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ARTICLE INFO ABSTRACT

Classical molecular dynamics (MD) has been widely used to study atomistic mechanisms and emergent behavior
in materials at length and time scales beyond the capabilities of first-principles approaches. The success of
classical MD simulations relies on the ability of classical interatomic potentials to accurately map complex
many-body interacting systems of electrons and nuclei into effective few-body interacting systems of atoms. In
practice, the development of interatomic potentials is a nontrivial process and requires considerable amount
of effort. Recently, machine learning has become a promising approach to accelerate interatomic potential
development. However, these machine learning approaches are often computation and data intense, as they
require a large amount of training data from first-principles calculations, such as total energies, atomic forces,
and stress tensors of many atomistic structures. Here we propose an active learning approach combined with
first-principles theory calculations to expedite the development of machine learning interatomic potentials. In
particular, we develop a batch active learning method which combines both energy uncertainty and structure
similarity metrics to efficiently sample the highly uncertain structures that are difficult to predict. This active
sampling approach maximizes the utility of the dataset in each batch and generates interatomic potential
with highly accurate and robust model coefficients which are difficult to achieve with conventional sampling
approaches. To demonstrate this batch active learning method, we develop an active learning potential for
monolayer GeSe, a two-dimensional ferroelectric-ferroelastic material, and compare the quality and robustness
of the active learning potential with the potential obtained from random sampling. Batch active learning
method opens up avenues for accelerating the development of robust and accurate machine learning potential
using a small set of atomistic structures which will be valuable for computational materials, physics, and
chemistry community.
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1. Introduction

The potential energy surface (PES) of many-body systems governs
the thermodynamic and kinetic properties of materials under spe-
cific boundary conditions and external fields. For a given atomistic
system, its exact PES lives in an extremely high-dimensional space
where electronic degrees of freedom pose particular challenges due
to the inherent quantum-mechanical wave nature of electrons. Clas-
sical interatomic potentials, i.e. classical force fields, are introduced
to map the complex quantum system onto a classical system using
effective few-body interatomic interaction potentials. The latter en-
ables efficient calculation of interatomic forces and subsequently the

dynamics of atomistic structures under different conditions. Classical
interatomic potentials calculate the forces and energy of atomistic
structures without the explicit description of electrons, thus facili-
tate large-scale molecular dynamics (MD) simulations which provide
atomistic insight into the behavior of materials, ranging from nano-
materials [1-3] to irradiated metals [4]. However, the development
of classical interatomic potentials, the cornerstone of MD simulations,
is not only time-consuming, but also requires considerable expertise
and extensive benchmarking. Moreover, the transferability and in-
terpretability of classical interatomic potentials remains a significant
challenge.
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Recent advances in machine learning have enabled the rapid de-
velopment of machine learning interatomic potentials combining first-
principles density functional theory (DFT) calculations with machine
learning algorithms [5]. These machine learning potentials are gener-
ated by fitting a set of environment-dependent atomistic descriptors to
physical properties calculated by DFT, such as total energies, atomic
forces, and stresses of atomistic structures. Many different atomistic
descriptors and models have been proposed, for example, Spectral
Neighbor Analysis Potential (SNAP) [6], Atomic Cluster Expansion
(ACE) [7], Gaussian Approximation Potential (GAP) [8,9], Moment
Tensor Potentials [10], AGNI interatomic potential [11], and Neural
Network Potential (NNP) [12-14]. These atomistic descriptors and
physical properties are used to train the models with various machine
learning algorithms, such as kernel ridge regression, linear regression,
Gaussian processes, support vector machines, and neural networks.
Some descriptors adopt specific models, e.g. NNP [12,15-17], or even
build their own models, i.e. Potential Optimization by Evolutionary
Techniques (POET) [18].

Unlike conventional interatomic potentials, machine learning po-
tentials often require performing first-principles calculations to sample
thousands of structures, making their development computationally
expensive. While these potentials are trained on large sets of structures,
it is possible that only a subset of these structures are truly necessary
to properly train the potential, which implies that a large number of
computationally intensive first-principles calculations would be wasted
on generating data with marginal utility to the training task. Active
learning methods, on the other hand, constitute an effective approach
to train machine learning potentials by optimally selecting the training
structures which are most likely to improve the performance of the
model. Among a pool of potential structures that have yet to be simu-
lated via first-principles methods (unlabeled data), the active learning
algorithms will select the ones to simulate (labeled data) based on an a
priori defined acquisition function. The procedure above is carried out
iteratively, enabling the development of accurate and consistent models
in an optimal manner. Active learning methods become particularly
beneficial when the unlabeled (i.e. yet to be acquired/simulated) data
is plentiful and the labeling of data is expensive. For classical MD
potentials, generating new structures can be done quickly and cheaply,
while labeling them would require DFT calculations that are highly
computationally demanding.

Active machine learning potentials have been predominately devel-
oped in two categories: the on-the-fly approaches and the structure
exploration approaches. The on-the-fly approaches perform an MD
simulation using the currently trained machine learning potential and
then determines if the generated structures fail to meet some criteria,
ie. too large of an uncertainty or over-extrapolation. If the generated
structures fail, those structures will be cast into DFT calculations and
subsequently included in the training set to retrain the potential [19-
23]. These on-the-fly approaches can be used during real simulations
to test the validity of predictions. However, they do not intend to
actively search for those structures that will improve the potential the
most. In addition, these on-the-fly approaches rely on the prior trained
potential to guide the exploration of configuration space, so it may miss
important structures if the prior trained potential avoids those spaces.
The second category is the structure exploration approaches which
search for new and unique structures in the configuration space [24,24—
28]. In this category, the selected structures are the most dissimilar
ones from the other structures and various methods have been proposed
to quantify the dissimilarity [27,29-32]. An important benefit of the
structure exploration approaches is that they can be used when there
is no information available on the material and can run with almost no
human input. However, they often ignore the predictive capability of
the prior trained model for exploring new structures, hence they may
select structures that are already well-predicted, or choose structures
that are far away from the desired simulation environment.
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In this work, we introduce a batch active learning method that
selects structures using both the structure’s dissimilarity and the poten-
tial’s predictive capability. By using both metrics, our method selects
multiple structures without updating the potential while avoiding re-
dundant information. Selecting multiple structures in a single batch
allows for running multiple DFT calculations to label the sampled
structures in parallel, ie. batch active sampling, thereby significantly
accelerating DFT-based structure labeling. We will show that our active
learning method produces consistent and accurate potentials by per-
forming training on difficult structures, i.e. structures with larger errors
in the predicted energy/forces. The accuracy of our active learning
potential is validated by the atomic forces, phonon dispersions, and
transition temperature of multiferroic monolayer GeSe from a series
of MD calculations. Our results show that our active learning method
offers an efficient approach for developing accurate and consistent
potentials with well-converged coefficients for monolayer GeSe using
only 3,000 structures from a large database of 13,006 structures [33].

2. Methods
2.1. Batch active learning

A schematic of our active learning method is shown in Fig. 1.
Our method starts with a pool of candidate structures, ie. a set of
pre-generated structures representing the input structure space. N,
structures (N;=10 in the present case) are randomly selected from the
pool of structures with their energies calculated using DFT to create the
initial labeled structures, while the other structures are the unlabeled
structures. The labeled structures are used to train N,, models (N,, =
10 in this work), and these trained models are then used to estimate
the energy uncertainty « of all the unlabeled structures. Subsequently,
the feature distances ® is the distance in feature space between the
unlabeled structures and all the selected structures are computed. Both
energy uncertainty and feature distance metrics will be explained in
detail in the latter part of this section. Using the energy uncertainty
and feature distance metrics, a combined score s is determined for
each unlabeled structure. The unlabeled structure with the highest
score is selected, and the distance metrics are recalculated for all the
unlabeled structures by including the newly selected structures. The
uncertainty metric does not need to be recalculated, as the labeled
structures (training data) have not changed. This procedure is repeated
until all the structures for a batch, Ngp structures per batch, are com-
pleted (Ngp = 10 structures/batch in this work). As an example, the
first structure is selected solely based on the uncertainty. The second
structure is selected by the uncertainty and the feature distance from
the first structure. The third structure is selected by the uncertainty and
the feature distance from the first two structures. Once Ngj structures
in the batch are selected, all the selected structures will be evaluated
using DFT and transferred to the labeled structures. Then a termination
criterion will be tested. In this work, the termination criterion is met
simply when 3,000 structures were calculated, which can be considered
as the given DFT computation budget. If needed, any other user-defined
criterion can be applied here. If the termination criterion is not met,
the process restarts by retraining the N,, models with the new labeled
structures and re-evaluating the uncertainty. This outer loop is repeated
until the termination criterion is reached, and a final model is trained
on all of the labeled data.

As previously mentioned, the first step in our active learning method
is to pre-generate a pool of structures representing the structure space
relevant to the physical processes under the anticipated simulation con-
ditions. These structures can be meta-stable states, transition pathways,
compressed/expanded structures, etc. along with perturbations to these
structures due to thermal fluctuations. The pre-generated structures
will be cast into one of three mutually exclusive groups throughout
the active learning process: labeled, unlabeled, and selected structures.
The labeled structures are those which have been calculated/evaluated
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Fig. 1. Schematic of the flow diagram of our batch active learning method.

using DFT, the unlabeled structures are those which have not been
calculated, and the selected structures are those unlabeled structures
that have been selected by active learning in the current batch and
will be labeled by DFT calculation/evaluation. Additional details on our
pool of structures and energy calculations can be found in the Methods
section.

From all the unlabeled structures, our active learning method will
select the next structure based on two criteria: the ith structure’s energy
uncertainty ¢; and its feature distance 9, from the current selected
structures. The energy uncertainty ¢; is estimated by using a query by
bootstrap aggregating (bagging) methodology [34,35]. This uncertainty
approach is similar to the methods used in other works to estimate the
uncertainty [36-39]. N;, subsamples each having 80% of the labeled
structures are sampled using bagging, which are then used to train
N, models. Each model m predicts a potential energy E,, for every
unlabeled structure i. The uncertainty is estimated as the standard
deviation between the N,, energy predictions, ¢; as follows,

(€Y

where the summation is taken over all N,, models. Intuitively, the
more uncertain the energy predictions of the structure are, the more
difficult the reliable prediction can be achieved. Therefore, obtaining
the DFT calculated labels (i.e. energy in this work) and adding the
corresponding labeled structures have a better chance of improving ma-
chine learning predictions overall than the classical machine learning
settings with random sampling of training data.

Selecting multiple structures at each batch allows for running DFT
calculations in parallel to label the selected structures, significantly
reducing the total time to generate the interatomic potential model.
However, selecting multiple structures by using exclusively the en-
ergy uncertainty as the utility metric/acquisition function may result
in redundant information from selecting similar structures which are
expected to have similar energy uncertainty. A simple example of this
would be if the same structure appears twice in the dataset. Both
structures would have identical energy uncertainty and therefore be
selected together using only the energy uncertainty. However, these
two structures would be completely redundant and provide no new in-
formation. To remedy this issue, we use a distance metric 9 to penalize
the structures that are close to the current selected structures in the
feature space y. The distance metric for the ith unlabeled structure, ?;,
is the summation of the Euclidean distances between the ith unlabeled
structure’s feature vector, j¥;, and the jth selected structure’s feature
vector, 7;, summed over all the current selected structures j, i.e. ,

n=3li-7|

This » metric will be small for the structures that are similar to the
current selected structures.

Using the energy uncertainty ¢ and feature distance O, the algo-
rithm will iteratively select the unlabeled structure with the highest
score ;, which is a weighted sum of 7, and ©; normalized by their
mean value over all unlabeled structures, @ and ©. That is,

5;=a<§>+ﬂ<2>. @)
u D

In this work, « was 0.9 and p was 0.1. The weighting factor was
chosen to minimize the model uncertainty while generating a stable
model. However, in our testing we found that the weighting factors
had minimal effect on the accuracy of the model when the a-to-p
coefficient ratio varies between 0.9:0.1 and 0.4:0.6. As an example of
our active learning method, the first structure is selected purely based
on energy uncertainty 4. The second structure is selected by the energy
uncertainty ¢ and the feature distance 2 from the first structure. The
third structure is selected by the uncertainty and the feature distance
from the first two structures, and so on. This procedure is repeated
for as many structures as desired, and all the selected structures are
then labeled by first-principles DFT calculations. Once Ngp structures
are selected and calculated, a batch is completed and the selection
process for the next batch will be restarted by recalculating the energy
uncertainty of N,, models. The stopping criteria can be decided by the
user, e.g using a convergence threshold of desired physical properties.
In this work, the stopping criterion was set to 300 batches (i.e. Ny =
300), corresponding to 3,000 structures (i.e. Np X Ngp = 300 % 10 =
3,000).

Adopting this batch active learning method, we successfully created
a potential for monolayer GeSe using less than 25% (i.e. 3,000) of
the total 13,006 structures from DFT calculations generated by Yang
et al. [33]. By examining the training and test error, we found that
our active learning method tends to select structures that are difficult
to predict as expected. As will be shown below, the models trained
on these difficult structures result in a more consistent and accurate
potential with well-converged model coefficients. Subsequently, we
validate this approach by applying the active learning potential to
predict atomic forces and comparing it with the DFT-calculated results.
For comparison, each test was performed using both the above active
learning approach and a random sampling approach for N times with
different random starting conditions (N¢=10 in this work). Finally we
successfully predict GeSe’s phase transition using this active learning
potential in a MD simulation.

2.2. Interatomic potential

The potential form adopted here is based on the AGNI interatomic
potential [11]. We consider two types of structural descriptors, in-
cluding two-body descriptors Viz” and three-body descriptors 1/13”, with
E = V7 4+ V3. That is, the total energy is the sum of two-body and
three-body energies. V> only depends on the bond length, while V**
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Table 1

Parameters for the machine learning interatomic potential.
Parameters #1 #2 #3 #4 #5 #6 #7 #8
n (A) 1.0 1.329 1.766 2.347 3.120 4.146 5.510 7.333
K (1“\7]) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
5 (A) 1 1.766 3.120 5.510 - - - -
f(cos(8;)) 0053(0/,k) cosz(ﬁiik) - 4cos4(9/,k) 1- % cosz(9/,k) - - - - -

depends on both bond lengths and bond angles. The explicit forms of
V?b and V;* are given below,

Vl_2b = Z e"uil™ . cos(k - i) fe(rij). Q)
J#
_ 2
Vit = Y eI L fcos(B0) - folri) - Fulri) ®)
okt
where
1 nry; ) ]
= |cos + 1, for r;; < R,
forip) = 2 [ < R, ij ¢ (6)
0, for r;; > R,.

Here, r;; stands for the bond length between atom i and atom j. f,(r;;)
is a radial cutoff function, which is zero for r;; > R.. In this work, R,
is set to 5.5 A. Furthermore, 0, stands for the bond angle between
two bonds r;; and ry. 1,, 13, and x are three model parameters in the
above two exponential functions and the cosine function, respectively.
f(cos(9;;)) in the Vf” descriptor are angle-dependent functions. #,, «,
113, and f(cos(8;;,)) are provided in Table 1.

For GeSe monolayer, Vizb consists of 3 two-body families of bond
length dependent energy contribution [33], including Ge-Ge, Ge-Se,
and Se-Se pairs [8,40-44]. In each two-body family, 8 sets of model
parameters (#,, ) are used. For the 3 two-body families, this leads to
total 3 x 8 = 24 V?» descriptors.

V3 consists of 8 three-body families of bond length and bond
angle dependent energy contribution, including ~Ge-Ge-Ge, «Ge-Ge—
Se, «Ge-Se-Ge, «Se-Ge-Ge, «Ge-Se-Se, «Se-Ge-Se, «Se-Se-Ge, and
#Se-Se-Se. For GeSe monolayer, we use 3 f(cos(d;;)) functions and
4 n; model parameters for each three-body family. For 8 three-body
families, this leads to 3 = 4 % 8 = 96 three-body V;*» descriptors. In
addition, we include a constant as an additional descriptor. In total,
we therefore have 24 + 96 + 1 = 121 descriptors, resulting in a feature
vector with length of 121.

For the machine learning model, we use kernel ridge regression
(KRR) with a linear kernel using the 121 highly-nonlinear features
discussed above. The KRR was implemented through sklearn [45]
with the regularization coefficient set at 0.0001. This model was fit
to the average energy per atom, i.e. , the total energy divided by the
number of atoms in the supercell.

2.3. First-principles dataset

In this work, we use the dataset from Yang et al. [33] which was
generated by using the Vienna ab-initio simulation package (VASP) [46,
47] based on first-principles DFT approach [48,49] with Perdew-
Burke-Ernzerhof (PBE) [50] exchange—correlation function within the
generalized gradient approximation (GGA) [51,52]. According to the
paper by Yang et al. [33], the structure pool was created by ab
initio MD simulations of a supercell with 32 Ge and 32 Se atoms at
constant volume and temperature (50 K, 300 K, 500 K and 800 K)
for 6,000 time steps with a time step of 3 fs. The training database
also contains the relaxed structures at 0 K under strain-free conditions
as well as under various uniaxial and biaxial strains. In addition, it
includes a transition pathway of a 90° domain switching where a linear
interpolation scheme was adopted to generate 100 structures along the
domain switching pathway. In total, the structure pool contains 13,006
structures.

2.4. Molecular dynamics simulations

To apply the active learning potential in MD simulations, we con-
structed a monolayer of GeSe in a 20 x 20 supercell with each unit cell
containing two Ge atoms and two Se atoms. Thus, there are 800 Ge
atoms and 800 Se atoms in this model. MD simulations were carried
out using LAMMPS [53] with the trained active learning potential to
simulate the temperature induced phase transition in monolayer GeSe.
In the MD simulation, monolayer GeSe was relaxed and equilibrated
in an NPT ensemble at 50 K for 40 ps. We then used a step-heating
method to heat the system from 50 K to 450 K with a temperature step
of 50 K. At each temperature, the structure was relaxed for 40 ps. All
the potential energies and lattice constants were obtained by averaging
the data in the last 20 ps at each temperature.

3. Results

Our batch active learning process selects the structures with high
energy uncertainty and structural dissimilarity, which are relatively
difficult to predict among the pool of candidate structures. As shown in
Fig. 2(a), the training error is higher than the error on the un-sampled
data for the active learning potential, which has a different trend
compared to the random sampling procedure as shown in Fig. 2(b).
This confirms our expectation that the structures in the training data
selected by active learning dependent on the prediction uncertainty
are more difficult to predict than the structures in the remaining
un-sampled data. It is also clear from Fig. 2 that the error on the
un-sampled data during the batch active learning procedure across all
the batches is consistently lower than the one by random sampling,
demonstrating the effectiveness of our batch active learning procedure.

By directly examining the model coefficients, our potential is shown
to be more consistent and is more accurate as expected. As mentioned
in Section 2.2, the model used in this paper is a kernel ridge regression
with a linear kernel of 121 model coefficients (C) associated with 121
descriptors, including 24 two-body structure descriptors, 96 three-body
structure descriptors, and one constant. Fig. 3(a) and Fig. 3(b) show the
Euclidean distance (HC‘ - éa,,‘)) between our model coefficients from

active learning (6‘) and the model coefficients trained on all 13,006
structures (C,;;), respectively. For most batches, our active learning
potentials have less variance in their coefficients when compared to the
potential trained with random sampling. Moreover, with higher batch
numbers (e.g. Nz > 200), all the active learning potentials converge
to similar coefficients, whereas the potentials trained with random
sampling still have significant variance among the models. On average,
the active sampling potentials are closer to the potential trained on all
the data. As these are data-driven potentials, the model trained on all
the data is expected to be the best predictor for the data. As our model
coefficients converge closer to the model trained on all the data, we
expect our model to be more accurate on the represented population.
In Fig. 3(c) and Fig. 3(d), we also show that the potential’s coefficients
converge with active sampling, whereas with the random sampling the
potential’s coefficients still vary significantly even after 300 batches.
All 121 coefficients are shown in Supplementary Fig. S1 and Fig. S2.
The large variation from the potentials trained on randomly-sampled
structures is particularly worrisome, as it could result in different
predictions for the same simulations by using random sampling based
interatomic potential. In contrast, all 121 coefficients of the 10 active
sampling based interatomic potentials quickly converge with ~2,000
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structures (i.e. ~200 batches), implying that our active learning method
generates interatomic potentials that are more consistent and robust
than the ones from the random sampling approach.

Using our active learning method, the forces are more consistent
and accurate, and have fewer outliers when compared to random sam-
pling, as can be seen in Fig. 4. In Fig. 4(a), the active learning potentials
have a smaller root mean square error (RMSE) and have significantly
less variance in the RMSE when predicting the forces than using the
potentials from random sampling. Furthermore, Fig. 4(b) and Fig. 4(c)
show the comparison between the forces from DFT calculations and
the forces predicted by the potentials trained on 1,000 structures from
active learning (Fig. 4(b)) and random sampling (Fig. 4(c)). It demon-
strates that random sampling has a significant number of outliers in the
predictions when trained on 1,000 structures, whereas the active learn-
ing has no outliers in the predicted forces across the whole range. Both

results indicate that our active learning method consistently produces
accurate and robust models. The robustness is especially important
as outliers in the force predictions can result in different dynamical
processes and atomic trajectories in MD simulations.

Besides the improvement of atomic force predictions, the phonon
dispersions are also more consistent when using the active learning
method, as seen in Fig. 5. Using the active learning method, the
predicted phonon dispersions have a small variance for the potentials
trained on 1,000 structures, and the variance becomes negligible for
the potentials trained on 3,000 structures as shown in Fig. 5(a) and
Fig. 5(b). In the case of random sampling, the predicted phonon dis-
persions have a considerably larger variance for the potentials trained
on 1,000 structures which remains significant even for the potentials
trained on 3,000 structures as evidenced in Fig. 5(c) and Fig. 5(d). The
large variance in the phonon dispersions indicates different random
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Fig. 5. (a), (b) Phonon dispersion predicted by the potential trained on (a) 1,000 and (b) 3,000 actively sampled structures. (c), (d) Phonon dispersion predicted by the potential
trained on (c¢) 1,000 and (d) 3,000 randomly sampled structures. The shaded blue region indicates the standard deviation from N different starting conditions (Ng = 10).

sampling may significantly affect the finite temperature simulations
and result in very different predictions of thermal and thermodynamic
properties.

To further demonstrate our active learning potential, we carry out
MD simulations to predict the phase transition temperature of mono-
layer GeSe, which is the temperature where GeSe changes from an
orthorhombic structure to a cubic structure and loses its ferroic order.
The phase transition temperature was determined by simulating mono-
layer GeSe using MD at different temperatures and then calculating the
potential energy and lattice constants. The results are shown in Fig. 6(a)
where the potential energy becomes discontinuous between 300 K and
350 K. The same discontinuity is observed in the average lattice con-
stants along x and y directions in Fig. 6(b). The lattice constants in the
x and y directions converge to the same value, implying a cubic lattice
on average corresponding to a transformation to a cubic phase. These
discontinuities indicate a first-order phase transition occurring between
300 K and 350 K, which is in agreement with previous results [33,54].
Our active learning approach provides an effective approach to bridge
first-principles DFT to large scale atomistic simulations with robust and
consistent active learning potentials.

4. Discussion

Our active learning method could be particularly useful when a pre-
sampled pool of structures are available in advance. This may occur
when in-depth knowledge of the physics and corresponding simulation
environment (e.g. strain/temperature, phase transitions, or other envi-
ronmental conditions) is available, and one can therefore generate the
relevant structures. One example may be a transition pathway where
one can interpolate the initial, final, and other relevant intermediate
structures. Meanwhile, more databases are becoming available to the
community which sometimes contain a pre-sampled and well-sampled
pool of structures. However, the databases may be unintentionally
biased towards some specific structure space. In these cases, this active
learning strategy could help achieve machine learning potentials with
reduced bias.

However, in real-world scenarios a sampled pool of structures very
often does not exist. One therefore has to iteratively generate and
sample new structures in order to explore PES. In this case, if a
classical potential exists, one could use this classical potential in MD
or Monte Carlo (MC) simulations to generate a pool of structures.
Otherwise, one could first train a machine learning potential on a
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Fig. 6. (a) Temperature dependent potential energy for monolayer GeSe from MD simulation under N PT ensemble using the active learning potential. (b) Temperature dependent
lattice constant in the x and y direction for monolayer GeSe from MD simulation under NPT ensemble. The shaded region indicates the standard deviation obtained from MD
simulation. (c), (d), (e) Small section of monolayer GeSe at 0 K, 250 K, and 450 K, respectively. Full atomistic structures can be found in Supplementary Material.

small set of initial structures from either random sampling approach
or advanced sampling methods, and then perform MD/MC simulations
to generate new structures and update the machine learning potential
with actively sampled structures iteratively. For those cases where the
PES is difficult to explore using conventional MD, one may need to
use metadynamics [55] to explore free energy surface and sample the
structures. Moreover, if little information is known about a material,
USPEX [56] or Nested Sampling Monte Carlo method [57] can be used
to find initial stable and metastable configurations.

It is worth emphasizing that only the structures sampled by active
learning need to be calculated by DFT. This will greatly reduce the
computational cost while generating a potential that can accurately
simulate the desired environment. If one is interested in simulating
a different environment (such as defects, surfaces, or a new meta-
stable phase), then those structures can be easily added to the pool of
structures and the active learning can be restarted from there.

Furthermore, the total computational cost of generating an active
learning potential is dominated by DFT calculations on the structures
selected by active sampling. While both the energy uncertainty, «, and
feature distance, ?, need to be evaluated for every unlabeled struc-
ture, these are computationally very cheap. Specifically, for energy
uncertainty ¥;, the N,, interatomic potential models, instead of DFT
calculations, will be used to quickly evaluate the total energy of all
unlabeled structures for each batch, which is computationally very
efficient. For computing feature distance 9,, the Euclidean distance
between the selected structures (Ngp structures per batch) and all
the unlabeled structures in the feature space will be calculated for
each batch, which is computationally efficient as well. Even if the
number of the initial structures is large, the overall computational cost
is still dominated by the DFT calculations for labeling the N selected
structures.

It is worth pointing out that our active learning method can generate
a model that is more accurate than a model trained on the entire pool
of structures under certain conditions. One example would be a pool of
structures with most of them located close to equilibrium. If trained on
the entire pool of structures, the model would be biased towards the
equilibrium structures, and less accurate for describing the structures

away from equilibrium. In contrast, our active learning method would
avoid the repetitive selection of the structures once they can be well
predicted, and select other less similar structures such as those at
high temperatures and transition states. Under these conditions, our
active learning model would be more accurate than the one trained
on the entire pool of structures. The dataset used in this work was
mostly generated from AIMD simulations [33], which usually follow
the Boltzmann distribution, making it more likely to sample lower
energy structures. As a result, the model trained on all the 13,006
structures is intrinsically biased towards low energy structures.

Our active learning method is also model-agnostic and can be
implemented with any machine learning model. Other active learning
methods often need the machine learning model to provide prediction
uncertainty (e.g. using a Gaussian process), but our active learning
method estimates the uncertainty internally by using the predictions
from multiple models. Many machine learning potentials can be effi-
ciently trained with the proposed active learning method, such as SNAP
and ACE [6,7]. However, it is worth noting that the chosen machine
learning models have to be trained many times throughout the batch
active learning process, so models that are expensive to train, such as
neural networks, would increase the computational cost.

On top of being model-agnostic, our active learning method could
also use ensemble learning. With ensemble learning, different machine
learning models could be trained using all of the data, instead of
training the same machine learning model multiple times with bagging.
Then the uncertainty would be the standard deviation of the different
model predictions [58]. This ensemble approach would avoid over-
fitting to a single model and explore the configuration space in a more
universal way. However, this approach might not produce the model
with the smallest error.

5. Conclusions

In summary, we have introduced a pool-based batch active learning
method. It produces an accurate, consistent, and robust MD potential
using a small amount of structures via active sampling. This is accom-
plished by directly and iteratively selecting highly uncertain structures
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which are difficult to predict. By training on the actively sampled
structures, the model coefficients of interatomic potentials quickly
and consistently converge to the same coefficients, in contrast to the
large variation in the random-sampling based interatomic potentials. In
addition, our active learning method selects multiple (Ngj) structures
in a single batch from energy uncertainty and feature distance without
DFT calculations. The N gp actively sampled structures can be efficiently
labeled by running Ny DFT simulations in parallel, which reduces
the total time to generate interatomic potentials. Our active learning
method is particularly useful when a pre-sampled pool of structures
are available. For the cases without pre-sampled pool of structures,
one can use other advanced sampling approaches such as USPEX and
Nested Sampling Monte Carlo to sample initial structures, and itera-
tively label structures, train machine learning potential, generate new
structures using MD/MC with the potential, and sample structures using
the active learning method. We envision this active learning method
will help generate trustworthy and reliable interatomic potentials at a
reduced computational cost that are highly valuable for computational
materials, physics, and chemistry community.
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