
Appendix E, we show that for a 2D chaotic cavity,

AN 1 |I'—I'/|
Cule.x) = o . (67)

Since for F(0) € & most probability weight of |C|? goes to
typical m, we can combine Eqs. (65), (66), and (67) to obtain

Ir —r|

Mee (1) 25 % / dm(V)J0< )m(en, 68)

&y

which is the special case of Eq. (21) at j = 1. We see that, as
long as F(0) € &, the relaxed value is independent of F (0).
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Instead, it depends only on the thermodynamic quantities
T, w and the spectral structure described by dm(v). This is
a hallmark of quantum thermalization. Correspondingly, the
relaxation time 7g is the thermalization time. It is important
that this thermalization time is much smaller than the time
to resolve an individual many-body eigenenergy, namely, the
Heisenberg time 7i/A #z,, with A #; being the level spacing
of the many-body eigenstates in the microcanonical energy
shell %g. Therefore thermalization occurs long before the
occurrence of dephasing.

B. Multiparticle correlation
For the convenience below, we introduce MW)(¢) =
(M) ()}, where {M{}) .} is defined by Eq. (13) and j > 2.
In Appendix D, we show that M) (¢) satisfies the following
von Neumann equation:
: i< .
OMO(t) = —= > [H@ p), MP@®)]. (69)
hia

Note that this evolution cannot be expressed the product of
J one-particle correlation functions, because the initial condi-
tion is not factorizable. Passing to the Wigner representation,

My ()= / dpy -+ dpje” i KR (g}, (p):o).

(70)
where {q}={q,...,q;}, with q = "%,
{p1,...,p;}, we can rewrite Eq. (69) as

and {p} =

J
<a, — Y {H (. po). - }M>sm<f><{q}, L0 =0. (1)
k=1

Owing to the similarity of these two equations to Egs. (35)
and (36), we can generalize the method developed in Sec. V A
to the multiparticle case. Because the analysis is parallel, we

shall give only the final results. In particular, as a generaliza-
tion of Eq. (55), we find that

M)y @) = PRI}, (Fhn), forap! St <tg, (72)

with
h<f'>({r},{r/};r)=/del~-~de,~h§{?..sj({r},{r/};t)- (73)

Here hg ?..aj varies randomly with ¢, whose explicit form de-
pends on r,r’ and F(0) and thereby is nonuniversal. For
t > tg, this multiparticle correlation function relaxes, i.e.,

M {(Z}){r,} () =% const. (74)

Similar to the one-particle case, to find the relaxed value
we perform the time average of Eq. (13). As a result,

1 1>>1, 2 F
Ml @) =5 3 (Cul*(mlaf, ---af,ar, - Im), (75)
meﬁg

which generalizes Eq. (63). Because m is a Gaus-

sian state, we can use Wick’s theorem to factorize

(m|ai, ~-~aI, ar, -+ ay;/m) into the product of one-particle
1 j

correlation functions, obtaining

J
T i
(mlaii .- -a;}arl - aplm) = E o(P) l_[(m|ar;)(k)ark [m).
P k=1

(76)
Upon substituting it into Eq. (75), we find that
) 1>t 2
My == 3 ICnl
meﬂg
J
x Z o(P) ]_[ Z m,Cy (P, ¥pgy ). (77)
P k=1 v

Then we substitute Egs. (66) and (67) into Eq. (77). As a
result, the second line of Eq. (77) is independent of m, and
Eq. (21), which generalizes Eq. (68), follows. That this re-
laxed value or the right-hand side of Eq. (21) is independent
of F(0) reflects again that the ideal Fermi gas is thermalized
attg, as long as F(0) € Z.

VI. DYNAMICS OF RDM AND EE: F(0) € &

Armed with the results for the correlation functions ob-
tained in Sec. V, we proceed to study the dynamics of the
RDM, p4(¢), and the EE, S4(¢). We keep in mind that for
the studies of these two quantities we first work in the lattice
space Z> N € and then pass to the continuum limit in the final
results.

A. Relaxation of RDM and EE
We rewrite Eq. (17) as

) =Y Fo[TolIFe o

{0i} i

+> (Fol[[oliFen] o 79
{0} i

i

Here the superscript +(—) in the sum stands for that the
number of creation operators appearing in the operator con-
figuration {O;} is (not) equal to that of annihilation operators.
Because F(¢) is superposed by Fock states with fixed particle
number N, for (F (t)|]_[i0iT |F (t)) not to vanish the numbers of
creation and annihilation operators in [],0] have to balance.
So the second term vanishes, giving

pa) =3 FoI[TolFen] o (79)

{0;} i i

For every expansion coefficient (F (t)|]_[iOIT|F (1)), we can
use the anticommuntative relations to organize it as the lin-
ear superposition of multiparticle correlation functions, which
are the lattice version of those defined by Eq. (13). With
the help of the results obtained in Sec. V, we find that
(F (t)|]_[i02'|F (1)) relaxes at the timescale of tg. As a result,
the RDM relaxes also, i.e.,

pa) 25 S Mol [ Jo. (80)

{0:} i
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Here M[{O]}] is the relaxed value of (F(2)|[],0]1F(t)),
which can be calculated in the same way as that described
in Sec. VA S and is found to be

MO = ) |Cul*(m|] [O] [m). 81)

méyg i

Because (mlﬂiO;}' |m) is the same for all typical m in %, and
the majority of the weight |Cp|* goes to typical m, Eq. (81) is
simplified as

MI{O[}] = (mz|[ [O]Imz,). (82)

It is important that on the right-hand side m &, can be taken to
be any typical m in .%g, without changing the left-hand side.
Consequently, when we substitute it into Eq. (80), we obtain

pa) =5 > maz | [[Oimz) o, 83)
{03} i i

and find that the relaxed RDM, i.e., ps(t > tg), does not
depend on the choice of m .

Furthermore, one can always use Wick’s theorem to cast
(mz|[]; O] Img) into the sum of all possible products of
one-particle correlation functions at the Fock state m &, each
of which has the form

(MNA)ij = (mglajajimgz,) = a® vac(rh rj), (84)

v

with r; being the coordinate of plaquette i. [For the conve-
nience below, we also define a Ny x Ny matrix,

~

My, = {(Mn,); 1017 €A j =12, Na} - (85)
at given mg,.] So, according to Eq. (68), the relaxed RDM
depends only on the macroscopic parameters of the Fermi
gas in the cavity (not in the subsystem), namely, 7', u, dm(v)
and V. This justifies the statement of Eq. (23). Thus, for
t > tg, any macroscopic quantity defined on the subsystem is
completely determined by these quantities. Because this result
holds for subsystems of arbitrary location, geometry, and size,
the gas is everywhere at thermal equilibrium, and the thermal
properties of the gas inside and outside a subsystem are the
same.

We remark that the dynamics of the RDM here is funda-
mentally different from that in some quenched systems [45].
There the RDM is always Gaussian and thus its dynamics is
completely determined by that of the one-particle correlation
function. In contrast, here, because F(¢) is non-Gaussian at
any ¢, the RDM is non-Gaussian before it relaxes, and this
relaxation is determined by the dynamics of all multiparticle
correlation functions. Moreover, the Gaussian nature of the
relaxed RDM here arises from F(0) € J%5;. As we shall see
in Sec. VII, this nature is lost for F(0) € J%,, even though
the RDM still relaxes.

As a straightforward application of Eq. (83), we have
Eq. (24). So the EE relaxes at the timescale of 7z, and the
relaxed value is thermal. This result holds for subsystems of
arbitrary location, geometry, and size.

B. A warmup: relaxed value of EE for 1D subsystem geometry

In this and the next subsection, we will find an explicit
analytic expression of the relaxed EE for a special class of
subsystems, which are deep inside the bulk but sufficiently
large and have a specific geometry. In this subsection, we
consider a simple subsystem geometry as a warmup namely, a
1D chain in the discrete lattice which consists of N4 >> 1 con-
tiguous plaquettes. This corresponds to a quasi 1D subsystem
with a finite width in the continuous space. This subsection
serves as a preparation for the studies of the relaxed EE in 2D
subsystem, which will be pursued in the next subsection.

For this special subsystem, nontrivial correlation behavior
occur only in the longitudinal direction, and the relaxed EE
does not vanish, as long as the subsystem does not shrink to a
genuine 1D line, i.e., a = 0. By using Egs. (66) and (67), we
obtain

a® a
(MNA)[I‘ = V/dm(v)fo<r(i - j))nFD(Su)- (86)

Therefore M n, defined by Eq. (85) is a Toeplitz matrix. That
is, it satisfies (My, )ij = c;—;. Here

T de .
Cn =/ —eMCH), nel, (87)
_p 2T

and C(0) is called the generating function, given by

2
C) = “7 Y e f dm(v)J(](;—n)nFD(a\,). (88)

&
neZ v

Note that in deriving Eq. (88), we have used Eq. (86) and
extended it to the regime where i — j is order of or larger than
the cavity size. However, provided that the chain is deep inside
the cavity, such extension plays no essential roles and thus is
legitimate. For a review of the Toeplitz matrix and the Toeplitz
determinant, we refer to Refs. [75,76]. In Appendix F, we use
Eq. (86) to find the explicit expression of C(6), which is

2

a A ’ 1
C©O) = —fdm(v)”FD(Ev) - .
v a gz: 1= (20 - 2m0))’
(39)

Here the prime stands for that the sum runs over k with
A (0 —27mk)* < o’
Because M N, is real symmetric, we can diagonalize it by

an orthogonal matrix V = {Vi;},i, j = 1,2, -+, Na, i.e.,
a0
0 14+v,
My, =V . 2 ‘ .|V, (90)
: i T g,
0 0 ..

where # € [0, 1] are the eigenvalues and T stands for the
transpose. Thus, if we choose the single-particle state i so that

a =) Vi, 1)

j=1
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which will be considered in the remainder of this subsection,
then

(m gz |a;img) = (Mg |aa;img) =0,

1+
(m.zaa;lmz) = 5 —— 92)
Taking this into account, we reduce Eq. (83) to
Moo/, 1—v;
N a3 H( 5 la}ai—f— 5 laiaj). 93)

i=1
Equations (86), (87), (89), and (93) allow us to use the scheme
of Ref. [60] to calculate the relaxed value of the EE, i.e.,
Sa(t > tg).

Since a;}'a,- has the eigenvalue of 0,1, the eigenvalues of p4
are

Ny

L+ (=D,

oy, = [[—5—— w=0.1. %
i=1

from which we obtain

Sat > te) == ) Agogy, Ny,
x1~~~xNA
adl 1+U,' 1+U,' I—U,' I—U,'
=— Z In + In
p 2 2 2 2
Ny
= e(l,v), (95)
i=1
: — x+v x+v xX—v xX—v 1+v;
with e(x,v) = =2 In &2 — 2 In 552, Because of 5% €

[0, 1], one can use Cauchy’s residue theorem to rewrite
Eq. (95) as

1 d
Salt > 1) = —— 75 e(1, 1)L 0Dy, (dr. (96)
2mi c di
Here C is a contour that encircles the line from —(1 + 0%) to
1+ 0" and along which e(1, 1) is analytic. All the zeros of

the Toeplitz determinant

Dy, (1) = det[(x + DIy, —2My,] 97)

reside along the line encircled by C, where (A + 1)Iy, —
2My, is a Toeplitz matrix with

CO)=xr+1-2C0) (98)

as its generating function.

Using the property: C(8) = C(—6) shown in Appendix F
and Eq. (89), we see that C(0) either has no zeros or has
zeros in pairs: (6,(1), —6,(A)) with r labeling the pairs. In the
former case, 5(9) is regular, i.e., is nonzero everywhere and
has zero index. With the help of Szegt’s theorem [75,76], we
can find the large N4 asymptotic,

4o .
1nDNA()\)NA—>>>1NA/ Z1nC). (99)
_p 21
Thus we have
d Na>1 T do 1
= nDy, (2 Nl — (100
2, nPm ) = A/,nznx“—zcw) (100)

In the latter case, C(0) is singular and can be factorized into
the regular part b(6) and the zero factor—a special case of the
so-called Fisher-Hartwig symbol [77]—as

C) = b(®) ]_[ ((2 = cos(6 — 6,))(2 — cos(6) + 6,))™,

A+1-—2C0)
[T, (2 —cos(0 — 6,))(2 — cos( + 6,))"™"

where m, is the integral order of the zeros -6, ()). One can use
the Fisher-Hartwig conjecture [77], which has been proven
[76]—thus is a theorem—for the present case with integral-
order zeros as the only singularity, to calculate the asymptotic
of Dy,. As aresult,

b®) = (101)

4o
1nDNA(,\)Nﬁ>1NA/ S Inb(®).
g 27

(102)
Upon taking its derivative with respect to A, we find that the
denominator of 5(6) in Eq. (101) does not contribute, because
the contributions from the pair of zeros £6;(A) cancel. As a
result, Eq. (100) remains valid.

Let us substitute Eq. (100) into Eq. (96). Note that
C(6) > 0, which is obvious from Eq. (89). Moreover, as
shown in Appendix F, C(0) < 1 (the exceptions may exist, but
at most constitute a set of zero Lebesgue measure and thus do
not play any roles.). Thus, when 6 is fixed, the denominator
on the right-hand side of Eq. (100), as a function of A, must
have zeros encircled by C. Then, applying Cauchy’s theorem,
we obtain

T de
Sat > 1p) = _NAf E[C(G)IHC(G)

—JT

+1-CO)In(1 -C®B)]. (103)

So the volume law: S4 o N, follows and the relaxed values of
the EE corresponding to distinct microcanonical energy shell
Zy differ only in the proportionality coefficient.

C. Relaxed value of EE: 2D subsystem geometry

Now we consider more realistic subsystem geometry,
which is 2D. In this case the analytical method used in
Sec. VIB encounter some fundamental difficulties. They arise
from that Szegd’s theorem and the Fisher-Hartwig conjecture
do not apply, because i (or j) in Eq. (86) represents a coor-
dinate of a 2D lattice. Here we use two different methods to
address the relaxed value of the EE in 2D subsystems: one is
mathematically rigorous, but only for square geometry, which
essentially replaces Szegd’s theorem by its high-dimensional
generalization—Doktorsky’s theorem [78]—in the method
used in Sec. VI B, and the other is approximate, but for more
general 2D geometry.

1. Square geometry

We consider the subsystem A which is a square with its
vertices on Z* N €. The side length is /Ns € N. In 2D the
definitions of the Toeplitz matrix and the Toeplitz determinant
are subjected to some modifications [76]. First, a Toeplitz
matrix Ty acts on a state ¢ = {¢;}ica in the Hilbert space
L*(A) according to the rule: (Ty¢); = ZieA ci—j@; fori € A,
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where the coefficient ¢, [n = (n;, ny) € Z*] is given by the
generating function C on T? via

Cp = // _d01d92 e—i(m@l-&-nz@z)c(gh 6).
—x (27)?

Second, the determinant of 7 is defined as the product of all
eigenvalues of Tj.

Keeping these modifications in mind, one may readily
check that Eqs. (96) and (97) still hold, but subjected to some
modifications. First, the generating function of the Toeplitz
matrix: (A + DIy, — 2/\311\]A is now given by

C6,6,) =1 +1—2C64,6).

(104)

(105)

Second, similar to the discussions on Eq. (88), because the
subsystem is deep inside the cavity, we can extend (the 2D
version of) Eq. (86) to the regime where i — j is order of or
larger than the cavity size. As a result,

2
a A
C6y,0,) = — ol (mO1+n262)
(01, 62) E

ni €2

X /dm(v)J()(ki\/n%+n%>nFD(8v), (106)

that replaces Eq. (98). Third, the Toeplitz determinant Dy, (1)
in Eq. (97) should be understood in the way as that described
above. In Appendix G, we show that C(8y, 0,) satisfies all
conditions required by Doktorsky’s theorem [78]. The lat-
ter theorem gives the determinant of the Toeplitz matrix:
(A 4 DIy, — 2My, for Ny > 1, which is

Na>>1 T d6,do, ~
lnDNA(A) — NA //_n (27[)2 lnC(Q],Qz).

(In Appendix G, we explain how to choose the branch of the
logarithm.) Let us substitute Eqs. (105)—(107) into Eq. (96),
and perform the A integral first by Cauchy’s residue theorem.
As a result,

(107)

T d6,do
Sa(t > 1) = —Ni f/ Gz (€@ 0)InC1, 02)

+ (1 —C(61,62))In(1 —C(By, 6,))]. (108)

which is similar to Eq. (103) and is the special case of
Egs. (25) and (26) for d = 2. In Appendix G we will show
that 0 < C(6y, 6,) < 1. (The upper bound is violated at most
in a set of zero Lebesgue measure.) So the right-hand side is
well defined. From Eq. (108), again S4 o< N4 follows, and the
choice of different microcanonical windows .%g at the initial
state F(0) € & only affects the proportionality coefficient.
We make several remarks. First, for more general 2D ge-
ometries, e.g., a polygon of general shape, as long as the
condition: C(6y, 6,) < 1 is met, Eq. (108) holds. Although
on the physical ground such condition is very likely true, we
are not able to prove this rigorously for a general polygon.
However, below by using an approximate method we will
derive Eq. (108) for more general 2D geometry. Second, we
will explain in Appendix G that at 7 = 0 Doktorsky’s theorem
does not apply. This opens up a door for scaling behavior
different from the volume law. Indeed, for nonchaotic systems
a scaling law ~+/N4 In N, has been found previously for a
square subsystem geometry [79]. Third, it is important that

the volume law above is derived for the subsystem which is
deep inside the cavity.

2. More general geometry

For any subsystem geometry, according to Eq. (83) the
relaxed RDM, p4(t > tg), is a Gaussian state. Therefore it
must take the following general form:

pat > tp) = e et Trpe e, (109)

and the effective Hamiltonian 7:[eff is a free particle Hamilto-
nian with the general form,

Ny
Her = Y Hijala;. (110)

ij=1
From this one may readily obtain the one-particle correlation

function on the Asubsystem A, which should be identical to
(Mp,)ij. Thus H = {H,;;} can be determined, read
H=In(M —1). (111)
[Equations (109)—(111) clearly show that although a RDM,
like pa(z >> 1), can be Gaussian and governed by T, u via
the thermal correlation matrix My,, its inverse covariance
matrix, i.e., 71, in general has a very complicated dependence
on subsystem’s size and geometry and the thermal parameters
T, . Thus such RDM is not a genuine thermal ensemble, as

mentioned in Sec. IV A.] With the substitution of Egs. (109)
and (111) into Eq. (18), we obtain

Sa(t > tg) = =Tra(My, In My,
+ (1 - MNA) In (1 - MNA))-

To calculate it we use the replica trick. Specifically, we intro-
duce an auxiliary quantity defined as

(112)

1 N N
SA,R = —ETI‘A(MNA (MﬁA — 1)

+ (1= M) (1= My)*=1)), ReN (113)
to rewrite Sy (f > tg) as

Sat > tp) = }eiLI})SA,R- (114)

Then we reduce the problem to calculations of Sy g for general
R € N. To this end, we can organize S4 g in terms of the
following expansion:

1 A
Sak = =% D dn(RTra (M),

m

(115)

where the expansion coefficients d,, satisfy the following
identity:

li ]ZdR’”— 1,1-2 116
R%Em’”()x_e’ X). (116)
Written in terms of the matrix elements, Eq. (115) is
1 NA m
Sak=—%2 dn® Y [TMw), . @17
m i, ip=1 j=1

with i,n+1 = il.
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To proceed we expect that, provided that the Fermi gas is
not at the ground state, the matrix element (My, );; decays
sufficiently fast as the distance between i and j increases. If
a subsystem is deep inside the bulk, and is either a polygon
or convex (see Appendix H for discussions on this constraint
on the geometry), we can extend the sum of i; (j > 2) over
the subsystem, i.e., the set {1, 2, - - - , N4}, to the sum over the
whole lattice Z2, i.e

SA R N —— de(R)Z Z 1_[ MNA i; l+1

i1=1i,- i €Z? j=1

(118)

With the help of Eq. (105), upon summing up all i;, we obtain

do,deo
SARN__// 1d6

(2m)?
Next, we take the limit R — O for Eq. (119). Thanks to
Eq. (116), we have

D du(RC(H1,6,)".  (119)

1 m
lim — > dn(RIC(6), 6)

= C(61,0,)InC(0y, 62)+(1 — C(01, 62)) In(1—-C(64, 65)).
(120)
Combining it with Egs. (114) and (119), we find that Eq. (108)

holds for general 2D subsystem geometry, and so do Egs. (25)
and (26).

3. Continuum limit a — 0

So far we have considered the relaxed EE in the lattice
space. Now we would like to pass to the continuum limit
a — 0. By introducing

ho; »

— = P12, (121)
a

anjz = X1,2,

we obtain

a—0

C(01,0,) — C(p)

= —/dxehx"/dm(v)h(A )nFD(sl,) (122)

from Eq. (27), where p = (p1, p2) and X = (x, x2). To per-
form the x integral, we switch to the polar coordinates. Upon
integrating out the angle, we obtain

2 o0
C(p)=7” dm(v)/o dxxJ()()%v)Jo(%)npD(sv). (123)

With the help of the following identity proved in Appendix I,
oo
/ dxxJo(ax)Jy(bx) = a_18(a —b), fora,b >0, (124)
0
we simplify Eq. (123) to
27t h2 p2 p2
— - —. (12

v npD<2m> / dm(v)é (8], 2m> (125)
For a subsystem deep inside the cavity, the discreteness of the

spectrum: {sv} is inessential Therefore we may approximate
dm(v) by 5 ’szsv, where -~ > ﬁz is the average spectral density.

Cp) =

With this approximation Eq. (125) reduces to

2
C(p) = nrp <§_m) :

Combining Egs. (26), (121), and (126) gives
Sa a—0 dp

2 2
2ol Ee(2)
a? (27 h)? 2m 2m
2 2
+ (1 _ nFD<§—m)) In (1 _ nFD<§—m>):|, (127)

from which the second line of Egs. (25) and (28) follow.

Having derived the continuum limit of the relaxed EE,
we further discuss its mathematical foundations. Note that in
the continuum limit Eq. (96) remains valid, except that the
Toeplitz determinant, Dy, (1), is replaced,

Dy, (A) = Dy, (A) = det[ (A + DIy,

(126)

—2My,],  (128)
where (My, ) = My (t > 1) and (Iy, ) = 8(r — '), with
all r, r’ restricted on the continuous space occupied by the
subsystem A. The generating function of the operator: (A +
1)8y, — 2My, is given by its Fourier transformation with
respect to (r —r’). For A deep inside the cavity, we can
follow the derivations of Egs. (122)—(126) to find the Fourier
transformation of the generating function, which is A + 1 —

2npD(%), with p/i as the Fourier wave number. Further-
more, provided that the conditions of Widom’s theorem [67]
were satisfied—in particular, A has to be either a polygon or
convex—it gives

IDV()\)—>V4/—I In{ A+ 1—2npp| —
n n n
4 (2w h)? 2m

(129)
for large subsystem volume V,. Substituting it into Eq. (96),
we recover the relaxed EE given by the second line of
Egs. (25) and (28).

D. Bounding the time profile of EE

Although the linear increase of the EE, S4(¢) o t, before
equilibration has been observed in a number of quantum
systems [36,38—41], all those systems are subjected to the
direct interaction, unlike the present system. Moreover, strong
properties required in analytical studies, such as the quantum
integrability, the conformal symmetry and the holography
[39,40,42-44], and (or) the state to be Gaussian [46], are
all absent in the present system. In particular, the appear-
ance of one-body chaos makes the powerful conformal
field-theoretic description of entanglement evolution in nonin-
teracting many-body systems [47,48] cease to work. As such,
it is a natural question whether the linear increase still exists.

If this was true, Su () ot would hold up to the timescale
of 7¢. Since the increase finds its origin in one-body chaos
and the volume law holds for ¢ > tg, we expect the propor-
tionality coefficient to be NyAz (up to an irrelevant universal
numerical factor). So it follows that S, () = NjApt + const.
fort < #z. However, this expression then gives Ss (¢ ~ t) that
cannot match the thermal equilibrium value given by Eqgs. (25)
and (26). This makes us to conjecture that the increase of the
EE is nonlinear. While we cannot prove this conjecture, below
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we bound the time profile S4(¢) from above. The ensuing
upper bound has a time profile which is nonlinear.

To this end, we introduce an auxiliary evolving density of
matrix for the subsystem A, p4 ¢ (¢), such that it is Gaussian
and gives a one-particle correlation function which is identical
to aZMrir/.(t) = (M, (t));; at any ¢ and relaxes to (My,);;
defined by Eq. (84) at the timescale of #g. For this density of
matrix we can define the entropy in the same way as Eq. (18),

Sa.6(1) = =Tra(pa,c(t) In pa,c(1)), (130)
which can be readily found to be
Sa,c(t) = =Try [MNA(I)IH My, (1)
+ (1= My, ) In (1 — My, )], (131

similar to Eq. (112). For the two density of matrices, P4 ¢(?)
and P4 (t), one can define the relative entropy [80]. By noting
that the latter cannot be negative, one can readily show [46]
that

Sat) < Sa6().

Combining Egs. (131) and (132), we establish the following
bound for the evolving EE:

Sa(t) < —Tra[ My, (1) In My, (t)
+ (1= My, ) In (1 — My, ()]

(132)

(133)
Because of My, (t) i My, this bound relaxes to the ther-
mal EE given by Eq. (112) at the timescale of 7. So for long
times this inequality is actually an equality. For short times it
is easy to see that the bound has a nonlinear dependence on ¢.

VII. GENERALIZATIONS TO F(0) € &’

So far we have considered the initial state F(0) € &. In
this section, we generalize the scheme developed in Secs. V
and VI to F(0) € &’ and obtain some results for the prob-
lems formulated in Sec. III B. We will put emphasis on the
important differences between the results for F(0) € &7’ and
F(0) € &, and discuss the physical implications of these
differences.

First of all, it is easy to check that the general formalism
developed in Sec. VA1 for calculating M, (¢) still applies.
The difference is the detailed form of the initial phase-space
function M. (q, ¥#;0). In particular, in the present case be-
cause of F(0) € /5, the majority of the weight |Cp|* goes
to atypical Fock state m. As a result, 2. (q, ©/;0) can have
a quite arbitrary distribution over ¢. Inheriting from this, the
timescale for the quantum-classical correspondence associ-
ated to the motion at different (phase-space) energy shell, .
defined in Eq. (51), has a quite arbitrary distribution over &
also. So the largest ¢, depends on available € and is determined
by the detailed constructions of F(0), which is thereby de-
noted as fr (). Similar to the Ehrenfest time, 7y depends on 7
logarithmically and is also much smaller than the Heisenberg
time /i/A #,. But the pre-logarithm factor and the classical
action rescaling 7 in tp( are very different from those in
the Ehrenfest time. Reproducing the analysis in Secs. VA3
and VA4, we see that at given energy ¢, the quantity:
I dde i T TIP@NN (q, 9;1) relaxes at the timescale of 7.

Since the evolutions at different ¢ are independent, combining
this result with Eq. (48), we find that M, (¢) relaxes at the
timescale of #r). The relaxed value can be found by using
the method in Sec. V A 5, which is still given by the right-hand
side of Eq. (65). Thus we have

I>1r /
Mee(t) =" Y~ |Cul” Y mCy(r, 1),

mGLgS

(134)

However, in the present case, Eq. (66) no longer holds:
>, mCy(r, r') depends explicitly on atypical m instead. Thus
the right-hand side of Eq. (134) cannot be simplified and the
relaxed value depends on F(0), i.e., is athermal.

Moreover, by repeating the analysis of multiparticle cor-
relation functions in Sec. VB, we find that Eq. (77) can be
generalized to

l>>lF(0)
M(j) Z |C |

meﬂs

X Zo(P)HZnV

k=1 v

I Thgy): (139)

with Eq. (134) as its special case. Similar to the discussions on
the latter, the second line of Eq. (135) depends explicitly on
atypical m. Thus the multiparticle correlation functions relax,
but their relaxed values are F(0) dependent, namely, athermal.

Then, by repeating the analysis in Sec. VI A, we find that
Eq. (135) gives rise to the relaxation of the RDM at the
timescale of #7 (o). The relaxed value is given by Eqgs. (80) and
(81). That is,

P =Y Il Z m|1"[0 m) Ho

me 75

(136)

Correspondingly,

Sa(t) 25 const.. (137)
We observe that in Eq. (136), Z{Oi}(m|]_[i0j|m) [[0iis a
Gaussian state at given m. However, such Gaussian state is
very sens1t1ve to m, because in the present case m is atypical
and (m|[J; 0 |m) is very sensitive to m. As the relaxed RDM
is the algebralc mean of Gaussian states at distinct m, it must
be non-Gaussian in the present case of F(0) € &', unlike the
case of F(0) € &. So the relaxed RDM and thereby EE are
F(0) dependent. Note that because the relaxed RDM is non-
Gaussian the calculations of the relaxed EE in Secs. VIB and
VIC cannot be generalized to the present case.
The results above show that for F(0) € &', the ideal Fermi
gas equilibrates at the timescale of #7 (o), but is not thermalized.

VIII. COMPARISON WITH CANONICAL PARADIGM
OF THERMALIZATION

Standard statistical physics is built upon the ensemble dis-
tribution, which follows the Liouville equation (for a classical
ensemble) or the von Neumann equation (for a quantum en-
semble, namely, a mixed state). Bogoliubov postulated that
after irregular transient processes, many-body chaos leads the
dynamics of ensemble distribution to exhibit certain “reg-
ularity” [81]. That is, all many-particle distributions given
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TABLE I. Comparison of different thermalization scenarios.

Ensemble-based

Pure state-based

Target Ensemble distribution Quantum expectation of observable
Particle interaction Direct Exchange

Chaos Many-body One-body

Origin of heat Particle collision Eigenstate typicality

Approach to thermal equilibrium

Thermalization time
“The second law”

Ensemble distribution

— thermal distribution
Particle interaction-dependent
Increase of entropy

Quantum expectation

— thermal value

Ehrenfest time

Dynamical generation of entanglement

by the Liouville or von Neumann equation are determined
completely by the single-particle distribution given by the
(generalized) Boltzmann equation [82]. Then, following the
latter equation, the single-particle distribution relaxes to a
thermal (e.g., Maxwell-Boltzmann, Fermi-Dirac, or Bose-
Einstein) distribution, that in turn gives rise to the relaxation
of all many-particle distributions. As a consequence of this re-
laxation, a macroscopic observable, which is the average of a
microscopic quantity with respect to the distribution function,
approaches its thermal value. As such, the heat is generated
by particle collisions.

The results obtained in Secs. V and VI enforce a com-
pletely different scenario for thermalization in many-particle
systems (cf. Table I for comparison). Its building block is
the quantum expectation value of observable at an evolving
pure state F (), which is given by the momentum average of
certain microscopic quantities with respect to the phase-space
function MY ({q}, {p};?). (Note that this is not a probability
distribution, because it can be negative.) The latter evolves
following the Moyal equation, whose classical limit is the Li-
ouville equation. However, the Moyal equation does not give
rise to the relaxation of MY ({q}, {p};?) . (At least we cannot
prove this.) Rather, the quantum expectation of observable
relaxes at the timescale of #z, and the relaxed value is thermal.
In the meanwhile, the system evolves from a semiclassical
state with low-level entanglement to a quantum state with
high-level entanglement. This reflects the quantum origin of
the emergent thermal equilibrium, and may be regarded as an
analog of the second law.

In the new scenario, the roles of the exchange interaction,
one-body chaos and (appropriately chosen) observables are
“additive.” First of all, the exchange interaction creates co-
herence between particles at different energies, and embeds a
virtual “heat bath” into the initial state—in this sense similar
to a physical picture [33] for numerical experiments on the
eigenstate thermalization—via superposition by typical Fock
states; in fact, it has been shown [20] that without this inter-
action this virtual heat bath cannot arise. Then, the one-body
chaos leads to the relaxation of the Fermi gas. Finally, after
the relaxation the observable detects the heat bath.

We remark that although the thermal ensemble description
can be obtained from partial traces of some pure states, this
does not mean that when a system is at a pure state, its
subsystem is necessarily described by a thermal ensemble:
it depends on both the subsystem and the initial state F(0).
Indeed, we have shown in Sec. IVD that for F(0) € &,
only some subsystems have a thermal ensemble description

after the gas relaxes. Moreover, we have shown in Sec. VII
that for F(0) € &7, although the gas still relaxes, the relaxed
values of observables are athermal and thus the system is not
thermalized.

We also note that the new scenario is conceptually different
from recent progresses achieved in quantum thermodynam-
ics that concern quantum resources such as entanglement
[6,83]. First, a direct interaction between a system and an
environment is indispensable for the latter, which however is
absent here. It is of fundamental interest whether the resource-
theoretic results [83] for the emergence of the second law in
quantum thermodynamics may arise from the particle indis-
tinguishability. Second, thermal ensemble or RDM underlies
quantum thermodynamics; in contrast, as shown above that
some appropriately chosen observables relax to thermal val-
ues does not necessarily imply the existence of a thermal
RDM.

IX. CONCLUDING REMARKS

In this work, we analytically studied the dynamics of
the indistinguishability-induced entanglement of a truly ideal
Fermi gas confined in a chaotic cavity, where the constitut-
ing particles have no direct interaction, but are subjected to
the exchange interaction only. We found that the quantum-
classical correspondence breakdown of particle motion, via
dramatically changing the spatial structure of many-body
wave function, has far-reaching impacts on the entanglement.
In particular, it brings a semiclassical state with low-level en-
tanglement to a quantum state with high-level entanglement.
Moreover, for the class of initial states &2, the dynamical
generation of entanglement gives rise to quantum thermal-
ization of the entire Fermi gas in the cavity. Various particle
correlation functions at different spatial scales, which probe
the global entanglement and thermal properties, and the RDM
and the EE, which probe the entanglement between a sub-
system and its complement and local thermal properties, all
level off at the thermal equilibrium value at the quantum state;
for the class of initial states &?’, the evolution gives rise to
equilibration of the Fermi gas, but not thermalization. We
should emphasize that the found global thermal equilibrium,
namely, thermal equilibrium of the entire system is diag-
nosed via the quantum expectation values of all multiparticle
correlation functions at different spatial scales; whereas the
thermal equilibrium of a subsystem deep inside the bulk is
found to, similar to standard statistical physics, be described
by a genuine thermal ensemble, although the temperature and
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the chemical potential are determined by properties of the
pure state describing the entire gas. Our findings suggest that
the particle indistinguishability can lead to rich dynamical
behavior of quantum entanglement. They also shed new light
on the foundational issue of statistical physics, namely, the
emergence of thermal phenomena in an isolated system. In
particular, they provide a new scenario for the emergence of
thermal equilibrium phenomena from the pure-state evolution,
with the exchange interaction and one-body chaos as the key
components.

Many problems are open. Among the prominent ones are
the following. First, it is obvious that the present results do
not apply to a regular cavity, where the single-particle mo-
tion is integrable. However, kinematic studies [19,20] have
shown that the Fermi-Dirac distribution can still emerge from
a typical Fock state of such systems. Thus the modifications of
entanglement dynamics are of fundamental interest. Second,
if the weight of atypical Fock states is significant initially,
quantum thermalization does not occur. In this case, we con-
jecture that a weak direct interaction might be sufficient for
all entanglement probes to approach thermal values at long
time, and the process includes two stages. At the first stage,
the weak direct interaction drives the state to the set &
(this process is similar to what is discussed in Appendix B,
and is likely a manifestation of eigenstate thermalization); at
the second stage, the direct interaction is negligible and the
present results apply. Third, in this work we have focused on
fermionic systems, it is a natural problem to generalize the
present results to bosonic systems. Fourth, throughout this
work we have focused on the bipartite entanglement, which
suffices for our purpose of understanding the equilibration
and thermalization of a small subsystem. We note multipartite
entanglement is also of very strong current interest [1]. It
is interesting to explore to what extent the present results
generalize to these cases. We leave these problems for the
future studies.
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APPENDIX A: THE OBSERVABLE-RESOLVED
STRUCTURE IN A SIMPLE SYSTEM: SIMULATION
AND MATHEMATICAL RESULTS

In this Appendix, we review some simulation and rigor-
ous mathematical results about the eigenstate typicality in a
simple integrable many-particle system, where a large number
of indistinguishable fermions are put in a harmonic oscil-
lator [20]. The purpose is to help the readers to develop
more intuitions about how the observable-resolved structure
A(m), which differs dramatically from its parent structure,
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FIG. 4. Results of numerical experiments on the integer partition.
(a) A typical partition (green dashed line) and its observable-
resolved structure namely the pattern {N,,/G,,} (black solid line) are
shown (E = 21900, N =200, and G,, = 20). (b) Five patterns of
{N.n/ G}, which correspond to different partitions randomly drawn
from the uniform probability measure and presented by different
colors, all concentrate on a smooth curve (red dashed line), which
is the average of 10000 random partitions and is well fitted by the

Fermi-Dirac distribution (yellow solid line): ngp(v) = ﬁ with

e T +1
fitting parameters 7 = 33.42 and u = 200.4. [(c) and (d)] The same
as (a) and (b), with £ = 87800, N =400, G, =40 and fitting
parameters 7 = 68.6, u = 400.1.

namely, the occupation number pattern {n,}, gives rise to the
emergence of the Fermi-Dirac distribution at the level of an
individual Fock state m, namely, many-body eigenstate of this
system.

For this system, the single-particle eigenstate has only one
good quantum number, namely, the energy. Since the zero
energy of the harmonic oscillator does not play any roles
for present discussions, we shall ignore it henceforth. Then,
with appropriate rescaling the single-particle eigenenergies
are v=1,2,.... For a many-body eigenstate m = {n,}, we
have

oo oo
Zvnv =E, Zn =N, n,=0,1. (Al
v=I

v=1

Interestingly, this maps the present problem to a celebrated
problem in number theory, which is a partition of integer E
into N distinct summands [85]. In particular, the structure of
the occupation number pattern {n,}, when translated into the
number theory language, is central to the so-called random
integer partition, the studies of which were pioneered by
Erdos and Lehner [86]. We shall see below that (under some
conditions), when the set of partitions is equipped with a uni-
form probability measure, a typical random integer partition
[27-29] can have a limit shape, which is the very Fermi-Dirac
distribution.

In Ref. [20], numerical experiments on the integer partition
described by Eq. (Al) were performed for different E, N.
The Monte Carlo method was used to draw randomly a par-
tition from the uniform probability measure. The results are
presented in Fig. 4. In panels (a) and (c), typical partitions
{n,} (green dashed lines) are shown, which appear to be ran-
dom. By dividing the natural set into subsets (labelled by m),
each of which includes G,, contiguous natural numbers, and
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counting the number N, = ) <m v in €ach subset, we obtain
the pattern of {N,,/G,,} (black solid lines). The latter gives the
structure A[m]. Panels (b) and (d) show that, for typical—
with respect to the uniform probability measure—m, their
observable-resolved structure, namely, the pattern {N,,/G,,},
all concentrate on a smooth curve (red dashed lines), which is
the average of 10000 random partitions and is well fitted by
the Fermi-Dirac distribution (yellow solid lines). Thus numer-
ical experiment confirms the emergence of the Fermi-Dirac
distribution from a typical m.

In Ref. [20], the relations between the structure A[m] for
this simple system and some rigorous mathematical results
were uncovered. For simplicity we do not fix N, i.e., remove
the second constraint in Eq. (Al). Consider the following
one-body observable: 91, = 5.0 ala,, where a, (al) be-
ing the annihilation (creation) operator at the single-particle
eigenstate v. Its quantum expectation at m is

> = gmu),

vu

(m|t,|m) = (A2)

which counts the number of summands > u at given par-
tition m. This function, ¢n,(u), is important in the studies
of random integer partitions, and defines a random stepped
curve [27-30]. According to Eq. (A2), the criterion Eq. (2) is
trivially satisfied by the observable ,. Therefore we can use
Eq. (7) to obtain

© g . VI2E
2! [C =T ), T2
u er

b4
(A3)
for an overwhelming number of m, where u = 0 because N
is not fixed. On the other hand, if the set of all partitions
is equipped with a uniform probability measure PZ, then

Vershik’s theorem [28] follows:
1
— VEu) +vw)| < e} =1.
ﬁwm( )+ v(u)
(Ad)

Here the function: v(u) is defined through the Vershik curve,

Ve > 0: lim IP’E{m

E—o0

v

e VI —e Vi =1, (AS)

The theorem implies that, for a typical partition m, the random
stepped curve: %E(pm(x/fu) has a limit shape: —v(u), i.e.,
the integrated Fermi-Dirac distribution. Equation (A3) agrees
with this theorem. Moreover, our numerical findings shown in
Figs. 4(b) and 4(d) suggest that this theorem can be general-
ized to the case of large fixed N.

APPENDIX B: FURTHER DISCUSSIONS ON
EXPERIMENTAL PREPARATION OF INITIAL STATES

Let the state of the evolving interacting Fermi gas during
the preparation of an initial state be F' (7). Note that throughout
this Appendix 7 refers to the time in the process of preparing
the initial state, and should not be confused with ¢ used in
other parts of this paper, which refers to the time in the
evolution of ideal Fermi gas. F(7) can be expanded in terms
of Fock states as

|F (7)) = Z Cm(f)Im), B1)

meﬂg

where Cp, (7) are the evolving complex expansion coefficients.
Note that, no matter whether the Fermi gas is interact-
ing or noninteracting, the single-particle eigenstates used
to construct the Fock states are the same, and so are the
single-particle eigenenergies. It is important that because the
particles have direct interaction, the Fock states m are no
longer the many-body eigenstates of the gas. As such, Cp (7)
does not evolve in the way as that described by Eq. (12), but
exhibits very complicated dynamical behavior.

So for a specific F(f) we can introduce the average oc-
cupation number at given single-particle eigenstate v or,
equivalently, at single-particle eigenenergy ¢,, defined as

Ny, D)= Y 1Cu(@I’ny, (B2)

mE?g

where the dependence of n, on m should be kept in mind.
To study the dynamics of this quantity we note that the direct
interaction between two particles creates a “reaction” in the
(single-particle) spectral space, i.e.,

& +ey < (e)+68e)+ (e — be). (B3)

That is, a two-particle state, with their eigenenergies being ¢,
and ¢,/, respectively, transits into another two-particle state,
with their eigenenergies being ¢, + §¢ and &,/ — §¢, respec-
tively, and vice versa, where d¢ is the transferred energy.
Because this system is chaotic, one may assume that transi-
tions occurring at different times are independent. As a result,
Eq. (B3) leads to the following equation satisfied by N,

IN(ev)

o7
=YY W(e)N(e,+5e)N (e —82)(1-N(e,))(1-N (&)

de v

—N(e)N (e )(1=N(ey+8e))(1 — N(ey—8e))l, (B4

where W (8¢) is the transition probability, and all the time ar-
guments have been suppressed to make the formula compact.

By using Eq. (B4) it is easy to show that N approaches the
Fermi-Dirac distribution at long time, i.e.,

N(ey. 1) =3 npp(e,). (BS)

This implies that the majority of weight |Cy(f — 00)|* goes
to typical m and F(f — o0) € %;. In contrast, if the time 7
is not sufficiently long, then the majority of weight |Cp, (7)|?
goes to atypical m and at this time F (f) € J&,.

APPENDIX C: ESTIMATION OF THE QUANTUM
RECURRENCE TIME

In this Appendix, we discuss the quantum recurrence phe-
nomenon and estimate the recurrence time #,.. by generalizing
the method of Ref. [8§4]. When this phenomenon occurs M)
is arbitrarily close to its initial (matrix) value, i.e.,

IM(t) — M) < e, (Cl)

where € is an arbitrarily small positive number. With the
substitution of the explicit expression of My, () [see Eq. (D1)
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below], we reduce this inequality to

N N .o (& — eyt
M@t)—M©O)| =4 |Cpy|?sin? —
IM(t) — M) §| o sin =—

=4/(t) < € (C2)

In order for this inequality to be met, it is required that all

phases, & 27;”') are close to multiple 7. That is, there exist a

set: {k,,» € Z} such that

2 2
Z |va’|2((8v2_—€v/)t - kvv’) g (ﬁ) ) (C3)
wh 2

(v,v")eD(F)

where the set D(F') depends on the initial state F'(0) and is
defined as

D(F) = {(v,V)ICyy # 0, v #V'}.

Then f, is the smallest (> 0) when the inequality (C3) has a
solution {k,, } distinct from that at t = 0. We call such {k,,}
a nontrivial solution.

Thanks to

.o (8y — &)t
I6) > Clayn Y. sm22—,

h
(v,v)eD(F)

(C4)

(C5)

where |Clyin = ming,v)epr) [Cov |, the smallest time ¢_ for
the inequality,

(Sv - 6‘,,')1 ? \/E 2
|C|mm Z <27T—h _kvv’) S (5) ) (C6)

(v,v")eD(F)

to have a nontrivial solution {k,, } bounds f... from below, i.e.,
Trec 2 1.

To find an explicit expression of 7_, we note that the equal
sign of the inequality (C6) defines a sphere in dr-dimensional
space, where dr is the number of the elements in D(F'), with
a moving center whose coordinate is {(5' —_ )l} The radius of

e
271Clmin

i) /(%)
O_=T1m 2 ume— r .
27T|C|min 2

where I'(x) is the gamma function. As the sphere moves the
cross section transverse to the velocity sweeps a cylinder. At
t = t_, this cylinder for the first time includes a lattice point.
This gives

the sphere is and the cross sectlon area

(C7)

g2 e Aeg

o t_=1,
F onh

(C8)

where Ae¢ is the mean squared value of (g, — €,/). As a result,

dp—1
2nh 1 (4xw|C)2. \ 2 _[d 1
:Lﬂ A7 (Clinin r F ) (C9)
Ae dF/ € 2
Thanks to
.o (& —ey)t
1(t) < ICI2 e C10
O <IClhy D sin® —— (C10)

(v,v")eD(F)

where |Clmax = max,vyepr) |Cov|, the smallest time ¢, for
the inequality,

2 2
Clhax D (%—k) <<2—*/5> (C11)

(v,v")eD(F)

to have a nontrivial solution {k,, } bounds #.. from above,
i.e., frec < t+. The procedures of calculating 7, are the same
as those of 7_. The result is

dp—1
2mh 1 (4m|CPL\ T L (dr + 1
T Ae d\? € r 2 '
F

Combining Eqgs. (C9) and (C12), we find that interestingly,
in the limiting case of dp = 1, t_ = ¢ and therefore f,.. coin-
cides with the Heisenberg time,

2mh

trec = A s

(C12)

for dr = 1. (C13)

Note that in the semiclassical regime (i.e., i/ A < 1) the
Heisenberg time ~-L is much larger than 7. As d increases

A
trec grows very fast. Fsor dr > 1, Egs. (C9) and (C12) give

47325 1 <2JT|C|2 dp>

min
Ae dr ec

< trec AN dF

Ae

47321 1 (2n|C|
< -
ee

.
ax ) . (C14)

According to this, for large dr a very large t,.. results. So the
quantum recurrence phenomenon can be ignored practically.

APPENDIX D: DERIVATIONS OF THE VON NEUMANN
EQUATION FOR CORRELATION MATRICES

Substituting Eq. (12) into Eq. (32), we obtain

Mo () =) Conr () ()e =0 (D)
with the coefficient
Cy, = Zq’;cm, Ry (— 1) " = L s
mm’
X((l vv)anvn+15n/n,fl 1_[ 8nun/ +8vv nsnun“>~
HFEVY
(D2)
Equation (D1) can be rewritten as
My (1) = (r|e™ " @R/RY0)e™ ARy (D3)

It is easy to check that this is the solution to Eq. (33).
For a j(Z= 2)-particle correlation function, we substitute
Eq. (12) into Eq. (13) to obtain

(])
M@ =" Cupiu

{v v}

J .
* /o =iy (e —ey t/h
x [T (W eows p)e == Dy
k=1
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and the explicit expression of the coefficient Cyy;yy,) is not
important for present discussions. It can be rewritten as

‘ _isy Ha s
M{(:}){r/)(f) = ({r}|e” 7 Li= H@Po)

<MD (0t Dl H@ |y (D5)

It is easy to check that this is the solution to Eq. (69).

APPENDIX E: THE AUTOCORRELATION OF
THE SINGLE-PARTICLE EIGENFUNCTION

In this Appendix, we derive the explicit form of C, (r, r’).
This was originally given in Ref. [87] with some details of
derivations missed. For the self-contained purpose, here we
give the detailed derivations for d-dimensional chaotic cavity.
We denote the Wigner transformation of v, (r) as W, (q, p).
Since the classical single-particle motion is quantum chaotic,
W, (q, p) is given by

d(e —H(q,p))
[/ dadps(e — H(q,p))’

Note that this microcanonical distribution is defined on the
single-particle phase space. Using this result, we find

oo [dQe =T ; Ir—r'| )
rr)=——m——H———— = — .
T V[d® v e,

V,(q,p) = (E1)

Here R is the solid angle.

We proceed to calculate the R-integral. Without loss of
generality we assume that r is in the x; direction, i.e., r =
(r,0,...,0). We parametrize the surface of a d-dimensional
sphere, for which Zflzl x? =1, by [88]

X1 = Cos ¢,
Xy = Sin ¢ oS @,

X3 = sin ¢y sin ¢; cos @3,

Xg—1 = sing; sing; - - - singy_» COS @41,

Xq = sin¢; sing; - - - sin@y_5 Sin @y_1, (E3)
where

0< L@, ...,0a2<m, 0< @i <2m. (E4)

Correspondingly, the Jacobian

d-3

J = sin?? @r1sin® - sin® Qa3 SN Qg_7. (ES)

Substituting Eqs. (E3)—(ES5) into Eq. (E2), we obtain

r—

f< [r — r,|> foﬂ do; sinf 2 e’ T cos gy
Ag B fon dg) sin?=2 ¢, '
To calculate the numerator of the right-hand side of Eq. (E6),

we use the Poisson integral expression for the Bessel function
[88],

(E6)

z\V Ps

5) f d s 2D izcos @
S v} — @ sin® pe (E7)

DTG) Jo

Jo(2) = 1_‘(1_) n

for Rev > —%

tity [89]

. To calculate the denominator, we use the iden-

T 51 T
dosin’™ ¢ = — E8
Jy dosn o= gy

for Re? > 0, where B(x, y) is the beta function. By further
using the identity,

_ L, T@r(3)
— 21 2x 1 2 — 21 2x 2
B(x, x) B(1/2, x) Thoh Grl) (E9)
we obtain
d X -4
fx) = F<§) <5> Juza (). (E10)

In the special case d = 2, we have Eq. (67).

APPENDIX F: SOME PROPERTIES OF
THE GENERATING FUNCTION C(6)

In this Appendix, we derive several technical results for the
generating function C(@). Substituting the identity: Jo(x) =
[T 42 p-ivsing jnto Eq. (88), we obtain

- 27
Cl2 Td in(0—+% sin
C®) = V/dm(v)nl:D(Ev)Z/_7T %e O o),
neZ
(F1)
From this,
CO)=C(-0) (F2)

follows immediately.
With the help of the Poisson formula we rewrite Eq. (F1)
as

2

Co) = “7 / dm(v)nep (e,)

x/ d(pZS(@—Aisinga—znk) (F3)

T keZ Ev

Performing the ¢ integral, we obtain Eq. (89).

From Eq. (F3) it is obvious that C(8) > 0. Now we wish
to bound C(0) from above. We introduce the essential upper
bound, defined as the least number M for which the inequality:
C(6) < M holds with the exception of a set of zero Lebesgue
measure. Consider an arbitrary complex vector ¢ = {¢;} =
Zfi‘l u;e;, where e; are the mutually orthonormal eigenvectors
of MNA and u; € C are the expansion coefficients. Since the
eigenvalues of MNA are HTU € [0, 1] and cannot all vanish,
we have

PR Ny 1+ N,
O My, 2 il i wil?
D S SN
= )Vmax (NA)7 (F4)
14v;

where Amax(Na) = max(—35=, - - - H—%) and the equal sign is
taken if and only if ¢ is in the direction of e; corresponding to
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Amax. On the other hand, we have

' Mo _ ST I T 05 "CO)

plp i)
ﬂ a0 ijo|?
< M -7 21 | %P:T(p ¢Je | , V¢)7 (FS)

where in the first step we have used Eq. (87) and in the second
we have used the definition of M. Since the maximal value of
the left-hand side of the inequality (F5) is Amax (N4 ), we have
Amax(Na) < M. In fact, a stronger result exists. By Weyl’s
theory of equal distributions [75], the meaning of which will
be exposed in Appendix G via a concrete example, we have

lim Amax(N4) = M. (F6)
Njy—o00

From this, it follows that
co) <1, (F7)

with exceptions at most constituting a set of zero Lebesgue
measure.

APPENDIX G: SOME PROPERTIES OF
THE GENERATING FUNCTION C(6,, 6,)

In this Appendix, we derive several technical results for the
generating function C(6y, 6;).

For quantum particles moving in a 2D chaotic cavity,
dm(v) = pde, with p being a constant and de being the
Lebesgue measure of the energy axis. Combining this with
Eq. (106), we find that the Fourier component of C(6, 6;) is

a? o0 a
= 7’0 de]0<)\—,/n% + n%)nFD(e).
&

0

(GD

Recall that n = (n, ny) € Z2. Below we prove for this ¢, the
following result.

Lemma. For finite temperature T > 0 and n? + n3 >
we have

ma~T ’

2
apT o —mel i)

o & (G2)

Proof. Case I: © > 0. This corresponds to a sufficiently low
T. Upon rescaling and changing the integral variable, we can
rewrite Eq. (G1) as

¢, = apT / dx]o(\/—Tlnx) ,

where 7 = 2(n1 + n%)mazT/hz. Note that when e~ 7 in the
denominator vanishes, this integral diverges. Therefore the
integral in Eq. (G3) is dominated by x near zero. So we further
change the integral variable: u = +/— Inx to rewrite Eq. (G3)
as

(G3)

= —

2 o]
“‘fT/ din (14 e+ J(VTu). (G4
0

Since the integral is dominated by large u we can expand the
logarithm and keep the leading term, which gives

282pT , [ =
cp R av,o e*/ due‘“quo(\/;u).
0

By performing the integral [89] we obtain Eq. (G2).

=

(G5)

Case II: u < 0. This corresponds to a sufficiently high
T. The proof above can be generalized to this case straight-
forwardly. In fact, for very high 7', we can derive Eq. (G2)
in a simpler way. That is, in this special high-T case, the
Fermi-Dirac distribution can be replaced by the Maxwell-
Boltzmann distribution. With this replacement Eq. (G1)
reduces to Eq. (G5) after rescaling and changing the integral
variable. |

From this lemma, immediately, we have the following re-
sult for &,, which is the Fourier coefficient of C(6;, 6,) defined
by Eq. (105).

Theorem 1. Let |n| = |n;| + |nz|. Then

< ~ 12
D (&l + Inllél) < oo.
ny,me

Note that in the zero temperature case, Eq. (G1) gives

Cp = zavzp\/gjl(\/ﬁ), where fi = 2(n? + n3)ma’u /K. With
its substitution we find that the left-hand side of Eq. (G6)
diverges. This implies that the relaxed value of the EE at
T = 0 behaves in a different way, as discussed in Sec. VIC 1.

Now we return to finite temperature. Obviously, both the
range of C(6, 6») and the eigenvalues of the Toeplitz operator:
(» + DIy, — 2My, reside in the real axis of the complex
plane. Let us define their union as A. Then the following result
is obvious.

Theorem 2. In the complex plane a path exists, which goes
from O to oo and does not intersect A.

Without loss of generality one may choose the path which
does not pass 1. Then, the logarithmic function involved in
Doktorsky’s theorem or Eq. (107) is defined in the way so that
it is analytic in the complex plane cut along this path and takes
the value of zero at 1. Theorems 1 and 2 justify all conditions
required by Doktorsky’s theorem [78].

In the following, we wish to bound C(6;, 8;). By the iden-
tity [89],

a 1 T d(p j_a_ . o
7 _\/ﬁ I _( e (ny cos g+ny sin @)
O(AEU mAm)=5 ) o\

(G6)

+ eiﬁ(m cos ¢—njy sin (p)) i (G7)
we can rewrite C(0;, 6,) given in Eq. (106) as
)
CE.6) = 5 / dm(ynen(e,)
/ dg‘) Z z(n101+m€2) o7 (1 cos g-tnasin )
- nl ~eZ

(G8)
Applying the Poisson formula to the summation, we obtain

2
CO1.6) = - f dm(vyngo (e,) dfp >3

s=xl k| ,eZ

+ 6 (m coS ¢—ny sin (p))

><8(91 + Ai cos g — 2nk1)8<92 + ski sing — 271k2>.

&y &y

(G9)

This shows that C(0;,6,) > 0. In fact, the essential lower
bound, which is defined in the way similar to the essential
upper bound, of C(6y, 6) is zero.
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To bound C(0, 6,) from above, we need the following the-
orem, which is a straightforward generalization of a classical
result for the ordinary Toeplitz matrix [75] to the Toeplitz
matrix defined on a square of side length /N, and can be
proven by replacing Szegd’s theorem in the proof of that result
by Doktorsky’s theorem.

Theorem 3. Let {X;(N4)} be the eigenvalue spectrum of the
Toeplitz matrix My, defined on a square of side length /Ny,
and C(0;, 6,) be integrable and its essential upper bound M
be finite. Let F(A) be any continuous function defined in the
interval [0, M]. Then

Z ]'"(?» (Na)) f/
NA—>oo

The right-hand side of Eq. (G10) can be written as
do,do A FiCo,
[[ B Ficen = i St POl

d6,db,
(2 )?

FIC(61, 02)].
(G10)

x (2m)? Ni=oo ({/Nj+ 1)
PAVE S 2V,
Com, =Cl 74+ —,— Gll1
v ( /Ny + 1 vNA + 1) ©1h
Construct the following sequence:
O
N,
vy, = U {Cnn V5 (G12)

U]=1
Upon substituting Egs. (G11) and (G12) into Eq. (G10), we
find that

i 2 PR L FONG)
Ny— o0 Ny Ny— o0 Ny

In the terminology of Weyl’s theory [75], this means that
the two sequences {)\,-(NA)}?EI and {Xi(NA)}f-\il are equally
distributed in the interval [0, M]. To better understand this,
let us introduce the probability distribution p, for the former
sequence, which is, in the terminology of probability theory,
in the weak convergence sense, read

(G13)

M Na

F0)Y 80— hi(Na))dh,

i=1

1
f()»)pkd)n— 11m —

(A—> 00 A JO
(G14)

and pj; for the latter sequence, read

M ~ ~
/ ‘F(X)pxd)\.
0

o 5
= lim —/ ]—"(A)ZS(A—A,-(NA))dk. (G15)

Ny—oo Ny Jo P

Letting F (1) be A*, s € N U {0}, by Eq. (G13) we have

M M
f M podh = / 2 p3di, Vs € N U {0}. (G16)
0 0

So all the moments of p, and p; are identical, and thus the two
distributions must be identical. Since the Toeplitz operator has
the largest eigenvalue 1, we have M = 1, which gives

C61,6,) <1

up to a set of zero Lebesgue measure.

(G17)

APPENDIX H: DISCUSSIONS
ON SUBSYSTEM GEOMETRY

In this Appendix, we use a simple example to appreciate
the technical importance of the constraint on subsystem’s ge-
ometry, namely, being either a polygon or convex. We assume
that the temperature is high enough so that (My, );; defined
by Eq. (84) decays exponentially with the distance between
two lattice points: i, j as ~e~l"=7l/e,

Observing Eq. (117), we find that in order to study the
boundary effects it is necessary to consider the following
general expression:

Ny

‘Z (Mn);, (M), -

i1y i

Na
~ Z e ali=iil =il Hi—jD)
i1, g

where i, j are on the subsystem boundary. Without loss of
generality let |i — j| > 1. Wecalli —» ij > i, = - iy —> j
a path from i to j, with the bracket in the exponent being its
length. Thanks to the elementary triangle inequality, we have

li—itl+ i =il +---F+la—jl21i—jl,  (H2)
where the equal sign is taken only if the path coincides with
the straight line connecting i and j. So, were the sum in
Eq. (H1) extended to Z?, it is dominated by those paths around
that straight line. Thus if the straight line is in the interior of A
or on its boundary, which requires A to be either a polygon or
convex, the contributions to the sum due to those paths going
out of and returning to A are negligibly small, and the sum
can be extended to Z>.

(MNA)

ixj

(HI)

APPENDIX I: PROOF OF EQ. (124)
We write the left-hand side of Eq. (124) as

/ dxxJy(ax)Jo(bx) = lin%)J(y), 1)
0 [

where

2

/ h dxxJo(ax)Jo(bx)e ™. 12)
0

J(¥)

For y > 0, this integral can be carried out [89],

1 b
Z_e e 2+h2)10<2a_y2)’ (13)

with Iy(x) = Jy(ix) is the zeroth-order modified Bessel func-
tion of imaginary argument. With the help of the asymptotic
expression [89]

J(y) =

X

Lix> 1)~ T I
A X
we obtain
—0 1 (a— b)l
e e
Vamy2ab
— a '8(a—b). (I5)

Thus the identity Eq. (124) is proved.
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