

The gold miner's dilemma: use of information scent in cooperative and competitive information foraging

Shinnosuke Nakayama,¹ Samuel Richmond,¹ Oded Nov,² and Maurizio Porfiri^{1,3*}

¹ Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA

² Department of Technology Management and Innovation, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA

³ Department of Biomedical Engineering, New York University Tandon School of Engineering, NY 11201, USA

* Correspondence: mporfiri@nyu.edu

1 **Abstract**

2 When searching for new information, do people focus their search on places not-yet
3 discovered by others, or on places that others also focus on? Through a controlled
4 experiment, we investigated heuristic rules that people adopt in social information search, a
5 growing characteristic of how people find information in this hyperconnected world. Three
6 people were connected online to simultaneously search for specific objects in multiple
7 images, under either a cooperative or a competitive setting. They were provided with
8 information about the current number of objects collected and the cumulative time spent on
9 each image. People used such information to decide when to stop the current search and
10 which image to explore next. Further, people paid more attention to others and distribute
11 search efforts when cooperating, compared to when competing against others. Our findings
12 highlight the heuristic rules that people adopt when searching in groups for new
13 information.

14

15 **Keywords:** collaboration, competition, crowdsourcing, information foraging, information
16 scent

17

18 **1. Introduction**

19 Rapid advances in information technologies have facilitated growing exposure to an
20 overwhelming amount of information (Eppler & Mengis, 2004), making it difficult for
21 people to find the information they need quickly. To address this challenge, considerable
22 effort has been placed toward optimizing information systems through which people search
23 and retrieve information (Hevner, March, Park, & Ram, 2004). Traditionally, information
24 systems regard information search to be an individual activity (Hansen & Järvelin, 2005).
25 However, a growing body of literature has demonstrated the feasibility of collectively
26 searching information in a group (Amershi & Morris, 2008; Maekawa, Hara, & Nishio, 2006;
27 Morris & Horvitz, 2007; Morris, Paepcke, & Winograd, 2006; Smeaton, Lee, Foley,
28 McGivney, & Gurrin, 2006). Collaborative information seeking (CIS) aims to introduce
29 algorithms that could enhance group performance in information search within information
30 systems. In contrast to our rich knowledge about collective information search from
31 conceptual and qualitative perspectives (Evans & Chi, 2008; Hansen & Järvelin, 2005;
32 O'Day & Jeffries, 1993), a paucity of quantitative studies hampers our ability to establish
33 information systems that could fully capitalize on collective activities in information search.

34 Compared to individual information search, groups with shared goals can benefit from
35 collective information search through faster gathering of more complex information
36 (Hansen, Shah, & Klas, 2015). For example, small groups of students working on projects
37 show qualitative improvement using a web-based collaborative search tool that allows them
38 to see other users' bookmarks and edit texts as a group (Leeder & Shah, 2016). In medical
39 care, for example, collaborative information systems are employed to effectively distribute
40 human resources among patients (Paul & Reddy, 2010). With the ubiquity of computers and
41 mobile devices, collectively searching information as a group could become more and more
42 common in this hyperconnected world.

43 One of the fundamental components in CIS is social awareness (Morris & Horvitz,
44 2007). By knowing what others have done and are currently doing, groups can reduce effort
45 in duplicating searches through spontaneous division of labor. Following the same logic,
46 such an awareness should also be favorable when people compete against one another for
47 information discovery. Presently, it is unclear how people use information about others'
48 activities when collaboratively searching for unique information or competing against one
49 another to appropriate that information. For example, if you see someone exiting a gold
50 mine with an armful of gold, will you go there assuming that there is gold to be found
51 there, or will you avoid that location assuming that the mine is already empty?
52 Alternatively, if you see someone spending a very long time in a gold mine, what does it tell
53 you about the remaining resources in the mine?

54 Social awareness in information search activities has exclusively been investigated in a
55 collaborative context, but it might also be important under competitive settings.
56 Competition for information search can be found, for example, when researchers seek for
57 the discovery of valuable information that might lead to patents or scientific publications,
58 and when stock traders hunt for the latest information about the business before the
59 markets respond to the news. However, we know little about how social awareness is
60 exercised in competitive settings. Revisiting the analogy of gold mining, do people respond
61 differently to information about others' activities when they get to share the gold found
62 with team members, compared to when they keep the gold they dug?

63 Here, we investigated how people use knowledge about the levels of exploitation and
64 exploration of information patches when searching for new information in groups. We
65 conducted an online experiment on social information search in the context of
66 environmental monitoring. In the experiment, groups composed of three participants
67 searched environmentally relevant objects across multiple virtual locations, under either a

68 cooperative or a competitive setting. Participants were provided with information about the
69 total number of objects collected and the total time spent by all participants in the group at
70 each location, along with the current positions of others. We analyzed participants' actions
71 to identify which information about others' activities influence their decisions regarding
72 when to leave their location and where to move next.

73

74 **2. Literature review**

75 *2.1. Information foraging*

76 When a foraging animal searches patchily distributed food, it needs to decide when to
77 abandon the current food patch and move to the next. In animal ecology, optimal foraging
78 theory provides mathematical underpinnings of foraging behavior, where the decision is
79 modelled as a function of key variables, including current food density, search efficiency,
80 food handling time, and travel time, toward maximizing payoffs (Stephens & Krebs, 1986).

81 Inspired by the optimal foraging theory in animal ecology, human behavior of
82 computer-mediated information search can be analyzed from the perspective of payoff
83 maximization. Just as a bee collects nectar by hopping between patches of flowers, a human
84 gathers information by navigating through hyperlinked websites. At each visit, one needs to
85 make decisions about when to stop searching information in the current website and move
86 to the next, by trading off between the expected information gain in the current and next
87 information patches (Pirolli & Card, 1999).

88 Aside from the absence of predation risk, information search behavior can be
89 fundamentally different from animal foraging behavior with respect to the nature of
90 resource. Whereas food is depletable upon consumption, information is typically not

91 (Moody & Walsh, 1999). Such a trait underlies online recommendation systems, where
92 users can reuse information collected by other users, either intentionally or inadvertently
93 (Farzan & Brusilovsky, 2018). Under certain circumstances, however, information can be
94 depletable upon consumption: these circumstances include when a group of users
95 collaboratively gathers information while avoiding duplicated effort (Shah, 2010) and
96 competes against one another for information discovery.

97

98 *2.2. Information scent*

99 When a foraging animal travels between food patches, decisions on patch selection and
100 residence time are largely influenced by patch profitability, which is inferred from
101 observing behavior of other animals (Valone & Templeton, 2002). Likewise, humans are
102 known to use additional information to make better decisions in information search. For
103 example, people are more likely to rely on ranks in search engines (Pirolli & Card, 1999),
104 follow hyperlinks whose sources are more credible (Sundar, Knobloch-Westerwick, &
105 Hastall, 2007), and revisit previously rewarded locations (Chukoskie, Snider, Mozer,
106 Krauzlis, & Sejnowski, 2013). These cues serve as ‘information scent’ that signals the value
107 of the action; models incorporating information scent successfully describe human behavior
108 in online information search (Fu & Pirolli, 2007; Pirolli, 2005).

109

110 *2.3. Social information search*

111 Collaboratively searching information in a group could augment search efficiency when
112 information is complex or difficult to find alone (Shah, 2010). From a couple planning for a
113 vacation trip to a group of researchers reviewing literature, social information search offers

114 several advantages, like faster problem solving and lower redundancy of efforts
115 (Clearwater, Huberman, & Hogg, 1991). Many algorithms have been implemented in
116 information systems toward reducing search redundancy by heightening awareness of
117 others' actions (Amershi & Morris, 2008; Maekawa et al., 2006; Morris & Horvitz, 2007;
118 Morris et al., 2006; Smeaton et al., 2006). These algorithms can increase effectiveness of
119 group search by dynamically coordinating information behavior of users (Pickens,
120 Golovchinsky, Shah, Qvarfordt, & Back, 2008).

121 As in solitary search, decisions in social information search could be influenced by
122 information scent, but our knowledge of this potential link is currently limited. One study
123 demonstrated that humans imitate actions of others in search of non-depletable resources,
124 even when they do not know the payoff of others (Tomlin, Nedic, Prentice, Holmes, &
125 Cohen, 2017). But, what would they do if information depleted upon discovery? This is the
126 case of searching for new information, where you can only discover information once
127 before it loses its value. In such a case, individual decision on patch selection and residence
128 time could be influenced by others' actions, such as how much information has been
129 collected by others (that is, a level of exploitation) and how much search effort has been
130 paid by others (that is, a level of exploration) in each information patch. Thus, we
131 hypothesized that:

132

133 **H1.** Without knowing the quality of each information patch, people would select the patch
134 that was less exploited and explored by others.

135

136 Further, the use of information scent in social information search may depend on social
137 environments. Goal interdependence theory posits that reward schemes should modify the
138 way people interact with one another (Deutsch, 1949). However, little is known about the
139 differential effect of cooperative and competitive environments on the use of information
140 scent in social information search. Considering that cooperation is facilitated by
141 spontaneous division of labor, we hypothesized that:

142

143 **H2.** Cooperating people would pay more attention to others and distribute search efforts
144 across a search space, compared to people in a competitive setting.

145

146 **3. Materials and methods**

147 *3.1. Experimental platform*

148 The experiment was designed to investigate social information foraging under uncertain
149 resource levels, framed in a citizen science project aimed at monitoring the environment of
150 the Gowanus Canal (Brooklyn, New York, USA). Three users (“foragers”) were connected
151 online and saw a map of the Canal, which contained equidistantly spaced six locations
152 (“patches”). Foragers could individually move their boat icons, starting from the same end
153 of the Canal, to one of the patches at a constant speed, requiring 5 seconds to move to the
154 adjacent patch.

155 Once a boat reached a selected patch, a computer screen displayed a 360° image taken
156 by our aquatic robot vehicle (Laut, Henry, Nov, & Porfiri, 2014), and foragers performed
157 image tagging (Fig. 1). To create an image tag, foragers dragged one of the tags listed on

158 the left (Boat, Construction machine, Floating object, Land vehicle, and Tree) onto an object
159 in the image and adjusted the size of the selected area by dragging corners of a box to cover
160 the object. When foragers pressed the “Submit” button, a selected area became black, and
161 they were not allowed to create a new tag on the overlapping area. They could exit from
162 the image by clicking the “Exit” button and move to a different patch by selecting the next
163 destination on the map. In addition to the three foragers, one user was assigned as a
164 validator to prevent malicious online behavior of foragers (see Supplementary Information
165 for details).

166 During the activity, foragers saw two bars next to each patch on the map. The bars
167 corresponded to the total number of tags created and total time spent by all foragers in each
168 patch, and the heights of the bars dynamically changed in real time during the activity. In
169 addition, foragers saw location of others, remaining time, and the number of points earned
170 in real time.

171

172 *3.2. Data collection*

173 We recruited online crowdworkers located in the U.S. through Amazon Mechanical Turk.
174 We did not screen participants or collect personal information, such as age and gender, as
175 the platform does not provide such information.

176 Before undertaking the task, workers were navigated through background information,
177 including pollution problems in the Gowanus Canal and our aquatic robot vehicle for
178 environmental monitoring, and were presented an overview of the group activity, including
179 boat navigation, tagging, and validation. Then, a point system and a monetary reward
180 scheme were explained to workers, who were randomly assigned into one of two groups at

181 this stage. Workers in one group were notified that 1 point would be given to all three
182 foragers for each tag, regardless of who submitted it, and that the points would be
183 converted to a bonus reward of \$0.10 per point, with a maximum of \$3.50, in addition to a
184 participation fee of \$1.50 upon completion of the task. Workers in the other group were
185 notified that 1 point would be given to only a forager who submitted the tag, with each
186 point cashed in a bonus reward of \$0.30, with a maximum of \$3.50, in addition to a
187 participation fee of \$1.50. We explicitly presented to the workers in both groups that the
188 objective of the task was to collect as many points as possible. The difference in the point
189 system was designed to create cooperative and competitive environments, without explicitly
190 instructing them to cooperate or compete.

191 Next, participants took a practice session, following a tutorial on how to pan and zoom
192 an image, select a portion of an image, and submit. In the practice session, they were
193 instructed to collect five tags in an image similar to those used in the main task. When
194 participants completed the practice session, they were transferred to an online waiting room
195 until other team members finished the practice session.

196 The experiment lasted for 10 minutes. The same set of six images were utilized for all
197 groups, but the order was randomized for each group. Upon completion, each user was
198 provided with a unique token that encrypted individual points. When one of the team
199 members quit during the experiment, the remaining users were provided with a token and
200 the experiment was stopped (see Supplementary Information for details).

201 We recorded data of 43 groups (172 participants) in the cooperative condition and 45
202 groups (180 participants) in the competitive condition. In the following analysis, we used
203 the data of the groups in which all performed the activity for at least 6 minutes and each

204 forager created at least 1 tag. Consequently, we analyzed 36 groups (144 participants) in
205 the cooperative condition and 34 groups (136 participants) the competitive competition.

206

207 *3.3. Patch selection*

208 We investigated how the patch trait influenced decisions on the selection of a next patch.
209 To that end, we ranked the available patches in an ascending order with respect to the
210 levels of exploitation and exploration when foragers exited the current patch. The levels of
211 exploration and exploitation were assessed by the cumulative time spent and the
212 cumulative number of tags created at each patch, respectively. These levels were further
213 partitioned into the amounts attributed to their own activities and those to the others,
214 respectively, by acknowledging that foragers could remember their own activities. In the
215 same way, we ranked the cost of moving, measured as a distance from the current location,
216 from the shortest to the longest. Although foragers were allowed to change the destination
217 during the movement between the patches, we excluded such a case from the analysis
218 (1.2% of the total selections). For each patch trait in each reward condition, we compared
219 total counts of the ranks against the expected proportions that were obtained by simulating
220 the case where the foragers would randomly select the next patch for 10,000 times.
221 Differences from the expected proportion was tested using a χ^2 goodness-of-fit test.

222 In a similar way, we investigated whether people avoided moving to patches that were
223 occupied by others. For each condition, we counted the cases where foragers selected the
224 next patch that was occupied by at least one other forager and compared against the
225 expected proportions that were obtained in the same way.

226 Next, we investigated whether patch traits influenced decision-making differently. The
227 observed ranks were fitted into a proportional odds model with a logit link, considering the
228 ordinal nature of the dependent variable. In the model, we specified the ranks of selected
229 patches as a dependent variable, the patch traits (5 levels: cost of moving, exploitation by
230 themselves, exploitation by others, exploration by themselves, and exploration by others),
231 condition (cooperation or competition), and their interaction as explanatory variables, and
232 individual identity as a random effect. When the significant effect of the interaction term
233 was found, we performed pairwise comparisons across the traits within each condition and
234 each trait between the conditions, with *p*-value adjustments using the Benjamini–Hochberg
235 procedure (Benjamini & Hochberg, 1995). A proportional odds model was performed in R
236 package ‘ordinal’ (Christensen, 2019), and a post-hoc test was run in R package ‘emmeans’
237 (Lenth, Singmann, Love, Buerkner, & Herve, 2019).

238

239 *3.4. Patch residence time*

240 To understand how people use social cues to decide when to leave the current patch, we
241 investigated the influence of the number of tags collected and time spent by others on the
242 patch residence time. At each exit instance, we ranked the exited patch from the least to the
243 most exploited or explored among all patches.

244 For each patch trait, we fitted the patch residence time into a generalized linear mixed-
245 effects model with gamma errors and a log link. In the model, we specified ranks at the exit,
246 condition, and their interaction as explanatory variables, and individual identity as a
247 random effect. In addition, we specified in the model the patch residence time in the
248 marginal value theorem (Charnov, 1976) as an offset (that is, a dependent variable with a

249 fixed slope of 1), thereby controlling for variations in individual search efficiency and
250 remaining resource levels (see Supplementary Information for details).

251 The model was fitted using R package ‘lme4’ (Bates, Maechler, Bolker, & Walker,
252 2019), with the bound optimization by quadratic approximation (BOBYQA) in R package
253 ‘optimx’ (Nash, Varadhan, & Grotendieck, 2018). The statistical significance was obtained
254 through a Type II Wald χ^2 test using R package ‘car’ (Fox et al., 2019). In the case of
255 significance, we performed a pairwise post-hoc test with the Benjamini–Hochberg
256 procedure (Benjamini & Hochberg, 1995) using R package ‘emmeans’ (Lenth et al., 2019).

257

258 **4. Results**

259 *4.1. Patch selection*

260 Foragers used knowledge about each patch to select the next patch (Fig. 2). In the
261 cooperative condition, foragers’ decisions on selecting the next patch were influenced by all
262 patch traits investigated (χ^2 goodness-of-fit test, $p < 0.001$ for all). By contrast, in the
263 competitive condition, foragers did not use the knowledge about the number of tags
264 collected by others ($\chi^2_4 = 8.923, p = 0.063$) and time spent by others ($\chi^2_4 = 9.311, p =$
265 0.054). Under competition, decisions on selecting the next patch were influenced by the
266 number of tags collected on their own ($\chi^2_4 = 199.600, p < 0.001$), time spent on their own
267 ($\chi^2_4 = 193.330, p < 0.001$), and distance ($\chi^2_4 = 58.073, p < 0.001$). In all significant
268 cases, foragers were more likely to select higher ranked patches.

269 The location of others influenced foragers’ decision in selecting the next patch
270 differently depending on the social conditions (Fig. 2). In the cooperative condition,
271 foragers were more likely to avoid others and select an unoccupied patch ($\chi^2_1 = 27.973, p$

272 < 0.001), whereas in the competitive condition, their decision was not influenced by the
273 presence of others ($\chi^2_1 = 0.858, p = 0.354$).

274 A log-odds test revealed the importance of the patch traits on selecting the next patch
275 (Fig. 3). Their ranks were explained by a significant interaction between patch traits and
276 conditions ($\chi^2_4 = 19.559, p < 0.001$). Post-hoc pairwise comparisons showed that, in the
277 cooperative condition, foragers selected patches with the highest ranks in the number of
278 tags collected on their own, followed by the number of tags collected by others, time spent
279 on their own, time spent by others, and distance ($p \leq 0.018$ for all except between time
280 spent by others and distance, $z = 0.414, p = 0.707$). Similarly, in the competitive
281 condition, foragers relied the most on the knowledge about the number of tags collected on
282 their own, followed by the number of tags created by others, distance, time spent on their
283 own, and time spent by others ($p \leq 0.029$ for all). Foragers in the competitive condition
284 were more likely to select the closer patches ($z = 3.343, p = 0.002$), whereas those in the
285 cooperative condition were more likely to select the patches where others spent less time (z
286 = 2.090, $p = 0.044$).

287

288 *4.2. Patch residence time*

289 Foragers stayed in each patch for 120.0 ± 73.4 s in the cooperative condition and $104.7 \pm$
290 51.0 s in the competitive condition. The patch residence time was not significantly different
291 between the conditions ($\chi^2_1 = 1.864, p = 0.172$).

292 We found significant effects of social cues (that is, the knowledge about others'
293 activities in the patch) on the patch residence time (Table 1). Variation in patch residence
294 time was explained by the rank of time spent by others ($\chi^2_5 = 21.613, p < 0.001$). By

295 contrast, the rank of the number of tags collected by others did not explain the variation in
296 the patch residence time $\chi^2_5 = 9.311, p = 0.097$). Further, there was no significant
297 difference between the conditions in any patch trait ($\chi^2_1 \leq 0.968, p \geq 0.325$), or
298 interactions between rank and condition ($\chi^2_5 \leq 9.227, p \geq 0.100$). Post-hoc analysis
299 revealed that foragers were more likely to spend less time in the patch that was explored by
300 others for a longer time (Fig. 4).

301

302 **5. Discussion**

303 This study presents empirical evidence on heuristics of social decision-making in groups
304 whose objective is the discovery of information. Our results demonstrate that people use
305 their own activities and knowledge about others' activities as information scent to decide
306 when to stop and where to go next during their information search. Further, people use
307 such knowledge differently depending on the reward scheme, whereby people paid more
308 attention to others' activities in a cooperative setting than a competitive one. These findings
309 contribute to a better understanding of the use of information scent and heuristics in social
310 information search, while offering insight into real-world system designs for information
311 gain and discovery through group activities.

312 It is likely that people used knowledge about the levels of exploitation and exploration
313 in social information foraging as a proxy for the patch quality in the absence of a complete
314 assessment of the environment (Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018). Similar
315 results are reported in online information search, where people are more likely to select
316 links that have higher ranks in relevant attributes, such as credibility, published dates, and
317 the number of related articles (Sundar et al., 2007). In our experiment, people were more
318 likely to move to less exploited and less explored patches, which may reflect people's

319 perception of the reliability of such information as a proxy for the patch quality. However,
320 the levels of exploitation and exploration do not necessarily indicate patch quality, and the
321 use of such information can lead to suboptimal decisions (Giraldeau, Valone, & Templeton,
322 2002). For example, patches where people collected fewer tags or spent less time should
323 signal poor, rather than rich, patch quality if people perform exhaustive search at each visit.
324 Thus, our results indicate that people are likely to behave under the presumption that
325 others do not search thoroughly, or patch quality is equal among patches.

326 Although people used both the levels of exploitation and exploration at each patch to
327 decide where to go next, they were more likely to select the location where people collected
328 fewer tags than the location where people spent less time. This indicates that the level of
329 exploitation served as a stronger information scent than the level of exploration. At an
330 individual level, exploitation–exploration trade-off is modulated by various factors, such as
331 available information, environmental uncertainty, and individual differences (Mehlhorn et
332 al., 2015). For instance, people are more likely to exploit currently available resources
333 when the uncertainty is within expectation, whereas they shift to explore for new resources
334 under environmental changes (Cohen, McClure, & Yu, 2007). In our experimental setting, it
335 is possible that people relied more on the level of exploitation in selecting the next location
336 because the resources were predictably depleted over time. Interestingly, knowledge about
337 the activity of others was used only in cooperative information search. It is possible that
338 people took into account such knowledge to distribute their effort toward a shared goal.
339 Avoidance of others was also found only in the cooperative information search, supporting
340 this possibility.

341 In general, people stayed less in the patch where others spent a longer time, but the
342 number of tags collected by others in the patch did not influence their decisions to leave.
343 This indicates that the level of exploration, but not exploitation, by others influences a

344 forager's decision to leave the information patch in social information foraging. Our results
345 are consistent with a similar study on solitary information foraging, where patch residence
346 time was influenced by the total time spent at the current patch, but not the total number of
347 resources consumed (Hutchinson, Wilke, & Todd, 2008). The use of such knowledge
348 contrasts with decision-making in selecting the next patch, where people opt for a patch
349 where other people have collected fewer tags, over a patch where other people have spent
350 less time. This could indicate that knowledge about the levels of exploitation and
351 exploration has different social utilities; the level of exploitation served as information scent
352 for patch selection, whereas the level of exploration served as information scent for the
353 activity upon patch selection.

354 We adopted ranks, instead of absolute or relative differences, of the patch traits to
355 investigate the influence of patch traits on decision-making in social information search. It
356 is well known that our perception of absolute difference diminishes when a positive
357 constant is added to all choices, whereas the perception of ratio enlarges when all choices
358 are proportionally increased (Prelec & Loewenstein, 1991). We used ranks to mitigate the
359 uncertainty about how people would compare among choices. However, ranks are not able
360 to capture a change of the perception over time, where the same absolute or relative
361 difference at the beginning of the experiment may be perceived differently toward the end.
362 Further, ranks may not be suitable to investigate individual differences on decision-making,
363 considering that perception of relative and absolute values in decision-making differs
364 among individuals (Malenka, Baron, Johansen, Wahrenberger, & Ross, 1993).

365 Supporting conceptual and qualitative studies (Morris & Horvitz, 2007; Reddy &
366 Jansen, 2008; Shah & Marchionini, 2010), our findings quantitatively demonstrate the
367 importance of knowledge about others' activities, which leads to spontaneous division of
368 labor. Such a knowledge could also be applied to tools that assist competition for

369 knowledge discovery in various scenarios, such as citizen scientists competing for solving
370 scientific problems (for example, Foldit) and data scientists competing for finding efficient
371 computer algorithms (for example, Kaggle). Capitalizing on heuristics in decision-making
372 during social information search, designers could not only reduce cognitive overload by
373 masking less relevant information, but also steer search efforts to desired directions. For
374 example, selectively displaying how much others have already exploited the current site
375 would accelerate people to move to other sites, leading to a large coverage of a search
376 domain. By contrast, emphasizing how much time others have previously spent at a site
377 would facilitate thorough search without a central control.

378

379 **6. Conclusion and limitations**

380 Information search is part of our everyday life, and our findings illuminate how humans
381 perceive uncertain environments based on knowledge about others' activities. Revisiting the
382 analogy of gold mining, when cooperating, people are more likely to go to the mine where
383 others collected less gold or spent less time. On the other hand, when competing, people are
384 not influenced by the observed behavior of others. Further, people spend less time in the
385 mine where others spent a longer time. Understanding information scent in social settings
386 may help design systems to enhance the efficiency of information search in groups.

387 Our experiment was conducted using paid crowdworkers through Amazon Mechanical
388 Turk, which is common in studying human decision-making (Rand, 2012; Stewart et al.,
389 2019). Although data on decision-making tasks from Amazon Mechanical Turk are
390 considered as reliable as those using traditional methods (Buhrmester, Kwang, & Gosling,
391 2011), online experiments may decrease attentions of participants to follow instructions,
392 compared to supervised experiments in a lab (Oppenheimer, Meyvis, & Davidenko, 2009).

393 This could potentially confound the results, especially in studying group behavior. On the
394 other hand, the diverse demographics of online participants (Paolacci, Chandler, & Ipeirotis,
395 2010) could contribute to the generalizability of our findings on human decision-making.

396 Another limitation of using crowdworkers in behavioral experiments entails anonymity
397 and lack of controlling individual variation in behavior. Further, awareness of participating
398 in behavioral research may bias data quality by influencing motivations. In this study, we
399 did not collect demographic information or screen participants. Although we designed the
400 experiment to be robust with respect to motivational differences and we statistically
401 controlled for individual variation in information search skills in the analysis, knowledge
402 about individual attributes is needed to elucidate how group compositions could influence
403 social information search.

404

405 **References**

406 Amershi, S., & Morris, M. R. (2008). CoSearch: a system for co-located collaborative web
407 search. *Conference on Human Factors in Computing Systems - Proceedings*, 1647–1656.
408 New York, New York, USA: ACM Press.

409 Bates, D., Maechler, M., Bolker, B., & Walker, S. (2019). *lme4: Linear mixed-effects models*
410 *using Eigen and S4*.

411 Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
412 powerful approach to multiple testing. *Journal of the Royal Statistical Society: Series B*
413 *(Methodological)*, 57(1), 289–300.

414 Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon's Mechanical Turk: A new
415 source of inexpensive, yet high-quality, data? *Perspectives on Psychological Science*, 6(1),
416 3–5.

417 Charnov, E. L. (1976). Optimal foraging, marginal value theorem. *Theoretical Population*
418 *Biology*, 9(2), 129–136.

419 Christensen, R. H. B. (2019). *ordinal: Regression Models for Ordinal Data*.

420 Chukoskie, L., Snider, J., Mozer, M. C., Krauzlis, R. J., & Sejnowski, T. J. (2013). Learning
421 where to look for a hidden target. *Proceedings of the National Academy of Sciences*,
422 110(Suppl. 2), 10438–10445.

423 Clearwater, S. H., Huberman, B. A., & Hogg, T. (1991). Cooperative solution of constraint
424 satisfaction problems. *Science*, 254(5035), 1181–1183.

425 Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the
426 human brain manages the trade-off between exploitation and exploration. *Philosophical*
427 *Transactions of the Royal Society B: Biological Sciences*, 362(1481), 933–942.

428 Deutsch, M. (1949). A theory of co-operation and competition. *Human Relations*, 2(2), 129–
429 152.

430 Eppler, M. J., & Mengis, J. (2004). The concept of information overload: a review of
431 literature from organization science, accounting, marketing, MIS, and related
432 disciplines. *Information Society*, 20(5), 325–344.

433 Evans, B. M., & Chi, E. H. (2008). Towards a model of understanding social search.
434 *Proceedings of the ACM 2008 Conference on Computer Supported Cooperative Work -*
435 *CSCW '08*.

436 Farzan, R., & Brusilovsky, P. (2018). Social navigation. In P. Brusilovsky & D. He (Eds.),
437 *Social Information Access* (pp. 142–180). Springer.

438 Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., ... R Core Team. (2019).
439 *car: Companion to Applied Regression*.

440 Fu, W.-T., & Pirolli, P. (2007). SNIF-ACT: a cognitive model of user navigation on the World
441 Wide Web. *Human–Computer Interaction*, 22(4), 355–412.

442 Giraldeau, L. A., Valone, T. J., & Templeton, J. J. (2002). Potential disadvantages of using

443 socially acquired information. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 357(1427), 1559–1566.

444

445 Hansen, P., & Järvelin, K. (2005). Collaborative Information Retrieval in an information- intensive domain. *Information Processing and Management*, 41(5), 1101–1119.

446

447 Hansen, P., Shah, C., & Klas, C.-P. (2015). *Collaborative information seeking : best practices, new domains and new thoughts*. Springer International Publishing.

448

449 Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in Information

450 Systems research. *MIS Quarterly*, 28(1), 75–105.

451 Hutchinson, J. M. C., Wilke, A., & Todd, P. M. (2008). Patch leaving in humans: can a

452 generalist adapt its rules to dispersal of items across patches? *Animal Behaviour*, 75(4),

453 1331–1349.

454 Johnson, D. W., & et al. (1981). Effects of cooperative, competitive, and individualistic goal

455 structures on achievement: a meta-analysis. *Psychological Bulletin*, 89(1), 47–62.

456 Laut, J., Henry, E., Nov, O., & Porfiri, M. (2014). Development of a mechatronics-based

457 citizen science platform for aquatic environmental monitoring. *IEEE/ASME*

458 *Transactions on Mechatronics*, 19(5), 1541–1551.

459 Leeder, C., & Shah, C. (2016). Collaborative information seeking in student group projects.

460 *Aslib Journal of Information Management*, 68(5), 526–544.

461 Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2019). *emmeans: Estimated*

462 *Marginal Means, aka Least-Squares Means*.

463 Maekawa, T., Hara, T., & Nishio, S. (2006). A collaborative web browsing system for

464 multiple mobile users. *Proceedings - Fourth Annual IEEE International Conference on*

465 *Pervasive Computing and Communications, PerCom 2006*, 2006, 22–33.

466 Malenka, D. J., Baron, J. A., Johansen, S., Wahrenberger, J. W., & Ross, J. M. (1993). The

467 framing effect of relative and absolute risk. *Journal of General Internal Medicine*, 8(10),

468 543–548.

469 Mehlhorn, K., Newell, B. R., Todd, P. M., Lee, M. D., Morgan, K., Braithwaite, V. A., ...

470 Gonzalez, C. (2015). Unpacking the exploration-exploitation tradeoff: A synthesis of
471 human and animal literatures. *Decision*, 2(3), 191–215.

472 Moody, D. L., & Walsh, P. (1999). Measuring the value of information - an asset valuation
473 approach. *European Conference on Information Systems (ECIS)*, 496–512.

474 Morris, M. R., & Horvitz, E. (2007). SearchTogether: an interface for collaborative web
475 search. *Proceedings of the 20th Annual ACM Symposium on User Interface Software and
476 Technology - UIST '07*, 3. New York, New York, USA: ACM Press.

477 Morris, M. R., Paepcke, A., & Winograd, T. (2006). TeamSearch: comparing techniques for
478 co-present collaborative search of digital media. *Proceedings of the First IEEE
479 International Workshop on Horizontal Interactive Human-Computer Systems,
480 TABLETOP'06, 2006*, 97–104.

481 Nash, J. C., Varadhan, R., & Grothendieck, G. (2018). *optimx: Expanded Replacement and
482 Extension of the “optim” Function*.

483 O'Day, V. L., & Jeffries, R. (1993). Information artisans: patterns of result sharing by
484 information searchers. *Proceedings of the Conference on Organizational Computing
485 Systems - COCS '93*, 98–107. New York, New York, USA: Association for Computing
486 Machinery (ACM).

487 Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation
488 checks: Detecting satisficing to increase statistical power. *Journal of Experimental Social
489 Psychology*, 45(5), 867–872.

490 Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on Amazon
491 Mechanical Turk. *Judgment and Decision Making*, 5(5), 411–419.

492 Paul, S. A., & Reddy, M. C. (2010). Understanding together: sensemaking in collaborative
493 information seeking. *Proceedings of the ACM Conference on Computer Supported
494 Cooperative Work, CSCW*, 321–330. New York, New York, USA: ACM Press.

495 Pickens, J., Golovchinsky, G., Shah, C., Qvarfordt, P., & Back, M. (2008). Algorithmic
496 mediation for collaborative exploratory search. *Proceedings of the 31st Annual*
497 *International ACM SIGIR Conference on Research and Development in Information*
498 *Retrieval*, 315–322.

499 Pirolli, P. (2005). Rational analyses of information foraging on the Web. *Cognitive Science*,
500 19, 343–373.

501 Pirolli, P., & Card, S. (1999). Information foraging. *Psychological Review*, 106(4), 643–675.

502 Prelec, D., & Loewenstein, G. (1991). Decision making over time and under uncertainty: a
503 common approach. *Management Science*, 37(7), 770–786.

504 Rand, D. G. (2012). The promise of Mechanical Turk: How online labor markets can help
505 theorists run behavioral experiments. *Journal of Theoretical Biology*, 299, 172–179.

506 Reddy, M. C., & Jansen, B. J. (2008). A model for understanding collaborative information
507 behavior in context: a study of two healthcare teams. *Information Processing and*
508 *Management*, 44(1), 256–273.

509 Shah, C. (2010). Collaborative information seeking: a literature review. *Advances in*
510 *Librarianship*, 32, 3–33.

511 Shah, C., & Marchionini, G. (2010). Awareness in collaborative information seeking. *Journal*
512 *of the American Society for Information Science and Technology*, 61(10), 1970–1986.

513 Smeaton, A. F., Lee, H., Foley, C., McGivney, S., & Gurrin, C. (2006). Físchlár-
514 DiamondTouch: collaborative video searching on a table. In E. Y. Chang, A. Hanjalic, &
515 N. Sebe (Eds.), *Multimedia Content Analysis, Management, and Retrieval 2006* (Vol. 6073,
516 p. 607308). SPIE.

517 Stephens, D. W., & Krebs, J. R. (1986). *Foraging theory*. Princeton, New Jersey, USA:
518 Princeton University Press.

519 Stewart, A. J., Mosleh, M., Diakonova, M., Arechar, A. A., Rand, D. G., & Plotkin, J. B.
520 (2019). Information gerrymandering and undemocratic decisions. *Nature*, 573(7772),

521 117–121.

522 Sundar, S. S., Knobloch-Westerwick, S., & Hastall, M. R. (2007). News cues: information
523 scent and cognitive heuristics. *Journal of the American Society for Information Science
524 and Technology*, 58(3), 366–378.

525 Tomlin, D., Nedic, A., Prentice, D. A., Holmes, P., & Cohen, J. D. (2017). The integration of
526 social influence and reward: computational approaches and neural evidence. *Cognitive,
527 Affective and Behavioral Neuroscience*, 17(4), 784–808.

528 Valone, T. J., & Templeton, J. J. (2002). Public information for the assessment of quality: a
529 widespread social phenomenon. *Philosophical Transactions of the Royal Society of London
530 Series B-Biological Sciences*, 357(1427), 1549–1557.

531 Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., & Meder, B. (2018). Generalization
532 guides human exploration in vast decision spaces. *Nature Human Behaviour*, 2(12),
533 915–924.

534

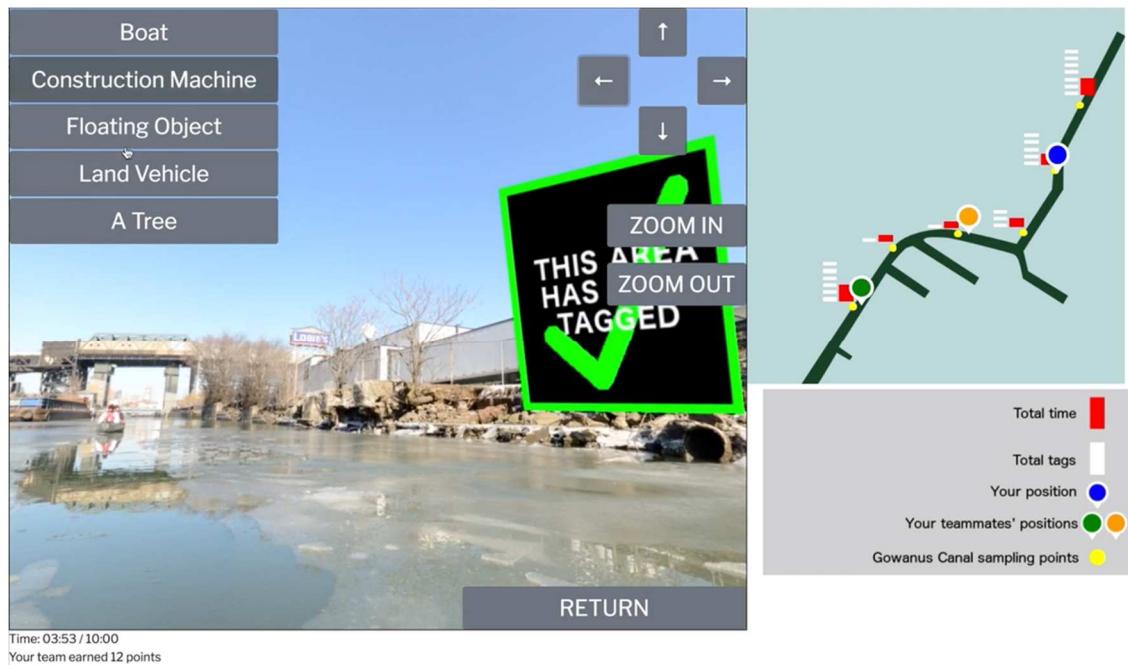
535 **Figures and Tables**

536

537

538

539



540

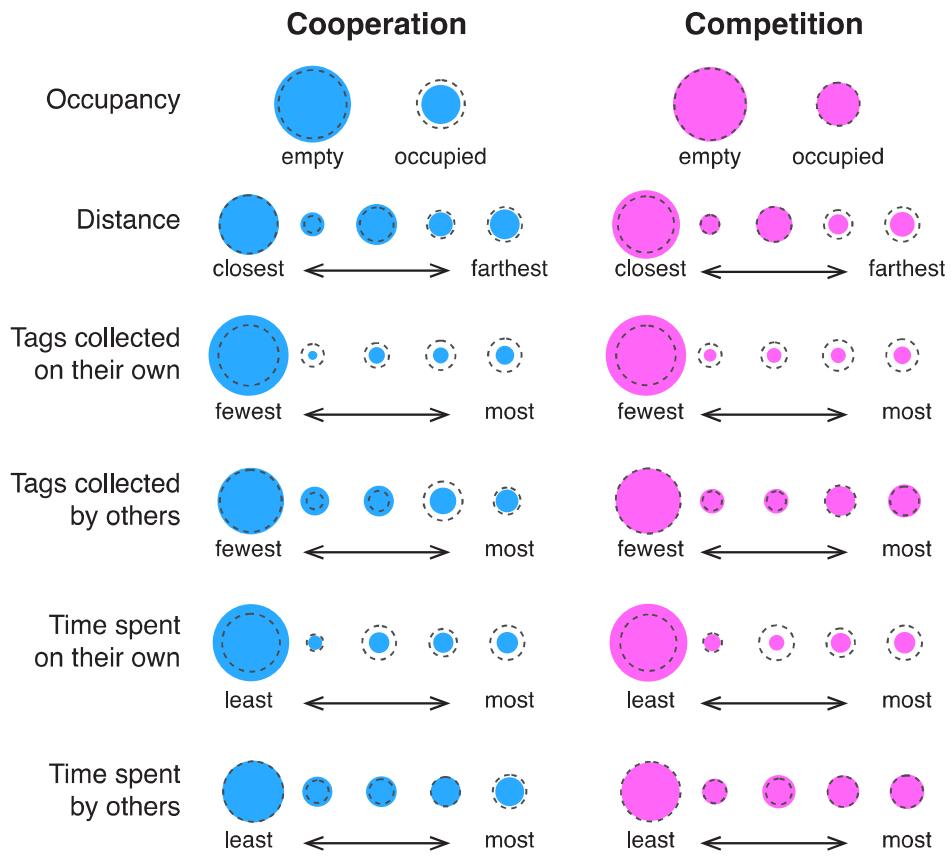
541

542 **Fig. 1.** Screen shot of the user interface. Users explore the 360° image of a polluted canal by
543 panning and zooming the camera and tag objects listed on the top left. The mini map on the
544 right shows locations of others, as well as a total number of tags collected and total time
545 spent by all at each location.

546

547

548



549

550

551 **Fig. 2.** Proportions of the next patch selected by patch traits. The patch traits investigated
 552 are occupancy (empty or occupied), distance from the current patch (ranked from the
 553 closest to the farthest), the number of tags collected on their own and by others (ranked
 554 from the fewest to the most), and time spent on their own and by others (ranked from the
 555 least to the most). Colored disks show the observed proportions (blue: cooperation, pink:
 556 competition), with the areas corresponding to the proportions. Dashed open circles indicate
 557 the expected proportion when a forager randomly selects the next patch (10,000 iterations).
 558 In each panel, the more the dashed circles are different from the solid ones, the more likely
 559 is for people to rely on that trait. For example, examining the tags collected on their own in
 560 cooperation, we note that people tend to select patches which they explored less before.
 561 Goodness-of-fit tests find significant deviations from the expected proportions for all except
 562 occupancy, number of tags collected by others, and time spent by others in competition.

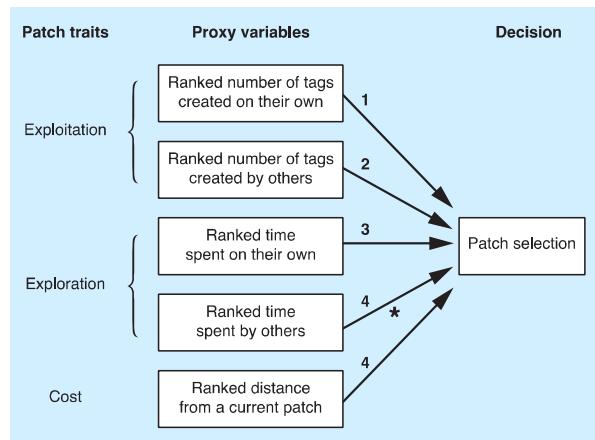
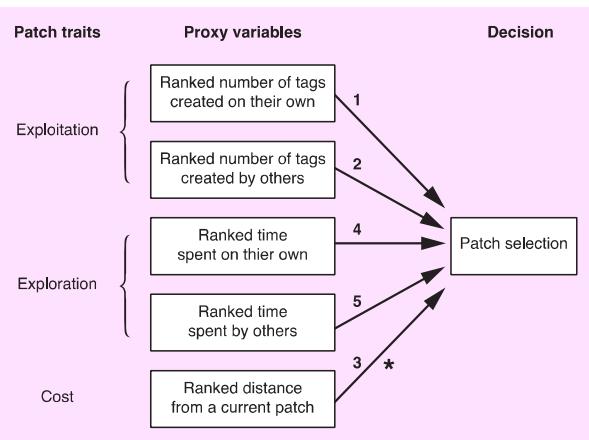
563

564

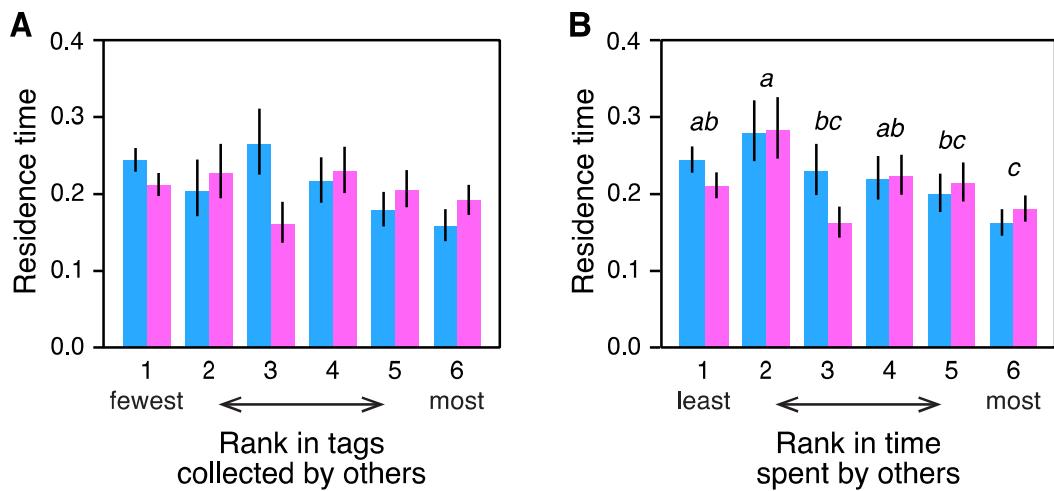
565

566

567

Cooperation**Competition**

571 **Fig. 3.** Schematic representation of the importance of variables on patch selection. The
 572 selected patches are ranked by the number of tags collected on their own and by others
 573 (ranked from the fewest to the most), time spent on their own and by others (ranked from
 574 the least to the most), and distance (from the closest to the farthest). The numbers represent
 575 orders of importance of the variables, and the asterisks indicate greater influence than the
 576 corresponding ones in the other condition, based on a proportional odds model.



581 **Fig. 4.** Observed patch residence time (ratio to the prediction of the marginal value
 582 theorem) and the patch trait at exit. (A) Ranks in the number of tags collected by others
 583 (from the fewest to the most) and (B) ranks in time spent by others (from the least to the
 584 most). Blue and pink bars represent the cooperative and competitive conditions,
 585 respectively. Bars sharing the same letter(s) are not significantly different from each other
 586 based on a pairwise post-hoc test between ranks, aggregated over conditions.

588 **Table 1.** Summary of the generalized linear mixed-effects models for the effects of social
589 cues on the patch residence time.

590

Variable	Chi-squared	D.f.	P-value
Tag collected by others			
Rank	9.311	5	0.097
Condition	0.717	1	0.397
Rank × Condition	9.227	5	0.100
Time spent by others			
Rank	21.613	5	< 0.001
Condition	0.968	1	0.325
Rank × Condition	5.560	5	0.351

591