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We study the landscape of solutions of the coherent quantum states in a ring shaped lattice poten-
tial in the context of ultracold atoms with an effective positive nonlinearity induced by interatomic
interactions. The exact analytical solutions in the absence of lattice are used as a starting point
and the transformation of those solutions is mapped as the lattice is introduced and strengthened.
This approach allows a simple classification of all the solutions into states with periods commen-
surate/incommensruate with the lattice period and those with/without nodes. Their origins are
traced to the primary dispersion curve and the swallowtail branches of the lattice-free spectrum.
The commensurate states tend to remain delocalized with increasing lattice depth, whereas the
incommensurate ones may be localized. The symmetry and stability properties of the solutions are
examined and correlated with branch energies. The crucial importance of rotation is highlighted by
its utility in continuously transforming solutions and accessing in a finite ring with a few sites the
full spectrum of nonlinear Bloch waves on an infinite lattice.

I. INTRODUCTION

A defining feature of Bose Einstein condensates (BEC)
has been the effective nonlinear behavior induced by in-
teratomic interactions, and a substantial literature exists
on the subject [1]. The interplay of such interactions with
a periodic lattice potential [2] has led to realizing signif-
icant phenomena such as the Mott insulator to super-
fluid transition [3]. The ubiquity of harmonic trapping
in experiments [4] dictated that the bulk of the studies
of ultracold atoms in periodic lattices have been in the
context of open systems with trivial topology. In recent
years, ultracold atoms have been trapped in ring config-
urations proving convenient for the study of superfluid
features, like persistent flow and quantization of angular
momentum [5, 6]. However, such efforts have not ex-
tended to include an azimuthal periodic lattice, although
the capability exists [7, 8].

The non-trivial topology of a ring combined with the
periodic lattice structure has already been shown to
present a wealth of physical phenomena, whether ex-
amined with continuum [9–17] or discrete [18–28] lat-
tice models. Adding nonlinearity via atomic interactions
substantially increases the complexity of the system and
hence the range of possible behavior. The system offers
the possibility of studying nonlinear dynamics in a lat-
tice system which is closed, finite and is naturally without
boundaries. A necessary prelude to such a study is map-
ping out the space of allowed solutions and the effect of
possible rotation. That is the specific goal of this study.

The nonlinear states of a BEC in a lattice have been
examined in several studies, experimentally [29, 30] and
theoretically [31–39]. However, the primary focus of
these studies have been systems with trivial topology and
in the limit of large lattices. It is only recently that there
has been a thorough study of nonlinear states focussed
entirely on a continuum ring lattice configuration with
a few periods [40]. The approach taken there was to

assume the presence of a lattice of fixed strength and ex-
amine the effect of introducing the nonlinearity. We take
a different but complementary approach, where we ex-
amine the effects of introducing the lattice into the non-
linear system. There are multiple motivations for this.
Prime among them is that exact analytical solutions ex-
ist for such nonlinear systems, in the absence of a lattice
[41, 42]. They provide concrete insights when the lattice
is introduced with increasing strength. Secondly, in ex-
periments adiabatic introduction of the lattice leads to
some interesting dynamics in the linear regime as one
of us recently showed [11], and this current work pro-
vides the essential basis for a study of similar dynamics
in the nonlinear regime. Finally, and significantly, this
approach leads to a simpler and more transparent de-
scription of the spectrum and states, and their classifi-
cations and interconnections. This will be particularly
relevant when examining the complex dynamics of such
a system.

Our approach leads to several useful insights about co-
herent modes in ring lattices. The relation of the lattice
period with that of the eigenmodes in the absence of the
lattice determines the degree of localization of the modes
when the lattice is present, and the origins are tied to the
nature of the nonlinear spectrum in the absence of lat-
tices. Gap solitons are found to be not a very distinctive
feature for finite ring lattices. We identify certain sym-
metries of the lattice-free solutions, which persist even
when the lattice is introduced and strengthened. Effects
of the ring topology is particularly prominent for small
lattice sizes, in the quantized modes. Increasing the num-
ber of lattice sites leads to emergence of proportionately
more soliton branches. Rotation is an essential tool with
ring lattices, allowing access to a continuous range of so-
lutions, for a set lattice period and size.

In Sec. II we set up our physical model, then identify
the key effects of the ring boundary conditions and possi-
ble rotation in Sec. III. We set the template for examin-
ing the states with an azimuthal lattice in Sec. IV with a
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brief derivation and classification of nonlinear analytical
solutions in a ring without a lattice. Section V provides a
comprehensive description of how the spectrum of nonlin-
ear solutions transforms as the lattice is introduced and
strengthened. The persistent symmetries of the eigen-
states are identified in Sec. VI and used to classify and
characterize them, and effects of the lattice on the eigen-
states are explained in Sec. VII, specifically identifying
why certain solutions remain delocalized and others tend
to localize. Section VIII compares our approach and re-
sults to those obtained by introducing nonlinearity with
an existing lattice of fixed strength. We analyze the sta-
bility of the solutions by considering small fluctuations
about the mean field solutions in Sec. IX, examine the
behavior in the limit of rings with large number of lat-
tice sites in Sec. X, and conclude in Sec. XI with a brief
summary and outlook for continuing work.

II. PHYSICAL MODEL

We consider a BEC in a toroidal trap similarly our
prior work [10, 11]. We take the minor radius to be
much smaller than the major radius R so that the system
can be treated as a cylinder r = (z, r, ϕ) with periodic
boundary condition on z. We assume the confinement
along (r, ϕ), transverse to the ring circumference to be
sufficiently strong to keep the atoms in the ground state
ψ(r, ϕ) for those degrees of freedom, so that the three-
dimensional bosonic field operator can be written in the
effective form Ψ̂(z)ψ(r, ϕ). Integrating out the transverse
degrees of freedom, the dynamics can be described by an
effective one dimensional (1D) Hamiltonian

Ĥ(t) =

∫ 2πR

0

dzΨ̂†(z, t)×
[
− h̄

2m
∂2
z + V (z, t) (1)

+
g3DN

4πl2
Ψ̂†(z, t)Ψ̂(z, t)

]
Ψ̂(z, t).

where g3D = 4πh̄2a/m is the interaction strength de-
fined by a the s-wave scattering length , m is the mass
of individual atoms, N is the total number of atoms,
and l =

√
h̄/mωT is the harmonic oscillator length

for the transverse confinement along the cross-section
of the torus. We assume a sinusoidal lattice potential
V (z, t) = V0 sin2

(
q
2 (z/R− Ωt)

)
rotating with angular ve-

locity Ω with respect to the laboratory frame.
We take the major radius R as the length unit so that

the linear distance along the ring coincides with the an-
gular distance z/R = θ ∈ [0, 2π); we take the lowest

energy scale in the ring ER = h̄2

mR2 as the energy unit;

we use the associated frequency ωR = h̄
mR2 as unit for

frequency as well as the angular velocity, use it to set our
time scale τ = ω−1

R . The effective nonlinear constant in
1D then has the form g = 2aωTN , note we include the
particle number in the constant. Using these units leads
to the equation of motion which, in the mean field limit

R
z

rφ

2π/q

FIG. 1: (Color online) The atoms are trapped in a toroidal
trap with an azimuthal lattice potential of period 2π/q, its
variation of depth shown schematically as a thick sinusoidal
line. The torus is taken as a wrapped cylinder with our choice
of co-ordinates r = (z, r, ϕ) shown, assuming the major radius
to be much larger than the minor radius, R� r.

〈Ψ̂〉 = ψ, is a nonlinear Schrödinger equation:[
1
2 (i∂θ + Ω)2 + V0 sin2( 1

2qθ) + g|ψ|2
]
ψ = i∂tψ (2)

The explicit presence of N implies the normalization∫ 2π

0
dθ |ψ(θ, t)|2 = 1. The presence of the angular ve-

locity Ω in above equation represents transformation to
the frame rotating with the lattice, which remove explicit
dependence on time in the lattice potential. A centrifugal
term ∝ Ω2 is left out as being a constant offset for fixed
radius R. The stationary solutions ϕ(θ) = ψ(θ, t)eiµt sat-
isfy the time-independent version of Eq. (2) with i∂t → µ
where the eigenvalues µ of the equation defines the chem-
ical potential. That equation can be considered the sta-
tionary solution of the energy functional

E [ϕ] =

∫ 2π

0

dθ × (3)[
1
2ϕ
∗(i∂θ + Ω)2ϕ+ V0 sin2( 1

2qθ)|ϕ|
2 + 1

2g |ϕ|
4
]

with the chemical potential as the Lagrange multiplier for

the normalization
∫ 2π

0
dθ|ψ|2 = 1 condition, and related

to the mean field energy as µ = E [ϕ] + 1
2g
∫ 2π

0
dθ|ϕ|4.

III. BOUNDARY CONDITIONS AND
ROTATION

The behavior of the physical observables can be un-
derstood best by writing the mean field stationary state
in the polar amplitude-angle form, referred to as the hy-
drodynamic picture, ϕ(θ) =

√
ρ(θ)eiφ(θ), leading to an

equation for the density ρ

1
8 (∂θρ)2− 1

4ρ∂
2
θρ+ 1

2α
2 + V0 sin2( 1

2qθ)ρ
2 + gρ3−µρ2 = 0

(4)
and a phase equation that provides an integral of motion,

ρ∂θφ− Ωρ = α (5)

∆φ(θ) = φ(θ)− φ(0) = Ωθ +

∫ θ

0

α

ρ(θ′)
dθ′.
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This sets the current density J = Nα, the superfluid
velocity v = α/ρ(θ) and angular momentum per particle
L = h̄Ω + 2πh̄α.

The single-valuedness of the quantum wave function
and the closed topology of the ring impose the following
boundary conditions

ρ(0) = ρ(2π) ρ′(0) = ρ′(2π) ∆φ(2π) = 2πn, (6)

with the integer n being the winding number. The total
phase change contains the effect of rotation. We will use
the bare phase change around the ring neglecting rotation

δφ ≡ δφ(2π) =

∫ 2π

0

α

ρ(θ′)
dθ′ = ∆φ(2π)− 2πΩ. (7)

We can understand the system behavior by tracking
the chemical potential µ as function of the bare phase
change δφ. Insisting on the density boundary conditions,
as we vary α, yields a continuum of solutions such as
illustrated in Fig. 2(c) for the case when the lattice is ab-
sent. However, the phase boundary condition for a finite
size ring picks out only discrete points on that spectrum
as physically relevant, marked on the plot by dashed ver-
tical lines. Rotation shifts those vertical lines by adding
a phase ramp, allowing access to the complete spectrum.
Owing to the complementary relation 2πΩ = −δφ+2πn,
the angular velocity Ω can replace the bare phase, in
the representation of the spectrum as shown in a peri-
odic zone scheme in Fig. 2(d). This can compared to the
limit of no potentials presented in a recent work [43].

IV. EXACT SOLUTIONS WITHOUT LATTICE

In the absence of a lattice V0 = 0, solutions of Eq. (2)
can be found analytically [41, 42] which will provide the
framework for our description once the lattice is intro-
duced. A first integration of Eq. (4) yields

∂θρ = ±
√
f (ρ); f (ρ) = 4gρ3 − 8µρ2 + 8βρ− 4α2 (8)

with integral of motion β. The nature of the solutions
can be related to the root structure of the function f(ρ)
which has a general shape shown in Fig. 2(a) for repulsive
nonlinearity, g > 0. It is clearly required that f(ρ) ≥ 0,
corresponding to the colored solid segments in the plot,
and the roots of f(ρ) = 0, labelled r1 ≤ r2 ≤ r3, need
to be real to be physically relevant. Viewing ρ′ and ρ as
parametric functions of θ in a phase space representation,
their joint periodic boundary conditions in Eq. (6) require
that ±

√
f plotted as a function of ρ forms one or more

complete circuit around the loop drawn in Fig. 2(b) as θ
is varied from [0, 2π). With the cubic form for f this is
only possible if we combine +

√
f and −

√
f to form the

two halves of the loop meeting at the roots r1 and r2.
The roots define the state of the system. To start

with the symmetry of the loop assures that the state will
always have at least two points of reflection symmetry
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FIG. 2: (Color online)(a) Shape of the cubic function that
sets the density variation, displaying its roots; the dotted
parts are forbidden, (b) Loop in phase space that satisfies
the boundary conditions on a ring, and corresponds to the
solid sections in panel (a). (c) The mean field chemical po-
tential µ in the absence of a lattice, V0 = 0, for two interaction
strengths g = 3 and g = 10; the soliton branches indexed by j
lengthen as nonlinearity increases. Quantization of the total
phase around the ring only allows solutions marked by inter-
sections with vertical dashed lines, which can be continuously
shifted by rotation, by any value of the angular momentum
Ω 6= 0 indicated schematically by the solid lines. (d) The
case of g = 10 in periodic zone scheme as a function of rota-
tion. Lowest panels display the eigenstates for µ marked by
circles in (c): Their densities are shown in (e,g) with plane
wave (flat green line) at the right edge of the branch, solu-
tions with nodes (red line) at the left edge, and one example
of solutions without nodes (dotted blue) that lie in between.
Corresponding bare phase variations δφ are shown in (f,h).

along the ring, which will be relevant when the lattice is
turned on as we will discuss in Sec. VI. The density varies
between the roots r1 and r2 suggesting parametrization
as ρ = r1 + (r2 − r1)t2. Choosing ρ(θ = 0) = r1, Eq. (8)
can be integrated as

θ = 1√
g(r3−r1)

∫
0

√
ρ(θ)−r1
r2−r1 dt√

(1−t2)(1−mt2)
(9)

with the relevant parameters also in terms of the roots

m =
r2 − r1

r3 − r1
, µ =

g

2
(r1 + r2 + r3)

α2 = gr1r2r3, β =
g

2
(r1r2 + r1r3 + r2r3). (10)
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Inversion of Eq. (9) yields a Jacobi elliptic function [44],
and using it in Eq. (7) determines the phase in terms of
an incomplete elliptic integral of the third kind [45],

ρ(θ) = r1 + (r2 − r1)sn2(
√
g(r3 − r1) θ,m)

δφ(θ) =
α

r1

√
g(r3 − r1)

Π(1− r2

r1
, ϕ,m) (11)

where ϕ = sin−1[sn(
√
g(r3 − r1) θ,m)]. Taking the

smallest value of θ ≥ 0 such ρ(θ) = r2, Eq. (9) yields

θ = K(m)/
√
g(r3 − r1) which therefore sets the period

of any density modulation. This however corresponds to
only half of the loop in phase space. To satisfy the den-
sity boundary condition, the complete phase space loop
in Fig. 2(b) has to be traversed by an integer number
of turns we denote by j, leading to the condition for a
complete circuit of the ring,

jK(m) = π
√
g(r3 − r1). (12)

The bare phase change around the ring is given by com-
plete elliptic integrals of the first and the third kinds,
K(m) and Π(m)

δφ = δφ(2π) =
2πα

K(m)r1
Π(1− r2

r1
,m). (13)

The normalization of the density provides an addi-
tional constraint involving the complete elliptic integral
of the first and second kinds K(m) and E(m)∫ 2π

0
ρdθ = 2πr1 + 2π(r3 − r1)[1− E(m)/K(m)] = 1.(14)

The definition of m in Eq. (10) along with Eqs. (12) and
(14) can be used to express the roots in terms of the
complete elliptic integrals of the first and second kinds

r1 = 1
2π + (E −K) j

2K
π2g

r2 = 1
2π + (E −K +mK) j

2K
π2g

r3 = 1
2π + j2EK

π2g . (15)

When j and g are specified, these are completely de-
termined by the value of m, which can be determined
by imposing the phase boundary condition, yielding the
complete solution.

The resulting spectrum is illustrated in Fig. 2(c) com-
prising of a parabolic dispersion curve and a sequence
of branches given the fanciful name of swallowtails due
to their appearance in the periodic zone scheme 2(d).
The spectrum represents three different behaviors as dis-
cussed below. Examples for j = 1 and j = 2 are shown
in Fig. 2(e-h).

Plane waves: Spectral values on the parabolic disper-
sion curve correspond to plane wave solutions as would
be the case in the linear regime. The solutions arise when
two or more of the roots of f(ρ) are real and degenerate,

and both f(ρ) = 0 and f ′(ρ) = 0 in the phase space plot.
The density being uniform, these are without nodes

ψ(θ) =
√

1
2π e

inθ, α = n
2π , µ = n2

2 + g
2π (16)

with n = 0,±1,±2, · · · . These appear with uniform den-
sity and a phase ramp in Fig. 2(e-h).

Solutions with nodes: In the extended zone scheme,
the swallowtail branches terminate at multiples of the
Brillouin zone (multiples of ±π in our units). These ter-
mination points correspond to solutions with nodes, and
the stationary states can be taken to be real valued every-
where, which implies as we approach these nodes, α→ 0
and the bare phase δφ→ ±jπ so that at each node there
is a phase slip of ±π [46]. The states and the correspond-
ing chemical potentials are limiting cases of the general
solution above when r1 → 0

ψ(θ) =
√

m
2π(1−E/K) sn

(
jKθ
π |m

)
, µ = (1+m)j2K2

2π2

(17)
The index j enumerates the nodes of the wave function.
Since the phase can jump at the nodes, in the absence of
rotation, the periodic boundary condition requires even
integers j = 2, 4, 6, ..., but odd values can be accessed by
rotation. Eqs. (12) and (14) lead to the condition

πg

2j2
= K(m)2 −K(m)E(m). (18)

Examples of such solutions are shown in Fig. 2(e-h), in
solid curves with density vanishing at j points, with
phase jumps of π occuring at those points. The nodes
occur at the tips of the swallowtails which correspond to
extrema of the chemical potential with respect to both Ω
and δφ, due to the relation between them, and evident
as symmetry points in the periodic zone view Fig. 2(d).
Assuming the conditions for nodes ρ = ρ′ = 0, it can be
easily seen that ∂E/∂Ω = 0 at those points, so the energy
has extrema, as well as, µ = ∂E/∂N . These continue to
be true with the lattice on.

Nodeless Density Modulations: The remaining
stretch of each swallowtail branch is described by the gen-
eral solution defined above, and correspond to nodeless
complex-valued states with density modulation with j
dips. These are intermediate between the nodeless plane
waves at one end of the branch and the solutions with
nodes at the other end. The bare phase change is a
monotonically decreasing function of the elliptic param-
eter m, and for each specific branch labelled by j, the

phase lies in the range [jπ,
√
j2π2 + 2πg] corresponding

to m ∈ [0,mc]. The upper limit of the elliptic parameter
mc set by Eq. (18) marks the solutions with nodes and
the lower limit m = 0 corresponds to plane waves. In
Fig. 2(e-h), we see examples plotted in dotted lines; the
density is periodically modulated, but it never vanishes,
and the bare phase has a more complicated position de-
pendence.
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FIG. 3: (Color online) The chemical potential µ plotted as a function of the lattice depth V0 for the number of lattice periods
q = 1, 2, and 3 in panels (a,b,c). The nonlinear strength is fixed at g = 10. The specific bare phase values accumulated around
the ring δφ are indicated in each panel and correspond to the vertical dotted lines in Fig. 4. The vertical dashed lines that
appear here in turn indicate the values of V0 that correspond to the plots of µ versus δφ that appear in Fig. 4. The labels
for the different branches follow the convention defined in Eq. (20) also in the context of the next figure. The dashed lines
correspond to the intra-band soliton branches in the next figure, with blue and red marking upper and lower ones respectively
of the split branches.

V. SPECTRUM WITH LATTICE

We now examine how the nonlinear spectrum in the
ring, as discussed in the last section, is impacted by
the introduction of the lattice potential. In general, this
needs numerical determination of the stationary solutions
of Eq. (2). We do a Fourier expansion of the wave func-
tion in a plane wave basis ψ = 1√

2π

∑∞
n=−∞ cne

inθ which

leads to a set of coupled nonlinear equations in the mo-
mentum space amplitudes [11]

1
2{(n− Ω)2 + V0 − 2µ}cn − 1

4V0cn−q − 1
4V0cn+q

+g
∑
j,k

c∗kclcn+k−l = 0. (19)

They are solved iteratively by Newton’s method, until
convergence criteria are met. In practice, only a finite
number of modes are needed, typically between 10 and
20, with larger values of g and V0 requiring more.

As the lattice potential is turned on, Fig. 3 shows that
the chemical potential splits and at higher values of the
lattice potential,V0 new degeneracies can also appear as
some of the split branches come together again. This oc-
curs for any value of latticed period, as seen for the three
values of q = 1, 2, 3. Notably due to the ring configu-
ration, even one lattice site q = 1 constitutes a periodic
lattice. However, more insight can be gained by plotting
the chemical potential as a function of the bare phase
at different strengths of the lattice potential, shown in
Fig. 4 for specific values of V0 that are marked by verti-
cal dashed lines in Fig. 3.

As for a linear system, turning on the lattice has the
usual effect of opening up gaps in the spectrum. But, in
addition, when the lattice is still weak, the swallowtail
branches split as well, as seen in Fig. 4(a,d,g). Two dis-
tinct behavior emerge: At the band edge, such splitting

and the band gaps create hook like structures that ter-
minate at the band edge. The intra-band swallowtails,
shown as colored dashed lines in that figure, each sim-
ply splits into two with the ends still terminating at the
main dispersion curve, shown as solid black lines, which
marked the plane wave solutions in the absence of the
lattice, and transform to nonlinear Bloch wave solutions
with the lattice on. The special case of q = 1 obviously
has no intraband swallowtails.

As the lattice depth increases, several things happen.
The band gaps for the main branches widen as can be
expected even in the linear case, but additionally the
hooks shorten and can eventually vanish, as the lattice
depth overwhelms the effect of the nonlinearity [47]. The
splitting of the intra-band swallowtails widen as well as
can be seen in Fig. 4(d-f), (g-i). Some of them eventu-
ally separate from the main branch and inherit existing
hook structures in the main band (panels (e) and (h)),
and they then follow the same shrinking trend with in-
creasing lattice depth. As the band gaps widen, in panels
(e,f,h,i) we see that some of the detached intra-band swal-
lowtails end up in the band gap. They can be thought to
correspond to what are called gap solitons [29, 31, 48] in
the case of large open lattices.

The structure of the analytical solutions without lat-
tice allows us to classify the solutions with the lattice on.
We use a three part label

[j-index] [subbranch] [location], j = 0, 1, 2, · · ·
subbranch = {m,u/u′, d/d′}, location = {l, r} (20)

with j being the swallowtail branch index based on the
analytical solutions, with 0 representing the ground band
section of the main dispersion curve once gaps open;
the sub-branch labels are m for main branch, u, d for
up/down marking upper/lower branches of the split swal-



6

2

3

4

5

6

7

8

3

4

5

6

7

8

4

5

6

7

8

9

10

2

3

4

5

6

7

8

2

3

4

5

6

7

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3 3.5
4

5

6

7

8

9

10

11

q=1

V
0
=0.75

q=1

V
0
=1.75

q=1

V
0
=3.75

q=2

V
0
=0.1

q=2

V
0
=0.75

q=2

V
0
=5

q=3

V
0
=0.25

q=3

V
0
=2.25

q=3

V
0
=6

0 0.5 1

1.6

2

2.4

E
n
er

g
y,

 E

C
h

em
ic

al
 P

o
te

n
ti

al
, 
m

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Bare Phase, δϕ/(2π)

1dl
1ul

1ur
2dl 

2ul
3dl
3ul

1u'l
0mr

2mr4dl

4ul

0ml
1dl

1ul

1ur

2ul
3dl
3ul

1u'l

2dr

2mr
4dl

4ul

0ml

3u'l 3ur

1u'r

1dl
1ul

1ur

2dl 
2ul

3dl

3ul

1u'l 0mr

3mr

4dl

4ul

0ml

2ur

2u'l

2dr 

1dl
1ul 1ur

2dl 

3ul

3dr

3mr

0ml

2ur2u'l

2dr 

4dl

4ul

5dl
5ul

5ur5u'l6dl

6ul

2ul

2d'l 

5dr5d'l

FIG. 4: (Color online) The chemical potential µ plotted as a function of the phase δφ for three different lattice periods q = 1, 2,
and 3, one in each row. The nonlinear strength is fixed at g = 10. The three panels in each row are for different values of the
lattice depth V0 corresponding to the vertical dotted lines in Fig. 3. The vertical dotted lines here indicate the phase values δφ
that correspond to the plots in Fig. 3. The inset in panel (b) shows that the rounded hook structures appear as swallowtails
when total energy rather than chemical potential is plotted, here illustrated for the gray highlighted region. The labels for the
different branches follow the convention defined in Eq. (20). The intra-band soliton branches are shown in dashed lines, and
when they split, the upper branches are shown in blue and the lower ones in red.

lowtails and u′, d′ for the hook section of detached intra-
band swallowtails; and the location labels l, r for left or
right end of each branch terminating at some multiple of
π. Note,when a hook disappears, the location label can
switch, as for example 2dl → 2dr in Fig. 4(e)→(f) and
3dl→ 3dr in Fig. 4(h)→ (i).

Our representation provides a different and more uni-
fied perspective on the various solutions and how they are
related. Exclusive focus on the spectrum and states in
the absence of rotation is limited to a zero measure subset
of the full range of solutions and hides the relations be-
tween various solutions. For example in Fig. 4(h), in the

absence of rotation, the lowest energy eigenstates would
include the Bloch wave state 0ml at δφ/(2π) = 0 along
with states that are on the vertical slice at δφ/(2π) = 1,
which in our notation, includes the soliton solutions with
nodes, 1u′l, 2dl, 2ul and solutions without nodes lying on
the 1d, 1u branches, along with a nonlinear Bloch wave
solution on the main branch. Of course, by symmetry the
counterparts at δφ/(2π) = −1 would be included. But,
in our representation, we can also see that all the soli-
ton solutions 1dl, 1ul, 1u′l originate from the splitting of
the j = 1 swallowtail branch and 2dl, 2ul from the split-
ting of j = 2 branch in the absence of the lattice; and
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that 1ul, 1u′l have a continuous range of nodeless states
connecting them, all accessible by rotation.

The full spectrum as displayed here also provides an al-
ternate perspective on gap solitons as arising from intra-
band swallowtail branches j 6= nq (for integer n) as the
lattice opens gaps among states on the main band. The
intra-band swallowtails can detach from the main branch
and end up in the gap, for example 1u′l in plot Fig. 4(e)
and 1ur, 2dl, 2ul in plot (i). We can also see clearly the
sensitivity of their appearance on the lattice depth. As
the lattice depth increases, new gap solitons can appear
with different properties, for example, progressing from
plot (e) to (f), a new nodeless solution on the branch
1ul − 1ur satisfies the boundary condition in the first
gap. The widening gap also can accommodate more soli-
tons, for example in panel (i) has 1ul, 1ur that were not
in the gap in (h).

The above statements need to be taken with the caveat
that gap solitions are less well defined in a small ring
lattice of few sites, inasmuch as, for any fixed angular
velocity (including Ω = 0) the bands themselves are not
continuum and comprise of q discrete states allowing for
positive and negative quasi-momenta, so the distinction
between states in the ‘bands’ and states in the ‘band
gaps’ is not as well demarcated . Here, we designate as
gap solitons any state with its energy lying in the gaps
of the main dispersion curve (solid black lines in Fig. 4)
for specific nonlinearity and lattice depth.

Rotation can clearly affect the set of allowed solutions
dramatically in a ring lattice: Imagine sliding a set of ver-
tical lines at δφ/(2π) = 1, 2, 3, · · · on any of the plots in
Fig. 4 and sliding them together continuously, and wher-
ever they intersect the spectrum are allowed solutions.
Thus gap solitons can emerge and disappear, and states
with nodes (at the tips of the branches) morph into node-
less solutions and eventually into a solution with different
number of nodes, for instance in plot (i), transitioning a
solution with two nodes at 1ur for Ω = 0 to a solution
with one node at 1ul for Ω = π with a continuum of
nodeless solutions in between.

Our representation also highlights certain interesting
features that were not sufficiently stressed in earlier stud-
ies. An intraband hook structure can actually split into
two separate branches, creating two distinct solutions, as
seen with 1ur in plot (e) splitting into 1u′r and 1ur in
plot (f). Also, it is evident from their swallowtail origins
that soliton branches can have the tips at any integer and
half-integer multiples of δφ/(2π) and not just at the edge
of Brillouin zone as sometimes implied.

VI. SYMMETRY OF EIGENSTATES

It is obvious that the lattice, as well as the modu-
lated eigenstates in the absence of the lattice, such as
plotted in Fig. 2, have reflection symmetry about their
respective maxima and minima. The index j enumerates
the density nodes in the allowed eigenstates in the ab-

sence of the lattice, and in the rest of the branch these
nodes transform into uniformly spaced density dips that
get shallower and eventually vanish on merging into the
main branch that corresponds to plane waves. The mod-
ulatated solutions without a lattice are a manifestation
of spontaneously broken symmetry [49]. When the lat-
tice is turned on, the translational invariance is broken
up to a lattice period, and the eigenstates adapt to have
their points of reflection symmetry line up with those of
the lattice, which we will call symmetry points. Notably,
even a weak lattice is sufficient to cause this physical re-
alignment, we have observed this for lattice strength as
low as V0 = 0.01 in our units, relative to kinetic energy
∼ 1 and nonlinearity g = 10.

This indicates four possible pairings of lattice max/min
with the density max/min. We find there is a symmetry
of the density modulation that remains invariant when
the lattice is turned on and even in the presence of rota-
tion, as we now describe. Consider the smallest pair of
mutually prime integers, ns and nl that enumerate the
half periods of an eigenstate and of the lattice respec-
tively that separate adjacent symmetry points, so that

π

j
ns =

π

q
nl (21)

Even values for either integer would indicate repetition of
maximum or minimum at every symmetry point and odd
values indicate alternating of maximum and minimum.
The case of both being even is clearly left out. That
leaves us with three possibilities for when the adjacent
symmetry points are different: (I) nl is even and nl is
odd (II) ns is even and nl is odd (III) ns is odd and nl is
odd. Each of these has two sub-cases: A: when a lattice
maximum and a state minimum coincide at one of the
symmetry points and B: when a lattice maximum and
state maximum never coincide at any of the symmetry
points. All of these cases are illustrated in Fig. 5.

As the lattice is turned on, and even if there is rota-
tion to access to all points on a branch, the number of
dips and crests in the density can change, and even lo-
cal minima and maxima can switch. However, the key
point is that the location of the symmetry points remain
unchanged, meaning that those points continue to have
reflection symmetry, even in the presence of the lattice
and rotation.

We illustrate this in Figs. 6 and 7 with eigenstates for
lattice with q = 2 and q = 3 sites corresponding to spec-
tra shown in Fig. 4. It is clear that where the branch
index is a multiple of the lattice period j = n × q, band
gaps open up and the mutual commensurateness leads
to nonlinear Bloch waves, as seen for panels (a) and (b)
in both figures. The remaining panels show instances of
the different symmetry cases mentioned above and are
labelled as such. The states without lattice are shown
as filled gray shapes and the lattice itself in long dashed
lines, and the symmetry points lie at the center and the
edges of each panel. When each soliton branch splits with
the introduction of the lattice, we observe that the lower
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(b)(a)

(c)

2π0

I.A

I.B

II.A

II.B

III.A

III.B

FIG. 5: (a) The lattice period (dashed red line) does not typically match the period of the density modulation of the eigenstates
(solid blue line) before the lattice is introduced. (b) When the lattice is barely introduced, the allowed eigenstates adapt to
match the lattice period so that a subset of their separate maxima and minima line up at certain symmetry points in the ways
shown. (c) There are three distinct ways how maximum/minimum of the lattice and of the eigenstates without the lattice line
up at adjacent symmetry points, as the lattice is barely introduced. Each case has two subcases with Type-A always containing
a minimum of the density lining up with a maximum of the lattice.

branch (labelled by second index ‘d’) belong to Type-A,
where at least one of the density minimum coincides with
a lattice maximum; this is seen in the left panels (c) and
(g) in Fig. 6 and the left panels (c,e,g,i) in Fig. 7. Like-
wise, we observe the upper branch (labelled by second
index ‘u’) follows Type-B as seen in the right panels of
both figures.

It is consistent energetically that the lower energy
branches correspond to Type A, where a density min-
imum is at the lattice maximum. Notably this is the
case for the Bloch wave states as well: At the band gaps
which also appear as splitting of swallowtail branches
with j = n× q, each lower branch, corresponding to the
top of the lower band, is of Type A, with density minima
matching lattice maximum; and each upper branch cor-
responding to the bottom of the upper band is of Type B,
which in the case of Bloch waves also ensure that density
maxima match lattice maxima. This can be seen with
states 2dr and 2ul in Fig. 6(a,b) and states 3dr and 3ul
in Fig. 7(a,b).

In Fig. 6 we also illustrate the evolution of the states
with increasing lattice depth, first at V0 = 0.75 in panel
(d) and then at V0 = 5 in panels (e) and (f). The sym-
metry points remain fixed, even though the shape of the
states change substantially and even as new states with
nodes 1ur and 1u′r emerge as the hook structure of up-
per branch breaks at the right edge, as noted at the end
of the previous section.

We conclude this section with comments on a couple
of special cases. Clearly, cases with ns = j, nl = q are
always a solution for Eq. (21). If j, q are also co-prime,
it means there will be only two symmetric axes, at two
opposing ends of the ring. If j and q are not co-prime and
share a non-trivial common factor k, then ns = j/k, nl =
q/k is a solution, and the symmetry points are spaced
by π/k. These states are in the quasi-Bloch form whose
period is 2π/k instead of 2π/q, a q/k multiple of the

lattice period [37, 39]. For example, q = 6, j = 3 would
result in a state with its density modulated with period
2π/3, although we do not include a plot here. The above
symmetry categories still apply to these cases.

VII. EFFECT OF LATTICE ON EIGENSTATES

We display several states in Figs. 6 and 7, correspond-
ing the spectra shown in Fig. 4. However, we should
reiterate that many of these states are accessible only
by introducing rotation. For example, due to the phase
boundary condition δφ/(2π) = n, states 2dl and 2ul
are allowed stationary states without rotation for Fig. 6
whereas, the corresponding states in Fig. 7 are not.

The states on the main band have the Bloch struc-
ture where the periodicity of the density is commensurate
with that of the lattice. On each band the states vary
in shape continuously as we progress along the spectral
curve, with different number of nodes at the two ends,
spanned by nodeless solutions in between. This can be
seen in Fig. 6(a,b) as we progress from solution 0ml with
no nodes to 2dr with 2 nodes, and from 2ul with 2 nodes
to 4dl with 4 nodes, and likewise Fig. 7(a,b) from 0ml
with no nodes to 3dr with three nodes and from 3ul with
3 nodes to 6dl with 6 nodes. The progressive morphing
of the solutions in between can be seen with solutions
2mr and 3mr in the respective figures.

As the lattice splits the swallowtails into two branches,
at those branches with index commensurate with the lat-
tice period, the split corresponds to a band gap and the
lower branch initiates from lattice-free solution with a
density minimum aligned with a lattice maximum, and
the upper branch with density maximum aligned with
lattice maximum. This can be see with 2dl and 2ul in
Fig. 6(a,b) and 3dl and 3ul in Fig. 7(a,b). The grey filled
shapes outline states in the absence of a lattice, however
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FIG. 6: (Color online) The nonlinear eigenstates for lattice
periodicity q = 2 in the presence of the lattice (long dashed
lines). The lattice depth is V0 = 5 and state labels correspond
to those in Fig. 4(f) except for panel (d) tied to Fig. 4(e).
Eigenstates in the absence of the lattice are shown in filled
gray. (a,b) Nonlinear Bloch waves, where state and lattice pe-
riodicities match. The remaining panels are soliton solutions
of various types, with the symmetry type labelled. Panels (e)
and (f) represent states at a higher lattice depth V0 = 5 on
spectral branches that arise from a single branch at a lower
lattice depth V0 = 0.75, the states for which are shown in (d).

in panels (a) in both figures, we show the nodeless solu-
tion that morphs to 0ml in the presence of the lattice, but
the 2dl and 3dl solutions can be understood to emerge
from the lattice-free solution shown in panels (b) in both
figures but shifted by half a period to have the density
minima line up with the lattice maxima.

It is interesting to note that this pattern is maintained
as we go from the state with nodes at the lower edge of
the band to that at the upper edge. The number of nodes
increase by q by creating new minima. We observe these
in transitions from 2ul to 4dl in Fig. 6(b) and 3ul and
6dl in Fig. 7(b).

In the case of intra-band solitons, we still find that
the lower branch originates in a state with at least one
density minimum aligned with a lattice maximum cor-
responding to Type A in our symmetry classification,
whereas the upper branch originates with the same lat-
tice free state shifted and falls in with Type B. This can
be seen both Figs. 6 and 7. The primary difference with
the non-linear Bloch bands is that for them, the pat-
tern repeats commensurate with the lattice period. With
deepening lattice, the incommensurate solitons originat-
ing with intraband swallowtails can get markedly more
localized as seen in Figs. 6(d,ef,g) and 7(d,e,f,j).
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FIG. 7: The nonlinear eigenstates similar to Fig. 6 but for lat-
tice periodicity q = 3. The state labels correspond to Fig. 4(i)
with lattice depth V0 = 6. (a,b) Nonlinear Bloch waves, where
state and lattice periodicities match. For the remaining pan-
els, the left ones belong to symmetry Type A and right ones
belong to symmetry Type B.

The localization of soliton state with incommensu-
rate lattice can be understood by considering its Fourier
modes. The Fourier expansion of soliton with nodes aris-
ing from the branch j in the absence of a lattice, in
Eq. (17) has the form [45],

ψj(θ) =

√
2π

K2 − EK

∞∑
n=0

qn+ 1
2

1− q2n+1
sin[j(n+ 1

2 )θ] (22)

where the modes included are commensurate with the
branch index j. Introduction of the lattice couples each
Fourier mode n in a ladder stepped by multiples of the
lattice period n±mq. If j is a multiple of q, the coupling
will fill the modes with step q, resulting in a Bloch form
solution. If j is not a multiple of q but shares common
factor k with q, the modes will be coupled in steps of k,
resulting in a quasi-Bloch state with period 2π/k. If j
and q are co-prime, the lattice coupling can spread the
modes over all integers. As it spreads out in the Fourier
space, there will be progressive localization in position
space.

We illustrate these considerations in Fig. 8, where we
present an incommensurate case with j = 2 mode in a
ring lattice with q = 3 minima. The Fourier expansion
coefficients cn are as defined in Eq. (19). As the lat-
tice depth is increased, more Fourier modes are found
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to be involved in panel (a), even though with lesser
weights. This results in more localization in position
space as shown in panel (b). The degree of localization
can be quantified by the inverse participation ratio (IPR),∫
dθ|ψj |4 for normalized states. It is seen to climb up

with deepening lattice in panel (c) indicating more local-
ization, while its momentum space counterpart

∑
n |cn|4

in panel (d) gets progressively smaller as can be expected
from the Heisenberg Uncertainty Principle.

Specifically, we can see that in Fig. 8(a), for the dis-
played mode j = 2, in the absence of a lattice the V0 = 0,
only the modes j(n+ 1

2 ) = ±1,±3, · · · are present. As the
lattice is turned on with q = 3, it couples each of these
modes in ladder steps of ±q as indicated in Eq. (19),
for example, ±1 → ±1 ± 3 = −2, 3,±4 all of which ac-
quire visible occupation in that plot as the lattice depth
increases to V0 = 7.25 and then to V0 = 14.75.

This also underscores that for small lattice sizes on a
ring and weak lattice strengths, differentiation between
localized and delocalized states may not be very obvious,
as can be gathered from the states shown in Figs. 6 and
7. That may only become prominent as the lattice depth
is increased. However, our criterion above provides a
concrete way to distinguish the states that can become
localized versus those that will not.

VIII. VARYING NONLINEARITY AT FIXED
LATTICE

The nonlinearity and the lattice introduce complemen-
tary effects and it is interesting to compare the results of
our approach where we start from the nonlinear solutions
with no lattice, with those of Ref. [40] where the starting
point was linear Bloch waves. We have confirmed that
the approach taken here is completely consistent with all
of the results in that study, and here we summarize a
brief comparison.

The spectrum of the noninteracting system with lat-
tice comprises of smooth monotonic curves with gaps
at the band edges as shown in Fig. 9(a,c) for g = 0.
Increasing the lattice depth would widen the gap and
flatten the bands. The eigenstates are Bloch waves,
ψn,k = eikθ

∑
l

cn,le
ilqθ, with band index n and quasi-

momentum k. For fixed lattice depth, once interaction
is introduced, as shown in Fig. 9(a,c), doublets of soli-
ton branches emerge from the main branch terminating
∆φ
2π = j/2 for j = 1, 2, 3, · · · except initially at j = nq
that are multiple of the lattice sites, where band gaps
open up.

As the nonlinear strength is increased the soliton
branches lengthen, and since they still terminate at the
same points, their points of contact with the main branch
slides up. More significantly at the band gaps, once
the interaction strength g exceeds some critical value
for each gap, [47, 50], the primary dispersion curve
extends beyond the band edge and forms the familiar
hook like structure as we can see in Fig. 9(b,d) for
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FIG. 8: Localization with increasing lattice depth V0 is shown
for lattice minima q = 3 incommensurate with state index
j = 2. With increasing V0,(a) more Fourier components have
contributing amplitudes cn, (b) the mode gets more localized
in position space, (c) the position space inverse participation
ratio (IPR) gets larger and (d) the momentum space IPR gets
smaller. In panel (b) the lattice is shown in dashed line.

g = 10. This perspective has been analyzed in prior
studies [36, 39, 50, 51]. But, as we have shown in this
paper, the introduction of the lattice into the nonlinear
solutions offers a different and more unified perspective:
The lattice splits all the swallowtail branches into two,
but when j = nq, the split coincides with that band gap.
The hook structures seen at the band edge have the same
origins as with the intra-band swallowtails in the lattice-
free limit.

In Fig. 9(e), we also show a periodic zone version of
the spectrum that appears in the previous panel (d) of
the same figure. This clearly shows the band separation.
The intraband swallow tail structures appear within the
span of each band with the characteristic shape that gives
them their names. The hook like structures in panel (d)
associated with the band edge and the soliton branches in
the band gaps, form loops in the extended zone schemes.
If total energy was plotted instead of chemical potential,
these rounded loops would have pointed edges instead,
as illustrated in the inset in Fig. 4(b), and would have
the characteristic swallowtail shape.

In the weak nonlinearity limit, the solitonic solutions
can be viewed as superpositions of degenerate linear so-
lutions. Under small interaction strength, such solitonic
solutions will merge into nonlinear Bloch waves if ∆φ
is increased. Once the interaction strength becomes
larger, these solitonic branches will extend further, un-
til it reaches the edge of the ‘Brilluoin zone’, where they
are stopped by lattice scattering and their velocity be-
comes zero, and these solutions become real solutions
with nodes. For even number of lattice sites, the solitonic
solutions reaching the Brilluoin zone edge will emerge as
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FIG. 9: The chemical potential as a function of the phase is
plotted for different interaction strengths for lattice periodic-
ities q = 3 and q = 4, for fixed lattice strength V0 = 2.25. In
the left panels (a,c) the soliton branches appear and lengthen
with increasing g. At larger nonlinearity, in the right panels
(b,d), the hook like structures appear that extend between
the band edges. Panel (e) is a periodic zone representation of
panel (d).

new physical solutions. These solutions are the analogs
of gap solitons in literature since they emerge inside the
band gaps. For odd number of lattice sites, the solu-
tions from the solitonic branch δφ/(2π) = q/2 − 0.5 are
physical, and they exist with arbitrary small interaction
strength. If the interaction strength is further increased,
the nonlinear Bloch waves and the solitonic branches will
extend beyond the edge of the Brilluoin zone, reaches a
phase maximum, then turns back and stops at the Brillu-
oin zone, forming the hook structure. The solution at the
lower parts of these hooks at the Brilluoin zone edge then
emerge as new physical solutions with nonzero velocity.

Figure 10 compares our representation of the chemical
potential as a function of the bare phase change around
the ring in the left panels, with the variation of the chem-
ical potential with increasing nonlinearity in the right
panels. Note that the spectrum splits as the nonlinearity
increases in a qualitatively similar manner to when the
lattice depth is increased in Fig. 3. The vertical lines la-
belled in bold upper case letters mark counterparts to be
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FIG. 10: (Color online) Comparison is made for the plots of
the chemical potential as a function of the phase (a,c) at fixed
interaction strength, with plots as a function of the interac-
tion strength (b,d) at fixed phase. The vertical dotted lines
mark the values in each set that are used in the other set, for
example lines A and B in (a) mark the phase δφ values used
in (b) and (d) respectively; lines A and B in (b) and (d) mark
the value of g used in (a). The lattice depth for (a-d) is set at
V0 = 4. The dashed lines mark intra-band soliton branches
as in Fig. 3. Plots (e) and (f) are similar comparisons but
specifically show the emergence of a saddlepoint bifurcation
which does not originate in any of the soliton branches of the
lattice-free system.

matched in the two representations. In the µ versus δφ
representation, we observe the hook structures, at line C
and D in panel (c) and (d) respectively; this manifests it-
self as splitting of the branch in µ versus g representation
in panels (b) and (d) respectively.

The comparison shows that the splittings observed as
nonlinaerity increases in Fig. 3(b,d,f), are of three dif-
ferent types. The split branches marked by solid lines
mark the emergence of the equivalent of intra-band swal-
lowtail branches. The splits marked by dashed and dot-
ted lines correspond to the upper and lower sections of
the hook structures. Curiously, the natural continuation
of each such branch that splits as g increases actually
corresponds to the upper end of the hook in our repre-
sentation, even though in the left panels it is the lower
section that is the immediate continuation of the main
branch. The most unusual feature appears in Fig. 3(e,f)
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where a pair of branches appear disconnected from any
of the main branches, in both representations. This is
a so called saddle node bifuration that appears when a
pair of fixed points emerge seemingly out of ‘blue sky’ as
such bifurcations are also sometimes referred to [40].

IX. STABILITY OF STATES

As noted in Sec. VII, the lattice breaks the transla-
tional symmetry upto its period the splitting of the spec-
tral branches are associated with the different relative po-
sition with respect to the lattice. Here, we show that they
are associated with different dynamical stability proper-
ties. We consider small perturbation around the mean
field stationary states:

ψ(θ, t) = ψ0(θ) + δue−iµte−iωt + δv∗e−iµteiω
∗t (23)

and the solve the Bogoliubov equations [4] for the normal
modes of the fluctuations.

(H0 + 2g|ψ0|2 − µ)δu+ gψ2
0δv = wδu

−(H0 + 2g|ψ0|2 − µ)δv + g(ψ∗0)2δu = wδu (24)

If the angular frequencies ω of the normal modes have
imaginary components and if Im(ω) > 0 then the fluc-
tuations would grow exponentially indicating dynamical
instability.

It was noted that in the absence of a lattice with re-
pulsive interaction, both plane waves and soliton train
solutions are dynamically stable [49]. Here we studied
the dynamical stabilities of the lowest soliton branches in
the presence of lattice for different number lattice sites
on the ring, q = 1, 2 and 3. For each swallowtail branch
j, the two split branches that emerges with the introduc-
tion of the lattice not only differ in symmetry properties,
but also in the stability properties. In Fig. 11, we plot
the imaginary components for each branch as a func-
tion of increasing lattice depth. Rather surprisingly, for
the parameter range we have tested, for each split pair,
the branch with the lower chemical potential labelled as
1dl, 2dl are seen to be dynamically unstable as soon as
the lattice is turned on indicated by the presence of imag-
inary components of ω even as V0 → 0. In contrast such
instability is manifest only at larger lattice depth for the
branch with the higher chemical potential. We found
that the pattern appears to hold for higher lattice sites
and branches as well but the difference is not as stark and
not conclusive. Simple energy considerations makes this
behavior rather non-intuitive, but we do not yet have a
satisfactory explanation for this behavior.

X. LARGE LATTICE LIMIT

The ring topology is particularly significant when the
size is small and the number of lattice sites is few in num-
ber. As the number of sites is increased without changing
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FIG. 11: Examples of Bogoliubov analysis of the splitting
soliton solutions. Left panels show the imaginary part of the
Bogoliubov excitations as the lattice is turned on. Middle
panels show the density profile of the split solutions for fixed
V0 = 1; dashed lines indicate the lattice potential. Right pan-
els show the corresponding evolution of the chemical potential
as the lattice is turned on.

the lattice period and the number of particles per site,
the ring gets larger and we can consider the infinite lat-
tice limit. This however requires a different scaling than
we have used in the rest of the paper, where we have
scaled length by R and energy by h̄2/(mR2), so that
keeping V and g constant has the effect of diminishing
the potential and the nonlinear term relative to the ki-
netic energy by a factor ∝ R2. This did not impact our
observations where comparisons were made for fixed lat-
tice sites. Now, to compare the variation with changing
number of lattice sites, while keeping the lattice period,
depth and the particle density constant, we scale the po-
tential and the nonlinear strength by the square of the
number of the lattice sites q2 in Eq. (2) then divide the
resulting chemical potential by q2.

Some of our simulations are shown in Fig. 12 where we
plot the chemical potential versus the bare phase around
the ring δφ as before, but now scaled by a multiple of the
recoil energy 8Er = 4π2h̄2/(md2) and qπ respectively,
where d = 2πR/q is the lattice constant. The phase scal-
ing is similar to scaling the linear wave vectors by the re-
coil momentum kr = π/d. We plot two cases, one set in
Fig. 12(a-c) for q = 3, 6, 9 for V0 = q2/9 and g = q2/9 in
the units of lattice constant and recoil energy mentioned
above, and another set in Fig. 12(d-f) for q = 2, 4, 6 for
V0 = 3q2/4 and g = q2/16. Scaled this way, we find that
the shape of primary dispersion curve is identical for any
number of lattice sites as long as the lattice depth V0 and
nonlinearity including particle density remain the same.
This can be seen clearly when we overlay the plots from



13

0.26

0.22

0.06

0.14

0.10

0.18

0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1.0 1.2

0.35

0.30

0.20

0.15

0.25

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

q=3 q=6 q=9

q=2 q=4 q=6

(a) (b) (c)

(d) (e) (f)

0.26

0.22

0.06

0.14

0.10

0.18

0.35

0.30

0.20

0.15

0.25

0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1.0

q = 4

(g) (h)

Phase, δϕ/(qπ)

C
h

em
ic

al
 p

o
te

n
ti

al
, 
m

 (
u

n
it

s 
o

f 
8

E
r)

V0= (1/9)q2

g = (1/9)q2

V0= (3/4)q2

g = (1/16)q2

V0= (1/9)q2

g = (1/9)q2

V0= (3/4)q2

g = (1/16)q2

q = 6

q = 2

q = 6
q = 9

q = 3

FIG. 12: The effect of increasing the number q of lattice sites
is shown for two different values of the lattice strength V0 and
nonlinear constant g in (a-c) and (d-f). Allowed solutions in
the absence of rotation are marked by vertical dotted lines.
For consistent comparison across different lattice sites, the
V0 and g are scaled by q2, and the chemical potential µ and
the bare phase δφ are also in recoil units fixed by the lattice
constant. Overlaying the ones from (a-c) in panel (g) and
those from (d-f) in (h) shows that the primary dispersion
curve corresponding to nonlinear Bloch waves are identical for
any number of lattice sites, while soliton branches at specific
multiples overlap as new ones emerge with increasing sites.

(a-c) in panel (g) and the plots from (d-f) in panel (h),
the main bands are identical and lie on top of each other.
This behavior is identical to the case without nonlinear-
ity, and specifically we note from panels (d-f) and (g) that
even the distinctive nonlienar feature, the hook structure,
is identical for different number of lattice sites.

On the other hand, new soliton branches emerge with
increasing lattice sites. For weak lattices, the gaps open
at multiples of the lattice site number j = nq and with
q−1 pairs of intraband swallowtails for each band. When
q values have a common factor, they share common soli-
ton branches and the shape of those branches is also
identical for the q values. This can be seen in panels
Fig. 12(a-c), for example with the two pairs of intra-band
soliton branches for q = 3, which also appear identically
for q = 6 and q = 9, and likewise in Fig. 12(d-f), the
single pair of intra-band soliton branches for q = 2 also
appear identically for q = 4 and q = 6. This similarity
is also reflected in the quantum states, with the basic
shape of the wavefunction for the fundamental period
q = 3, simply repeating twice for q = 6 over the lattice
and thrice for q = 9.

We can expect that as the number of sites in the
ring gets larger, keeping the lattice depth and nonlinear

strength and particle density fixed, the main dispersion
curve corresponding to the nonlinear Bloch states will
remain unchanged, but more and more soliton branches
will appear. However, with increasing number of such
branches, the soliton branches that slide into the gap as
seen in Fig. 12(c) and (g) become more exceptional lead-
ing up to the well-studied properties of gap solitons.

XI. CONCLUSIONS AND OUTLOOK

In a finite ring-shaped lattice, we find that the nonlin-
ear solutions without the lattice define the landscape of
solutions with the lattice. Many of the standard labels
and classifications, such as referring to the solutions as
solitons, are a relic of studies in the context of open lat-
tices in the infinite and tight binding limit, and are not
a particularly useful way of understanding finite closed
lattices that can be possibly weak. In a ring without a
lattice, there are three types of solutions: Plane waves,
solutions with nodes, modulated solutions without nodes.
The presence of a lattice modifies these to the following
set of independent classifications of solutions: (I) Solu-
tions with period commensurate/incommensurate with
the lattice period, and (II) solutions with/without nodes.
The first classification can be sub-grouped into nonlinear
Bloch waves that exactly match the periodicity of the
lattice, and their super-periodic counterparts that have
periods that are multiples of the lattice period.

The commensurate solutions emerge from the plane
wave solutions and the swallowtails at multiples of the
lattice period. The incommensurate ones originate from
intra-band swallowtails. With increasing lattice strength,
the commensurate ones will remain delocalized, whereas
with increasing lattice depth, the incommensurate ones
will tend to localize.

As already noted in Ref. [40], the concept of gap soli-
tons is not very distinctive in a finite ring lattice. There
are solutions that exist in the band gap that originate
with the migration of the intra-band swallowtails with
increasing lattice depth, but their behavior falls into the
general classification above.

The most significant aspect of the solutions of a ring
lattice is the ability to access a full range of solutions
of the infinite lattice by using rotation. This makes the
ring lattice an invaluable and unique tool for the study of
nonlinear dynamics. The continuous transition between
solutions possible with rotation can be utilized to probe
and modify the dynamics of the system, to access vastly
different kinds of behaviour within the same system. We
have already observed that even in the linear case [11],
and in our continuing work we anticipate even richer dy-
namics in the nonlinear regime. An exploration of the
negative nonlinearity constitutes a natural continuation
of this work. Finally, there is much potential for explor-
ing the quantum dynamics in ring lattices beyond the
mean field regime, which also forms part of our ongoing
research.
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[16] T. Opatrný, M. Kolář, and K. K. Das, Phys. Rev. A 91,

053612 (2015).
[17] K. K. Das and J. Christ, Phys. Rev. A 99, 013604 (2019).
[18] G. Arwas and D. Cohen, New Journal of Physics 18,

015007 (2016).
[19] K. Hettiarachchilage, V. G. Rousseau, K.-M. Tam,

M. Jarrell, and J. Moreno, Phys. Rev. A 87, 051607
(2013).

[20] H. M. Cataldo and D. M. Jezek, Phys. Rev. A 84, 013602
(2011).

[21] M. Maik, P. Buonsante, A. Vezzani, and J. Zakrzewski,
Phys. Rev. A 84, 053615 (2011).

[22] F. Pinheiro and A. F. R. de Toledo Piza, Journal of
Physics B: Atomic, Molecular and Optical Physics 46,
205303 (2013).

[23] J. Polo, P. Naldesi, A. Minguzzi, and L. Amico, Phys.
Rev. A 101, 043418 (2020).

[24] A. Richaud and V. Penna, Phys. Rev. A 100, 013609
(2019).

[25] D. Aghamalyan, M. Cominotti, M. Rizzi, D. Rossini,
F. Hekking, A. Minguzzi, L.-C. Kwek, and L. Amico,
New Journal of Physics 17, 045023 (2015).

[26] G. Arwas, D. Cohen, F. Hekking, and A. Minguzzi, Phys.
Rev. A 96, 063616 (2017).

[27] G. Arwas and D. Cohen, Phys. Rev. B 95, 054505 (2017).
[28] G. Arwas and D. Cohen, Phys. Rev. A 99, 023625 (2019).
[29] B. Eiermann, T. Anker, M. Albiez, M. Taglieber,

P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, Phys.
Rev. Lett. 92, 230401 (2004).

[30] T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eier-
mann, A. Trombettoni, and M. K. Oberthaler, Phys.
Rev. Lett. 94, 020403 (2005).

[31] Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev.
Mod. Phys. 83, 247 (2011).

[32] J. C. Bronski, L. D. Carr, B. Deconinck, and J. N. Kutz,
Phys. Rev. Lett. 86, 1402 (2001).

[33] B. Wu and Q. Niu, Phys. Rev. A 64, 061603 (2001).
[34] V. V. Konotop and M. Salerno, Phys. Rev. A 65, 021602

(2002).
[35] D. Diakonov, L. M. Jensen, C. J. Pethick, and H. Smith,

Phys. Rev. A 66, 013604 (2002).
[36] M. Machholm, C. J. Pethick, and H. Smith, Phys. Rev.

A 67, 053613 (2003).
[37] M. Machholm, A. Nicolin, C. J. Pethick, and H. Smith,

Phys. Rev. A 69, 043604 (2004).
[38] B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev.

A 71, 033622 (2005).
[39] B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev.

A 72, 033602 (2005).
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