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Abstract 1 

When searching for new information, do people focus their search on places not-yet 2 

discovered by others, or on places that others also focus on? Through a controlled 3 

experiment, we investigated heuristic rules that people adopt in social information search, a 4 

growing characteristic of how people find information in this hyperconnected world. Three 5 

people were connected online to simultaneously search for specific objects in multiple 6 

images, under either a cooperative or a competitive setting. They were provided with 7 

information about the current number of objects collected and the cumulative time spent on 8 

each image. People used such information to decide when to stop the current search and 9 

which image to explore next. Further, people paid more attention to others and distribute 10 

search efforts when cooperating, compared to when competing against others. Our findings 11 

highlight the heuristic rules that people adopt when searching in groups for new 12 

information. 13 

 14 

Keywords: collaboration, competition, crowdsourcing, information foraging, information 15 

scent 16 
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1. Introduction 18 

Rapid advances in information technologies have facilitated growing exposure to an 19 

overwhelming amount of information (Eppler & Mengis, 2004), making it difficult for 20 

people to find the information they need quickly. To address this challenge, considerable 21 

effort has been placed toward optimizing information systems through which people search 22 

and retrieve information (Hevner, March, Park, & Ram, 2004). Traditionally, information 23 

systems regard information search to be an individual activity (Hansen & Järvelin, 2005). 24 

However, a growing body of literature has demonstrated the feasibility of collectively 25 

searching information in a group (Amershi & Morris, 2008; Maekawa, Hara, & Nishio, 2006; 26 

Morris & Horvitz, 2007; Morris, Paepcke, & Winograd, 2006; Smeaton, Lee, Foley, 27 

McGivney, & Gurrin, 2006). Collaborative information seeking (CIS) aims to introduce 28 

algorithms that could enhance group performance in information search within information 29 

systems. In contrast to our rich knowledge about collective information search from 30 

conceptual and qualitative perspectives (Evans & Chi, 2008; Hansen & Järvelin, 2005; 31 

O’Day & Jeffries, 1993), a paucity of quantitative studies hampers our ability to establish 32 

information systems that could fully capitalize on collective activities in information search. 33 

Compared to individual information search, groups with shared goals can benefit from 34 

collective information search through faster gathering of more complex information 35 

(Hansen, Shah, & Klas, 2015). For example, small groups of students working on projects 36 

show qualitative improvement using a web-based collaborative search tool that allows them 37 

to see other users’ bookmarks and edit texts as a group (Leeder & Shah, 2016). In medical 38 

care, for example, collaborative information systems are employed to effectively distribute 39 

human resources among patients (Paul & Reddy, 2010). With the ubiquity of computers and 40 

mobile devices, collectively searching information as a group could become more and more 41 

common in this hyperconnected world. 42 
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One of the fundamental components in CIS is social awareness (Morris & Horvitz, 43 

2007). By knowing what others have done and are currently doing, groups can reduce effort 44 

in duplicating searches through spontaneous division of labor. Following the same logic, 45 

such an awareness should also be favorable when people compete against one another for 46 

information discovery. Presently, it is unclear how people use information about others’ 47 

activities when collaboratively searching for unique information or competing against one 48 

another to appropriate that information. For example, if you see someone exiting a gold 49 

mine with an armful of gold, will you go there assuming that there is gold to be found 50 

there, or will you avoid that location assuming that the mine is already empty? 51 

Alternatively, if you see someone spending a very long time in a gold mine, what does it tell 52 

you about the remaining resources in the mine? 53 

Social awareness in information search activities has exclusively been investigated in a 54 

collaborative context, but it might also be important under competitive settings. 55 

Competition for information search can be found, for example, when researchers seek for 56 

the discovery of valuable information that might lead to patents or scientific publications, 57 

and when stock traders hunt for the latest information about the business before the 58 

markets respond to the news. However, we know little about how social awareness is 59 

exercised in competitive settings. Revisiting the analogy of gold mining, do people respond 60 

differently to information about others’ activities when they get to share the gold found 61 

with team members, compared to when they keep the gold they dug? 62 

Here, we investigated how people use knowledge about the levels of exploitation and 63 

exploration of information patches when searching for new information in groups. We 64 

conducted an online experiment on social information search in the context of 65 

environmental monitoring. In the experiment, groups composed of three participants 66 

searched environmentally relevant objects across multiple virtual locations, under either a 67 
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cooperative or a competitive setting. Participants were provided with information about the 68 

total number of objects collected and the total time spent by all participants in the group at 69 

each location, along with the current positions of others. We analyzed participants’ actions 70 

to identify which information about others’ activities influence their decisions regarding 71 

when to leave their location and where to move next. 72 

 73 

2. Literature review 74 

2.1. Information foraging 75 

When a foraging animal searches patchily distributed food, it needs to decide when to 76 

abandon the current food patch and move to the next. In animal ecology, optimal foraging 77 

theory provides mathematical underpinnings of foraging behavior, where the decision is 78 

modelled as a function of key variables, including current food density, search efficiency, 79 

food handling time, and travel time, toward maximizing payoffs (Stephens & Krebs, 1986). 80 

Inspired by the optimal foraging theory in animal ecology, human behavior of 81 

computer-mediated information search can be analyzed from the perspective of payoff 82 

maximization. Just as a bee collects nectar by hopping between patches of flowers, a human 83 

gathers information by navigating through hyperlinked websites. At each visit, one needs to 84 

make decisions about when to stop searching information in the current website and move 85 

to the next, by trading off between the expected information gain in the current and next 86 

information patches (Pirolli & Card, 1999). 87 

Aside from the absence of predation risk, information search behavior can be 88 

fundamentally different from animal foraging behavior with respect to the nature of 89 

resource. Whereas food is depletable upon consumption, information is typically not 90 
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(Moody & Walsh, 1999). Such a trait underlies online recommendation systems, where 91 

users can reuse information collected by other users, either intentionally or inadvertently 92 

(Farzan & Brusilovsky, 2018). Under certain circumstances, however, information can be 93 

depletable upon consumption: these circumstances include when a group of users 94 

collaboratively gathers information while avoiding duplicated effort (Shah, 2010) and 95 

competes against one another for information discovery. 96 

 97 

2.2. Information scent 98 

When a foraging animal travels between food patches, decisions on patch selection and 99 

residence time are largely influenced by patch profitability, which is inferred from 100 

observing behavior of other animals (Valone & Templeton, 2002). Likewise, humans are 101 

known to use additional information to make better decisions in information search. For 102 

example, people are more likely to rely on ranks in search engines (Pirolli & Card, 1999), 103 

follow hyperlinks whose sources are more credible (Sundar, Knobloch-Westerwick, & 104 

Hastall, 2007), and revisit previously rewarded locations (Chukoskie, Snider, Mozer, 105 

Krauzlis, & Sejnowski, 2013). These cues serve as ‘information scent’ that signals the value 106 

of the action; models incorporating information scent successfully describe human behavior 107 

in online information search (Fu & Pirolli, 2007; Pirolli, 2005). 108 

 109 

2.3. Social information search 110 

Collaboratively searching information in a group could augment search efficiency when 111 

information is complex or difficult to find alone (Shah, 2010). From a couple planning for a 112 

vacation trip to a group of researchers reviewing literature, social information search offers 113 
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several advantages, like faster problem solving and lower redundancy of efforts 114 

(Clearwater, Huberman, & Hogg, 1991). Many algorithms have been implemented in 115 

information systems toward reducing search redundancy by heightening awareness of 116 

others’ actions (Amershi & Morris, 2008; Maekawa et al., 2006; Morris & Horvitz, 2007; 117 

Morris et al., 2006; Smeaton et al., 2006). These algorithms can increase effectiveness of 118 

group search by dynamically coordinating information behavior of users (Pickens, 119 

Golovchinsky, Shah, Qvarfordt, & Back, 2008).  120 

As in solitary search, decisions in social information search could be influenced by 121 

information scent, but our knowledge of this potential link is currently limited. One study 122 

demonstrated that humans imitate actions of others in search of non-depletable resources, 123 

even when they do not know the payoff of others (Tomlin, Nedic, Prentice, Holmes, & 124 

Cohen, 2017). But, what would they do if information depleted upon discovery? This is the 125 

case of searching for new information, where you can only discover information once 126 

before it loses its value. In such a case, individual decision on patch selection and residence 127 

time could be influenced by others’ actions, such as how much information has been 128 

collected by others (that is, a level of exploitation) and how much search effort has been 129 

paid by others (that is, a level of exploration) in each information patch. Thus, we 130 

hypothesized that:  131 

 132 

H1. Without knowing the quality of each information patch, people would select the patch 133 

that was less exploited and explored by others. 134 

  135 
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Further, the use of information scent in social information search may depend on social 136 

environments. Goal interdependence theory posits that reward schemes should modify the 137 

way people interact with one another (Deutsch, 1949). However, little is known about the 138 

differential effect of cooperative and competitive environments on the use of information 139 

scent in social information search. Considering that cooperation is facilitated by 140 

spontaneous division of labor, we hypothesized that:  141 

 142 

H2. Cooperating people would pay more attention to others and distribute search efforts 143 

across a search space, compared to people in a competitive setting. 144 

 145 

3. Materials and methods 146 

3.1. Experimental platform 147 

The experiment was designed to investigate social information foraging under uncertain 148 

resource levels, framed in a citizen science project aimed at monitoring the environment of 149 

the Gowanus Canal (Brooklyn, New York, USA). Three users (“foragers”) were connected 150 

online and saw a map of the Canal, which contained equidistantly spaced six locations 151 

(“patches”). Foragers could individually move their boat icons, starting from the same end 152 

of the Canal, to one of the patches at a constant speed, requiring 5 seconds to move to the 153 

adjacent patch. 154 

Once a boat reached a selected patch, a computer screen displayed a 360° image taken 155 

by our aquatic robot vehicle (Laut, Henry, Nov, & Porfiri, 2014), and foragers performed 156 

image tagging (Fig. 1). To create an image tag, foragers dragged one of the tags listed on 157 
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the left (Boat, Construction machine, Floating object, Land vehicle, and Tree) onto an object 158 

in the image and adjusted the size of the selected area by dragging corners of a box to cover 159 

the object. When foragers pressed the “Submit” button, a selected area became black, and 160 

they were not allowed to create a new tag on the overlapping area. They could exit from 161 

the image by clicking the “Exit” button and move to a different patch by selecting the next 162 

destination on the map. In addition to the three foragers, one user was assigned as a 163 

validator to prevent malicious online behavior of foragers (see Supplementary Information 164 

for details).  165 

During the activity, foragers saw two bars next to each patch on the map. The bars 166 

corresponded to the total number of tags created and total time spent by all foragers in each 167 

patch, and the heights of the bars dynamically changed in real time during the activity. In 168 

addition, foragers saw location of others, remaining time, and the number of points earned 169 

in real time. 170 

 171 

3.2. Data collection 172 

We recruited online crowdworkers located in the U.S. through Amazon Mechanical Turk. 173 

We did not screen participants or collect personal information, such as age and gender, as 174 

the platform does not provide such information. 175 

Before undertaking the task, workers were navigated through background information, 176 

including pollution problems in the Gowanus Canal and our aquatic robot vehicle for 177 

environmental monitoring, and were presented an overview of the group activity, including 178 

boat navigation, tagging, and validation. Then, a point system and a monetary reward 179 

scheme were explained to workers, who were randomly assigned into one of two groups at 180 
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this stage. Workers in one group were notified that 1 point would be given to all three 181 

foragers for each tag, regardless of who submitted it, and that the points would be 182 

converted to a bonus reward of $0.10 per point, with a maximum of $3.50, in addition to a 183 

participation fee of $1.50 upon completion of the task. Workers in the other group were 184 

notified that 1 point would be given to only a forager who submitted the tag, with each 185 

point cashed in a bonus reward of $0.30, with a maximum of $3.50, in addition to a 186 

participation fee of $1.50. We explicitly presented to the workers in both groups that the 187 

objective of the task was to collect as many points as possible. The difference in the point 188 

system was designed to create cooperative and competitive environments, without explicitly 189 

instructing them to cooperate or compete. 190 

Next, participants took a practice session, following a tutorial on how to pan and zoom 191 

an image, select a portion of an image, and submit. In the practice session, they were 192 

instructed to collect five tags in an image similar to those used in the main task. When 193 

participants completed the practice session, they were transferred to an online waiting room 194 

until other team members finished the practice session. 195 

The experiment lasted for 10 minutes. The same set of six images were utilized for all 196 

groups, but the order was randomized for each group. Upon completion, each user was 197 

provided with a unique token that encrypted individual points. When one of the team 198 

members quit during the experiment, the remaining users were provided with a token and 199 

the experiment was stopped (see Supplementary Information for details). 200 

We recorded data of 43 groups (172 participants) in the cooperative condition and 45 201 

groups (180 participants) in the competitive condition. In the following analysis, we used 202 

the data of the groups in which all performed the activity for at least 6 minutes and each 203 
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forager created at least 1 tag. Consequently, we analyzed 36 groups (144 participants) in 204 

the cooperative condition and 34 groups (136 participants) the competitive competition. 205 

 206 

3.3. Patch selection 207 

We investigated how the patch trait influenced decisions on the selection of a next patch. 208 

To that end, we ranked the available patches in an ascending order with respect to the 209 

levels of exploitation and exploration when foragers exited the current patch. The levels of 210 

exploration and exploitation were assessed by the cumulative time spent and the 211 

cumulative number of tags created at each patch, respectively. These levels were further 212 

partitioned into the amounts attributed to their own activities and those to the others, 213 

respectively, by acknowledging that foragers could remember their own activities. In the 214 

same way, we ranked the cost of moving, measured as a distance from the current location, 215 

from the shortest to the longest. Although foragers were allowed to change the destination 216 

during the movement between the patches, we excluded such a case from the analysis 217 

(1.2% of the total selections). For each patch trait in each reward condition, we compared 218 

total counts of the ranks against the expected proportions that were obtained by simulating 219 

the case where the foragers would randomly select the next patch for 10,000 times. 220 

Differences from the expected proportion was tested using a χ2 goodness-of-fit test. 221 

In a similar way, we investigated whether people avoided moving to patches that were 222 

occupied by others. For each condition, we counted the cases where foragers selected the 223 

next patch that was occupied by at least one other forager and compared against the 224 

expected proportions that were obtained in the same way. 225 
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Next, we investigated whether patch traits influenced decision-making differently. The 226 

observed ranks were fitted into a proportional odds model with a logit link, considering the 227 

ordinal nature of the dependent variable. In the model, we specified the ranks of selected 228 

patches as a dependent variable, the patch traits (5 levels: cost of moving, exploitation by 229 

themselves, exploitation by others, exploration by themselves, and exploration by others), 230 

condition (cooperation or competition), and their interaction as explanatory variables, and 231 

individual identity as a random effect. When the significant effect of the interaction term 232 

was found, we performed pairwise comparisons across the traits within each condition and 233 

each trait between the conditions, with p-value adjustments using the Benjamini–Hochberg 234 

procedure (Benjamini & Hochberg, 1995). A proportional odds model was performed in R 235 

package ‘ordinal’ (Christensen, 2019), and a post-hoc test was run in R package ‘emmeans’ 236 

(Lenth, Singmann, Love, Buerkner, & Herve, 2019). 237 

 238 

3.4. Patch residence time 239 

To understand how people use social cues to decide when to leave the current patch, we 240 

investigated the influence of the number of tags collected and time spent by others on the 241 

patch residence time. At each exit instance, we ranked the exited patch from the least to the 242 

most exploited or explored among all patches.  243 

For each patch trait, we fitted the patch residence time into a generalized linear mixed-244 

effects model with gamma errors and a log link. In the model, we specified ranks at the exit, 245 

condition, and their interaction as explanatory variables, and individual identity as a 246 

random effect. In addition, we specified in the model the patch residence time in the 247 

marginal value theorem (Charnov, 1976) as an offset (that is, a dependent variable with a 248 
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< 0.001), whereas in the competitive condition, their decision was not influenced by the 272 

presence of others (χ2
1 = 0.858, p = 0.354). 273 

A log-odds test revealed the importance of the patch traits on selecting the next patch 274 

(Fig. 3). Their ranks were explained by a significant interaction between patch traits and 275 

conditions (χ2
4 = 19.559, p < 0.001). Post-hoc pairwise comparisons showed that, in the 276 

cooperative condition, foragers selected patches with the highest ranks in the number of 277 

tags collected on their own, followed by the number of tags collected by others, time spent 278 

on their own, time spent by others, and distance (p ≤ 0.018 for all except between time 279 

spent by others and distance, z = 0.414, p = 0.707). Similarly, in the competitive 280 

condition, foragers relied the most on the knowledge about the number of tags collected on 281 

their own, followed by the number of tags created by others, distance, time spent on their 282 

own, and time spent by others (p ≤ 0.029 for all). Foragers in the competitive condition 283 

were more likely to select the closer patches (z = 3.343, p = 0.002), whereas those in the 284 

cooperative condition were more likely to select the patches where others spent less time (z 285 

= 2.090, p = 0.044).  286 

 287 

4.2. Patch residence time 288 

Foragers stayed in each patch for 120.0 ± 73.4 s in the cooperative condition and 104.7 ± 289 

51.0 s in the competitive condition. The patch residence time was not significantly different 290 

between the conditions (χ2
1 = 1.864, p = 0.172).  291 

We found significant effects of social cues (that is, the knowledge about others’ 292 

activities in the patch) on the patch residence time (Table 1). Variation in patch residence 293 

time was explained by the rank of time spent by others (χ2
5 = 21.613, p < 0.001). By 294 
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perception of the reliability of such information as a proxy for the patch quality. However, 319 

the levels of exploitation and exploration do not necessarily indicate patch quality, and the 320 

use of such information can lead to suboptimal decisions (Giraldeau, Valone, & Templeton, 321 

2002). For example, patches where people collected fewer tags or spent less time should 322 

signal poor, rather than rich, patch quality if people perform exhaustive search at each visit. 323 

Thus, our results indicate that people are likely to behave under the presumption that 324 

others do not search thoroughly, or patch quality is equal among patches. 325 

Although people used both the levels of exploitation and exploration at each patch to 326 

decide where to go next, they were more likely to select the location where people collected 327 

fewer tags than the location where people spent less time. This indicates that the level of 328 

exploitation served as a stronger information scent than the level of exploration. At an 329 

individual level, exploitation–exploration trade-off is modulated by various factors, such as 330 

available information, environmental uncertainty, and individual differences (Mehlhorn et 331 

al., 2015). For instance, people are more likely to exploit currently available resources 332 

when the uncertainty is within expectation, whereas they shift to explore for new resources 333 

under environmental changes (Cohen, McClure, & Yu, 2007). In our experimental setting, it 334 

is possible that people relied more on the level of exploitation in selecting the next location 335 

because the resources were predictably depleted over time. Interestingly, knowledge about 336 

the activity of others was used only in cooperative information search. It is possible that 337 

people took into account such knowledge to distribute their effort toward a shared goal. 338 

Avoidance of others was also found only in the cooperative information search, supporting 339 

this possibility. 340 

In general, people stayed less in the patch where others spent a longer time, but the 341 

number of tags collected by others in the patch did not influence their decisions to leave. 342 

This indicates that the level of exploration, but not exploitation, by others influences a 343 
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forager’s decision to leave the information patch in social information foraging. Our results 344 

are consistent with a similar study on solitary information foraging, where patch residence 345 

time was influenced by the total time spent at the current patch, but not the total number of 346 

resources consumed (Hutchinson, Wilke, & Todd, 2008). The use of such knowledge 347 

contrasts with decision-making in selecting the next patch, where people opt for a patch 348 

where other people have collected fewer tags, over a patch where other people have spent 349 

less time. This could indicate that knowledge about the levels of exploitation and 350 

exploration has different social utilities; the level of exploitation served as information scent 351 

for patch selection, whereas the level of exploration served as information scent for the 352 

activity upon patch selection. 353 

We adopted ranks, instead of absolute or relative differences, of the patch traits to 354 

investigate the influence of patch traits on decision-making in social information search. It 355 

is well known that our perception of absolute difference diminishes when a positive 356 

constant is added to all choices, whereas the perception of ratio enlarges when all choices 357 

are proportionally increased (Prelec & Loewenstein, 1991). We used ranks to mitigate the 358 

uncertainty about how people would compare among choices. However, ranks are not able 359 

to capture a change of the perception over time, where the same absolute or relative 360 

difference at the beginning of the experiment may be perceived differently toward the end. 361 

Further, ranks may not be suitable to investigate individual differences on decision-making, 362 

considering that perception of relative and absolute values in decision-making differs 363 

among individuals (Malenka, Baron, Johansen, Wahrenberger, & Ross, 1993). 364 

Supporting conceptual and qualitative studies (Morris & Horvitz, 2007; Reddy & 365 

Jansen, 2008; Shah & Marchionini, 2010), our findings quantitively demonstrate the 366 

importance of knowledge about others’ activities, which leads to spontaneous division of 367 

labor. Such a knowledge could also be applied to tools that assist competition for 368 
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knowledge discovery in various scenarios, such as citizen scientists competing for solving 369 

scientific problems (for example, Foldit) and data scientists competing for finding efficient 370 

computer algorithms (for example, Kaggle). Capitalizing on heuristics in decision-making 371 

during social information search, designers could not only reduce cognitive overload by 372 

masking less relevant information, but also steer search efforts to desired directions. For 373 

example, selectively displaying how much others have already exploited the current site 374 

would accelerate people to move to other sites, leading to a large coverage of a search 375 

domain. By contrast, emphasizing how much time others have previously spent at a site 376 

would facilitate thorough search without a central control. 377 

 378 

6. Conclusion and limitations 379 

Information search is part of our everyday life, and our findings illuminate how humans 380 

perceive uncertain environments based on knowledge about others’ activities. Revisiting the 381 

analogy of gold mining, when cooperating, people are more likely to go to the mine where 382 

others collected less gold or spent less time. On the other hand, when competing, people are 383 

not influenced by the observed behavior of others. Further, people spend less time in the 384 

mine where others spent a longer time. Understanding information scent in social settings 385 

may help design systems to enhance the efficiency of information search in groups. 386 

Our experiment was conducted using paid crowdworkers through Amazon Mechanical 387 

Turk, which is common in studying human decision-making (Rand, 2012; Stewart et al., 388 

2019). Although data on decision-making tasks from Amazon Mechanical Turk are 389 

considered as reliable as those using traditional methods (Buhrmester, Kwang, & Gosling, 390 

2011), online experiments may decrease attentions of participants to follow instructions, 391 

compared to supervised experiments in a lab (Oppenheimer, Meyvis, & Davidenko, 2009). 392 
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This could potentially confound the results, especially in studying group behavior. On the 393 

other hand, the diverse demographics of online participants (Paolacci, Chandler, & Ipeirotis, 394 

2010) could contribute to the generalizability of our findings on human decision-making. 395 

Another limitation of using crowdworkers in behavioral experiments entails anonymity 396 

and lack of controlling individual variation in behavior. Further, awareness of participating 397 

in behavioral research may bias data quality by influencing motivations. In this study, we 398 

did not collect demographic information or screen participants. Although we designed the 399 

experiment to be robust with respect to motivational differences and we statistically 400 

controlled for individual variation in information search skills in the analysis, knowledge 401 

about individual attributes is needed to elucidate how group compositions could influence 402 

social information search. 403 

 404 
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Figures and Tables 535 
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 537 

 538 

 539 

 540 

 541 

Fig. 1. Screen shot of the user interface. Users explore the 360° image of a polluted canal by 542 

panning and zooming the camera and tag objects listed on the top left. The mini map on the 543 

right shows locations of others, as well as a total number of tags collected and total time 544 

spent by all at each location. 545 

  546 



 
25 

 547 

 548 

 549 

 550 

Fig. 2. Proportions of the next patch selected by patch traits. The patch traits investigated 551 

are occupancy (empty or occupied), distance from the current patch (ranked from the 552 

closest to the farthest), the number of tags collected on their own and by others (ranked 553 

from the fewest to the most), and time spent on their own and by others (ranked from the 554 

least to the most). Colored disks show the observed proportions (blue: cooperation, pink: 555 

competition), with the areas corresponding to the proportions. Dashed open circles indicate 556 

the expected proportion when a forager randomly selects the next patch (10,000 iterations). 557 

In each panel, the more the dashed circles are different from the solid ones, the more likely 558 

is for people to rely on that trait. For example, examining the tags collected on their own in 559 

cooperation, we note that people tend to select patches which they explored less before. 560 

Goodness-of-fit tests find significant deviations from the expected proportions for all except 561 

occupancy, number of tags collected by others, and time spent by others in competition. 562 
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 568 

 569 

 570 

Fig. 3. Schematic representation of the importance of variables on patch selection. The 571 

selected patches are ranked by the number of tags collected on their own and by others 572 

(ranked from the fewest to the most), time spent on their own and by others (ranked from 573 

the least to the most), and distance (from the closest to the farthest). The numbers represent 574 

orders of importance of the variables, and the asterisks indicate greater influence than the 575 

corresponding ones in the other condition, based on a proportional odds model.   576 
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 578 

 579 

 580 

Fig. 4. Observed patch residence time (ratio to the prediction of the marginal value 581 

theorem) and the patch trait at exit. (A) Ranks in the number of tags collected by others 582 

(from the fewest to the most) and (B) ranks in time spent by others (from the least to the 583 

most). Blue and pink bars represent the cooperative and competitive conditions, 584 

respectively. Bars sharing the same letter(s) are not significantly different from each other 585 

based on a pairwise post-hoc test between ranks, aggregated over conditions. 586 
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Table 1. Summary of the generalized linear mixed-effects models for the effects of social 588 

cues on the patch residence time. 589 

 590 

Variable Chi-squared D.f. P-value 

Tag collected by others    

   Rank 9.311 5 0.097 

   Condition 0.717 1 0.397 

   Rank × Condition 9.227 5 0.100 

Time spent by others    

   Rank 21.613 5 < 0.001 

   Condition 0.968 1 0.325 

   Rank × Condition 5.560 5 0.351 
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