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Integrating old and new complexity measures

toward automated seizure detection
from long-term video EEG recordings

Manuel Ruiz Marin,'>4* Irene Villegas Martinez,>>¢/* German Rodriguez Bermudez,®> and Maurizio Porfiri'#

SUMMARY

Automated seizure detection in long-term video-EEG recordings is far from being
integrated into common clinical practice. Here, we leverage classical and state-of-
the-art complexity measures to robustly and automatically detect seizures from
scalp recordings. Brain activity is scored through eight features, encompassing
traditional time domain and novel measures of recurrence. A binary classification
algorithm tailored to treat unbalanced dataset is used to determine whether a
time window is ictal or non-ictal from its features. The application of the algorithm
on a cohort of ten adult patients with focal refractory epilepsy indicates sensi-
tivity, specificity, and accuracy of 90%, along with a true alarm rate of 95% and
less than four false alarms per day. The proposed approach emphasizes ictal pat-
terns against noisy background without the need of data preprocessing. Finally,
we benchmark our approach against previous studies on two publicly available
datasets, demonstrating the good performance of our algorithm.

INTRODUCTION

Epilepsy is a common and chronic group of neurological disorders. Worldwide, more than 65 million
people of all age have epilepsy, affecting individuals (Devinsky et al., 2018). Despite optimal medication
management, about 30% of persons with epilepsy (PWE) will continue to have uncontrolled seizures and
will eventually need a presurgical evaluation in an epilepsy monitoring unit (Kwan et al., 2010; Sisodiya,
2007).

Electroencephalography (EEG) is an essential tool in the evaluation, diagnosis, and management of epi-
lepsy (Rao and Lowenstein, 2015). The International League Against Epilepsy recommends long-term
video-EEG monitoring (LEM) in PWE, when there is diagnostic uncertainty in the classification of seizure
type or epilepsy syndrome, quantification of seizures, and evaluation of electroclinical seizure characteris-
tics prior to an epilepsy surgery (Velis et al., 2007) Whether measurements are conducted on the scalp or
intracranially, the recordings of LEM can last from 24 h to 78 days (Ryvlin et al., 2014)

Visual scanning of LEM recordings by expert epileptologists is the conventional approach to seizure detec-
tion. EEG manifestations of epileptic events can take various forms, including desynchronization, decrease
in amplitude, appearance of moderate or high amplitude rhythmic activity at frequencies ranging from 1 to
50 Hz, presence of high amplitude electromyogram (EMG) obscuring the EEG, and irregular paroxysmal
activity (Fisher et al., 2014a). The complexity of these phenomena constitutes a significant hurdle to manual
analysis of LEM recordings, which could often lead to errors even when conducted by highly trained phy-
sicians (Wilson et al., 2003). These errors are exacerbated in the analysis of noisy scalp data, which are, how-
ever, the most common, due to obvious challenges in implanting electrodes in the brain. Automatic seizure
detection systems offer a promising alternative to efficiently and accurately analyze LEM recordings (Baum-
gartner and Koren, 2018).
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Many attempts have been made to automatize LEM readings (Saini and Dutta, 2017; Sharmila and Gee- manuel.ruiz@upct.es
thanjali, 2019). Since the first algorithm for seizure detection proposed by Gotman (1982), several (MRM.),
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and minimize the number of false alarms that would slow down the physician, instead of easing his hitps://doi.org/10.1016/} isci.
task. 2020.101997
m -
e iScience 24, 101997, January 22, 2021 © 2020 The Authors. 1

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:manuel.ruiz@upct.es
mailto:irene.villegas@carm.es
https://doi.org/10.1016/j.isci.2020.101997
https://doi.org/10.1016/j.isci.2020.101997
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101997&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

¢? CellPress

OPEN ACCESS

The simplest class of detection algorithms uses intuitive time-domain features to create some discrimi-
nating statistics between seizure and "non-seizure” epochs. Mean, variance, mode, median, and skewness
are some of the common statistics that are employed in seizure detection, along with amplitude difference
and time separation between minima and maxima (Alotaiby et al., 2014). Although easy to interpret, these
features alone are not sufficient to decipher brain activity. Measures of complexity from time-series analysis
could complement classical, statistically based features toward improved detection of seizures (Kannathal
et al., 2005). Information theory, fractal analysis, and symbolic representations have been leveraged to
establish a range of powerful measures of complexity for LEM recordings (Saini and Dutta, 2017). For
example, the theoretic notion of fractal dimension has been found to have a precise clinical application
in the quantification of rhythmic patterns during an epileptic seizure (Wang et al., 2013).

Despite the multitude of automated computer-aided detection algorithms published in the past decades,
why are epileptologists still relying on visual scanning when it comes to seizure detection?

(1) Existing algorithms are typically validated on the dataset by the University of Bonn (Andrzejak et al.,
2001). These data are from intracranial recordings, where artifacts are virtually nonexistent compared
with scalp data. In addition, the dataset only includes selected segments of ictal activity, excluding non-ic-
tal recordings from the same patient. Validating an algorithm on this dataset prior to testing on real scalp
data may lead to not only high sensitivity but also an unacceptably high number of false alarms (Hopfen-
gartner et al., 2014). As a result, prudence is commonly warranted in transitioning from the validation on
the database of the University of Bonn to clinical practice.

(2) EEG signals are highly complex, nonlinear, and non-stationary processes (Cohen, 2017). Most of the ex-
isting approaches utilize pre-processing techniques to remove artifacts, which may come at the expense of
masking true brain activity and adding confounding effects (de Cheveigné and Nelken, 2019). For example,
the method proposed by Fiirbass et al. (2015) in the EpiScan study analyzes digital LEM recordings in in-
tervals of a quarter-second and utilizes dedicated low-pass, high-pass, and notch filters to process their
data. The EpiScan algorithm was lately implemented for commercial purposes into the Encevis software.
Similar filtering techniques are applied in the Reveal algorithm by Wilson et al. (2004), which is behind
the Persyst software.

(3) When confronted with everyday clinical practice, experimental models and commercialized software do
not perform as well as promised. Gonzalez-Otalura et al. have recently reported a detection of only 53% of
seizures by Persyst 12, Persyst 13, and Gotman in a sample of 1,478 ambulatory prolonged EEG studies
(Gonzalez-Otérula et al., 2019).

As a result, existing algorithms are far from replacing manual interpretation of LEM recordings by
epileptologists.

Here, we seek to address this issue through a methodology that integrates a range of EEG-specific fea-
tures, from traditional statistics in the time domain to state-of-the-art complexity measures. Along with
the computation of several time-domain characteristics, we introduce an alternative approach toward
recurrence quantification. Such an approach combines classical and symbolic recurrence to mitigate mea-
surement noise that is known to plague classical recurrence analysis and avoid crude coarsening due to the
limited alphabet of a symbolic representation (Caballero Pintado et al., 2018; Porfiri and Ruiz Marin, 2019).
Using this notion of e-symbolic recurrence, we construct a recurrence network, whose topological charac-
teristics are utilized to enhance the discrimination between ictal and non-ictal activity from scalp LEM.

Overall, brain activity from LEM recordings is scored through eight features, encompassing time-domain
statistics (standard deviation, mean absolute deviation, skewness coefficient, fractal dimension, and area
of the second-order difference plot) and measures of recurrence (mean degree, betweenness centrality,
and closeness of e-symbolic recurrence networks). By applying an algorithm for binary classification (RUS-
Boost algorithm (Seiffert et al., 2009)), on this range of features (evaluated on small time segments), we
explore the possibility of automatic detection of seizures in scalp LEM recordings, without the need of
any pre-processing. More specifically, the classification algorithm is first trained using a fraction of manually
analyzed LEM recordings by clinical experts, and then it is tested on the remaining fraction of the dataset,
without clinical supervision (Figure 1).
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Figure 1. Sketch of the proposed algorithm for automated seizure detection during training and testing
Figure360> For a Figure340 author presentation of this figure, see https://doi.org/10.1016/].isci.2020.101997.

The algorithm takes as input the LEM recording signal and partitions it into non-overlapping windows. For each window, it

extracts eight features (descriptive statistics and complexity measures) that are used for classification by the RUSBoost

algorithm. During training, clinical supervision is needed to determine the onset and ending of a seizure for 80% of the

data. During testing, no clinical supervision is required, and the trained model is employed to classify the remaining 20%

of the data, within 5-fold cross-validation.

RESULTS

To demonstrate the performance of the detection algorithm, we examined a total of ten LEM recordings,
from three men and seven women (age: 25-53 years, mean: 37.5 years; Table 1) with refractory focal epi-
lepsy from our original database. Each patient in the cohort suffered from at least one epileptic seizure dur-
ing the 24-h monitoring comprising the dataset.

Upon completing the study of our original dataset, we benchmarked our approach against published re-
sults, by focusing on two publicly available databases: the University of Bonn (UB) dataset and Temple
University Hospital EEG Seizure Corpus (TUSZ). The former dataset offers the possibility to test our al-
gorithm on intracranial data, whereas the second contributes to improved validation on surface
recordings.

The detection algorithm yields about 90% accuracy, specificity, and sensitivity

Results of the application of our detection algorithm to LEM recordings of the ten patients in Table 1 using
5-fold cross-validation are summarized in Table 2. For each patient, we report sensitivity, specificity, accu-
racy, true alarm rate (TAR), and false alarm rate (FAR) for the clinically selected channel, according to the
clinical profiles in Table 1. All these metrics were assessed from ground-truth data compiled by two clinical
experts, on each of the 100-observation windows of 0.391 s that comprised the recording. Ground-truth

iScience 24, 101997, January 22, 2021 3
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Table 1. Clinical data and seizure description of LEM recordings

Semiology Localization/
Epileptic of seizures Duration lateralization Seizure

Patient syndrome during LEM (seconds) at onset onset

1 Structural epilepsy. Seizure 1: focal unaware 95 Mesial and anterior ~ Sharp rhythmic
Left mesial to bilateral TC left temporal activity
hippocampal sclerosis

Seizure 2: focal unaware 44 Mesial and anterior ~ Sharp rhythmic
with non-motor onset left temporal activity
(cognitive)

2 Structural epilepsy. Seizure 1: focal unaware 57 Right temporal Low-voltage fast
Right mesial with non-motor onset activity
hippocampal sclerosis  (cognitive)

Seizure 2: focal unaware 65 Right temporal Low-voltage fast
with motor onset activity
(automatisms)

Seizure 3: focal unaware 74 Right temporal Low-voltage fast
with motor onset activity
(automatisms)

Seizure 4: focal unaware 46 Right temporal Low-voltage fast
with non-motor onset activity
(cognitive)

8 Structural epilepsy. Focal unaware with 68 Anterior right Sharp rhythmic
Right mesial motor onset temporal activity
hippocampal sclerosis  (automatisms)

4 Structural epilepsy. Seizure 1: focal 74 Anterior left Low-frequency high-
Left mesial unaware with motor temporal amplitude rhythmic
hippocampal sclerosis  onset (automatisms) spikes

Seizure 2: focal 64 Left temporal Low-frequency high-
unaware with motor amplitude rhythmic
onset (automatisms) spikes

Seizure 3: focal 51 Left temporal Spike-and-wave
unaware with motor activity

onset (automatisms)

5 Structural epilepsy. Focal unaware to 487 Anterior and mesial ~ Sharp rhythmic
Right mesial bilateral TC right temporal activity
hippocampal sclerosis

6 Structural epilepsy. Seizure 1: subclinical 33 Mesial left Sharp rhythmic
Left mesial temporal activity
hippocampal sclerosis

Seizure 2: focal 47 Left temporal Sharp rhythmic
unaware with non-motor activity
onset (cognitive)

7 Epilepsy of unknown  Seizure 1: focal 65 Left Low-voltage fast

origin unaware with non-motor front-otemporal activity
onset (cognitive)
Seizure 2: focal 88 Left Low-voltage fast

unaware to
bilateral TC

4 iScience 24, 101997, January 22, 2021
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Table 1. Continued

Semiology Localization/
Epileptic of seizures Duration lateralization Seizure
Patient syndrome during LEM (seconds) at onset onset
8 Structural epilepsy. Seizure 1: focal 78 Right temporal Low-voltage fast
Cortical dysplasia unaware seizure with activity
right temporal lobe non-motor onset

(behavior arrest)

Seizure 2: focal 121 Anterior and mesial Low-voltage fast
unaware to right temporal activity
bilateral TC
9 Structural epilepsy. Seizure 1: focal 70 Left temporal Low-voltage fast
Left mesial unaware with motor activity

hippocampal sclerosis  onset (automatisms)
Seizure 2: focal 69 Left temporal Low-voltage fast
unaware with motor activity
onset (automatisms)
Seizure 3: focal 108 Mesial left Low-voltage fast
unaware with motor temporal activity

onset (automatisms)

10 Epilepsy of Seizure 1: subclinical 24 Right temporal Sharp rhythmic
unknown origin activity

Seizure 2: focal 36 Right temporal Sharp rhythmic
aware with non-motor activity

onset (behavior arrest)
Seizure 3: focal 37 Right temporal Sharp rhythmic
aware with non-motor activity

onset (behavior arrest)

Seizure 4: focal 214 Posterior right Sharp rhythmic
unaware to temporal activity
bilateral TC

Scalp EEG was recorded at a sampling rate of 256 Hz, with 19 electrodes placed according to the international 10-20 system,
using a 64-channel system Nicolet™EEG NicOne. EEG was recorded from the following electrode positions: Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 and a reference electrode (Z). The classification of seizure onset
was based on Perucca et al. (2014).

TC: tonic-clonic. LEM: long-term video EEG monitoring.

Table 2. Sensitivity, specificity, accuracy, true alarm rate (TAR), and false alarm rate (FAR) per hour for 5-fold cross-validation analysis of 24-h LEM
recordings of 10 different patients.

Patient Channel Sensitivity Specificity Accuracy TAR FAR/h
1 T3 91.57% 90.61% 90.61% 100% 0.38
2 T4 92.57% 93.60% 93.59% 100% 0.42
3 F8 93.68% 88.00% 88.00% 100% 0.21
4 T3 92.96% 97.93% 97.92% 100% 0.00
5 F8 90.46% 95.29% 95.27% 100% 0.08
6 T3 88.78% 89.73% 89.73% 100% 0.04
7 F7 90.26% 97.00% 96.99% 100% 0.00
8 F8 66.01% 96.45% 96.36% 100% 0.25
9 T3 84.18% 88.40% 88.39% 100% 0.00
10 T4 85.96% 90.25% 90.24% 75% 0.04

The algorithm is implemented on a specific, single channel for each of the patient, based on clinical considerations in Table 1.

iScience 24, 101997, January 22, 2021 5
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data were provided by the experts in terms of the inception and the end of a seizure, such that a window
was considered to be ictal if at least 50% of its observations pertained to a seizure.

By comparing the output of the classifier to ground-truth, we scored the number of true positives, false pos-
itives, true negatives, and false negatives. A true positive is an ictal window that is correctly classified as part
of a seizure by the algorithm, whereas a false positive is a non-ictal window that is erroneously classified as
part of a seizure. Likewise, a true negative is a non-ictal window that is classified to be outside of a seizure,
and a false negative is an ictal window that is classified to be outside of a seizure.

Sensitivity measures the ratio between the number of true positives and the total number of positives in
ground-truth (true positives and false negatives). A sensitivity of 100% indicates that the detection algo-
rithm has no false negatives, such that it can correctly detect every ictal window to be part of a seizure. Ta-
ble 2 shows sensitivity values that are above 90% for most of the patients. For one patient (patient 8), we
determined a modest sensitivity of 66%. Specificity quantifies the ratio between the number of true nega-
tives and the total number of negatives in ground-truth (true negatives and false positives). A specificity of
100% identifies the case in which the algorithm has no false positives, whereby it never classifies a non-ictal
window as part of a seizure. Table 2 confirms the reliability of the algorithm, whose specificity was as high as
98% and never below 88%. Accuracy scores the overall predictive power of the algorithm, as the ratio be-
tween the total number of correctly classified windows (sum of the number of true positives and true neg-
atives) and the total number of windows. Results from this metric are consistent with specificity and sensi-
tivity, ranging from 88% to 98%.

True alarm rate is about 95% and false alarms are less than four per day

Specificity, sensitivity, and accuracy were all scored by examining each window independent of the
other, without clinical consideration of the typical duration of a seizure that may be far larger than
0.391 s. As a result, these measures could be affected by isolated misclassification, thereby providing
an overly conservative picture of the performance of the detection algorithm toward its clinical use.
Consistent with previous literature (Hopfengértner et al., 2007; Hunyadi et al., 2012), we defined an
alarm as a sequence of consecutive windows of at least 10's in duration that are all classified as ictal.
We joined instances of alarms, so that adjacent alarms are counted as the same one. TAR was calculated
as the percentage of alarms that constitute a seizure in ground-truth, whereas FAR was assessed in
terms of the number of events per hour to quantify the clinical burden of potentially verifying incorrect
alarms.

TAR was 100% for all the patients, except for one patient (patient 10), thereby leading to an average of 95%.
Notably, the patient for which TAR was not perfect does not correspond to the one who had the lowest
sensitivity (patient 8). FAR was 0.14 events per hour on average, corresponding to at most four false alarms
per day. For some patients, no false alarms were ever recorded during that 24-h period. In the worst case,
FAR was 0.42 events per hour, corresponding to 10 false alarms in a day.

The performance of the detection algorithm is marginally influenced by the selection of the
channel and the patient’s clinical characteristics

Although the results in Table 2 are based on LEM recordings from a specific, single channel, the perfor-
mance of the detection algorithm was robust with respect to the selection of the channel (Figure 2). Spe-
cifically, we run the algorithm on any of the channels where a seizure was detected by the clinical experts
in average montage and performed 5-fold cross-validation to compute sensitivity, specificity, and
accuracy.

Results in Figure 2 demonstrate that the selection of the channel had a secondary influence on all the per-
formance metrics, whereby the standard deviation was always about 5%. The channels with the lowest per-
formance were those located in the frontopolar region, which are known to be more affected by artifacts
(Hopfengértner et al., 2007). The performance of the detection algorithm did not seem to be affected by
the type of onset, whereby we recorded comparable performance metrics for different epileptic syndromes
(mesial hippocampal sclerosis, cortical dysplasia, and unknown origin; Table 1), seizure semiology (focal
aware, unaware, and bilateral tonic-clonic; Table 1), and type of onset (sharp rhythmic activity, low-voltage
fast activity, and low-frequency high-amplitude rhythmic spikes; Table 1).
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Figure 2. Sensitivity, specificity, and accuracy (in percent) for 5-fold cross-validation analysis of 24-h LEM
recordings of 10 different patients, from different channels of the LEM recordings

For each patient and each metric, we report data from central (blue diamonds) electrodes and electrodes in the right
(filled, red circles) or left (open, red circles) hemispheres, along with mean and standard deviation (black bars with
whiskers).

e-symbolic recurrence networks can serve as a visualization aid for seizure detection

Figure 3 illustrates the time-evolution of the topology of a e-symbolic recurrence network associated with
a channel during a seizure. In the ictal window, the network contains many isolated nodes that contribute
to low mean degree and closeness of the network, used as features by the RUSBoost algorithm. In the
pre-ictal and post-ictal phases, the connectivity of the network increases and only one node remains iso-
lated. Notably, these sharp changes in the topology of the network do not require a large number of
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Figure 3. Visualization of a seizure through the topology of the e-symbolic recurrence, constructed from 100 observations (0.391 s) from a single
channel (T3)

For clarity, the network is overlaid with the EEG recordings to display the onset of the seizure, ictal organization, and seizure ending and post-ictal. The
network is assembled using six symbols (embedding dimension m = 3) and proximity parameter & = 10 pV; each color identifies symbolic recurrence to a
different symbol. From the left to the right network, mean degree, betweenness centrality, and closeness are (11.04, 4.58, 1.37 x 10-3), (1.22, 4.55,0.16 x
10-3), and (9.77, 3.82, 1.21 x 10-3).

observations, whereby 100 datapoints are sufficient to visually discriminate different phases of the
seizure.

The performance of the detection algorithm compares well with existing methods that need
pre-processing

Results of the application of our algorithm to the UB dataset are presented in Table 3; in the analysis, sub-
sets Z, O, N, and F are regarded as interictal and subset S as ictal recording. Predictably, the use of intra-
cranial recordings systematically improves sensitivity, specificity, accuracy, and FAR with respect to our
original dataset in Table 2. Even though our approach does not require any form of data preprocessing,
its performance is highly comparable to other methods that rely on Gaussian or band-pass filtering. In or-
der to enhance the evaluation of the algorithm, we also tested its performance on surface LEM recordings
from TUSZ. Results presented in Table 3 indicate that our algorithm outperforms other FAR and has sensi-
tivity, specificity, and accuracy comparable to the best ones. Only one method (Raghu et al., 2020) leads to
an appreciably higher sensitivity than our approach. However, in addition to filtering, the methodology
presented therein requires an independent component analysis (multichannel-based), which further hin-
ders its real-time use in seizure detection. Likewise, only one study reports a specificity superior to ours
(Golmohammadi et al., 2017), but this comes at an unacceptable value of sensitivity that would hinder clin-
ical use of the algorithm.

DISCUSSION

In this work, we present a robust algorithm for epileptic seizure detection that yields high accuracy with
non-filtered scalp LEM recordings. We tested the algorithm on a new dataset of ten adult patients with
different epileptic syndromes, seizure semiology, and type of onset. For focal seizures, our results indicate
sensitivity, specificity, and accuracy of about 90%, true alarm rate of 95%, and selectivity (measured as false
alarm rate, FAR, per hour) of 0.14, in a 19-electrode common average montage. The selection of the chan-
nel has a marginal influence on the performance, which can vary by at most 5%. This could be explained by
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Table 3. Comparison of our detection algorithm against existing methods using the University of Bonn (UB)

database and Temple University Hospital Seizure Corpus (TUSZ)

Window FAR/
Work Patients/subsets length  Preprocessing Sensitivity Specificity Accuracy h
UB dataset
Tiwari et al. (2017) ZONF-S 100 Gaussian 93.10% 83.90% 88.50% n.r
samples filters
Samiee et al. (2015)  ZONF-S 173 n.r. 98.30%  91.60% 96.90% n.r
samples
Diykh et al., (2017) ZONF-S 384 Band-pass 97% 98% 97.90%  0.04
samples  filter 0.3-40
Hz
Li etal., (2018) ZONF-S 1second Band-pass filter ~ 93% 90% 91% n.r
0.53-40 Hz
This study ZONF-S 100 None 94.48%  97.88% 97.20% 0
samples
TUSZ
Ayodele et al., (2020) 29 1second n.r. 78.35% n.r. n.r. 0.9
Golmohammadi et al., 246 21 second n.r. 30.83%  91.49% n.r. 0.25
(2017)
Raghu et al., (2020) 316 1 second Notch filter + 95.50% n.r. n.r. 0.49
band-pass
filter (0.5-40 Hz) +
ICA
Tsiouris et al., (2018) 23 1 second Band extraction 84.92% n.r. n.r. 3.46
(1-13 Hz)
This study 13 100 None 86.64%  87.04% 87.15% 0.14
samples

Performance is presented in terms of sensitivity, specificity, accuracy, and false alarm rate (FAR) per hour. Results from our
algorithm are displayed in italic to ease legibility.
n. r.: not reported. ICA: independent component analysis.

the type of seizures included in the analysis of our own dataset: unaware focal seizures or focal evolving to
tonic-clonic. In both cases, changes on the EEG can be revealed in every channel, because of the gener-
alized propagation of the seizure.

In addition, we benchmarked our algorithm on two publicly available datasets that have been used by other
researchers to evaluate the performance of their algorithms. Whether the dataset comes from intracranial
or surface electrodes, our algorithm offers a valuable alternative to existing methods that require data pre-
processing, thereby opening the door to real-time seizure detection. Overall, the improved performance of
our approach with respect to the state of knowledge is based on the integration of a range of EEG-specific
features, from traditional statistics in the time-domain to unique e-symbolic recurrence measures.

Sensitivity

Our detection algorithm is characterized by a high seizure detection performance, whereby we registered a
sensitivity of more than 90% in at least 60% of the recordings from our dataset. Interestingly, the algorithm
performed equally well across the entire spectrum of seizure patterns. Both focal and bilateral tonic-clonic
seizures were successfully detected, independent of their type of onset. Even low-voltage fast-activity pat-
terns, which have been found to be difficult to detect through other methods (Meier et al., 2008; Hopfen-
gértner et al., 2014; Bomela et al., 2020), did not challenge the application of our algorithm. Just as the al-
gorithm performance was not affected by the seizure pattern, it did not vary across epileptic syndromes or
etiologies. The accuracy of the detection was equivalent for temporal mesial sclerosis, cortical dysplasia,
and unknown origin.
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Specifically, we documented sensitivity values that were generally above 90% except for one patient, for
whom it dropped to 66%. The reduced performance for this individual was likely due to the uniqueness
of one of the seizures that was suffered by this patient (discontinuous discharge). Our method is trained
to thoroughly recognize ictal patterns, characterized by the progressive reduction of the connectivity of
the e-symbolic recurrence network, along with sustained variations in the local growth of the time series.
This specific seizure seemed to fade twice during the recording, and its pattern varied between its onsets.
Although the algorithm was able to detect this seizure, some of the epochs during the event were not
correctly classified as positive, thereby reducing the sensitivity.

The sensitivity of our algorithm compares very well with other studies on LEM recordings in adults.
Following the lead of early studies by Gotman (1982), Gotman (1990), and Gabor et al. (1996), 15 years
ago Wilson et al. (2004) introduced the Reveal algorithm, which was tested on a total of 1,049 h of EEG con-
taining 672 seizures. The authors employed an eight-channel bipolar montage and a 60 s moving window
to identify background, seizures, and offset sections, demonstrating a sensitivity of 76%. In the last 15 years,
other groups, including Hartmann et al. (2011), Kelly et al. (2010), and Hopfengértner et al. (2007), have put
forward alternative algorithms, with sensitivity ranging from 79.5% (IdentEvent) to 90.9% (BESA).

True alarm rate

Sensitivity alone cannot be used as a metric of the accuracy of the detection algorithm. The same value of
sensitivity may correspond to vastly different scenarios, in which the algorithm perfectly detects all the win-
dows of a seizure and miss entire seizures, or it captures almost all the windows in any seizure. The second
scenario bears a higher practical relevance toward automated seizure detection. Although there is not an
official minimum time duration to define a seizure, we chose a time duration of 10 s, which also allows to
discriminate between sharp artifacts and meaningful subclinical epileptic discharges. This definition was
based on the following grounding. First, several previous studies have used an analogous definition (Hop-
fengértner et al., 2007; Hunyadi et al., 2012), thereby facilitating comparisons between methods. Second,
although a single generalized spike associated with a myoclonic jerk could be considered a very brief
seizure, semiologically relevant events usually last more than 20 s (Fisher et al., 2014b). Finally, most arti-
facts last less than 10 s (Schindler et al., 2001).

Twenty-three of the 24 seizures in our original database were correctly detected by the algorithm in cross-
validation analysis. The only event that was missed by the algorithm was very short in duration and limited
to only two channels, wavering on the edge of temporal intermittent rhythmic delta activity and subclinical
seizure. This finding is of great practical importance, whereby the usefulness of an automated seizure
detection algorithm depends on its capacity to discriminate every significant seizure during LEM record-
ings, and, ideally, to not miss any of them.

In the study by Gonzélez-Otéarula et al. (2019), it is reported that almost 50% of seizures can be missed by auto-
mated detection algorithms (Persyst and Gotman Event Detection), thereby questioning the added value of
automated approaches in comparison with visual analysis by clinical experts. Similar evidence regarding the
possibility of missing several seizures using existing approaches has been widely documented in the technical
literature. For example, Kamitaki et al. (2019) also found that the Persyst software detected 80 out of 105 sei-
zures in a study with 38 patients, and Rommens et al. (2018) reported a 19.7% of missed seizures by Encevis
EpiScan and BESA Epilepsy in a sample of 115 patients with 188 recorded seizures.

Selectivity

The high sensitivity and excellent seizure detection rate were accompanied by a low false alarm rate. Working
with our original dataset, the average FAR of our detection algorithm was of 0.14 events per hour (that is, less
than four per day), which is in the range of the lowest FAR reported in the technical literature (Baumgartner and
Koren, 2018). Just as high detection rate is required for a truly automated detection process, a low FAR is essen-
tial to minimize the clinical burden required for verifying the alarm and, potentially, act on it.

The integration of several features of the time series in the detection algorithm allows to faithfully classify
windows of short duration, which is critical to recognize chewing and EMG artifacts without data manipu-
lations or ad-hoc filtering. With only 100 observations (0.391 s) per window, our algorithm generates a
comprehensive representation of brain activity, upon which to detect seizures. Chewing is a rhythmic
artifact, which can be a potential confounder for seizures. By affording the analysis of small windows, we
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successfully discriminated between a continuous rhythmic ictal pattern and a discontinuous, although re-
petitive, chewing pattern. The EMG artifact, instead, has a wide spectral distribution that perturbs all the
classic EEG bands. In particular, EMG considerably overlaps with beta activity in the 15-30 Hz range but
may be as low as 2 Hz (similar to chewing), making the widely used alpha band also vulnerable to muscle
artifacts (de Cheveigné and Nelken, 2019). Previous automated seizure detection algorithms involve high
and low band pass filters (Baumgartner and Koren 2018), which can lead to a loss of information. Our algo-
rithm analyzes brain activity without succumbing to the need of artifact removal methods or, more impor-
tantly, filtering (Islam et al., 2016; Urigtien and Garcia-Zapirain, 2015)

Benchmarking on publicly available datasets

The majority of automated seizure detection algorithms was tested on the intracranial dataset on adults by
the University of Bonn (Andrzejak et al., 2001), scalp EEG data from children by the Massachusetts Institute
of Technology (Fergus et al., 2015; Bomela et al., 2020), and, to a lesser extent, scalp data from adults from
Temple University Hospital (Shah et al., 2018; Obeid and Picone, 2018). It is generally recognized that EEG
signals differ with age (Sheth, 2019), therefore it can be difficult to extrapolate the results obtained in a
children’s dataset to an adult population. Hence, we benchmarked our approach against datasets from
the University of Bonn and Temple University Hospital.

We demonstrated comparable or even superior performance to other methods on publicly available data-
sets, with the very same parameters utilized in the earlier implementation of the algorithm on our original
dataset. Specifically, we analyzed five subsets of intracranial recordings from the University of Bonn dataset
(Z, O, N, and F, against S) and scalp recordings from 13 patients from the Temple University Hospital
Seizure Corpus. Predictably, for the intracranial dataset, our algorithm performs even better than on our
original dataset, reaching a sensitivity of approximately 94%, a specificity of 98%, accuracy of 97%, and
no false alarms. This performance compares very well with existing methodologies (Tiwari et al., 2017; Sa-
miee et al., 2015; Diykh et al., 2017; Li et al., 2018), which require data preprocessing for artifact removal, in
the form of Gaussian or band-pass filters.

With respect to the dataset by Temple University Hospital, we report sensitivity, specificity, and accuracy
close to 87% and 0.14 false alarms per hour. These performance values are highly comparable to those at-
tained during the analysis of our dataset, thereby supporting the robustness and reliability of our algorithm
in the detection of seizures from LEM scalp recordings. Compared with other algorithms that were bench-
marked against this dataset (Ayodele et al., 2020; Golmohammadi et al., 2017; Raghu et al., 2020) our
approach offers the best false alarm rate and its sensitivity, specificity, and accuracy are in line with the
best available methods. Once again, in contrast with the literature, our algorithm does not require data
preprocessing, thereby favoring real-time applications.

Existing methods are typically tailored to a specific set of scalp or intracranial recordings, characterized by its
own unique features. The ability to successfully detect seizures across three different datasets, spanning intra-
cranial and scalp recordings, is a key strength of our algorithm. Importantly, this is achieved without any param-
eter tuning, whereby the same window length, proximity parameter, and embedding dimension are used across
all datasets. In general, we recommend the validation of new methods to mirror a similar approach, without
exclusively focusing on one database over another. Prudence is particularly warranted when working with the
popular database from the University of Bonn, where artifacts are virtually nonexistent and only selected seg-
ments of ictal activity are included. It is tenable that validation on this single dataset may lead to high sensitivity,
but it ultimately results in an unacceptably high number of false alarms in clinical practice that uses scalp data.

A step forward in the state-of-the-art on automated seizure detection

The introduction of e-symbolic recurrence in combination with other complexity measures, associated with
fractal dimension and Poincaré plot, holds promise in automated seizure detection. Although classical,
e-recurrence analysis has been pursued in previous studies on epilepsy (Acharya et al., 2011), its application
suffers from two main limitations. First, measurement noise can add arbitrariness to the analysis, by chal-
lenging the selection of the e-neighborhood that must be chosen to balance between the need to minimize
the effect of measurement noise in LEM recordings and the need to detect the seizure. Second, all recur-
rences are equivalently treated, without bookkeeping details about the local pattern of the LEM recording,
which can be informative of the seizure.
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A symbolic analysis can address both these issues by examining each LEM recording as a sequence of
symbols, which robustly encode information about the local pattern. However, a symbolic approach
alone (Caballero-Pintado et al.,, 2018) can create shortcuts in the recurrence analysis that could
mask the inference of brain activity from EEG data. Assessing recurrence with both the symbolic
approach and traditional e-neighborhood obviates this shortcoming, leading to meaningful network
representations of brain activity. The notion of e-symbolic recurrence is a contribution of this study.
Other seizure detection algorithms, based on a continuous representation of the EEG recordings,
need to renounce part of the data in the interest of gaining accuracy (Meier et al., 2008; Kelly
et al., 2010; Hartmann et al., 2011). Anchoring our approach in asymbolic representation of the dataset
mitigates this need, whereby our algorithm works on a complete dataset. Converting the huge amount
of information encoded in an EEG epoch into a coarse grain representation is similar to what epilep-
tologists routinely do through visual inspection (Petras et al., 2019). Human brain can recognize a
rhythmic activity hiding below mild EMG or chewing artifact, due to our ability to extract important
information from noisy environments (DiCarlo et al.,, 2012). Our algorithm mirrors this very step
through sequence of symbols that encapsulate salient dynamics of EEG signals, without confounds
from measurement noise.

Upon e-symbolic recurrence, we can construct colored network representations that could assist in the visu-
alization of epileptic seizures by epileptologists. Nodes in the network are associated with the time instants
in the recording, links correspond to recurrence, and the coloring labels the specific recurrent pattern. By
monitoring the density of the links in the network and their color, the epileptologist could visualize the brain
activity during a seizure, which will progressively destroy the links in the network. Ultimately, it is possible to
witness how the seizure starts, organizes, and ends, only by inspecting images. To the best of our knowl-
edge, none of the current systems offers such a transparent visual aid to the study of seizures. Although
digital EEG trend analysis and quantitative EEG with color-coded graphs have been performed in intensive
care monitoring for seizure and status epilepticus detection, they are not easy to interpret and have rela-
tively low sensitivity (Haider et al., 2016). A visual aid, easier to “read” than EEG graphoelements, could be
of great help to avoid misinterpretations and eventual disagreements between electroencephalographers.

In addition, complexity measures such as Katz's fractal dimension contribute to seizure recognition by
scoring the regularity and divergence of signals (Litt and Echauz, 2002), which are indicators of rhythmic
patterns (Wang et al., 2013). Even though features based on Poincaré maps are not commonly part of
the toolbox of seizure detection algorithms, they offer valuable insight into brain activity that was included
in our approach. Recently, Kusmakar et al. (2017) reported on the successful use of Poincaré plots in seizure
detection through accelerometry, but their successful use on LEM recordings was yet to be demonstrated.
Sustained variations in the local growth of the time series are often seen as a hallmark of ictal activity, mostly
in focal seizures, thereby providing a plausible explanation for the remarkable performance of features
based on Poincaré maps in our method.

Overall, this array of dynamic features offered a rich representation of brain activity during seizures, on which the
RUSBoost algorithm was successful in performing classification. Although previous studies have documented
the successful use of black-box classifiers, such as support vector machine (SVM) or K-nearest neighbors (KNN)
(Baumgartner and Koren, 2018), the unique nature of LEM recordings called for an alternative approach. Not
only are these EEG epochs high dimensional but also they are characterized by an imbalanced distribution,
with very few windows containing seizures and the vast majority pertaining to non-ictal activity. The RUSBoost
algorithm is a hybrid approach that uses a combination of sampling and boosting, whereby it performs random
undersampling of the majority class before building an ensemble of classifiers (Seiffert et al., 2009). RUSBoost
algorithm has been successfully used for sleep apnea detection in polysomnography (Veauthier et al., 2019),
and recent studies offer further backing to its use in seizure detection, through direct comparison with
black-box classifiers (SVM or KNN) (Solaija et al., 2018).

Limitations of the study

Our study has several limitations. First, we analyzed a small sample of patients, as the study was designed in a
proof-of-concept fashion. Some measures and methods implemented in our algorithm had never been used in
seizure detection, thereby calling for further testing before transition to a larger dataset—our next step.
Although working with a small group of patients, we avoided overfitting by utilizing 5-fold cross-validation, a
well-known method that overcomes small dataset limitations and provides accurate estimations regarding
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performance (Abbasi and Goldenholz, 2019). Second, we only included focal seizures in training and testing.
Adding generalized seizures in such a small database would have confounded the detection algorithm instead
of reaching a satisfying training. Now that the algorithm performance has been validated in the study of focal
seizures, we intend to broaden the spectrum to other types of ictal events, as well as a larger range of epileptic
syndromes. Finally, although a single-channel-based approach similar to ours is widely accepted (Baumgartner
and Koren 2018), it is prone to some unavoidable artifacts, especially in a common average montage, such as
electrode artifacts. This class of artifacts was entirely responsible for the very small number of false alarms in our
study; we believe that the combination of different montages would resolve this issue.

In forthcoming efforts, we intend to generate a universal multi-classifier to distinguish between focal and gener-
alized seizures (developing phase). By adding interactions between channels to the analysis and including
different montages, we could tackle propagation and synchronization in seizure evolution. By expanding on
our e-symbolic approach, we foresee the possibility of creating global recurrence network of the epileptogenic
zone, which could empower automated diagnosis and help elucidate how epileptic brain works.

Resource availability
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Materials availability
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Data and code availability

The automated detection algorithm is available for download at https://github.com/ManuelRuizMarin/
Classification-Algorithm. Datasets are stored at the I.V.M.’s home institution and could be provided
upon request.
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All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparent Methods

Dataset

The main database used in this study was obtained from the Epilepsy Unit in Hospital
Clinico Universitario Virgen de la Arrixaca (Murcia, Spain), after approval from the
Hospital’s Ethics Committee. Adult patients with refractory focal epilepsy, who were
admitted to the Epilepsy Unit for non-invasive LEM as part of their presurgical evaluation,
were included if they suffered from at least one epileptic seizure with corresponding EEG
ictal patterns during 24-hour monitoring.

Scalp LEM was recorded at a sampling rate of 256 Hz, with 19 electrodes placed
according to the international 10-20 system, using a 64-channel system Nicolet™EEG
NicOne. EEG was recorded from the following electrode positions: Fp1, Fp2, F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 and a reference electrode
(Z). Two certified experienced epileptologists, with the same display setting, visually
labeled the epileptic seizures in off-line LEM recordings, following the onset classification
based on the work by Perucca et al. (2014). Ictal activities with a minimum duration of
ten seconds and a maximum of any period were considered for the study. All raw LEM
datasets in common average montage were converted to EDF format and analyzed
without any filter settings, except for notch default filter. No epochs were excluded due
to artifacts (movement, chewing, EMG, eye-blinks, deteriorated electrodes, etc.). Thus,
a total of 241.5 hours of scalp LEM recordings was analyzed, including 24 identified
seizures (Table 1).

In addition, we benchmarked our algorithm on two publicly available datasets (the
UB dataset and TUSZ). The UB dataset was recorded from five different subjects
undergoing pre-surgical evaluation (Andrzejak et al., 2001). Recordings are divided into
five subsets of 100 single-channel EEG segments of 23.6 s duration recorded at a
sampling rate of 173.61 Hz. Subsets O and Z contain recordings obtained through
external surface electrodes from healthy subjects and subsets N, F, and S were recorded
intracranially from the epileptic patients. N and F are interictal recordings whereas subset
S correspond to seizure activity. In our study, subsets O, Z, N, and F were considered
as non-seizure and subset S as seizure activity.

The TUSZ is the largest open-source corpus of seizures and represents an
accurate characterization of clinical conditions (Shah et al., 2018; Obeid and Picone,

2018). EEG signals were recorded using the International 10-20 system electrode



placement at a sampling rate of 256 Hz. These EEG recordings were obtained from the
following electrode placements: Fp1, Fp2, F7, F3, Fz, F4, F8, T1, T3, C3, Cz, C4, T2,
T4, T5, P3, Pz, P4, T6, O1, and O2, in average reference montage (AR). In order to
guarantee comparability with our own dataset, we selected all of the EEG recordings
from version 1.5.2 (both development and training datasets) that matched the following
criteria: long term monitoring labeling (LTM), Epilepsy Unit origin (EMU) and at least one
seizure reported. A total of 20 patients fulfilled those criteria. From those, we excluded
recordings that were diagnosed of status epilepticus, for clinical reasons, and recordings
from patient 88 because they were unreadable on average montage. Therefore, 27
recordings from 13 patients were finally selected for analysis, containing a total of 77
seizures and 33.15 hours. No filtering or pre-processing was performed (not even a notch
filter).

Detection algorithm

Our approach unfolds along the following steps (Figure 1):
1. Manually analyze with clinical supervision a given fraction of the available LEM
recordings to determine the onset and termination of seizures.

Partition each LEM recording into w non-overlapping windows of length n,,.

Extract f a priori-selected features from each window to encapsulate brain

activity and facilitate detection of seizures, such as standard deviation and fractal

dimension.

4. Train an algorithm of choice for binary classification on the f features of the
manually analyzed recordings.

5. Test the trained model on the remaining fraction of the available LEM recordings,
without any supervision.

EEG is a non-stationary signal, which is typically segmented into shorter
stationary epochs (Wilson et al., 2004; Hopfengartner et al., 2007). The number of these
non-overlapping windows is controlled by the length and resolution of the time-series. In
our study, we use n,, = 100, which corresponds to approximately 0.391 s, given the
sampling frequency of 256 Hz. The fraction of windows that should be manually classified
to train the classification algorithm depends on practical considerations. Training on a
small dataset may not be sufficient to identify model parameters, but training on an
excessively large dataset could produce overfitting and hinder the predictive power of
the model on new observation. Here, we opt for a K-folds cross-validation with K = 5 to
evaluate the model performance.

Step 3 of the detection algorithm contains the main element of novelty of our



approach, which combines descriptive and complexity measures of time-series.
Specifically, given the time-series of EEG recordings in a given window x =
{x1,%2, ..., %y}, we compute few classical statistical measures (D: descriptive) and a
range of features that capture fractal dimensions, local growth, and recurrent dynamics
(C: complexity).

While all the descriptive measures are computed on the raw time-series, some
of the complexity measures addressing recurrent dynamics are based on a new scheme
to perform recurrence quantification. This scheme integrates traditional recurrence
quantification methods with recent advancements in symbolic dynamics (Caballero-
Pintado et al., 2018), whose application to the detection of atrial fibrillation and the study
of behavioral patterns in humans and animals has been demonstrated by Pérez-Valero
et al. (2019) and Boldini et al. (2019), respectively. The uniqueness of the application
presented herein entails the study of multivariate time-series.

Classical recurrence is defined in terms of m-histories (Takens, 1981) that
encapsulate local properties of the time-evolution of a times-series, such as their value
and slope. These m-histories take the form %; = (x¢, X¢41, ) Xt4+m—1), Where m is the
embedding dimension and t=1,..,n, —m+1. As originally stated by Eckmann
(1987), for a positive real number ¢, two m-histories %, and %; are said to be ¢-
recurrent when ||X; — Xs|| < &, where & (known as proximity parameter) is a threshold
distance and || - || is the Euclidean norm.

This definition can be extended to symbolic representations through ordinal
patterns as illustrated by Caballero-Pintado et al. (2018). Ordinal patterns offer a potent
coarse-grain tool to study dynamical systems. For example, the seminal work by Bandt
and Pompe (2002) has demonstrated the rigorous use of Shannon entropy of ordinal
patterns to probe the complexity of dynamical systems. Although the use of ordinal
patterns is responsible for obvious information losses (such as the numeric values of the
time-series), it offers a range of practical advantages that often offset this limitation. For
instance, ordinal representations are more robust to the presence of noise and can
naturally capture complexities and dynamical changes in time-series (Zanin et al., 2012;
Keller et al., 2014).

Formally, the ordinal pattern associated with X, is the permutation (i, i, ..., i,;)
satisfying the following conditions:

(@) Xpyiy < Xeyiy <0 < Xy, and

(1)

(b) is-1 <isif Xttig_y = Xt+ig
Condition (b) guarantees the uniqueness of the permutation. In a symbolic sense, two

m-histories X¥; and X, are said to be symbolic recurrent if both have the same ordinal



pattern. For example, if m = 2, we would require that the slope of the time-series be the
same, either positive or negative.

In general, m-histories that are recurrent in the traditional sense may not be
recurrent in a symbolic sense, and vice versa. By merging these two notions of
recurrence, we identify e-symbolic recurrent m-histories, as the subset of m-histories
that are recurrent in both the classical and the symbolic sense. The combination of
classical and symbolic recurrence is expected to beget a viable strategy to mitigate
measurement noise that is known to plague classical recurrence analysis, while avoiding
shortcuts that are associated with the limited alphabet of a symbolic representation
(Caballero-Pintado et al., 2018; Porfiri et al., 2019). In our analysis, we use m = 3 to
create a rich and reliable symbolic representation of the time-series, from the n,, = 100
instants of each window. The value of ¢ is chosen to be 10 pV, which is on the order of
magnitude of normal brain activity during wakefulness (Tatum et al., 2018; Biasiucci et
al., 2019).

Below, we report the f = 8 features we examine.

D1.Standard deviation:

where x is the mean.

D2.Mean absolute deviation with respect to the median:

1
Due =— Y| % = Mel @)

where Me is the median. This quantity differs from the standard deviation,
whereby it ascertains the dispersion of the time-series with respect to the median,
rather than the mean.

D3.Skewness coefficient:

1 & B
Skw=;2(xt—x)3 (4)
t=1

This quantity provides an estimate of the symmetry of the time-series about its
mean.
C1.Katz fractal dimension:
_ Log (n, — 1) (5)
Log (n,, —1) + Log (d/L)

Here, d is the diameter of the curve in the t — x plane associated with the time-

KFD

series, estimated as the Euclidean distance between the first and the farthest



point of the sequence

nw

d = max {\/(1 —t)%+ (xq — xt)z} (6)

t=1

and L is the total length of the curve, estimated from the sum of the distance

between successive points

ny—1

L= ) T+ @ - %) (7)
t=1

The fractal dimension is typically bounded between one and two, with one
representing the least complex time-series (a straight line) and higher values
being associated with more complex time-series.

C2.Area of the second-order difference plot (Pachori et al., 2014). To calculate this
feature, we create a Poincaré plot of the increments in the time-series

Yo =Xp41 — Xt (8)

Zp = Xpy2 — Xt+1 (9)
We fit the Poincaré plot with an ellipse, whose 95% estimated area A is the

feature utilized to estimate the local growth, according to

A:&#6§+%V—D2 (10)

with

(11)

(12)

(13)

D=J$+£—M$%—$ﬁ (14)

The larger is the area of the ellipse the more is variation in the local growth of the
time-series.

C3.Mean degree of the e-symbolic recurrent network, which is constructed from the
recurrence analysis. Grounded in the proposed notion of recurrence, we put
forward a network visualization of recurrent behavior, wherein each node is
associated with a time instant and two nodes are connected if the corresponding

m-histories are e-symbolic recurrent. The vertex set of the network is V =



{1,..,n, —m+ 1} and (¢,s) is an element of the edge set € if X, and X, are
e-symbolic recurrent. This definition extends the analysis to combined e-symbolic
recurrence (Zou et al., 2019). The mean degree is indicative of the number of m-
histories that are e-symbolic recurrent.

C4.Mean betweenness centrality of the e-symbolic recurrent network:
vl i

— 1 nge ()
bet = —2 Z fselt) (15)
21 £y s "N

where ng(u) is is the number of shortest paths from s to ¢t that pass through
node u and Ng; is the total number of shortest paths from s to t. This quantity
scores the local connectivity in the network, which is a measure of e-proximity of
the m-histories that have the same ordinal pattern.

C5.Mean closeness of the e-symbolic recurrent network:

v
1 WE:

- N (16)
VIV 1?4 ¢

clo =

where M, is the number of reachable nodes from X, (not counting itself), and C,

is the sum of distances from node X, to all reachable nodes. This quantity offers

a further measure of centrality in the network.

Upon scoring features for all the windows in the dataset, we must train an
algorithm for classification on the manually analyzed data. We implement the RUSBoost
algorithm (Seiffert et al., 2009), which is a hybrid sampling/boosting algorithm with
decision trees as learners. This algorithm is optimal to solve classification problems,
where one class in a training dataset vastly outnumbers the other class, as in the case
of epileptic seizure classification. After training, the detection algorithm works directly on

LEM recordings, without any clinical input.
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