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Abstract
Many generative models have to combat missing modes. The conventional wis-
dom to this end is by reducing through training a statistical distance (such as
f -divergence) between the generated distribution and provided data distribution.
But this is more of a heuristic than a guarantee. The statistical distance measures
a global, but not local, similarity between two distributions. Even if it is small,
it does not imply a plausible mode coverage. Rethinking this problem from a
game-theoretic perspective, we show that a complete mode coverage is firmly
attainable. If a generative model can approximate a data distribution moderately
well under a global statistical distance measure, then we will be able to find a
mixture of generators that collectively covers every data point and thus every mode,
with a lower-bounded generation probability. Constructing the generator mixture
has a connection to the multiplicative weights update rule, upon which we propose
our algorithm. We prove that our algorithm guarantees complete mode coverage.
And our experiments on real and synthetic datasets confirm better mode coverage
over recent approaches, ones that also use generator mixtures but rely on global
statistical distances.

1 Introduction

A major pillar of machine learning, the generative approach aims at learning a data distribution from
a provided training dataset. While strikingly successful, many generative models suffer from missing

modes. Even after a painstaking training process, the generated samples represent only a limited
subset of the modes in the target data distribution, yielding a much lower entropy distribution.

Behind the missing mode problem is the conventional wisdom of training a generative model.
Formulated as an optimization problem, the training process reduces a statistical distance between the
generated distribution and the target data distribution. The statistical distance, such as f -divergence
or Wasserstein distance, is often a global measure. It evaluates an integral of the discrepancy
between two distributions over the data space (or a summation over a discrete dataset). In practice,
reducing the global statistical distance to a perfect zero is virtually a mission impossible. Yet a
small statistical distance does not certify the generator complete mode coverage. The generator may
neglect underrepresented modes—ones that are less frequent in data space—in exchange for better
matching the distribution of well represented modes, thereby lowering the statistical distance. In
short, a global statistical distance is not ideal for promoting mode coverage (see Figure 1 for a 1D
motivating example and later Figure 2 for examples of a few classic generative models).

This inherent limitation is evident in various types of generative models (see Appendix A for the
analysis of a few classic generative models). Particularly in generative adversarial networks (GANs),
mode collapse has been known as a prominent issue. Despite a number of recent improvements
toward alleviating it [1, 2, 3, 4, 5, 6], none of them offers a complete mode coverage. In fact, even the
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fundamental question remains unanswered: what precisely does a complete mode coverage mean?

After all, the definition of “modes” in a dataset is rather vague, depending on what specific distance
metric is used for clustering data items (as discussed and illustrated in [4]).

target distribution
generated distribution

0 6 14-6-14
Figure 1: Motivating example. Consider a
1D target distribution P with three modes, i.e., a
mixture of three Gaussians, P = 0.9 ·N (0, 1)+

0.05 · N (10, 1) + 0.05 · N (�10, 1) (solid or-
ange curve). If we learn this distribution using
a single Gaussian Q (black dashed curve). The
statistical distance between the two is small:
DTV(Q k P )  0.1 and DKL(Q k P )  0.16.
The probability of drawing samples from the
side modes (in [�14,�6] and [6, 14]) of the tar-
get distribution P is Prx⇠P [6  |x|  14] ⇡
0.1, but the probability of generating samples
from Q in the same intervals is Prx⇠Q[6 
|x|  14] ⇡ 10

�9. The side modes are missed!

We introduce an explicit notion of complete mode
coverage, by switching from the global statistical
distance to local pointwise coverage: provided a
target data distribution P with a probability density
p(x) at each point x of the data space X , we claim
that a generator G has a complete mode coverage of
P if the generator’s probability g(x) for generating
x is pointwise lower bounded, that is,

g(x) �  · p(x), 8x 2 X , (1)

for a reasonably large relaxation constant  2
(0, 1). This notion of mode coverage ensures that
every point x in the data space X will be generated
by G with a finite and lower-bounded probability
g(x). Thereby, in contrast to the generator trained
by reducing a global statistical distance (recall Fig-
ure 1), no mode will have an arbitrarily small gener-
ation probability, and thus no mode will be missed.
Meanwhile, our mode coverage notion (1) stays
compatible with the conventional heuristic toward
reducing a global statistical distance, as the satisfac-
tion of (1) implies that the total variation distance
between P and G is upper bounded by 1�  (see a proof in Appendix C).

At first sight, the pointwise condition (1) seems more stringent than reducing a global statistical
distance, and pursuing it might require a new formulation of generative models. Perhaps somewhat
surprisingly, a rethink from a game-theoretic perspective reveal that this notion of mode coverage is
viable without formulating any new models. Indeed, a mixture of existing generative models (such as
GANs) suffices. In this work, we provide an algorithm for constructing the generator mixture and a
theoretical analysis showing the guarantee of our mode coverage notion (1).

1.1 A Game-Theoretic Analysis

Before delving into our algorithm, we offer an intuitive view of why our mode coverage notion (1)
is attainable through a game-theoretic lens. Consider a two-player game between Alice and Bob:
given a target data distribution P and a family G of generators2, Alice chooses a generator G 2 G,
and Bob chooses a data point x 2 X . If the probability density g(x) of Alice’s G generating Bob’s
choice of x satisfies g(x) � 1

4p(x), the game produces a value v(G, x) = 1, otherwise it produces
v(G, x) = 0. Here 1/4 is used purposely as an example to concretize our intuition. Alice’s goal is to
maximize the game value, while Bob’s goal is to minimize the game value.

Now, consider two situations. In the first situation, Bob first chooses a mixed strategy, that is, a
distribution Q over X . Then, Alice chooses the best generator G 2 G according to Bob’s distribution
Q. When the game starts, Bob samples a point x using his choice of distribution Q. Together
with Alice’s choice G, the game produces a value. Since x is now a random variable over Q, the
expected game value is maxG2G E

x⇠Q
[v(G, x)]. In the second situation, Alice first chooses a mixed

strategy, that is, a distribution RG of generators over G. Then, given Alice’s choice RG , Bob chooses
the best data point x 2 X . When the game starts, Alice samples a generator G from the chosen
distribution RG . Together with Bob’s choice of x, the game produces a value, and the expected value
is minx2X EG⇠RG [v(G, x)].

According to von Neumann’s minimax theorem [7, 8], Bob’s optimal expected value in the first
situation must be the same as Alice’s optimal value in the second situation:

min
Q

max
G2G

E
x⇠Q

[v(G, x)] = max
RG

min
x2X

E
G⇠RG

[v(G, x)]. (2)

2An example of the generator family is the GANs. The definition will be made clear later in this paper.
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With this equality realized, our agenda in the rest of the analysis is as follows. First, we show a lower
bound of the left-hand side of (2), and then we use the right-hand side to reach the lower-bound
of g(x) as in (1), for Alice’s generator G. To this end, we need to depart off from the current
game-theoretic analysis and discuss the properties of existing generative models for a moment.

Existing generative models such as GANs [9, 1, 10] aim to reproduce arbitrary data distributions.
While it remains intractable to have the generated distribution match exactly the data distribution,
the approximations are often plausible. One reason behind the plausible performance is that the data
space encountered in practice is “natural” and restricted—all English sentences or all natural object
images or all images on a manifold—but not a space of arbitrary data. Therefore, it is reasonable to
expect the generators in G (e.g., all GANs) to meet the following requirement3 (without conflicting
the no-free-lunch theorem [11]): for any distribution Q over a natural data space X encountered
in practice, there exists a generator G 2 G such that the total variation distance between G and Q

is upper bounded by a constant �, that is, 1
2

R
X |q(x)� g(x)| dx  �, where q(·) and g(·) are the

probability densities on Q and the generated samples of G, respectively. Again as a concrete example,
we use � = 0.1. With this property in mind, we now go back to our game-theoretic analysis.

Back to the first situation described above. Once Bob’s distribution Q (over X ) and Alice’s generator
G are identified, then given a target distribution P over X and an x drawn by Bob from Q, the
probability of having Alice’s G cover P (i.e., g(x) � 1

4p(x)) at x is lower bounded. In our current
example, we have the following lower bound:

Pr
x⇠Q

[g(x) � 1/4 · p(x)] � 0.4. (3)

Here 0.4 is related to the total variation distance bound (i.e., � = 0.1) between G and Q, and this
lower bound value is derived in Appendix D. Next, notice that on the left-hand side of (2), the
expected value, Ex⇠Q[v(G, x)], is equivalent to the probability in (3). Thus, we have

min
Q

max
G2G

E
x⇠Q

[v(G, x)] � 0.4. (4)

Because of the equality in (2), this is also the lower bound of its right-hand side, from which we know
that there exists a distribution RG of generators such that for any x 2 X , we have

E
G⇠RG

[v(G, x)] = Pr
G⇠RG

[g(x) � 1/4 · p(x)] � 0.4. (5)

This expression shows that for any x 2 X , if we draw a generator G from RG , then with a probability
at least 0.4, G’s generation probability density satisfies g(x) � 1

4p(x). Thus, we can think RG as a
“collective” generator G⇤, or a mixture of generators. When generating a sample x, we first choose
a generator G according to RG and then sample an x using G. The overall probability g

⇤
(x) of

generating x satisfies g⇤(x) > 0.1p(x)—precisely the pointwise lower bound that we pose in (1).

Takeaway from the analysis. This analysis reveals that a complete mode coverage is firmly viable.
Yet it offers no recipe on how to construct the mixture of generators and their distribution RG using
existing generative models. Interestingly, as pointed out by Arora et al. [12], a constructive version
of von Neumann’s minimax theorem is related to the general idea of multiplicative weights update.
Therefore, our key contributions in this work are i) the design of a multiplicative weights update
algorithm (in Sec. 3) to construct a generator mixture, and ii) a theoretical analysis showing that
our generator mixture indeed obtains the pointwise data coverage (1). In fact, we only need a small
number of generators to construct the mixture (i.e., it is easy to train), and the distribution RG for
using the mixture is as simple as a uniform distribution (i.e., it is easy to use).

2 Related Work

There exists a rich set of works improving classic generative models for alleviating missing modes,
especially in the framework of GANs, by altering objective functions [13, 14, 15, 10, 16, 17],
changing training methods [18, 19], modifying neural network architectures [2, 20, 21, 22, 23], or
regularizing latent space distributions [4, 24]. The general philosophy behind these improvements is
to reduce the statistical distance between the generated distribution and target distribution by making

3This requirement is weaker than the mainstream goal of generative models, which all aim to approximate a
target data distribution as closely as possible. Here we only require the approximation error is upper bounded.
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the models easier to train. Despite their technical differences, their optimization goals are all toward
reducing a global statistical distance.

The idea of constructing a mixture of generators has been explored, with two ways of construction.
In the first way, a set of generators are trained simultaneously. For example, Locatello et al. [25]
used multiple generators, each responsible for sampling a subset of data points decided in a k-means
clustering fashion. Other methods focus on the use of multiple GANs [26, 27, 28]. The theoretical
intuition behind these approaches is by viewing a GAN as a two-player game and extending it to
reach a Nash equilibrium with a mixture of generators [26]. In contrast, our method does not depend
specifically on GANs, and our game-theoretic view is fundamentally different (recall Sec. 1.1).

Another way of training a mixture of generators takes a sequential approach. This is related to boosting

algorithms in machine learning. Grnarova et al. [29] viewed the problem of training GANs as finding
a mixed strategy in a zero-sum game, and used the Follow-the-Regularized-Leader algorithm [30]
for training a mixture of generators iteratively. Inspired by AdaBoost [31], other approaches train a
“weak” generator that fits a reweighted data distribution in each iteration, and all iterations together
form an additive mixture of generators [32, 33] or a multiplicative mixture of generators [34].

Our method can be also viewed as a boosting strategy. From this perspective, the most related is
AdaGAN [33], while significant differences exist. Theoretically, AdaGAN (and other boosting-like
algorithms) is based on the assumption that the reweighted data distribution in each iteration becomes
progressively easier to learn. It requires a generator in each iteration to have a statistical distance
to the reweighted distribution smaller than the previous iteration. As we will discuss in Sec. 5,
this assumption is not always feasible. We have no such assumption. Our method can use a weak
generator in each iteration. If the generator is more expressive, the theoretical lower bound of our
pointwise coverage becomes larger (i.e., a larger  in (1)). Algorithmically, our reweighting scheme
is simple and different from AdaGAN, only doubling the weights or leaving them unchanged in each
iteration. Also, in our mixture of generators, they are treated uniformly, and no mixture weights are
needed, whereas AdaGAN needs a set of weights that are heuristically chosen.

To summarize, in stark contrast to all prior methods, our approach is rooted in a different philosophy
of training generative models. Rather than striving for reducing a global statistical distance, our
method revolves around an explicit notion of complete mode coverage as defined in (1). Unlike other
boosting algorithms, our algorithm of constructing the mixture of generators guarantees complete
mode coverage, and this guarantee is theoretically proved.

3 Algorithm

A mixture of generators. Provided a target distribution P on a data domain X , we train a mixture
of generators to pursue pointwise mode coverage (1). Let G⇤

= {G1, . . . , GT } denote the resulting
mixture of T generators. Each of them (Gt, t = 1...T ) may use any existing generative model such
as GANs. Existing methods that also rely on a mixture of generators associate each generator a
nonuniform weight ↵t and choose a generator for producing a sample randomly based on the weights.
Often, these weights are chosen heuristically, e.g., in AdaGAN [33]. Our mixture is conceptually and
computationally simpler. Each generator is treated equally. When using G⇤ to generate a sample, we
first choose a generator Gi uniformly at random, and then use Gi to generate the sample.

Algorithm overview. Our algorithm of training G⇤ can be understood as a specific rule design in
the framework of multiplicative weights update [12]. Outlined in Algorithm 1, it runs iteratively.
In each iteration, a generator Gt is trained using an updated data distribution Pt (see Line 6-7 of
Algorithm 1). The intuition here is simple: if in certain data domain regions the current generator fails
to cover the target distribution sufficiently well, then we update the data distribution to emphasize
those regions for the next round of generator training (see Line 9 of Algorithm 1). In this way, each
generator can focus on the data distribution in individual data regions. Collectively, they are able to
cover the distribution over the entire data domain, and thus guarantee pointwise data coverage.

Training. Each iteration of our algorithm trains an individual generator Gt, for which many existing
generative models, such as GANs [9], can be used. The only prerequisite is that Gt needs to be
trained to approximate the data distribution Pt moderately well. This requirement arises from our
game-theoretic analysis (Sec. 1.1), wherein the total variation distance between Gt’s distribution and
Pt needs to be upper bounded. Later in our theoretical analysis (Sec. 4), we will formally state this
requirement, which, in practice, is easily satisfied by most existing generative models.
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Algorithm 1 Constructing a mixture of generators
1: Parameters: T , a positive integer number of generators, and � 2 (0, 1), a covering threshold.
2: Input: a target distribution P on a data domain X .
3: For each x 2 X , initialize its weight w1(x) = p(x).
4: for t = 1 ! T do
5: Construct a distribution Pt over X as follows:
6: For every x 2 X , normalize the probability density pt(x) =

wt(x)
Wt

, where Wt =
R
X wt(x)dx.

7: Train a generative model Gt on the distribution Pt.
8: Estimate generated density gt(x) for every x 2 X .
9: For each x 2 X , if gt(x) < � ·p(x), set wt+1(x) = 2·wt(x). Otherwise, set wt+1(x) = wt(x).

10: end for
11: Output: a mixture of generators G⇤

= {G1, . . . , GT }.

Estimation of generated probability density. In Line 8 of Algorithm 1, we need to estimate the
probability gt(x) of the current generator sampling a data point x. Our estimation follows the idea
of adversarial training, similar to AdaGAN [33]. First, we train a discriminator Dt to distinguish
between samples from Pt and samples from Gt. The optimization objective of Dt is defined as

max
Dt

E
x⇠Pt

[logDt(x)] + E
x⇠Gt

[log(1�Dt(x))].

Unlike AdaGAN [33], here Pt is the currently updated data distribution, not the original target
distribution, and Gt is the generator trained in the current round, not a mixture of generators in all
past rounds. As pointed out previously [35, 33], once Dt is optimized, we have Dt(x) =

pt(x)
pt(x)+gt(x)

for all x 2 X , and equivalently gt(x)
pt(x)

=
1

Dt(x)
� 1. Using this property in Line 9 of Algorithm 1 (for

testing the data coverage), we rewrite the condition gt(x) < � · p(x) as

gt(x)

p(x)
=

gt(x)

pt(x)

pt(x)

p(x)
=

✓
1

Dt(x)
� 1

◆
wt(x)

p(x)Wt
< �,

where the second equality utilize the evaluation of pt(x) in Line 6 (i.e., pt(x) = wt(x)/Wt).

Note that if the generators Gt are GANs, then the discriminator of each Gt can be reused as Dt here.
Reusing Dt introduces no additional computation. In contrast, AdaGAN [33] always has to train an
additional discriminator Dt in each round using the mixture of generators of all past rounds.

Working with empirical dataset. In practice, the true data distribution P is often unknown when
an empirical dataset X = {xi}ni=1 is given. Instead, the empirical dataset is considered as n i.i.d.
samples drawn from P . According to the Glivenko-Cantelli theorem [36], the uniform distribution
over n i.i.d. samples from P will converge to P as n approaches to infinity. Therefore, provided the
empirical dataset, we do not need to know the probability density p(x) of P , as every sample xi 2 X
is considered to have a finite and uniform probability measure. An empirical version of Algorithm 1
and more explanation are presented in the supplementary document (Algorithm 2 and Appendix B).

4 Theoretical Analysis
We now provide a theoretical understanding of our algorithm, showing that the pointwise data
coverage (1) is indeed obtained. Our analysis also sheds some light on how to choose the parameters
of Algorithm 1.

4.1 Preliminaries

We first clarify a few notational conventions and introduce two new theoretical notions for our
subsequent analysis. Our analysis is in continuous setting; results on discrete datasets follow directly.

Notation. Formally, we consider a d-dimensional measurable space (X ,B(X )), where X is the
d-dimensional data space, and B(X ) is the Borel �-algebra over X to enable probability measure. We
use a capital letter (e.g., P ) to denote a probability measure on this space. When there is no ambiguity,
we also refer them as probability distributions (or distributions). For any subset S 2 B(X ), the
probability of S under P is P (S) := Prx⇠P [x 2 S]. We use G to denote a generator. When there is
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no ambiguity, G also denotes the distribution of its generated samples. All distributions are assumed
absolutely continuous. Their probability density functions (i.e., the derivative with respect to the
Lebesgue measure) are referred by their corresponding lowercase letters (e.g., p(·), q(·), and g(·)).
Moreover, we use [n] to denote the set {1, 2, ..., n}, N>0 for the set of all positive integers, and 1(E)
for the indicator function whose value is 1 if the event E happens, and 0 otherwise.

f -divergence. Widely used in objective functions of training generative models, f -divergence is a
statistical distance between two distributions. Let P and Q be two distributions over X . Provided a
convex function f on (0,1) such that f(1) = 0, f -divergence of Q from P is defined as Df (Q k
P ) :=

R
X f

⇣
q(x)
p(x)

⌘
p(x)dx. Various choices of f lead to some commonly used f -divergence metrics

such as total variation distance DTV, Kullback-Leibler divergence DKL, Hellinger distance DH, and
Jensen-Shannon divergence DJS [35, 37]. Among them, total variation distance is upper bounded
by many other f -divergences. For instance, DTV(Q k P ) is upper bounded by

q
1
2DKL(Q k P ),

p
2DH(Q k P ), and

p
2DJS(Q k P ), respectively. Thus, if two distributions are close under those

f -divergence measures, so are they under total variation distance. For this reason, our theoretical
analysis is based on the total variation distance.

�-cover and (�,�)-cover. We introduce two new notions for analyzing our algorithm. The first is
the notion of �-cover. Given a data distribution P over X and a value � 2 (0, 1], if a generator G
satisfies g(x) � � · p(x) at a data point x 2 X , we say that x is �-covered by G under distribution P .
Using this notion, the pointwise mode coverage (1) states that x is  -covered by G under distribution
P for all x 2 X . We also extend this notion to a measurable subset S 2 B(X ): we say that S is
�-covered by G under distribution P if G(S) � � · P (S) is satisfied.

Next, consider another distribution Q over X . We say that G can (�,�)-cover (P,Q), if the following
condition holds:

Pr
x⇠Q

[x is �-covered by G under distributionP ] � �. (6)

For instance, using this notation, Equation (3) in our game-theoretic analysis states that G can
(0.25, 0.4)-cover (P,Q).

4.2 Guarantee of Pointwise Data Coverage

In each iteration of Algorithm 1, we expect the generator Gt to approximate the given data distribution
Pt sufficiently well. We now formalize this expectation and understand its implication. Our intuition
is that by finding a property similar to (3), we should be able to establish a pointwise coverage lower
bound in a way similar to our analysis in Sec. 1.1. Such a property is given by the following lemma
(and proved in Appendix E.1).
Lemma 1. Consider two distributions, P and Q, over the data space X , and a generator G producing

samples in X . For any �, � 2 (0, 1], if DTV (G k Q)  �, then G can (�, 1� 2� � �)-cover (P,Q).

Intuitively, when G and Q are identified, � is set. If � is reduced, then more data points in X can
be �-covered by G under P . Thus, the probability defined in (6) becomes larger, as reflected by the
increasing 1� 2� � �. On the other hand, consider a fixed �. As the discrepancy between G and Q

becomes larger, � increases. Then, sampling an x according to Q will have a smaller chance to land
at a point that is �-covered by G under P , as reflected by the decreasing 1� 2� � �.

Next, we consider Algorithm 1 and identify a sufficient condition under which the output mixture of
generators G⇤ covers every data point with a lower-bounded guarantee (i.e., our goal (1)). Simply
speaking, this sufficient condition is as follows: in each round t, the generator Gt is trained such that
given an x drawn from distribution Pt, the probability of x being �-covered by Gt under P is also
lower bounded. A formal statement is given in the next lemma (proved in Appendix E.2).
Lemma 2. Recall that T 2 N>0 and � 2 (0, 1) are the input parameters of Algorithm 1. For any

" 2 [0, 1) and any measurable subset S 2 B(X ) whose probability measure satisfies P (S) � 1/2
⌘T

with some ⌘ 2 (0, 1), if in every round t 2 [T ], Gt can (�, 1� ")-cover (P, Pt), then the resulting

mixture of generators G⇤
can (1� "/ln 2� ⌘)�-cover S under distribution P .

This lemma is about lower-bounded coverage of a measurable subset S, not a point x 2 X . At first
sight, it is not of the exact form in (1) (i.e., pointwise �-coverage). This is because formally speaking
it makes no sense to talk about covering probability at a single point (whose measure is zero). But as
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T approaches to 1, S that satisfies P (S) � 1/2
⌘T can also approach to a point (and ⌘ approaches

to zero). Thus, Lemma 2 provides a condition for pointwise lower-bounded coverage in the limiting
sense. In practice, the provided dataset is always discrete, and the probability measure at each discrete
data point is finite. Then, Lemma 2 is indeed a sufficient condition for pointwise lower-bounded
coverage.

From Lemma 1, we see that the condition posed by Lemma 2 is indeed satisfied by our algorithm,
and combing both lemmas yields our final theorem (proved in Appendix E.3).
Theorem 1. Recall that T 2 N>0 and � 2 (0, 1) are the input parameters of Algorithm 1. For

any measurable subset S 2 B(X ) whose probability measure satisfies P (S) � 1/2
⌘T

with some

⌘ 2 (0, 1), if in every round t 2 [T ], DTV(Gt k Pt)  �, then the resulting mixture of generators G⇤

can (1� (� + 2�)/ ln 2� ⌘)�-cover S under distribution P .

In practice, existing generative models (such as GANs) can approximate Pt sufficiently well, and
thus DTV(Gt k Pt)  � is always satisfied for some �. According to Theorem 1, a pointwise
lower-bounded coverage can be obtained by our Algorithm 1. If we choose to use a more expressive
generative model (e.g., a GAN with a stronger network architecture), then Gt can better fit Pt in each
round, yielding a smaller � used in Theorem 1. Consequently, the pointwise lower bound of the data
coverage becomes larger, and effectively the coefficient  in (1) becomes larger.

4.3 Insights from the Analysis

�, ⌘, �, and T in Theorem 1. In Theorem 1, � depends on the expressive power of the generators
being used. It is therefore determined once the generator class G is chosen. But ⌘ can be directly set
by the user and a smaller ⌘ demands a larger T to ensure P (S) � 1/2

⌘T is satisfied. Once � and ⌘ is
determined, we can choose the best � by maximizing the coverage bound (i.e., (1�(�+2�)/ ln 2�⌘)�)
in Theorem 1. For example, if �  0.1, ⌘  0.01, then � ⇡ 1/4 would optimize the coverage bound
(see Appendix E.4 for more details), and in this case the coefficient  in (1) is at least 1/30.
Theorem 1 also sets the tone for the training cost. As explained in Appendix E.4, given a training
dataset of size n, the size of the generator mixture, T , needs to be at most O(log n). This theoretical
bound is consistent with our experimental results presented in Sec. 5. In practice, only a small number
of generators are needed.
Estimated density function gt. The analysis in Sec. 4.2 assumes that the generated probability
density gt of the generator Gt in each round is known, while in practice we have to estimate gt by
training a discriminator Dt (recall Section 3). Fortunately, only mild assumptions in terms of the
quality of Dt are needed to retain the pointwise lower-bounded coverage. Roughly speaking, Dt

needs to meet two conditions: 1) In each round t, only a fraction of the covered data points (i.e., those
with gt(x) � � · p(x)) is falsely classified by Dt and doubled their weights. 2) In each round t, if the
weight of a data point x is not doubled based on the estimation of Dt(x), then there is a good chance
that x is truly covered by Gt (i.e., gt(x) � � · p(x)). A detailed and formal discussion is presented in
Appendix E.5. In short, our estimation of gt would not deteriorate the efficacy of the algorithm, as
also confirmed in our experiments.
Generalization. An intriguing question for all generative models is their generalization perfor-
mance: how well can a generator trained on an empirical distribution (with a finite number of
data samples) generate samples that follow the true data distribution? While the generalization
performance has been long studied for supervised classification, generalization of generative models
remains a widely open theoretical question. We propose a notion of generalization for our method,
and provide a preliminary theoretical analysis. All the details are presented in Appendix E.6.

5 Experiments
We now present our major experimental results, while referring to Appendix F for network details
and more results. We show that our mixture of generators is able to cover all the modes in various
synthetic and real datasets, while existing methods always have some modes missed.
Previous works on generative models used the Inception Score [1] or the Fréchet Inception Dis-
tance [18] as their evaluation metric. But we do not use them, because they are both global measures,
not reflecting mode coverage in local regions [38]. Moreover, these metrics are designed to measure
the quality of generated images, which is orthogonal to our goal. For example, one can always use a
more expressive GAN in each iteration of our algorithm to obtain better image quality and thus better
inception scores.
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(a) (b) (c) (d) (e) (f)

Figure 2: Generative models on synthetic dataset. (a) The dataset consists of two modes: one
major mode as an expanding sine curve (y = x sin

4x
⇡ ) and a minor mode as a Gaussian located at

(10, 0) (highlighted in the reb box). (b-f) We show color-coded distributions of generated samples
from (b) EM, (c) GAN, (d) VAE, (e) AdaGAN, and (f) our method (i.e., a mixture of GANs). Only
our method is able to cover the second mode (highlighted in the green box; zoomin to view).

Since the phenomenon of missing modes is particularly prominent in GANs, our experiments
emphasize on the mode coverage performance of GANs and compare our method (using a mixture of
GANs) with DCGAN [39], MGAN [27], and AdaGAN. The latter two also use multiple GANs to
improve mode coverage, although they do not aim for the same mode coverage notion as ours.

Overview. We first outline all our experiments, including those presented in Appendix F. i) We
compare our method with a number of classic generative models on a synthetic dataset. ii) In
Appendix F.3, we also compare our method with AdaGAN [33] on other synthetic datasets as well as
stacked MNIST dataset, because both are boosting algorithms aiming at improving mode coverage.
iii) We further compare our method with a single large DCGAN, AdaGAN, and MGAN on the
Fashion-MNIST dataset [40] mixed with a very small portion of MNIST dataset [41].

Various generative models on synthetic dataset. As we show in Appendix A, many generative
models, such as expectation-maximization (EM) methods, VAEs, and GANs, all rely on a global
statistical distance in their training. We therefore test their mode coverage and compare with ours.
We construct on R2 a synthetic dataset with two modes. The first mode consists of data points whose
x-coordinate is uniformly sampled by xi ⇠ [�10, 10] and the y-coordinate is yi = xi sin

4xi
⇡ . The

second mode has data points forming a Gaussian at (0, 10). The total number of data points in the
first mode is 400⇥ of the second. As shown in Figure 2, generative models include EM, GAN, VAE,
and AdaGAN [33] all fail to cover the second mode. Our method, in contrast, captures both modes.
We run KDE to estimate the likelihood of our generated samples on our synthetic data experiments
(using KDE bandwidth=0.1). We compute L = 1/N

P
i Pmodel(xi), where xi is a sample in the

minor mode. For the minor mode, our method has a mean log likelihood of -1.28, while AdaGAN
has only -967.64 (almost no samples from AdaGAN).

“1”s Frequency Avg Prob.
DCGAN 13 0.14⇥ 10�4 0.49
MGAN collapsed - -
AdaGAN 60 0.67⇥ 10�4 0.45
Our method 289 3.2⇥ 10�4 0.68

Table 1: Ratios of generated images classified as
“1”. We generate 9⇥ 10

5 images from each method.
The second column indicates the numbers of sam-
ples being classified as “1”, and the third column
indicates the ratio. In the fourth column, we average
the prediction probabilities over all generated images
that are classified as “1”.

Fashion-MNIST and partial MNIST. Our
next experiment is to challenge different GAN
models with a real dataset that has separated
and unbalanced modes. This dataset con-
sists of the entire training dataset of Fashion-
MNIST (with 60k images) mixed with ran-
domly sampled 100 MNIST images labeled
as “1”. The size of generator mixture is al-
ways set to be 30 for AdaGAN, MGAN and
our method, and all generators share the same
network structure. Additionally, when com-
paring with a single DCGAN, we ensure that
the DCGAN’s total number of parameters is
comparable to the total number of parameters of the 30 generators in AdaGAN, MGAN, and ours.
To evaluate the results, we train an 11-class classifier to distinguish the 10 classes in Fashion-MNIST
and one class in MNIST (i.e., “1”). First, we check how many samples from each method are
classified as “1”. The test setup and results are shown in Table 1 and its caption. The results suggest
that our method can generate more “1” samples with higher prediction confidence. Note that MGAN
has a strong mode collapse and fails to produce “1” samples. While DCGAN and AdaGAN generate
some samples that are classified as “1”, inspecting the generated images reveals that those samples
are all visually far from “1”s, but incorrectly classified by the pre-trained classifier (see Figure 3).
In contrast, our method is able to generate samples close to “1”. We also note that our method can
produce higher-quality images if the underlying generative models in each round become stronger.
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AdaGAN MGAN DCGAN Our Approach
Figure 3: Most confident “1” samples. Here we show samples that are generated by each tested
methods and also classified by the pre-trained classifier most confidently as “1” images (i.e., top 10
in terms of the classified probability). Samples of our method are visually much closer to “1”.
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Figure 5: Distribution of generated samples. Training samples are drawn uniformly from each
class. But generated samples by AdaGAN and MGAN are considerably nonuniform, while those
from DCGAN and our method are more uniform. This experiment suggests that the conventional
heuristic of reducing a statistical distance might not merit its use in training generative models.
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Figure 4: Weight ratio of “1”s. We calculate
the ratio of the total weights of training images
labeled by “1” to the total weights of all training
images in each round, and plot here how the
ratio changes with respect to the iterations in
our algorithm.

Another remarkable feature is observed in our
algorithm. In each round of our training algorithm,
we calculate the total weight w̄t of provided train-
ing samples classified as “1” as well as the total
weight Wt of all training samples. When plotting
the ratio w̄t/Wt changing with respect to the num-
ber of rounds (Figure 4), interestingly, we found
that this ratio has a maximum value at around 0.005
in this example. We conjecture that in the training
dataset if the ratio of “1” images among all training
images is around 1/200, then a single generator
may learn and generate “1” images (the minority
mode). To verify this conjecture, we trained a GAN (with the same network structure) on another
training dataset with 60k training images from Fashion-MNIST mixed with 300 MNIST “1” images.
We then use the trained generator to sample 100k images. As a result, In a fraction of 4.2⇥ 10

�4,
those images are classified as “1”. Figure 8 in Appendix F shows some of those images. This result
confirms our conjecture and suggests that w̄t/Wt may be used as a measure of mode bias in a dataset.

Lastly, in Figure 5, we show the generated distribution over the 10 Fashion-MNIST classes from
each tested method. We neglect the class “1”, as MGAN fails to generate them. The generated
samples of AdaGAN and MGAN is highly nonuniform, though in the training dataset, the 10 classes
of images are uniformly distributed. Our method and DCGAN produce more uniform samples. This
suggests that although other generative models (such as AdaGAN and MGAN) aim to reduce a global
statistical distance, the generated samples may not easily match the empirical distribution—in this
case, a uniform distribution. Our method, while not aiming for reducing the statistical distance in the
first place, matches the target empirical distribution plausibly, as a byproduct.

6 Conclusion
We have presented an algorithm that iteratively trains a mixture of generators, driven by an explicit
notion of complete mode coverage. With this notion for designing generative models, our work poses
an alternative goal, one that differs from the conventional training philosophy: instead of reducing a
global statistical distance between the target distribution and generated distribution, one only needs
to make the distance mildly small but not have to reduce it toward a perfect zero, and our method is
able to boost the generative model with theoretically guaranteed mode coverage.
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Supplementary Document
Rethinking Generative Mode Coverage:

A Pointwise Guaranteed Approach

A Global Statistic Distance Based Generative Approaches

In this section, we analyze a few classic generative models to show their connections to the reduction
of a certain global statistical distance. The reliance on global statistical distances explains why they
suffer from missing modes, as empirically confirmed in Figure 2 of the main text.

Maximum Likelihood Estimation. Consider a target distribution P with density function p(·).
Suppose we are provided with n i.i.d. samples {x1, x2, · · · , xn} drawn from P . The goal of training
a generator through maximum likelihood estimation (MLE) is to find from a predefined generator
family G the generator G that maximize

L(G) =
1

n

X

i

log g(xi),

where g(·) is the probability density function of the distribution generated by G. When n approaches
1, the MLE objective amount to

lim
n!1

✓
max
G2G

L(G)

◆
= max

G2G
E

x⇠P
[log g(x)] = max

G2G

Z
p(x) log g(x)dx = min

G2G

✓
�
Z

p(x) log g(x)dx

◆
,

which is further equivalent to solve the following optimization problem:
Z

p(x) log p(x)dx+min
G2G

✓
�
Z

p(x) log g(x)dx

◆
= min

G2G
DKL(P k G).

This is because the first term on the LHS is irrelevant from G and thus is a constant. From this
expression, it is evident that the goal of MLE is to minimize a global statistical distance, namely,
KL-divergence.

Figure 6 illustrates an 1D example wherein the MLE fails to achieve pointwise coverage. Although
Figure 6, for pedagogical purpose, involves a generator family G consisting of only two generators,
it is by no means a pathological case, since in practice generators always have limited expressive
power, limited by a number of factors. For GANs, it is limited by the structure of generators. For
VAEs, it is the structure of encoders and decoders. For Gaussian Mixture models, it is the dimension
of the space and the number of mixture components. Given a G with limited expressive power, MLE
cannot guarantee complete mode coverage.

Variational Autoencoders (VAEs). A VAE has a encoder ✓ 2 ⇥ and a decoder � 2 � chosen
from an encoder and decoder families, ⇥ and �. It also needs a known prior distribution Q (whose
probability density is q(·)) of latent variable z. Provided a decoder � and the prior distribution Q,
we can construct a generator G: to generate an x, we firstly sample a latent variable z ⇠ Z and then
sample an x according to the (approximated) likelihood function p�(x|z). To train a VAE, a target
distribution P is provided and the training objective is

max
✓2⇥,�2�

Z

x
p(x) · ELBO✓,�(x)dx, (7)

where ELBO✓,�(x) is called the evidence lower bound, defined as

ELBO✓,�(x) =

Z

z
p✓(z|x) log p�(x|z)dz �

Z

z
p✓(z|x) log

✓
p✓(z|x)
q(z)

◆
dz, (8)

Here p✓(z|x) is the (approximated) posterior function.
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Figure 6: Consider a 1D target distribution P with three modes, i.e., a mixture of three Gaussians,
P = 0.98 · N (0, 1) + 0.01 · N (10, 1) + 0.01 · N (�10, 1). In this example, the generator class G
only contains two generators. The generated distribution of the first generator G1 is N (0, 1), while
the distribution of the second generator G2 is 0.34 · N (0, 1) + 0.33 · N (10, 1) + 0.33 · N (�10, 1).
In this case, we have DKL(P,G1) ⇡ 1.28, DKL(P,G2) ⇡ 1.40, DKL(G1, P ) ⇡ 0.029, and
DKL(G2, P ) ⇡ 2.81 (all DKL measures use a log base of 2). To minimize DKL(P,G), maximum
likelihood estimation method will choose the first generator, G1. The probability of drawing samples
from the side modes (in [�14,�6] and [6, 14]) of the target distribution P is Prx⇠P [6  |x| 
14] ⇡ 0.02, but the probability of generating samples from the first generator in the same intervals is
Prx⇠G1 [6  |x|  14] ⇡ 10

�9. Thus, the side modes are almost missed. To make the first generator
satisfy Equation (1), we have to choose  ⇡ 10

�7, which in practice implies no pointwise coverage
guarantee. In contrast, the generated distribution of the second generator can satisfy Equation (1)
with  > 1/3, which is a plausible pointwise coverage guarantee.

Let G 2 G be a generator corresponding to the decoder � and the prior Z, and let g(·) be the
generative probability density of G. Then, we have the following derivation:

E
x⇠P

[log g(x)]

=

Z

x
p(x) log g(x)dx

=

Z

x
p(x)

Z

z
p✓(z|x) log (g(x)) dzdx

=

Z

x
p(x)

Z

z
p✓(z|x) log

✓
p�(x|z)q(z)
p�(z|x)

◆
dzdx

=

Z

x
p(x)

Z

z
p✓(z|x) log

✓
p�(x|z)q(z)p✓(z|x)
p�(z|x)p✓(z|x)

◆
dzdx

=

Z

x
p(x)

✓Z

z
p✓(z|x) log

✓
p�(x|z)q(z)
p✓(z|x)

◆
dz +

Z

z
p✓(z|x) log

✓
p✓(z|x)
p�(z|x)

◆
dz

◆
dx

=

Z

x
p(x)

✓Z

z
p✓(z|x) log

✓
p�(x|z)q(z)
p✓(z|x)

◆
dz +DKL (p✓(z|x) k p�(z|x))

◆
dx

=

Z

x
p(x) (ELBO✓,�(x) +DKL (p✓(z|x) k p�(z|x))) dx.

(9)
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Algorithm 2 Training on empirical distribution
1: Parameters: T , a positive integer number of generators, and � 2 (0, 1), a covering threshold.
2: Input: a set {xi}ni=1 of i.i.d. samples drawn from an unknown data distribution P .
3: For each xi, initialize its weight w1(xi) = 1/n.
4: for t = 1 ! T do
5: Construct an empirical distribution bPt such that each xi is drawn with probability wt(xi)

Wt
,

where Wt =
P

i wt(xi).
6: Train Gt on i.i.d. samples drawn from bPt.
7: Train a discriminator Dt to distinguish the samples from bPt and the samples from Gt.
8: For each xi, if

⇣
1

Dt(xi)
� 1

⌘
· wt(xi)

Wt
<

�
n , set wt+1(xi) = 2 · wt(xi).

Otherwise, set wt+1(xi) = wt(xi).
9: end for

10: Output: a mixture of generators G⇤
= {G1, . . . , GT }.

Notice that DKL (p✓(z|x) k p�(z|x)) is always non-negative and it reaches 0 when p✓(z|x) is the
same as p�(z|x). This means

E
x⇠P

[log g(x)] �
Z

x
p(x) · ELBO✓,�(x)dx.

If ✓ is perfectly trained, i.e., p✓(z|x) matches exactly p�(z|x), then

max
G2G

E
x⇠P

[log g(x)] = max
✓2⇥,�2�

Z

x
p(x) · ELBO✓,�(x)dx.

From this perspective, it becomes evident that optimizing a VAE essentially amounts to a maximum
likelihood estimation. Depending on the generator family G (determined by � and Z) and the encoder
family ⇥, mode collapse may not always happen. But since it is essentially a maximum likelihood
estimation method, the pointwise mode coverage (1) can not be guaranteed in theory, as discussed in
the previous paragraph.

Generative Adversarial Networks (GANs). Given a target distribution P , the objective of training
a GAN [9] is to solve the following optimization problem:

min
G2G

max
D

L(G,D),

where L(G,D) is defined as

L(G,D) = E
x⇠P

[log(D(x))] + E
x⇠G

[log(1�D(x))] =

Z

x
p(x) log(D(x)) + g(x) log(1�D(x))dx.

As shown in [9], the optimal discriminator D⇤ of Nash equilibrium satisfies D⇤
(x) ⌘ 1/2. When

using D
⇤ in L(G,D), we have

L(G,D
⇤
) = DKL

✓
P k P +G

2

◆
+DKL

✓
G k P +G

2

◆
� 2 = 2DJS(P k G)� 2,

where DJS is the Jensen-Shannon divergence. Thus, GAN essentially is trying to reduce the global
statistical distance, measured by Jensen-Shannon divergence.

There are many variants of GANs, which use (more or less) different loss functions L(G,D) in
training. But all of them still focus on reducing a global statistical distance. For example, the
loss function of the Wasserstein GAN [10] is Ex⇠P [D(x)]� Ex⇠G[D(x)]. Optimizing such a loss
function over all 1-Lipschitz D is essentially to reduce the Wasserstein distance, another global
statistical distance measure.

B Algorithm on Empirical Dataset

In practice, the provided dataset {xi}ni=1 consists of n i.i.d. samples from P . According to the
Glivenko-Cantelli theorem [36], the uniform distribution over n i.i.d. samples from P will converge
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to P when n approaches to infinity. As a simple example, let P be a discrete distribution over two
points, A and B, with P (A) = 5/7 and P (B) = 2/7. If 7 samples are drawn from P to form the
input data, ideally they should be a multiset {A,A,A,A,A,B,B}. Each sample has a weight 1/7,
and the total weights of A and B are 5/7 and 2/7. Then we will train a generator G1 from the training
distribution where point A has training probability 5/7 and point B has training probability 2/7.

If the generator G1 obtained is collapsed, e.g., G1 samples A with probability 1 and samples B with
probability 0, then ideally the discriminator D1 will satisfy D1(A) = 5/12 and D1(B) = 1. Suppose
the parameter � = 1/4 in Algorithm 1 (and Algorithm 2). We have

✓
1

D1(A)
� 1

◆
· w1(A)

W1(A)
=

✓
1

D1(A)
� 1

◆
· 5
7
· 1
5
� � · P (A) · 1

5
= �/n =

1/4

7

and ✓
1

D1(B)
� 1

◆
· w1(B)

W1(B)
=

✓
1

D1(B)
� 1

◆
· 2
7
· 1
2
< � · P (B) · 1

2
= �/n =

1/4

7
.

Thus, each sample B will double the weight, and each sample A will remain the same weight
unchanged. The total weight of A is 5/7, and the total weight of B is 4/7. In the second iteration, the
total probability of A will be decreased to 5/9 and the total probability of B will be increased to 4/9.
We will use the new probability to train the generator G2 and the discriminator D2, and repeat the
above procedure.

In practice, we do not need to know the probability density p(x) of P ; every sample xi is considered
to have a finite and uniform probability measure. After the generator G is trained over this dataset, its
generated sample distribution should approximate well the data distribution P . In light of this, the
Algorithm 1 can be implemented empirically as what is outlined in Algorithm 2.

C Statistical Distance from Lower-bounded Pointwise Coverage

Equation (1) (i.e., 8x 2 X , g(x) �  · p(x)) is a pointwise lower-bounded data coverage that we
pursue in this paper. If Equation (1) is satisfied, then the total variation distance between P and G is
automatically upper bounded, because

DTV(P k Q) =
1

2

Z

X
|p(x)� g(x)|dx =

Z

X
1(p(x) > g(x)) · (p(x)� g(x))dx


Z

X
1(p(x) > g(x)) · (p(x)�  · p(x))dx

= (1�  ) ·
Z

X
1(p(x) > g(x)) · p(x)dx

 1�  .

D Proof of Equation (3)

Suppose two arbitrary distributions P and Q are defined over a data space X . G is the distribution of
generated samples over X . If the total variation distance between Q and G is at most 0.1, then we
have

Pr
x⇠Q


g(x) � 1

4
p(x)

�
=

Z

X
1

✓
g(x) � 1

4
p(x)

◆
· q(x)dx

�
Z

X
1

✓
g(x), q(x) � 1

4
p(x)

◆
· q(x)dx

=

Z

X
1

✓
q(x) � 1

4
p(x)

◆
· q(x)dx�

Z

X
1

✓
q(x) � 1

4
p(x) > g(x)

◆
· q(x)dx

� 3

4
�
Z

X
1

✓
q(x) � 1

4
p(x) > g(x)

◆
(q(x)� g(x) + g(x))dx

� 3

4
� 0.1� 1

4
= 0.4,
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where the first term of the right-hand side of the second inequality follows from
Z

X
1

✓
q(x) � 1

4
p(x)

◆
· q(x)dx = 1�

Z

X
1

✓
q(x) <

1

4
p(x)

◆
· q(x)dx � 1�

Z

X

1

4
p(x)dx =

3

4
.

And the third inequality follows from
Z

X
1

✓
q(x) � 1

4
p(x) > g(x)

◆
(q(x)� g(x))dx 

Z

X
1(q(x) > g(x))(q(x)� g(x))dx  0.1,

andZ

X
1

✓
q(x) >

1

4
p(x) > g(x)

◆
g(x)dx 

Z

X
1

✓
1

4
p(x) > g(x)

◆
g(x)dx 

Z

X

1

4
p(x)dx  1

4
.

E Theoretical Analysis Details

In this section, we provide proofs of the lemmas and theorem presented in Section 4. We repeat the
statements of the lemmas and theorem before individual proofs. We also provide details to further
elaborate the discussion provided in Sec. 4.3 of the paper.

We follow the notations introduced in Sec. 4 of the main text. In addition, we will use log(·) to denote
log2(·) for short.

E.1 Proof of Lemma 1

Lemma 1. Consider two distributions, P and Q, over the data space X , and a generator G producing

samples in X . For any �, � 2 (0, 1], if DTV (G k Q)  �, then G can (�, 1� 2� � �)-cover (P,Q).

Proof. Since DTV(G||Q)  � and
R
X q(x)dx =

R
X g(x)dx = 1, we know that

DTV(G k Q) =
1

2

Z

X
|q(x)� g(x)|dx =

Z

X
1(q(x) > g(x)) · (q(x)� g(x))dx  �. (10)

Next, we derive a lower bound of Prx⇠Q[x is �-covered by G under P ]:
Pr
x⇠Q

[x is �-covered by G under P ]

=

Z

X
1(g(x) � � · p(x)) · q(x)dx �

Z

X
1(g(x), q(x) � � · p(x)) · q(x)dx

=

Z

X
1(q(x) � � · p(x)) · q(x)dx�

Z

X
1(q(x) � � · p(x) > g(x)) · q(x)dx

= 1�
Z

X
1(q(x) < � · p(x)) · q(x)dx�

Z

X
1(q(x) � � · p(x) > g(x)) · q(x)dx

� 1� �

Z

X
p(x)dx�

Z

X
1(q(x) � � · p(x) > g(x)) · q(x)dx

= 1� � �
Z

X
1(q(x) � � · p(x) > g(x)) · (q(x)� g(x) + g(x))dx

= 1� � �
Z

X
1(q(x) � � · p(x) > g(x)) · (q(x)� g(x))dx�

Z

X
1(q(x) � � · p(x) > g(x)) · g(x)dx

� 1� � � � �
Z

X
1(q(x) � � · p(x) > g(x)) · g(x)dx

� 1� � � � � �

Z

X
p(x)dx = 1� 2� � �,

where the first equality follows from definition, the second equality follows from 1(q(x) � � ·p(x)) =
1(g(x), q(x) � � ·p(x))+1(q(x) � � ·p(x) > g(x)), the third inequality follows from Equation (10),
and the last inequality follows fromZ

X
1(q(x) � � · p(x) > g(x)) · g(x)dx 

Z

X
1(� · p(x) > g(x)) · g(x)dx 

Z

X
� · p(x)dx.
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E.2 Proof of Lemma 2

Here we first assume that the probability density gt of generated samples is known. In Appendix E.5,
we will consider the case where gt is estimated by a discriminator as described in Section 3.

Lemma 2. Recall that T 2 N>0 and � 2 (0, 1) are the input parameters of Algorithm 1. For any

" 2 [0, 1) and any measurable subset S 2 B(X ) whose probability measure satisfies P (S) � 1/2
⌘T

with some ⌘ 2 (0, 1), if in every round t 2 [T ], Gt can (�, 1� ")-cover (P, Pt), then the resulting

mixture of generators G⇤
can (1� "/ln 2� ⌘)�-cover S under distribution P .

Proof. First, we consider the total weight Wt+1 after t rounds, we derive the following upper bound:

Wt+1 =

Z

X
wt+1(x)dx =

Z

X
wt(x) · (1 + 1(gt(x) < � · p(x)))dx

= Wt +Wt ·
Z

X
1(gt(x) < � · p(x)) · wt(x)

Wt
dx

= Wt +Wt ·
Z

X
1(gt(x) < � · p(x)) · pt(x)dx

= Wt +Wt · Pr
x⇠Pt

[gt(x) < � · p(x)]

= Wt +Wt · (1� Pr
x⇠Pt

[gt(x) � � · p(x)])

 Wt +Wt · (1� (1� "))

 Wt · (1 + "),

where the first equality follows from definition, the second equality follows from Line 9 of Algo-
rithm 1, the forth equality follows from the construction of distribution Pt. In addition, the first
inequality follows from that Gt can (�, 1�")-cover (P, Pt). Thus, WT+1  W1 ·(1+")T = (1+")

T
.

On the other hand, we have

WT+1 =

Z

X
wT+1(x)dx �

Z

S
wT+1(x)dx �

Z

S
2

PT
t=1 1(gt(x)<�·p(x))

p(x)dx

= E
x⇠P

h
2

PT
t=1 1(gt(x)<�·p(x))

���x 2 S
i
Pr
x⇠P

[x 2 S],
(11)

where the first equality follows from definition, the first inequality follows from S ✓ X , and the
second inequality follows from Line 9 of Algorithm 1. Dividing both sides by Prx⇠P [x 2 S] of (11)
and taking the logarithm yield

log

✓
WT+1

Prx⇠P [x 2 S]

◆
� log

⇣
E

x⇠P

h
2

PT
t=1 1(gt(x)<�·p(x))

���x 2 S
i⌘

� E
x⇠P

"
TX

t=1

1(gt(x) < � · p(x))

�����x 2 S
#
,

(12)

where the last inequality follows from Jensen’s inequality.
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Lastly, we have a lower bound for Prx⇠G[x 2 S]:

Pr
x⇠G

[x 2 S] =
Z

S

1

T

TX

t=1

gt(x)dx �
Z

S

1

T

TX

t=1

(1(gt(x) � � · p(x)) · gt(x))dx

�
Z

S

1

T

TX

t=1

(1(gt(x) � � · p(x)) · � · p(x))dx

=
�

T

Z

S

TX

t=1

1(gt(x) � � · p(x)) · p(x)dx

=
�

T
E

x⇠P

"
TX

t=1

1(gt(x) � � · p(x))

�����x 2 S
#
· Pr
x⇠P

[x 2 S]

=
�

T

 
T � E

x⇠P

"
TX

t=1

1(gt(x) < � · p(x))

�����x 2 S
#!

· Pr
x⇠P

[x 2 S]

� �(1� log(WT+1/ Pr
x⇠P

[x 2 S])/T ) · Pr
x⇠P

[x 2 S]

� �(1� "/ ln 2� ⌘) · Pr
x⇠P

[x 2 S],

where the third inequality follows from Equation (12), while the last inequality follows from
log(WT+1)  log((1 + ")

T
)  "T/ ln 2 and Prx⇠P [x 2 S] = P (S) � 1/2

⌘T .

E.3 Proof of Theorem 1

Theorem 1. Recall that T 2 N>0 and � 2 (0, 1) are the input parameters of Algorithm 1. For

any measurable subset S 2 B(X ) whose probability measure satisfies P (S) � 1/2
⌘T

with some

⌘ 2 (0, 1), if in every round t 2 [T ], DTV(Gt k Pt)  �, then the resulting mixture of generators G⇤

can (1� (� + 2�)/ ln 2� ⌘)�-cover S under distribution P .

Proof. From Lemma 1, we have 8t 2 [T ], Gt can (�, 1� � � 2�)-cover (P, Pt). Combining it with
Lemma 2, we have 8S ✓ X with P (S) � 1/2

⌘T
, G can (1� (� + 2�)/ ln 2� ⌘)�-cover S .

E.4 Choice of T and � according to Theorem 1

Suppose the empirical dataset has n data points independently sampled from a target distribution P .
We claim that in our train algorithm, T = O(log n) suffices. This is because if a subset S 2 B(X )

has a sufficiently small probability measure, for example, P (S) < 1/n
3, then with a high probability

(i.e., at least 1 � 1/n
2), no data samples in {xi}ni=1 is located in S. In other words, the empirical

dataset of size n reveals almost no information of a subset S if P (S) < 1/n
3, or equivalently if

1/2
⌘T ⇡ 1/n

3 (according to Theorem 1). This shows that T = O(log n) suffices.

Theorem 1 also sheds some light on the choice of � in Algorithm 1 (and Algorithm 2 in practice). We
now present the analysis details for choosing �. We use G to denote the type of generative models
trained in each round of our algorithm. According to Theorem 1, if we know ⌘ (depends on T ) and �
(depends on G), then we wish to maximize the lower bound (1� (� +2�)/ ln 2� ⌘)� over �, and the
optimal � is (1�⌘) ln 2��

4 . Although in practice � is unknown and not easy to estimate, we note that �
is relatively small in practice, and ⌘ can be also small when we increase the number of rounds T .
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Given two arbitrary distributions P and Q over X , if the total variation distance between Q and a
generated distribution G is at most � (as we discussed in Sec. 1.1 of the main text), then we have

Pr
x⇠Q

[g(x) � � · p(x)] =
Z

X
1(g(x) � �p(x)) · q(x)dx

�
Z

X
1(g(x), q(x) � � · p(x)) · q(x)dx

=

Z

X
1(q(x) � � · p(x)) · q(x)dx�

Z

X
1(q(x) � � · p(x) > g(x)) · q(x)dx

� 1� � �
Z

X
1(q(x) � � · p(x) > g(x))(q(x)� g(x) + g(x))dx

� 1� � � � � � = 1� 2� � �.

As discussed in Section 1.1, we can find a mixture of generators satisfying pointwise (1� 2� � �)�-
coverage. Letting � = 0, we see that the optimal choice of � in this setting is 1/4. And in this case,
(1� 2�)� = 1/8 is a theoretical bound of the coverage ratio by our algorithm.

E.5 Use of Estimated Probability Density gt

In Algorithm 1, we use a discriminator Dt to estimate the probability density gt of generated samples
of each generator Gt. The discriminator Dt might not be perfectly trained, causing inaccuracy of
estimating gt. We show that the pointwise lower-bound in our data coverage is retained if two mild
conditions are fulfilled by Dt.

1. In each round, only a bounded fraction of covered data points x (i.e., those with gt(x) � � · p(x))
is falsely classified and their weights are unnecessarily doubled. Concretely, 8t 2 [T ], if a sample
x is drawn from distribution Pt, then the probability of both events—x is �-covered by Gt under
P and

⇣
1

Dt(x)
� 1

⌘
· w1(x)
p(x)Wt

< �—happening is bounded by "0.

2. For any data point x 2 X , if in round t, the weight of x is not doubled, then
with a good chance, x is really �

0-covered, where �
0 can be smaller than �. Formally,

8x 2 X , |{t 2 [T ]|gt(x) � �
0 · p(x)}| � � ·

���
n
t 2 [T ]

���
⇣

1
Dt(x)

� 1

⌘
· wt(x)
p(x)Wt

� �

o���. Because
⇣

1
Dt(x)

� 1

⌘
· wt(x)

p(x)Wt
< � happens if and only if wt+1(x) = 2 · wt(x), we use the event

wt+1(x) = 2 · wt(x) as an indicator of the event
⇣

1
Dt(x)

� 1

⌘
· wt(x)
p(x)Wt

< �.

If the condition (1) is satisfied, then we are able to upper bound the total weight WT+1. Similarly to
the proof of Lemma 2, this can be seen from the following derivation:

Wt+1 =

Z

X
wt+1(x)dx


Z

X
wt(x) · (1 + 1(gt(x) < � · p(x)) + 1(gt(x) � � · p(x) ^ wt+1(x) = 2wt(x)))dx

= Wt +Wt ·
Z

X
(1(gt(x) < � · p(x)) + 1(gt(x) � � · p(x) ^ wt+1(x) = 2wt(x))) ·

wt(x)

Wt
dx

= Wt +Wt ·
Z

X
(1(gt(x) < � · p(x)) + 1(gt(x) � � · p(x) ^ wt+1(x) = 2wt(x))) · pt(x)dx

= Wt +Wt · Pr
x⇠Pt

[gt(x) < � · p(x)] +Wt · Pr
x⇠Pt

[gt(x) � � · p(x) ^ wt+1(x) = 2wt(x)]

 Wt +Wt · (1� Pr
x⇠Pt

[gt(x) � � · p(x)]) +Wt · "0

 Wt +Wt · (1� (1� ")) +Wt · "0

 Wt · (1 + "+ "
0
),
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Thus, the total weight WT+1 is bounded by (1 + "+ "
0
)
T
. Again in parallel to the proof of Lemma 2,

we have

WT+1 =

Z

X
wT+1(x)dx �

Z

S
wT+1(x)dx �

Z

S
2

PT
t=1 1(wt+1(x)=2·wt(x))p(x)dx

= E
x⇠P

h
2

PT
t=1 1(wt+1(x)=2·wt(x))

���x 2 S
i
Pr
x⇠P

[x 2 S].

Dividing both sides by Prx⇠P [x 2 S] yields

log

✓
WT+1

Prx⇠P [x 2 S]

◆
� log

⇣
E

x⇠P

h
2

PT
t=1 1(wt+1(x)=2wt(x))

���x 2 S
i⌘

� E
x⇠P

"
TX

t=1

1(wt+1(x) = 2wt(x))

�����x 2 S
#
.

Meanwhile, if the condition (2) is satisfied, then

� ·
 
T � E

x⇠P

"
TX

t=1

1(wt+1(x) = 2wt(x))

�����x 2 S
#!



T � E
x⇠P

"
TX

t=1

1(gt(x) < �
0 · p(x))

�����x 2 S
#
. (13)

Following the proof of Lemma 2, we obtain

Pr
x⇠G

[x 2 S] =
Z

S

1

T

TX

t=1

gt(x)dx �
Z

S

1

T

TX

t=1

(1(gt(x) � �
0 · p(x)) · gt(x))dx

�
Z

S

1

T

TX

t=1

(1(gt(x) � �
0 · p(x)) · �0 · p(x))dx

=
�
0

T

Z

S

TX

t=1

1(gt(x) � �
0 · p(x)) · p(x)dx

=
�
0

T
E

x⇠P

"
TX

t=1

1(gt(x) � �
0 · p(x))

�����x 2 S
#
· Pr
x⇠P

[x 2 S]

=
�
0

T

 
T � E

x⇠P

"
TX

t=1

1(gt(x) < �
0 · p(x))

�����x 2 S
#!

· Pr
x⇠P

[x 2 S]

� �
0
�

T

 
T � E

x⇠P

"
TX

t=1

1(wt+1(x) = 2wt(x))

�����x 2 S
#!

� �
0
�(1� log(WT+1/ Pr

x⇠P
[x 2 S])/T ) · Pr

x⇠P
[x 2 S]

� �
0
�(1� ("+ "

0
)/ ln 2� ⌘) · Pr

x⇠P
[x 2 S],

where the third inequality follows from Equation (13), and other steps are similar to the proof in
Lemma 2. By combining with Lemma 1, the final coverage ratio of Theorem 1 with imperfect
discriminators Dt should be (1� (� + 2� + "

0
)/ ln 2� ⌘)�

0
�.

E.6 Discussion on Generalization

Recently, Arora et al. [26] proposed the neural net distance for measuring generalization performance
of GANs. However, their metric still relies on a global distance measure of two distributions, not
necessarily reflecting the generalization for pointwise coverage.

While a dedicated answer of this theoretical question is beyond the scope of this work, here we
propose our notion of generalization and briefly discuss its implication for our algorithm. Provided
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a training dataset consisting of n i.i.d. samples {xi}ni=1 drawn from the distribution P , we train a
mixture of generators G⇤. Our notion of generalization is defined as Prx⇠P [x is  -covered by G⇤

],
the probability of x being  -covered by empirically trained G⇤ when x is sampled from the true
target distribution P . A perfect generalization has a value 1 under this notion. We claim that given
fixed T rounds of our algorithm and a constant " 2 (0, 1), if Gt in each round is from a family
G of generators (e.g., they are all GANs with the same network architecture), and if n is at least
⌦("

�1
T log |G|), then we have the generalization Prx⇠P [x is  -covered by G⇤

] � 1� ". Here |G|
is the size of essentially different generators in G. Next, we elaborate this statement.

Generalization Analysis. Our analysis start with a definition of a family of generators. In each
round of our algorithm, we train a generator Gt. We now identify a family of generators from which
Gt is trained. In general, a generator G can be viewed as a pair (f(·), Z), where Z is the latent
space distribution (or prior distribution) over the latent space Z , and f(·) is a transformation function
that maps the latent space Z to a target data domain X . Let z be a random variable of distribution
Z. Then, the generated distribution (i.e., distribution of samples generated by G) is denoted by the
distribution of f(z). For example, for GANs [9] and VAEs [42], f(·) is a function represented by a
neural network, and Z is usually a standard Gaussian or mixture of Gaussians.

In light of this, we define a family G of generators represented by a pair (F , Z), where F is a set of
functions mapping from Z to X . For example, in the framework of GANs, F can be expressed by a
neural network with a finite number of parameters which have bounded values. If the input to the
neural network (i.e., the latent space) is also bounded, then we are able to apply net argument (see
e.g., [26]) to find a finite subset F 0 ⇢ F such that for any f 2 F , there exists a function f

0 2 F 0

sufficiently close to f . Then the size of F 0, denoted by |F 0|, can be regarded as the number of
“essentially different” functions (or neural networks).

Recall that the generator family G can be represented by (F , Z). If the latent space Z is fixed (such
as a single Gaussian), then we can define “essentially different” generators in a way similar to the
definition of “essentially different” functions in F . If the number of “essentially different” generators
from G is finite, we define the size of G as |G|.
With this notion, the number of different mixture of generators G⇤

= {G1, ..., GT } is
at most |G|T . Consider a uniform mixture G⇤ of generators, G1, G2, · · · , GT 2 G. If
Prx⇠P [x is not  -covered by G⇤

] � ", then for n i.i.d. samples x1, x2, · · · , xn ⇠ P , the prob-
ability that every xi is  -covered by G is at most (1� ")

n, that is,
Pr

x1,...,xn⇠P
[every x1, ..., xn is  -convered by G⇤

]  (1� ")
n
.

Next, by union bound over all possible mixtures G⇤ that satisfies
Prx⇠P [x is not  -covered by G⇤

] � ", we have the following probability bound:

Pr
x1,...,xn⇠P

h
9G⇤s.t. Pr

x⇠P
[x is not  -covered by G⇤

] � " and every x1, ..., xn is  -convered by G⇤
i

 (1� ")
n|G|T . (14)

Thus, if n � ⌦("
�1

T log |G|), then with a high probability, the inverse of the probability condition
above is true, because in this case (1� ")n on the right-hand side of (14) is small—that is, with a high
probability, for any mixture G⇤ that satisfies Prx⇠P [x is not  -covered by G] � ", there must exist
a sample xi such that xi cannot be  -covered by G⇤. The occurrence of this condition implies that if
we find a generator mixture G⇤ that can  -cover every xi, then Prx⇠P [x is  -covered by G] � 1�".
In other words, we conclude that if we have n � ⌦("

�1
T log |G|) i.i.d. samples {xi}ni=1 drawn from

the distribution P , and if our algorithm finds a mixture G⇤ of generators that can  -cover every xi,
then with a high probability, our notion of generalization has Prx⇠P [x is  -covered by G] � 1� ".

F Experiment Details and More Results

F.1 Network Architecture and Training Hyperparameters.

In our tests, we construct a mixture of GANs. The network architecture of the GANs in show in
Table 2 for experiments on synthetic datasets and in Table 3 for real image datasets. All experiments
use Adam optimizer [43] with a learning rate of 10�3, and we set �1 = 0.5 and �2 = 0.999 with a
mini-batch size of 128.
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layer output size activation function
input (dim 10) 10

Linear 32 ReLU
Linear 32 ReLU
Linear 2

Table 2: Network structure for synthetic data generator.

layer output size kernel size stride BN activation function
input (dim 100) 100⇥1⇥1

Transposed Conv 512⇥4⇥4 4 1 Yes ReLU
Transposed Conv 256⇥8⇥8 4 2 Yes ReLU
Transposed Conv 128⇥16⇥16 4 2 Yes ReLU
Transposed Conv channel⇥32⇥32 4 2 No Tanh

Table 3: Network structure for image generator. channel=3 for Stacked MNIST and channel=1 for
FasionMNIST+MNIST.

F.2 Additional Experiment Details on Real Data

Stacked MNIST dataset. Stacked MNIST is an augmentation of MNIST dataset [13] for evaluating
mode collapse. We randomly sample three images from MNIST dataset and stack them in RGB
channels of an image. In this way, we construct a dataset of 100k images, each of which has a
dimension of 32⇥ 32⇥ 3.

Pre-trained classifier. For Fashion-MNIST with partial MNIST dataset, we use all the training
data of Fashion-MNIST and MNIST to train a 11-class classifier. For stacked MNIST dataset, we
train a 10-class classifier on MNIST, and use it as a 1000-class classifier on stacked MNIST (by
applying the 10-class MNIST classifier on each color channel). For each experiment, we regard each
class as a mode, and use the pre-trained classifier to classify the generated samples into individual
modes. After classifying generated samples, we can estimate the generation probability for each
mode.

F.3 Comparison with AdaGAN on Synthetic Dataset and Stacked MNIST

Mixture of Gaussians and Stacked MNIST. We conduct experiments on the same synthetic
dataset and Stacked MNIST as used in AdaGAN [33]. All synthetic data points are distributed
on a 2D plane, consisting of M (M = 10) Gaussians uniformly sampled in a squared region
[�15, 15]⇥ [�15, 15], all with the same variance �2

0 = 0.05.

We evaluate our algorithm by checking how many iterations (i.e., the parameter T in Algorithm 1)
it takes to cover all modes, and compare it with AdaGAN. A mode is considered covered, if in N

generated samples, there exist at least 0.01 ·N/M samples landed within a distance 3�0 away from
the mode’s center. The experiments on both our algorithms and AdaGAN are repeated 15 times.
On this synthetic dataset, both our algorithm and AdaGAN can cover all modes in 2 iterations. For
Stacked MNIST, both our method and AdaGAN can cover all modes in 5 iterations.

More challenging synthetic datasets. Furthermore, we test our method and AdaGAN on two
other synthetic datasets that have more challenging mode distributions. The first one, referred as
Ds, has 20 modes distributed along a spiral curve (see Figure 7-left). Each mode is a set of points
following a Gaussian distribution (with a variance of 1). The center of i-th mode (i = 1..20) is
located at (cos(i/3) · i · i, sin(i/3) · i · i). The second dataset, referred as Di, has 21⇥ 21+ 1 modes,
among which 21 · 21 = 441 modes locate on a [�10, 10]⇥ [�10, 10] uniform grid and one additional
mode is isolated at (100, 100) (see Figure 7-right). Each mode is also a set of points under a Gaussian
distribution (with a variance of 0.05).

For both datasets, we evaluate how many modes are covered as the number of iterations increases in
both our method and AdaGAN. The mode coverage is defined in the same way as in the previous
experiment. As shown in Figure 7, our algorithm covers all the modes, and outperforms AdaGAN
on both datasets. In terms of efficiency, AdaGAN takes 437 min (25 iterations) and still miss some
modes, while our method takes only 134 min (9 iterations) to cover all modes.
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Figure 7: Challenging datasets. We compare our method with AdaGAN on two datasets (top).
(left) Our method covers all modes in Ds dataset with 20 iterations in average. (right) Our method
increases the sampled frequency (sampling weights) of the separate mode as the training iteration
progresses, whereas AdaGAN increases the sampling frequency of the separated modes. Eventually,
AdaGAN can only cover 14 modes in Ds and never cover the separated mode in Di. In contrast, our
method successfully covers all modes.

Figure 8: Sampled “1” images by a single generator. Based on the observation we draw from
Figure 4, we train a single GAN using 60k Fashion-MNIST images together with 300 MNIST “1”
images, and the GAN is able to generate images close to “1”. Here we show a few generated images
from the resulting generator.
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