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Abstract We construct the Frobenius structure on a rigid connection Be on

G,y for a split reductive group G introduced by Frenkel-Gross. These data
form a G-valued overconvergent F-isocrystal Beg on Gy r,, which is the

p-adic companion of the Kloosterman G-local system Kl constructed by
Heinloth-Ngé—Yun. By studying the structure of the underlying differential
equation, we calculate the monodromy group of Beg when G is almost simple
(which recovers the calculation of monodromy group of Kl due to Katz and
Heinloth—-Ng6—Yun), and prove a conjecture of Heinloth—-Ng6—Yun on the
functoriality between different Kloosterman G-local systems. We show that
the Frobenius Newton polygons of Kl are generically ordinary for every G

and are everywhere ordinary on |G, r N when G is classical or G5.
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1 Introduction
1.1 Bessel equations and Kloosterman sums

1.1.1. The classical Bessel differential equation (of rank n) with a parameter
A

(xi> (f)—A'x-f=0 (1.1.1.1)
dx

has a unique solution which is holomorphic over the complex plane:
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dz1---dz,_
f epr<Z1+---+zn—1+ a ) .Zl I fnl
(ShHn—1 21 Zn—1 (27Tl)n_ 21" Zn—1

(1.1.1.2)

1 n r
=> i \'x) .

r>0

One may reinterpret this fact using the language of algebraic Z-modules as
follows. Let K be a field of characteristic zero. The Bessel equation (1.1.1.1)
can be converted to a connection Be, on the rank n trivial bundle on the
multiplicative group G, x

010..0
001..0

Be,: V=d+ Dol d_x’ (1.1.1.3)
0o0o0..1]"
AMx0 0 ...0

which we call the Bessel connection (of rank n). On the other hand, we consider
the following diagram

G S gn 244, AT (1.1.1.4)

where add (resp. mult) denotes the morphism of taking sum (resp. product) of
n coordinates of G, and define the Kloosterman &-module on G, g as

KI®R := R"~! mult,(add*(E;)), (1.1.1.5)

where E; = (ﬁA}(, V = d — Adx) is the exponential ¥-module on A}(.
With these notations, the fact that (1.1.1.2) is a solution of (1.1.1.1) reflects an
isomorphism of algebraic Z-modules on G, x

Be, ~ KI9R |

Its differential Galois group was calculated by Katz [49].
1.1.2. There is a parallel theory in positive characteristic. Let p a prime number.
For every finite extension [ /IF, and a € IFqX, the Kloosterman sum Kl(n; a)

in n-variables is defined by!

! The sum (1.1.2.1) is slightly different from the standard definition by a factor (—\%{)”_1.
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Kl(n; a) = (_—1>"*1 (1.1.2.1)

Nz

2mi a
o B e vt
7z eFS p Lo Zn-l
i€lg

It admits a sheaf-theoretic interpretation due to Deligne [33]. Namely, the
analog of the exponential Z-module in positive characteristic is the Artin—
Schreier sheaf AS,, on AIIF,, associated to a non-trivial character ¢ : F, —

Qe¢(p)*. In [33], Deligne defined the Kloosterman sheaf Kl,, on Gm,IF,, as
below:

—1
Kl, = R""! mult,(add*(Asw))("T), (1.1.2.2)

and showed that Kl,, is a local system of rank n and of weight O and that
the Frobenius trace of Kl,, is equal to the Kloosterman sum Kl(n; —) via an
embedding ¢ : Q¢(11,) — C such that 1/ (x) = exp(2mix/p) forx € Fp. In
particular, this implies the Weil bound of the Kloosterman sum | Kl(n; a)| < n.

In [50, § 11], Katz calculated the (global) geometric and arithmetic mon-
odromy group of Kl,, as follow:

Sp,, n even,

SL, pn odd,

SO, p=2,nodd,n #1,
Gy, p=2,n="T.

Ggeo(Kln) = Garith(Kln) = (1-1-2.3)

Surprisingly, the exceptional group G, appears as the monodromy group.
1.1.3. In 70’s [40], Dwork and Sperber showed that there exists a Frobenius
structure on the Bessel connection (1.1.1.3) whose Frobenius traces give the
Kloosterman sum. Here a Frobenius structure is a horizontal isomorphism
between the Bessel connection and its pullback by the “Frobenius endomor-
phism” F : G,k — G, x over K defined by x — x”. Although the Bessel
connection is algebraic, such a horizontal isomorphism is not algebraic but of
p-adic analytic nature.

To explain their result, we recall the ring of p-adic analytic functions on P!
overconvergent along {oo} [19]. We set K = Q, (1)), equipped with a p-adic
valuation |-| normalised by |p| = p_l, and denote by AT the ring of p-adic
analytic functions with a radius of convergence > 1:

+00
At = {z;)anx" la, € K,3p > l,nETOO la,|p" = 0}, (1.1.3.1)
n=
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We take an algebraic closure K of K and fix an isomorphism ¢ : K —
C. There exists a unique element 7 of K satisfying 77~! = —p, which
corresponds to the character exp 27 i (%) :Fp — C* (cf. 2.1.1(2)).

Theorem 1.1.4 (Dwork, Sperber [40,71,72]) Let n be an integer prime to p
and set .. = —1 as above. There exists a unique ¢(x) € GL,,(A") satisfying
the following properties.

(1) The matrix @ satisfies the differential equation:

010..0 0 10..0

. 001..0 0 01...0

¢ . - .

xd—¢1+¢ L o l=p| + -
X

000..1 0 00...1

Ax0 0 ...0 AxP0O 0 ...0

That is, ¢ defines a horizontal isomorphism F*(Be,,) 5 Be,,. .
(ii) Fora € F*, we have . Tr ¢, = Kl(n; a), where ¢, = ]—[?igéa)_l p@?) e
GL,(K) and @ € K denotes the Teichmiiller lifting of a.
(i) If {ay, -+, a,} denote the eigenvalues of ¢,, then we have |o;| =

n+12—2i deg(u)

p after reordering o;.

The data (Be,, ¢) form an overconvergent F-isocrystal on G, r, (relative
to K) [19], which we call the Bessel F-isocrystal (of rank n) and denote by
Bej,. By (ii), Be,T1 is the p-adic companion of the Kloosterman sheaf Kl,, in the
sense of [3,34].

1.2 Generalization for reductive groups

1.2.1. Recently, there are two generalizations of above results, from different
perspectives of the (geometric) Langlands program. The first one is the general-
ization of Bessel equations by Frenkel and Gross [42]. For each (split) reductive
group G over a field K of characteristic zero, Frenkel-Gross wrote down an
explicit G-connection Be; on Gy, which spemahzes to Be, when G = GL,,.

We will call Bey the Bessel connection of G in this paper. Another one, due
to Heinloth, Ng6 and Yun [47], is the generalization of the Kloosterman sums.
Namely, the authors explicitly constructed, for each (split) reductive group G
over the rational function field F,(7), a Hecke eigenform of G, and defined

Kl as its Langlands parameter, which is an £-adic G-local system on (G, that
specializes to Kl,, if G = GL,,. The authors called Klé the Kloosterman sheaf
of G.
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The original goals of our work are to prove a functoriality conjecture of
Heinloth—-Ng6—Yun relating Kloosterman sheaves for different groups [47,
conjecture 7.3] and to study the arithmetic properties of exponential sums
associated to Kl . Although this conjecture is about £-adic sheaves, it seems
difficult to access it purely in the ¢-adic framework. Our approach is based
on our investigation of the p-adic aspects of the above story which unifies the
previous two generalizations. Our main results can be summarized as follows:

(i) We construct the Frobenius structure on Be; and obtain the Bessel F-

isocrystal Beg of G, which is the p-adic companion of Kl 5 in appropriate
sense;

(i) We calculate the monodromy group of Beg and then deduce a complete
result on the monodromy group of Kl »; (Our approach is entirely different
and more conceptual compared to that of Katz (1.1.2.3) and of Heinloth—
Ngbd-Yun [47].)

(iii)) We prove the conjecture of Heinloth—-Ng6—Yun on the functoriality of
Kloosterman sheaves, and therefore obtain identities between different
exponential sums associated to Kl x;

(iv) We show that the Frobenius Newton polygons of Beg (and therefore

Kly) are generically ordinary and when G is classical or G» they are
everywhere ordinary on |Gy, |-

We discuss these results in more details in the sequel.

1.2.2. Let G be a split almost simple group over a field K of characteristic
zero. Fix a Borel subgroup BCG,anda principal nilpotent element N in
b= Lie(é). Let E denote a basis vector of the lowest root space in g = Lie(é).
In [42], Frenkel and Gross considered a connection on the trivial G-bundle
over G,;:

dx h
Bey =d+ N— +A"Edx,
X

where x is a coordinate of G,,, A € K is a parameter and / is the Coxeter
number of G. This connection is rigid and has a regular singularity at O and an
irregular singularity at co. We regard it as a tensor functor from the category
of representations of G to the category of connections on the trivial bundles
over G,,.

1.2.3. Let G be asplitalmost simple group over IF , () whose dual group is G.In
[47], Heinloth—Ngd—Yun wrote down a cuspidal Hecke eigenform f on G, and
defined the Kloosterman sheaf Kl x for G as the Langlands parameter of f. We
recall their construction here under the assumption that G is simply-connected.
If we fix opposite Iwahori subgroups 7 (0)°P? € G(0)) and I(0) C G(0) at
0, 00, and a non-degenerate character ¢ : I(1)/1(2) — Q(u,)™, where (i)

@ Springer



Bessel F-isocrystals for reductive groups

denotes the ith step in the Moy—Prasad filtration of 7 (0), then f is the unique
(up to scalar) non-zero function on G(IFF,(1))\G(A) that is,

e invariant under G (0,) for every place x # 0, oo;
e invariant under I (0)°P at 0;
e (I(1), ¢)-equivariant at oo.
Then Heinloth—-Ng6—Yun defined Klé : Rep(é) — LocSysm(Gm,Fp) as

a tensor functor from the category of representations of G (over Qy) to the
category of £-adic local systems on Gy, f,,, such that for every V' € Rep(G)
and every a € |Gy, |,

Ty o(f) = Tr(Froby, (Kl \)a) f,

where Ty , is the Hecke operator associated to (V, a). The actual construction
of Kl uses the geometric Langlands correspondence (see 4.1.9).

Our first main result is the existence of a Frobenius structure on Bessel
connections for reductive groups.

Theorem 1.2.4 (4.4.4,5.3.2) Let K = Qp(1p), K an algebraic closure of
K and set A = —m asin 1.1.4. 5
(i) There exists a unique ¢(x) € G(A") satisfying the differential equation

d
xd—‘ogo‘l + Ady(N + A'xE) = p(N + MxPE)
X
and such that via a (fixed) isomorphism K ~ Qy, for every a € qu and

V € Rep(G)

Tr(ga, V) = Tr(Froby, (Kl 1)a),

where ¢, = ]—[?i%(a) - go('c?pi) € G(K) and @ € K denotes the Teichmiiller

lifting of a.
In particular, the analytification of the Bessel connection Bey, on Gf,;" K 1S

overconvergent and underlies a tensor functor from Rep(é) to the category
of overconvergent F-isocrystals on Gy, -

BeTé : Rep(G) — F- IsocT(Gm,Fp/K),

which can be regarded as the p-adic companion of Kl .

(i) Let p € Xo(T) be the half sum of positive coroots. If G is of classical
type or Gy, for every a € |Gy p,|, the set of p-adic order of eigenvalues

of g, € (v;(f) (also known as the Frobenius slopes at a) is same as that of
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p(plee@)y ¢ é(f). If Gis of other exceptional type, the same assertion holds
generically on |Gy |-

Remark 1.2.5 (i) For a G-valued overconvergent F-isocrystal on a smooth
variety X over [ ,, we say its Newton polygon is ordinary at a if the Frobenius
slopes at a are given by p (in the above sense). We expect that the Newton
polygons of Beg are always ordinary at each closed point of G, 7,

(i1) V. Lafforgue [57] showed that p is the upper bound for the p-adic
valuations of Hecke eigenvalues of Hecke eigenforms (cf. 5.3.1 for a pre-
cise statement). Drinfeld and Kedlaya [38] proved an analogous result for the
Frobenius slopes of an indecomposable convergent F-isocrystal on a smooth
scheme.

1.2.6. Global monodromy groups. In [42, Cor. 9,10], Frenkel and Gross
calculate the differential Galois group Gga of Be, over K, which we list in
the following table (up to central isogeny):

G Ggal

Aoy Ay

A2n—17 Cn Cn

By, Dyy1(n > 4)| By,

E E, (1.2.6.1)
Eg Eg

E¢, Fy Fy

B3, D4, Go Go.

If G0 denotes the geometric monodromy group of Be'. over K, there exists
& G
a canonical homomorphism

Ggeo — Ggal.

Theorem 1.2.7 (4.5.2) (i) If either G is not of type Ay, or p > 2, the above
morphism is an isomorphism.

) Ifp = 2and G = SLont1, then Ggeo >~ SO2y 41 ifn # 3and Ggeo = G2
ifn =3.

(iii) The arithmetic monodromy group G aith of Beg is isomorphic to G geo.

In fact, the second part of the theorem follows from the first part and Theo-
rem 1.2.8(ii) below. By companion, this theorem allows us to recover Katz’s
result on the monodromy group of Kl, (1.1.2.3) and Heinloth—-Ngd—Yun’s
result on the monodromy group of Kl [47] (and remove the restriction of
the characteristic of k in loc. cit.) in a different way. For instance, the G-
symmetry on Be;r when p = 2 (1.1.2.3) appears naturally in our approach,
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compared with Katz’ original approach via point counting. In addition, we
avoid difficult geometry related to quasi-minuscule and adjoint Schubert vari-
eties, as analyzed in [47].

We also have partial results about the local monodromy of Beg (and Kl
at oo (see Corollary 4.5.9 and Remark 4.5.10 for details).

As an application of our p-adic theory, we prove a conjecture of Heinloth—
Ngbd—Yun on certain functoriality between Kloosterman sheaves for different
groups [47, conjecture 7.3].

&)

Theorem 1.2.8 (5.1.4,5.2.10G1)) (1) For G cG appearing in the same line
in the left column of the above diagram, Kl is isomorphic to the push-out of
Kl along G — G.

(i) If p = 2, KlsL,, ., is the push-out of Klso,,,, along SOz, +1 — SLoj 1.

1.2.9. The above theorem allows us to identify various exponential sums asso-
ciated to Kloosterman sheaves defined by different groups. Here are some
examples (see Corollary 5.2.11):

(1) When G = SO3 ~ PGL,, we have the following identity for a € IE‘;:

2
a
(Z v (Trp, r, (x + ;))) —q (1.2.9.1)
xeFy
a
Z lﬂ(TrFq/JFp (x1+x2+ —)), p=2,
X1X2
xl,xzeF;
= 3 1
G, p)
x Zx1X2X3=4ay,x,-eIF,}< w<TrFq/]Fp (x1 +x2 +x3 — y))ﬂ(y)y p>2

where ¥ (—) = exp %(—), p denotes the quadratic character of qu and

G(lﬁ_l , p) the associated Gauss sum. The identity is due to Carlitz [24] when
p = 2 and Katz [52, § 3] when p > 2. Our method is completely different
from these works.

One can obtain other identities between different exponential sums whose
sheaf-theoretic incarnations were considered [52].

(i1) For n > 2, via the inclusion SO, 4+1 — SO»,42, fora € IFZ;, we have
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L (S 0CTrmm, 0+ 1) )

uv=a,u,veFy

X( > YU (Trr,r,(x1 + -+ X2n-3 + vy )))

% X1+ X2p—3
Xi EIFq

= (2 w(Trem bt b )0

xiGF;

1.3 Strategy of the proof and the organization of the article

1.3.1. We outline the strategy of proofs. Theorem 1.2.4(i) follows by combining
following three ingredients: 5
(i) We first mimic Heinloth—-Ng6—Yun’s construction to produce a G-valued

overconvergent F'-isocrystal Kerfg on Gy, 7, and a G-bundle with connection

KldéR on G, g (Sect. 4.1). A key step is to develop the geometric Satake

equivalence for arithmetic Z-modules, which we will discuss latter (1.3.5).
Certain proofs are parallel to the ¢-adic setting. We omit most of them and
repeat some only for the notation purposes.

(i1) Then we show that the overconvergent isocrystal Klr(f;g is isomorphic to

the analytification of the G-connection KI%R (Sect. 4.2) by comparing certain
relative de Rham cohomologies and relative rigid cohomologies.

(iii) We strengthen a result of the second author [80] to identify KI%R with
Bey (Sect. 4.3).
1.3.2. The local monodromy of Beg at 0 is principal unipotent, which implies
that its geometric monodromy G, contains a principal SL;. This puts strong
restrictions on the possible Dynkin diagrams of Gge, (cf. 4.5.5 for a possible
list). A result of Baldassarri [14] (cf. [10] 3.2), which implies that the p-adic
slope of Beg at oo is less or equal to the formal slope of Be at 0o, allows
us to exclude the case Ggeo = PGL; (or SL) in most cases. Together with
certain symmetry on Beg, this implies Theorem 1.2.7(i). We shall emphasize

that being able to directly bound the p-adic slope of Beg at 0o is one of the
main advantages of our p-adic method over the £-adic methods used in [47].
1.3.3. The analogous functoriality (Theorem 1.2.8(i)) for Bessel connections
Be; follows from their definition. Then we deduce the corresponding functo-
riality between BeTé ’s by Theorems 1.2.4(1) and 1.2.7(i). For Theorem 1.2.8(ii)
(and therefore Theorem 1.2.7(ii)), we construct an isomorphism between
the maximal slope quotients of Be;n 41 and Begozn%srd using a refinement
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of Dwork’s congruences [39] in the 2-adic case. Then we conclude that
Be;n = Be;02,1+1,8td by a recent theorem of Tsuzuki [74] (cf. appendix

A). Since BeJ(é is the p-adic companion of Kl », Theorem 1.2.8 follows.
1.3.4. By functoriality, we reduce Theorem 1.2.4(ii) to the corresponding asser-
tion for (Frobenius) Newton polygon of BeSL st and of BeS02 L.Std? which

are isomorphic to Ben and a hypergeometric overconvergent F'-isocrystal [61]
respectively. Then the assertion follows from the results of Dwork, Sperber
and Wan [40,72,76].
1.3.5. As mentioned above, in order to carry through the first step of 1.3.1,
we need to establish a version of the geometric Satake equivalence for arith-
metic Z-modules. This is based on the recent development of the six functors
formalism, weight theory and nearby/vanishing cycle functors for arithmetic
2-modules developed by Berthelot, Caro, Abe and etc [4-6,25,26].

To state our result, we introduce some notations. Let k be a finite field with
g = p’ elements and K a finite extension of QQ,. Suppose that there exists an
automorphism o : K — K, which extends the lifting of the ¢-th Frobenius
automorphism of k to Q, for some integer ¢. Let G be a split reductive group

over k, G its Langlands dual group over K, Grg the affine Grassmannian of
G and L™ G the positive loop group of G.

For a k-scheme X, let Hol(X/K) be the category of holonomic arithmetic
2-modules on X and Hol(X/ K r) the category of objects of Hol(X/K) with a
Frobenius structure. They are the analogues of the category of £-adic sheaves
on X7 and the category of Weil sheaves on X respectively. We denote by
Hol; +(Grg /K) (resp. Hol; +; (Grg /K )) the category of L+ G-equivariant
objects in Hol(Grg /K) (resp. Hol(Grg /K F)).

The geometric Satake equivalence (for geometric coefficients) states that
the category Hol; + 5 (Grg /K) is a neutral Tannakian category over K whose
Tannakian group is G (3.4.1). The Tannakian structure and the Frobenius
structure on Hol; + 5 (Grg /K ) allows us to define a homomorphism ¢ : Z —
Aut(é(K )) (3.4.3) and hence a semi-direct product é(K ) X 7.

Theorem 1.3.6 (i) (Geometric coefficients 3.4.1) There exists a natural equiv-
alence of monoidal categories between Hol; +;(Grg /K) and Rep(é).

(ii) (Arithmetic coefficients 3.4.7) There exists an equivalence of monoidal
categories between Hol + 5 (Grg /K F) and the category Rep%? o (G(K ) X Z)

of certain o -semi-linear representations ofé(K) X 7 (cf. 3.4.4).

Note that the formulation of the arithmetic coefficients geometric Satake
here is different from the corresponding arithmetic version the ¢-adic case
[69,79].

Although the strategy of the proof of this theorem is same as the £-adic case,
we need to establish some foundational results in the setting of arithmetic
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2-modules. We introduce a notion of universal local acyclicity (ULA) for
arithmetic Z-modules and discuss its relation with the nearby/vanishing cycle
functors introduced by Abe-Caro and Abe [4,5] in Sect. 2.2.

Recall that there are motivic versions of geometric Satake [68,81]. The
above theorem can be regarded as their p-adic realization. (But as far as we
know, there is no general construction of the realization functor as we need so
the above theorem is not a formal consequence of loc. cit.) On the other hand,
there is a recent work of R. Cass [27] on the geometric Satake equivalence for
perverse [ ,-sheaves. It would be interesting to see whether there is a version of
geometric Satake for some Z,-coefficient sheaf theory, which after inverting
p and mod p specializes to our version and Cass’ version respectively.

We hope our article will lead further investigation of the p-adic aspect of
the geometric Langlands program.

1.3.7. We briefly go over the organization of this article. Section 2 contains a
review of and some complements on the theory of arithmetic Z-modules and
overconvergent (F-)isocrystals. In Sect. 3, we establish the geometric Satake
for arithmetic Z-modules (Theorem 1.3.6). Sections 4.1-4.4 are devoted to the
proof of Theorem 1.2.4(1) (1.3.1). We calculate the monodromy group of Beg
in Sect. 4.5 (Theorem 1.2.7 and 1.3.2). In Sect. 5.1, we prove the functoriality of
Bessel F-isocrystals and of Kloosterman sheaves (Theorem 1.2.8(i) and 1.3.3).
In Sect. 5.2, we identify the Bessel F-isocrystals for classical groups with
certain hypergeometric differential equations studied by Katz and Miyatani
[51,61] and then deduce identities in 1.2.9. In the last Sect. 5.3, we study the
Frobenius Newton polygon of Beg and prove Theorem 1.2.4(ii). Appendix
A is devoted to a proof of Theorem 1.2.8(ii) from the perspective of p-adic
differential equations.

1.3.8. Notation. In this article, we fix a prime number p. Let s be a positive
integer and set ¢ = p°. Let k be a perfect field of characteristic p, k an
algebraic closure of k and R a complete discrete valuation ring with residue
field k. We set K = Frac(R). We fix an algebraic closure K of K. We assume

moreover that the s-th Frobenius endomorphism & Sk, x — x4 lifts to an
automorphism o : R . y3

By a k-scheme (resp. R-scheme), we mean a separated scheme of finite type
over k (resp. over R).

We use the notation of arithmetic Z-modules [20,21]. For a smooth formal
R-scheme X and a divisor Z of the special fiber of X, let ﬁx,Q(TZ) (resp.
.@;ﬂ(@(T 7)) denote the sheaf of rings of functions (resp. differential operators)
on X with singularities overconvergent along Z [20, 4.2.4]. We omit (TZ) if
Z is empty. If we set U = X} — Z, we denote ﬁx,Q(TZ) (resp. @;Q(TZ)) by

Oy (resp. @;@(Z) (or @;@(oo))) for short.
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2 Review and complements on arithmetic Z-modules
2.1 Overconvergent (F-)isocrystals and arithmetic Z-modules

2.1.1. Let X be a k-scheme. We denote by Isoc’ (X /K) (resp. F-Isoc’ (X/K))
the category of overconvergent isocrystals (resp. F-isocrystals) on X (relative
to K) and refer to [19] for their definition. We denote by Isoc’™ (X/K) the
thick full subcategory of Isoc’ (X /K) generated by those that can be endowed
with an s’-th Frobenius structure for some integer s’ divisible by s.

A typical example used in this paper is the Dwork F-isocrystal [18]. Let
k =F, (Ge.s =1), K = Qp(up), R = Ok and o = id. We choose
m € K such that 77~! = —p and take a frame (]P’I,IP}Q) of X = A,i [6,
definition 1.1.1]. If x denotes a coordinate of A!, the connection d + wdx on
@) Al forms an object of Isoc’ (A,i /K) and is called Dwork isocrystal, denoted

by ;. Its Frobenius structure ¢ : Fg}( (e/y) — 7 is the multiplication by
O (x) = exp(mw(x — x?)), which is a section of OA}('

There exists a unique nontrivial additive character ¢ : I, — K> satisfying
Y(l) =147 mod 2. For each x € IF),, we denote by X the Teichmiiller
lifting of x in Q,. Then 6 (xX) = ¥(x) [18, 1.4]. So the Frobenius trace
function of «7; is equal to ¥ o Trr, /7, (—). We also denote Iy by Ay, as
it plays a similar role of Artin—Schreier sheaf associated to v in the ¢-adic
theory.

2.1.2. Let us recall basic notions of p-adic coefficients used in [3]. Let L be
an extension of K in K and ¥ = {k, R, K, L} the associated geometric base
tuple [3, 1.4.10, 2.4.14].

We will also work in the arithmetic setting (p-adic coefficients with Frobe-
nius structure). For this purpose, we need to assume that there exists an
automorphism L — L extending 0 : K — K that we still denote by o,
and that there exists a sequence of finite extensions M, of K in L satisfy-
ing 0 (M,) C M, and U, M, = L. Then we obtain an arithmetic base tuple
Tr=1{k,R,K,L, s, o}[3, 14.10,2.4.14]. We set Lo = L°=!.

Let X be a k-scheme. There exists an L-linear (resp. Lg-linear) triangu-
lated category D(X/L) (resp. D(X/LF)) relative to the geometric base tuple
% (resp. arithmetic base tuple T ). This category is denoted by DEOI(X /%) or
D> (X/L) (resp. DY, (X/TF) or D2 (X/LF)) in [3, 1.1.1, 2.1.16]. There
exists a holonomic t-structure on D(X/L,), whose heart is denoted by
Hol(X/L,), called category of holonomic modules. We denote by H* the
cohomological functor for holonomic t-structure.

The six functor formalism for D(X/L) (resp. D(X/LF)) has been estab-
lished recently. We refer to [5,6] and [3, 2.3] for details and to [3, 1.1.3] for a
summary. Here we only collect some notations.
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(i) Let f : X — Y be a morphism of k-schemes. For A € {J, F}, there
exist triangulated functors

fis fiiD(X/La) — D(Y/Ly), T, f':D(Y/La) = D(X/Ly),

such that (fT, £1), (fi, ') are adjoint pairs.

(i) The category D(X/L,) is a closed symmetric monoidal category,
namely it is equipped with a tensor product functor @ and the unit object
Ly = (L), where m : X — Spec(k) is the structure morphism and L is
the constant module in degree 0. The internal Hom functor .77’ omx is a right
adjoint of ®.

(iii) There exists a duality functor Dy = JZomx (—, p!L) from D(X/L,)
to its opposite category [3, 1.1.4]. We set (—)®(—) = Dx(Dx(—) @ Dx (—)).
2.1.3. For any object .# of D(X/L) and the structural morphism f : X —
Spec(k), we set

H*(X, #) =H"f1.(A), HIX, M) =N fi(A),

and call them cohomology groups, compact support cohomology groups of
M , respectively. Note that they are finite dimensional L-vector spaces. If .#
is an object of D(X /L r), then above cohomology groups are equipped with a
Frobenius structure.

Suppose that there exists a finite filtration of closed subschemes {X;};c7 of
X, with closed immersions X; | < X; such that X; = X for i small enough
and X; = ¢ for i big enough. We deduce from the distinguished triangle [3,
1.1.3(10), 2.2.9] a spectral sequence (cf. [33] *2.5)

EY = HY (X; — Xi1, ) = HEY (X, ). (2.1.3.1)

2.1.4. Let X be a smooth k-scheme of dimension d : wo(X) — N. There exists
a full subcategory Sm(X/L,) of Hol(X/L4)[—d] C D(X/L) consisting of
smooth objects [3, 1.1.3(12) and 2.4.15]. In general, we say a complex .#Z €
D(X/L4) is smooth if H' (.#)[—d] belongs to Sm(X/L,) for every i.

When L = K, there exists an equivalence Sp, between Sm(X/K) (resp.
Sm(X/Kr)) and Isoc'"(X/K) (resp. F-Isoc'(X/K)). In the following, we
identify these two categories by éi)* and we use alternatively these two nota-
tions. Suppose X admits a smooth compactification X such that X possesses
a smooth lifting over R and that X — X is a divisor. If H;"ig(X , —) denotes the
rigid cohomology [19], we have canonical isomorphisms for any object .# of
Isoc'T (X/K) (resp. F- Isoc’ (X/K)) [1,5.9]:

Hjio (X, ) = H* (X, Sp, (), M, (X, M)~ H5 (X, Sp,(4)),
(2.1.4.1)
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as objects of Vecg (resp. F- Veck). In particular, we have HO(A", L) ~ L,
Hi(A", L) = 0fori #0and H?"(A", L) ~ L,H.(A", L) = 0 for i # 2n.
2.1.5. Let X be a k-scheme. There exists a constructible t-structure (c-t-
structure in short) on D(X/L) (cf. [3] 1.3, 2.2.23). When X = Spec(k),
the constructible t-structure coincides with the holonomic one (2.1.3). If X a
smooth k-scheme, any object of Sm(X/L) is constructible.

The heart of c-t-structure is denoted by Con(X), called the category of
constructible modules. The cohomology functor of c-t-structure is denoted by
“H*.

Let f : X — Y be a morphism between k-schemes. The functor f7 is c-t-
exact and f is left c-t-exact. If i is a closed immersion, then i is c-t-exact.
If j is an open immersion, then j is c-t-exact [3, 1.3.4].

Using constructible t-structure, we show an analogue of [16, 4.2.5] for arith-
metic Z-modules.

Proposition 2.1.6 Ler f : X — Y be a smooth morphism of k-schemes of
relative dimension d with geometrically connected fibers. Then the functor
frld] : Hol(Y/L,) — Hol(X/Ly) (for A € {9, F}) is fully faithful.

Lemma 2.1.7 Let .# be an object of D=%(X/L) and A an object of
DZ0(X/L). Then #omx (M, N) belongs to *DZ(X/L) (2.1.5).

Proof We prove by induction on the dimension of X. The assertion is clear if
dim X = 0. To prove the assertion, we can reduce to the case where .#, 4" €
Hol(X/L). Then there exists a dense smooth open subscheme j : U — X
such that .# |y, /|y are smooth. Leti : Z — X be the complement of U
and consider the triangle

i+i!¢%”0mx(///, NY = Homx (M, N) — jLjTHomx(M, N)— .

Since i' Homyx (M, N) ~ Homx (T, i'N) [3, 1.1.5], the first term
belongs to *DZY(X/L) by induction hypotheses. Note that JZomy (A |y,
Ny) =~ Dy (Ay  Dy(A|y)) is a smooth module and of constructible
degree 0. Then jy j T ¢ omx (.4, /) belongs to  D=(X /L) and the asser-
tion follows. O

2.1.8. Proof of Proposition 2.1.6. Since Frobenius pullback induces an equiv-
alence of categories, it suffices to show the assertion for Hol(—/L). Let

A, N be two objects of Hol(Y/L). Since f is smooth, we deduce from
' AHoomy( M, N) = Homx(fra, f'/)[3,1.1.5] an isomorphism

FX#omy (M, N) > Homx(fTH, fTN).
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By applying “H° £, *H"(—) to the above isomorphism and Lemma 2.1.7, we
have

HOfo fH(CHO(AHomy (M, N))) (2.1.8.1)
S HO L HO (A omy (fH 1), A 1AD).

We claim that for any constructible module .# on Y, there is a canonical
isomorphism

F = Hf Tz (2.1.8.2)

Then, by Lemma 2.1.7, the proposition follows by applying H*(Y, —) to the
composition of (2.1.8.1) and (2.1.8.2).

By smooth base change, to prove (2.1.8.2), we can reduce to the case where
Y is a point. After extending the scalar L and the base field &k (cf. [3] 1.4.11),
we may assume moreover that Y = Spec(k). In this case, the isomorphism
(2.1.8.2) follows from the geometrical connectedness of X. ]
2.19.Letu : Y — X be alocally closed immersion. We refer to [6, § 1.4] for
the intermediate extension functor uyy : Hol(Y/L,) — Hol(X/L,). Recall
[6, 1.4.7] that if .# is irreducible, then u,, (.#) is the unique irreducible sub-
object of H(u_..#) (resp. irreducible quotient of H%(u,.#)) in Hol(X/L4).

Lemma 2.1.10 Let j : U — X be an open subscheme of X andi : Z — X
its complement.

(1) Given a holonomic module M on U, jiL () is the unique extension
F of M to Hol(X/L4) such that it F € D="Y(Z/L,) and that i'F €
D=(Z/L,).

(i) If X is smooth and % is a smooth holonomic module on X, then
I (Fly) = F.

Proof (i) Since ji, i T are right exact [6, 1.3.2], HO%i T (H°(ji(.#))) = 0. By
applying i ™ to 0 — Ker(@j.)’//[) — HO(ji(A)) — jii( M) — 0, we obtain
it (i () e D=7 (Z/L). We prove i'.# € DZ'(Z/L) in a dual way.

Conversely, given such an extension .%#, we can prove that the adjunction
morphism HC ji(.#) — F (resp. F — H j () is surjective (resp. injec-
tive) by the Berthelot—Kashiwara theorem [3, 1.1.3(10), 2.2.9]. Assertion (i)
follows.

(i1) The intermediate extension is stable under composition [6, 1.4.5]. Then

we can reduce to the case where Z is smooth over k. In this case, assertion (i)
follows from (i) and [3, 2.4.15]. O
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2.2 Universal local acyclicity and nearby/vanishing cycles

In the following, we write simply D(X) (resp. Hol(X)) for D(X/L,) (resp.
Hol(X/L,)).
2.2.1. Following Braverman—Gaitsgory [23, 5.1], we propose a notion of (uni-
versal) local acyclicity for arithmetic Z-modules with respect to a morphism
to a smooth target.

For a smooth k-scheme X, we denote by dx : mo(X) — N the dimension
of X. Let g : X1 — X, be a morphism of k-schemes and .%, .%’ two objects
of D(X37). We consider the composition

2T (P RG(F) > Z @9 (F) > FQF

and its adjunction: g7 (%) ® g'(F') — ¢'(F @ .F').

Now let S be a smooth k-scheme and f : X — § a morphism of k-schemes.
Weset X1 = X, Xo = X x §,.%’ = Ly, and take g to be the graph of f. By
Poincaré duality, we have Ly, (—ds)[—2ds] 5 g!(L x,). Then, we obtain a
canonical morphism

§7(F) = g'(F)(ds)[2ds).
By taking .# tobe .#Z X .4 [6, 1.1.8, 1.3.3], we obtain a canonical morphism
MR fHN) = (MR (N))(ds)[2ds). (2.2.1.1)

Definition 2.2.2 Let S be a smooth k-scheme and f : X — S a morphism
of k-schemes. We say that an object .# of D(X) is locally acyclic (LA) with
respect to f, if the morphism (2.2.1.1) is an isomorphism for any object .4
of D(S). We say that .# is universally locally acyclic (ULA) with respect to
f, if for any morphism of smooth k-schemes S” — S, the +-inverse image of
A to X xgs S is locally acyclic with respectto X xs S — §'.

Proposition 2.2.3 Keep the notation of Definition2.2.2 and let 4 be an object
of D(X).

(1) Any object A of D(X) is ULA with respect to the structure morphism
X — Spec(k).

(1) Let g : Y — X be a smooth (resp. smooth surjective) morphism. Then
g () onY is LA with respect to f o g if (resp. if and only if) . is LA with
respect to f.

(iii) If g : S — S’ is a smooth morphism of smooth k-schemes and ./ is LA
with respect to a morphism [ : X — S, then ./ is LA with respectto g o f.

(iv) Let h : Y — S be a morphism of finite type and g : X — Y a proper
S-morphism (resp. a closed immersion). Then g () is LA with respect to h
if (resp. if and only if) M is LA with respect to f.
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(V) If A is LA with respect to f, then so is its dual Dx ().

Proof (i) Let S be a smooth k-scheme and .4 an object of D(S). We show
that the canonical morphism

(idx x ) (0 B py (AN)) — (idx xAY (A K pf (A))(ds)[2ds]

is an isomorphism, where A : § — § x § is the diagonal map and p> :
S x § — S is the projection in the second component. We can reduce to show
that the canonical morphism

N = A (pF () (2ds)[2ds]

is an isomorphism. After taking dual functor, the assertion follows from [3,

1.5.14].
The rest of the proposition follow from Poincaré duality, Berthelot—
Kashiwara theorem and smooth descent [3,2.1.13]. We left the proof to readers.
O

2.2.4. In a recent work [4], Abe formulated the nearby and vanishing cycle
functors for holonomic arithmetic Z-modules, based on the unipotent nearby
and vanishing cycle functors introduced by himself and Caro [5].

Let f: X — A,i be a morphism of k-schemes. We denote by j : U =
ffl(Gm) — X the open immersion and by i : Xog = X — U — X its
complement. We first review the unipotent nearby cycle functor

\I—'}“ : Hol(U) — Hol(Xj).

We set Og,, = 6"@}?’@(*{0, oo}) (see 1.3.8). For n > 1, we define a free
Og,,-module Log" of rank n

Log" = &/~ Og,, - log",

generated by the symbols logl’]. There exists a unique @%1 Q({O, oo})-module
R’
structure on Log" defined fori > 0 and g € Og,, by

Vi (& - Togl") = (g) - Tog +£ - 1ogli

where ¢ is the local coordinate of G,, and logl/! = 0 for j < 0. There
exists a canonical Frobenius structure on Log” sending log!’! to ¢’ logl]. This
defines an overconvergent F-isocrystal on G,, and then a smooth object of
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Hol(G,,/K ). We still denote by Log" the extension of scalars ¢7 /g (Log") in
Hol(G,,).
We set Log’}- = f*+Log" € Hol(U) and define for .% € Hol(U):?

WIN(F) = lim Ker(ji(F ® Logy) — j; (F ® Logy)).  (224.1)
>

S
—

This limit is representable in Hol(X¢) by [5, lemma 2.4].
The vanishing cycle functor QDLJ‘P is defined in a similar way. The functors
lll‘}n, CID‘)‘Cn are exact [5, 2.7] and extend to triangulated categories. There exists

a distinguished triangle i T[—1] — \I!}lpn — cI>‘J£n +—1>

To define nearby and vanishing cycles functors over a strict henselian trait,
we consider Pro(k) the full subcategory of Noetherian schemes over k which
can be representable by a projective limit of a projective system of k-schemes
whose transition morphisms are affine and étale. The category Pro(k) is closed
under henselization (resp. strict henselization) [4, 1.3]). Given an object X of
Pro(k), the triangulated category D(X) of arithmetic 2-modules on X is well-
defined and one can extend the definition of cohomological functors to D(X)
(cf. [4] 1.4).

Let (S, s, ) be a strict henselian traitin Pro(k) and f : X — S amorphism
of finite type. In this setting, Abe defined the (unipotent) nearby and vanishing
cycles functors for f (cf. [4] 1.7, 1.8, 2.2)

Wy, WY, @, &% : Hol(X) — Hol(X,). (2.2.4.2)

Proposition 2.2.5 Keep the notation of Definition 2.2.2 and let D be a smooth
effective divisor in S, i : Z = f~YD) — X the closed immersion and
j : U — X its complement. Let ./ be an object of D(X) such that it is LA
with respect to f and that # |y is holonomic.

(1) There exists canonical isomorphisms:

M= G (My), iA1= i (D[] (2.2.5.1)

In particular, # and i .#—1] are holonomic.
(ii) The holonomic module i+ .#[—1) is LA with respect to f oi and f|z :
Z — D.

Proof (i) By étale descent for holonomic modules [3, 2.1.13], we may assume
that there is a smooth morphism g : § — A! such that D = ¢g~'(0). By
Proposition 2.2.3(iii), .# is LA with respectto g o f : X — Al. Then we

2 We adopt the definition of [4], which is different from that of [5] by a Tate twist.
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can reduce to the case f : X — Al and Z = f~1(0). We will show that
d>‘}“ (A) = 0, i.e. the canonical morphism

it [-1]— A (2.2.5.2)

is an isomorphism. We denote by j : G,, — A! the canonical morphism and
abusively by f the restriction f|y : U — G,,. By the projection formula, we
have

ANy ® fTLog")y = M @ jiftLog" ~ .# @ fT],Log".

On the other hand, by the projection formula and the LA property of .#, we
have

Jr( Ay @ (fFLogh) = ji (A |y@(f' Logh)(dx)[2dx]
— A B(j+ [ Log")(dx)[2dx]
~ M ®(fF )4 Log").

Via the above isomorphisms, the canonical morphism jy(.# |y ®(f T Log"))
— ji (M y ® (fT Log")) coincides with the canonical morphism

M ® (f1(j,Log" — j,Log").

To prove that (2.2.5.2) is an isomorphism, we can reduce to the case where
f is the identity map of A! and ./ is the constant module L :[1] on A!. If
we denote by N,, the action induced by 79; on the fiber (Log")o of Log” at 0
(called residue morphism in [6] 3.2.11), then Ker(ji(Log,) — j+(Log,)) is
isomorphic to Ker(&,,) (cf. [5] proof of lemma 2.4). The connection of Log"
has a maximal unipotent monodromy at 0. Then Ker (V) is one-dimensional
and transition map Ker(N,,) — Ker(N,,4+1) is anisomorphism. Hence (2.2.5.2)
is an isomorphism in this case.

In particular i T.#[—1] is holonomic. By Proposition 2.2.3(v) and the
commutation between nearby cycle and dual functors [5, 2.5], the second
isomorphism of (2.2.5.1) follows from (2.2.5.2):

WY () ~ Dy, W (Dx () (1) = i'at (D[1],
Thenwe deduce .#Z =~ ji (A |y)by?2.1.10. This finishes the proof of assertion
).

Assertion (ii) follows from the six functor formalism. We left the proof to
readers. O
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Corollary 2.2.6 If an object .# of D(X) is ULA with respect to f, then, for
any strict henselian trait T of Pro(k) and any morphism g : T — S, we have
d>‘j’};(.//l|XT) = 0and ® 7. (M|x,;) = 0, where fr : X — T is the base
change of f by g.

Proof By definition [4, 1.9], it suffices to show that the unipotent vanishing
cycle QD‘}I; (A |x,) vanishes.

There exists a smooth k-scheme S, a smooth effective divisor D of S’ with
generic point np and a morphism 4 : S — S such that the strict henselization
of S" at np is isomorphic to T and that g is induced by 4. We denote by
fs : Xg — S’ the base change of f by h. After shrinking S’, we may assume
that there exists a smooth morphism 7 : §" — A}( with D = 7~ 1(0).

By definition (cf. [4] 1.7-1.8), we reduce to show that CIJ‘;T‘;fS/ (A1xy,) =0.
But this follows from Proposition 2.2.3(iii) and the proof of (2.2.5.2). Then
the assertion follows. O

2.2.7. In 4.1, we will use the notion of holonomic modules over an algebraic
stack and apply cohomological functors of a schematic morphism of algebraic
stacks, that we briefly explain in the following.

Let X be an algebraic stack of finite type over k. Let Hol(X) be the category
of holonomic modules on X [3, 2.1.16] and D(X) its derived version (corre-
sponds to the category Dﬁol (X) in loc. cit). The dual functor Dy is defined in
[3, 2.2]. Let f : X — ) be a schematic morphism, ¥, — %) a simplicial
algebraic space presentation. By pullback, we obtain a simplicial presentation
Xeo — X and a Cartesian morphisms f, : Xo — Y,. Then the constructions
of [3,2.1.10 and 2.2.14] allow us to define cohomological functors:

fr 1 D(X) =~ DPj(Xa) = D2 (Ye) D) : £

Given an object .# of D(X) and a morphism g : X — S to a smooth k-
scheme S, we say . is ULA withrespectto g if its +-pullback to a presentation
U — X is ULA with respectto U — S.

Suppose S is moreover a curve. Let s be a closed point of S and Sy the strict
henselian at s. Since nearby/vanishing cycle functors commute with smooth
pullbacks, we can extend the definition of nearby/vanishing cycle functors for

g Xg S(s).

2.3 Complements on the local monodromy of an overconvergent
F-isocrystal on a curve

2.3.1. We denote by Rk the Robba ring over K and by MC(Rk/K) (resp.
MC(R/K)) the category of V-modules finitely presented over Rk (resp. over
R =R ®k K).
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The full subcategory MC"™ (R /K) of MC(R/K), consisting of unipotent
objects, is a Tannakian category over K and its Tannakian group is isomor-
phic to G, [60, 4.1]. There is an equivalence between the category Vec“fil
of finite dimensional K -vector space with a nilpotent endomorphism and
MC““i(R/f), given by the functor (Vo, N) — (Vo @% R, V), where the
connection Vy is defined by Vy(v ® 1) = Nv ® dx/x.

We denote by K{x} the K-algebra of analytic functions on the open unit
disc |x| < 1, 1i.e.

K{x} = Zanx” € K[x]; lan|p" — 0 (n — o0) Vp € [0, 1)
n>0

2.3.1.1)

Let Q }( ( x}(log) be the free K {x}-module of rank 1 with basis dx/x and con-

sider the following canonical derivation d : K{x} — }( ( x}(log), f —
xf’(x)dx /x. An unipotent object (M, V) of MC(Rg /K ) extends to a log V-
module (M'°2, V'°%) over K {x}. Then (M'°2|,_o, N = Res V'°¢) is the object
of Vec‘}(“ associated to (M, V). There exists a canonical isomorphism between
Coker(N) and the solution space Sol(M):

Coker(N) = Sol(M) = Homg (M, V), (K{x},d))V=".  (23.1.2)

If the connection V is defined by a differential operator D, then Sol(M) is the
solution space of D.

Let I (resp. P)the inertia (resp. wild inertia) subgroup of Gal (k(¢))*°P / k(t))).
The full subcategory MCF(R /K ) of MC(R/K), consisting of objects admit-
ting a Frobenius structure, is a Tannakian category over K and its Tannakian
group is isomorphic to I x G, [11, 3.4, 7.1.1]. The G,-action is the same as
a nilpotent monodromy operator commuting with /-action. By a theorem of
Matsuda—Tsuzuki [60,73] (cf. [11] 7.1.2), the irregularity of an object M of
MCF(R/K), defined by p-adic slopes [29], is equal to the Swan conductor of
the representation of / on a fiber of M.

2.3.2. Let X be a smooth curve over k, i : {x} — X a closed k-point and
j : U — X its complement. There exists a canonical functor defined by
restriction at x:

v : Isoc' (U/K) — MCF(R%/K). (2.3.2.1)
We refer to [70] and [53, § 6] for the definition of log convergent (F'-

)isocrystals on X with a log pole at x. Let & be an object of Isoc'"(U/K)
(resp. F-TIsoc’(U/K)). A log-extenbility criterion of Kedlaya [53, 6.3.2] says
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that if &’|, is unipotent, then & extends to a log convergent isocrystal (resp.
F-isocrystal) &'°¢ on X with a log pole at x.

The fiber é";og of &1°2 at x is a K-vector space equipped with a nilpotent
operator. If & moreover has a Frobenius structure, then éﬁog isa (@, N)-module,
that is a K-vector space V equipped with a nilpotent operator N : V. — V
and a o -semilinear automorphism ¢ : V. — V such that ¢ "' N¢ = g N.

Proposition 2.3.3 Keep the above assumption. Let ¢ : S — X be the strict
henselization at x, & a smooth holonomic module on U and V the I, x G-
representation associated to &\y. Then there exists a canonical isomorphism
of inclusion of K -vector spaces (resp. K -vector spaces with Frobenius struc-
ture):

(TG (EN[=1] = Wig(@T (i () = (VExCa s ylny,

Proof We first prove the case where &, is unipotent. We may assume there
exists a morphism f : X — A! étale outside {x} = f~1(0). As &), is
unipotent, Wiq(¢" (jiy(&))) is calculated by lIJ;’p“ (&).

By [6, 3.4.19, cf. [5] 2.4(1)], we have a Frobenius equivariant isomorphism
of vector spaces:

Ker(ji(& ® Log’}) — j (E® Log’}))
~ Ker(N" : (£'°¢ @ Log’y)x — (&8 @ Log’)x),

where Log’} defined in 2.2.4 and N" = N ooz ® id+id ®NLng} . is the tensor

product of two nilpotent operators. In this case, the isomorphism \IJ;“ (&) >
& follows from W4'(&) ~ lim _ Ker(N") and [59, lemma 2.10]. The

assertion follows from isomorphisms
. . ~ . . 1
iy (i (ED[=11 = Ker(ji(&) — j(6)) = (&)Y

In general, by Kedlaya’s semistable reduction theorem [55], after shrinking
X, we may choose 7 : X’ — X a proper map of smooth curves, finite étale
over U such that 7 (&) is unipotent at x’ = 7~ (x). Let j' : U’ — X’ (resp.
¢’ : §" — X’') be the base change of j (resp. ¢) by 7. Then Aut(U’/U) is
a quotient of 7, and ¢’ is the strict henselization at x’. By base change, we
obtain /,-equivariant isomorphisms:

it G (ren (&) = it Gl (@ (@),
Wig (¢ T jip (e () = Wia (@'t jl (T (£))).
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By taking /,-invariants, we conclude the proposition from the unipotent case.
0

Corollary 2.3.4 Let .4 be a holonomic module on X which is smooth outside
x. If ¢ : S — X denotes the strict henselization at x and ®iq(¢p* (M) = 0,
then A is smooth.

Proof For simplicity, we may assume (X, x) = (Al, 0). Recall [4, 1.9] that

Dia(pT () = lim hy @ (hT T (),
S’eHen(S)

where h : 8" — § is taking over the category of henselian traits over S,
which are generically étale. The transition morphism in this inductive limit is
injective [4, 1.9] and then each term is zero.

We choose a proper map 7w : X’ — X such that 4" := 7™ () is unipotent
around x’ = 7~ (x) asin 2.3.3. Then, ®'"(A") = PN (P (A)) (c.f. [4]1.7,
1.8) vanish. Hence if (.#)[—1] = i;'? (M[—-1] = W (4") are holonomic
and have the same rank as .#” by Proposition 2.3.3. By a dual argument, the
rank of i }'C (A) and .# are the same. Then we conclude the assertion by [8]
lemma 4.1.4. |

Remark 2.3.5 The above proofs follow a similar line of [3] lemma 2.4.11 and
are limited to the curve case. In [4] theorem 3.8, Abe proved an analogous
result of Corollary 2.3.4 for constructible modules on a k-variety.

2.4 (Co)specialization morphism for de Rham and rigid cohomologies

In this subsection, we review the specialization and cospecialization mor-
phisms between the de Rham and rigid cohomology following [15, § 1] and
show the compatibility of these two morphisms in Proposition 2.4.5. We also
study the specialization morphism in a relative setting. The results of this
subsection will be used in Sect. 4.2.
2.4.1. In this subsection, X denotes a smooth R-scheme of pure relative
dimension d and Xj (resp. Xx) its special (resp. generic) fiber. We use the
corresponding calligraphic letter X' to denote the rigid analytic space X%
associated to Xk and the corresponding gothic letter X to denote the p-
adic completion of X. We denote by X2 the rigid generic fiber of X and
by ¢ : X — Xk the canonical morphism of topoi.

Let (M, V) be a coherent O, -module endowed with an integrable con-
nection (relative to K). We denote by (M?", V") its pullback to X" along &.
Then the canonical morphism ¢ ~! (M oy, Q%) — M* ®¢, Q% induces
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a morphism from algebraic de Rham cohomology to analytic de Rham coho-
mology

REar (Xk, (M, V) = RTC(Xk, M ®oy, Q%) (24.1.1)
— RI(X, M ®g, Q%) = RLan (X, (MT, V).

2.4.2. We assume that there exists a smooth proper R-scheme X and an open
immersion j : X — X. Let X be the p-adic completion of X. Then the two
rigid spaces X" and X = Y? are isomorphic, and X"¢ is the tube ] X [x of
X in X. '

In particular, X is a strict neighborhood of X" in X", We denote by
Conn(Xg) (resp. Conn(X)) the category of coherent Oy, -modules with an
integrable connection. For any strict neighborhood V of ] X [5 in ?ﬁg, we refer
to [19, 2.1.1] for the definition of functor ;' from the category Ab(V) of
abelian sheaves on V to itself. We associate to M?" a jTﬁ?ﬁg -module MT =

jT(M*), endowed with the corresponding connection. In this setting, we have
the following diagram:

=)

T

;s ‘ ~Ti.
Conn(Xg) ﬁ Conn(X) ———— Conn(jTﬁ?ag) e Conn(Oyrig)
_ E

F-Tsoc™ (X3 /K) — TsoctT (X} / K)—— Isoc’ (X1 /K) % Isoc(Xy/K)
(2.4.2.1)

where Isoc(Xj/K) denotes the category of convergent isocrystals on Xz /K
and the vertical arrows are fully faithful [19, 2.2.5, 2.2.7]. When X} \ Xy is a
divisor, the functor |y is exact and faithful [20, 4.3.10].

2.4.3. In the following, we assume moreover that the connection on M is
overconvergent (i.e. it is isomorphic to an object of Isoc’(X;/K)). The rigid
cohomology RI'yig(Xi/K, M T) can be calculated by

RIyig(Xi /K, MT) = RT(X, MT ®¢, Q%).

The adjoint morphism id — ;T induces a canonical morphism on X

M R4, Q% — M ®p, Q. (2.4.3.1)
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By composing with (2.4.1.1), we deduce a canonical morphism, denoted by
pum and called specialization morphism for de Rham and rigid cohomologies:

pu : RTar (Xi, (M, V)) — RTyig(Xi/K, M), (24.3.2)

Let Ry, [ be the (derived) functor of local sections supported in the tube

1Xk[xon X (oron X)[19,2.1.6]. The rigid cohomology with compact supports
and coefficients in M is defined as:

RIvig.c(Xx/K, M") := RL(X, RLx, (M™ ® Q%))
The canonical morphism
RL )y, (MM ® Q%) — M™ ® QY% (2.4.3.3)
and (2.4.3.1) induce a morphism
trig : Ryig o (Xi /K, My — RT g (Xk /K, M. (2.4.3.4)

Via (2.1.4.1), the canonical morphism H} (X, SE)* (M)) - H*(X, é})*(M)) is
compatible with ¢yg.
2.4.4. We recall the definition of de Rham cohomology with compact supports
and coefficients in (M, V) and the cospecialization morphism, following [15,
1.8] and [12, Appendix D.2].

Let I be the ideal sheaf of the reduced closed subscheme X x — X g in Xg.
Take a coherent ﬁYK -module M extending M. The connection V extends to

a connection on the pro-ﬁ;K-module (I"M),, [12, D.2.12]. This allows us
to define the de Rham pro-complex /°*M ®6>YK Q.YK = U"M), ® Q.YK
The algebraic de Rham cohomology with compact supports and coefficients
in (M, V) is defined as [12, D.2.16]

RIaR,c(Xk, (M, V) := R (Xg, RIm I°M ® Q% )

~ ]Rl(ir_nRF(XK, I°M® Q.YK)'

If jx denotes the open immersion Xg — Xk, we have a canonical
isomorphism j (RIim(7°M ® Q5 ) — M ® Qf, . Then its adjoint
]Rl(ir_n([-M Q Q.YK) - Rjgs(M ® Q}K) induces a canonical morphism:

LdR - RFdR,C(XK7 (M’ V)) g RFdR(XK’ (M’ V))'
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By the rigid GAGA, there are canonical isomorphisms

. v o7 ° ~ . v jejysan °
RmRT (X, [*M © Q% ) = REmRI(X, [*M" © Q%)
(2.4.4.1)
~ - . o=an .
5 RUERIm 7™ ® QF).

We denote the right hand side by RIaq o (X, (M*", V7)), Let j*" be the inclu-
sion X — X. Similarly, there exists a canonical morphism

. o7 yan ° . °
Rl(lr_n(l M Q Q%) — Rj&(M™ @ Q%), (2.4.4.2)
which induces a morphism on analytic de Rham cohomologies
lan : Rl—‘an,c(‘)(a (Man’ Van)) — R (X, (Man’ Van))‘

Since (X, (X — X)klx) is an admissible covering of X, the canonical
morphisms

Ry, (RjEN(E)) — Rj{"(RLy, ((E)), (2.4.4.3)
Ry, ((E) = ROy (R (G (E))

are isomorphic for any complex of abelian sheaves E on X (resp. X). Then
(2.4.4.2) induces an isomorphism

RL )y, (RIm(I*M" ® Q%)) = R}y (Rj(M™ @ Q%)).  (24.44)

The cospecialization morphism, denoted by pc p, is defined as the compo-
sition

+ 2.4.4.3) — . an an R
pe.m  ROhg o (Xk /K, M") =~ RI'(X, RE]Xk[R]* (M*™ ® Q%))

2.44.4) — . o——an .
~ RF(X,RLJX]([(RL@(IM ® Q%))

— . o an .
— RO RIm(I*M™ @ Q%))
(: Rran,c(X,(Man,Van)))
>~ RIgr,c(Xk, (M, V)).
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Proposition 2.4.5 With the above notation and assumption, the following dia-
gram is commutative:

RTyig e (Xx/K, MT) RTyig (X /K, M")

pc,Ml TPM

Rgr.c(Xg, (M, V)) —2~ RTgr (X, (M, V).

Proof The algebraic de Rham cohomology with compact supports is isomor-
phic to the analytic one (2.4.4.1). It suffices to show the following diagram is
commutative

RTvig,c(Xk/K, MY) RT g (Xk /K, M) (2.4.5.1)
PC-Ml T(2.4.3.1)
Lan o (X, (M*, V) —— Ran (X, (M, V).

The morphism Ry o(Xx/K, M") — RIgn(X, (M™, Vi) is induced by
the composition on X:

BRIy (Rl T © 03) — RIm(*7" © 23)

(2.4.4.2) an(Man Q8 ..

The restriction of the above morphism to X coincides with the canonical
morphism (2.4.3.3), which induces tg (2.4.3.4). Then the commutativity of
(2.4.5.1) follows. O

2.4.6. In the end, we present a generalization of the specialization morphism
(2.4.3.2) in arelative situation using the direct image of arithmetic Z-modules.

Let f : X = Spec(B) — S = Spec(A) be a smooth morphism of affine
smooth R-schemes of relative dimension d and let (M, V) be a coherent O -
module endowed with an integrable connection relative to K. Consider M as
a 9x,-module. The direct image f:ER(M ) of Z-modules is calculated by the
relative de Rham complex M ® 25, /s Since f is affine, the above complex is
calculated by

(S, f{R(M)) ~DRp/a(M,V) =M — M ®p Qs — - ,
where we denote abusively by M the global section I'( Xk, M).

2.4.7. We assume moreover that f admits a good compactification, i.e. f canbe
extended to a smooth morphism f : X — S of smooth projective R-schemes
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X, S such that Xx — X, Sk — Sy are ample divisors. We keep the notation of
2.4.2 and assume that MT = jT(M®) is overconvergent as in 2.4.3. We denote
abusively the .@% Q(oo)-module Sp,. (M ™ (2.1.4) by M T, The direct image of

MT along fi : X; — Sy is calculated by a relative de Rham complex:

fear(MT) S RF L (Sp,(MT ®4, Q%/5)-

The above complex is a complex of overholonomic (and hence coherent)
.@% Q(c>o)—modules.

We set AT = I'(&, Og), Bf = I'(X, Oy) and D%(oo) =T (G, @%Q(oo))

(1.3.8). By 2" -affinity [48, 5.3.3], the above complex is equivalent to a com-
plex of coherent D%(oo)—modules:

RT(S, fi+(M") ~RI (X, Sp,(M' ®4, Q%))
~ (M QB BT) XRp ;9/A‘

We denote the complex in the second line by DR; / AM ), which is an AT-
linear complex. If we set Dg, = I'(Sk, s, ), there exists a canonical Dg, -
linear morphism, called the (relative) specialisation morphism

DRp/4(M, V) — DR}, (M"). 2.4.7.1)

2.5 Equivariant holonomic Z-modules

In this subsection, we study the notion of equivariant holonomic Z-modules
over a k-scheme (or an ind-scheme).

2.5.1. Let X — S be a morphism of k-schemes, H a smooth affine group
scheme over S and act : H xg X — X an action of H on X. We denote by
pr, : H xg X — X the projection. A H-equivariant holonomic module on
X is a pair consisting of a holonomic module .# on X and an isomorphism

0 :actt () = pr;(///) in D(H x5 X), satisfying:

(i) et (0) =id, where e : X — H xg X is induced by the unit section of H;
(i1) a cocycle conditionon H xg H xg X.

Morphisms are defined in a natural way. We denote by Hol gz (X) the category
of H-equivariant holonomic modules on X, which is an abelian subcategory
of Hol(X).

Suppose that H has geometrically connected fibers over S and that [ X/ H ] is
represented by a separated scheme of finite type X over S. By smooth descent
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of holonomic modules [3, 2.1.13], the pullback functor along the canonical
morphism ¢g : X — X induces an equivalence of categories:

¢t [dy] : Hol(X) = Holy (X). (25.1.1)

Using Proposition 2.1.6 and repeating the argument of [79, A.1.2], we deduce
that the canonical functor Holg (X) — Hol(X) is fully faithful.

2.5.2. Let Y be a separated S-scheme of finite type and @ : E — Y an H-
torsor over S with trivial action of H on Y. We denote by ¥ X X the quotient
of E xg X by the diagonal action of H.

Let . be a holonomic module on Y and .#” an H -equivariant holonomic

module on X. Assume that .# Xg .4 is a holonomic module on ¥ xg X
(Note that it is true if the base § = Spec(k)). Then (zw +.#[dim H]) Xg ./ is
holonomic on E xg X and is H-equivariant by construction. By (2.5.1.1), it
descends to a holonomic module on Y X g X, denoted by .#Ns./4" and called
the twisted external product of .# and A"
2.53. Let X ~ li_r)nl_el X; be an ind-scheme over k [79, definition 0.3.4]. For a
transition morphism ¢ : X; — X, the functor ¢ : D(X;) — D(X) is exact
and fully faithful. We define a triangulated category D(X) as the 2-inductive
limit

D(X) = lim D(X;).

iel

The definition is independent of the choice of a ind-presentation of X’. Since
@4 is exact, D(X) is also equipped with a t-structure, whose heart is denoted
by Hol(X). Note that Hol(&Xx") coincides with the full abelian subcategory
1'11)11,61 Hol(X;) of D(X).

Given a morphism f = (fj)ies : X = lim X; — § to a k-scheme S, the
cohomology functors f;1’s and f; ’s allow us to define f, f+ : D(X) —
D(S). If § is smooth, in view of Proposition 2.2.3(iv), we can define the notion
of LA (resp. ULA) with respect to f for objects of D(X).

2.54. Let X = li_1>nl,e / X; be an ind-scheme and f : X — S a morphism
to a k-scheme. Let (H|) jc; be a projective system of smooth affine S-group
schemes with geometrically connected fibers, whose transition morphisms are
quotient. We set H = 1<i£1jE ; H; and assume that there exists an action of
H on f : X — S such that it stabilizes each subfunctor f|x, and that the
H -action factors through a quotient H;, on X; — § for eachi € I. Then we
define the category Holy (X) of H-equivariant holonomic modules on X as
in [79, A.14]. Let Y = li_r)nl_el Y; an ind-scheme over S and @w : E — ) an
H-torsor. Let .# be an object of Hol())) supported in ¥; and .4” an object
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of Holy (X) supported in X;. We can define an ind-scheme ) X sX and the
twisted product #NRg./" in Hol(Y x ¢X) as in [79, A.1.4].

2.6 Hyperbolic localization for arithmetic Z-modules

2.6.1. Let X be a quasi-projective k-scheme such that X ® k is connected and
normal. We suppose that there exists an action u : G, x X — X of the torus
Gy, over k. Following [37], we denote by X 0 the closed subscheme of fixed
points of X [37, 1.3] by X (resp. X ) the attractor (resp. repeller) of X [37,
1.4, 1.8]. We have a commutative diagram

X+
YR
S
X
i /
’ g/
x-

XO

A

T

where f, f’ are closed immersions and are sections of 7, 7/, respectively, the
restriction of g (resp. g’) to each connected component of X+ (resp. X ") is a
locally closed immersion [37, 1.6.8].

We define hyperbolic localization functors (—)'t, (=)™ : D(X) — D(XY),
for # € D(X) by:

FT =gy, T =g o).

We say an object .% of D(X) is weakly equivariant if there exists an isomor-
phism pu* (%) ~ Z[—1]1 X .Z for some smooth module .Z on G,,.

Theorem 2.6.2 (Braden [22]) (i) There exists a canonical morphism 1z

Ft — F' which is an isomorphism if F is weakly equivariant.
(ii) The canonical morphisms wy — f*, r, — f’ T induce morphisms

mgtF —> F'T, n;g/!ﬁ — F+,

which are isomorphisms if % is weakly equivariant.

Braden’s original proof only relies on the six functor formalism of £-adic
sheaves. We can apply the same argument and obtain the above theorem in the
arithmetic Z-modules setting.
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3 Geometric Satake equivalence for arithmetic Z-modules

In this section, we establish the geometric Satake equivalence for arithmetic
2-modules.

We assume that & is a finite field with ¢ = p° elements and keep the
notation in § 2. We work with holonomic modules (resp. complexes) over the
geometric base tuple ¥ = {k, R, K, L} and we omit /L from the notations
Hol(—/L), D(—/L) for simplicity. We take an arithmetic base tuple T =
{k, R, K, L,s,id;}and anisomorphism K ~ C to apply the theory of weights
and the decomposition theorem [6].

Let G be a split reductive group over k and T the abstract Cartan of G. We
denote by X°® = X*(T) the weight lattice and by X, = X,(T) the coweight
lattice. Let ® C X°® (resp. ®¥ C X,) the set of roots (resp. coroots). Let
@1 C @ be the set of positive roots and X (7)™ C X,(7T) the semi-group of
dominant coweights, determined by a choice of B. (But they are independent
of the choice of B.) Given A, u € X(T'), we define A < u if u — A is a non-
negative integral linear combinations of simple coroots and A < pif A < u
and A # . This defines a partial order on X(7) (and on X,(7)"). We denote
by p € X*(T) ® Q the half sum of all positive roots.

3.1 The Satake category

3.1.1.Recall that the loop group LG (resp. positive loop group L™ G) is the fpqc
sheaf on the category of k-algebras associated to the functor R +— G (R((1)))
(resp. R — G(R[t])). Then L*G is a subsheaf of LG and the affine Grass-
mannian Grg is the fpqc-quotient Grg = LG /L™ G, which is represented by
an ind-projective ind-scheme over k. We write simply Gr instead of Grg, if
there is no confusion.

For any dominant coweight u € X(7) ™, we denote by Gr, the correspond-
ing (L™ G)-orbit in Gr, which is smooth quasi-projective over k of dimension
2p(w) [79, 2.1.5]. Let Gr<,, be the reduced closure of Gr; in Gr, which is
equal to U <, Gr;,. Let j, : Gr, — Gr<, be the open inclusion. We have an
ind-presentation Greeq =~ li_I)nMeX. Tyt Gr<,,. Since we will work with holo-
nomic modules, we can replace Gr by its reduced ind-subscheme [3, 1.1.3
lemma], and omit the subscript ¢4 to simplify the notation.

For i > 0, let G; be the i-th jet group defined by the functor R +—
G (R[t]/t'T1). Then G; is representable by a smooth geometrically connected
affine group scheme over k and we have LTG ~ 1<iLnl, G;. If we consider the

left action of L™ G on Gr, then the action on Gr <, factors through G; for some
i. We can define the category of (LT G)-equivariant holonomic modules on
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Gr (2.5.4), denoted as Satg and called Satake category. It is a full subcategory
of Hol(Gr) (2.5.1).

Proposition 3.1.2 The category Satg is semisimple with simple objects
ICy == ju, 14+ (Lar, [20(W)]) (2.1.9).

Lemma 3.1.3 For u € Xo(T)*, the category Sm(Gr,,) (2.1.4) is semisimple
with simple object Lgry,,.

Proof The (L* G)-orbit Gry, is geometrically connected and satisfies nft(GrM
Qkk) =~ {1} (cf. [67] proof of proposition 4.1). Every irreducible object .#
of Sm(Gr,) has a Frobenius structure with finite determinant [2, 6.1]. By
the companion theorem for overconvergent F-isocrystals over a smooth k-
scheme [7, 4.2] and Cebotarev density [3, A.4], we deduce that .#Z ~ LG, in
Sm(Gry,). Alternatively, one can show a weaker statement that Lg;, is the only
LT G-equivariant irreducible object of Sm(Gr,,) using a similar argument of
the proof of (2.5.1.1).

To show the semisimplicity, it suffices to show that H' (Gry, L) = 0. There
exists a morphism 7 : Gr, — G/ P, realizing Gr,, as an affine bundle over
the partial flag variety G/ P,,, where P, is the parabolic subgroup containing B
and associated with {« € @, (o, u) = 0}. In view of the cohomology of affine
spaces (2.1.4), the cohomology H! (Gry, L) is isomorphic to H{ (G /Py, L).
Since the partial flag variety admits a stratification of affine spaces, we deduce
that Hi(G/P,L, L) = 0if i is odd by (2.1.3.1). Then the assertion follows. O

We prove the following parity result by the same argument of [44] A.7 (cf.
[13] §4.2 for a detailed exposition) in the £-adic case using the decomposition
theorem [6, 4.3.1, 4.3.6], spectral sequence (2.1.3.1) and the parity of the
compact support p-adic cohomology of affine spaces (2.1.4).

Lemma 3.1.4 The constructible module “H' (IC,)) vanishes unless i =
dim(Gr,) (mod 2).

3.1.5. Proof of Proposition 3.1.2. We follow the same line as in the £-adic case
(cf. [44] prop. 1). By 2.1.9(i), holonomic modules IC,, are irreducible objects
of Satg. Let & be an irreducible object of Satg. There exists an (LT G)-orbit
Gr, such that &[Gy, is anon-zero smooth object. By 2.1.6 and 3.1.3, we deduce
that & is isomorphic to IC,,.

To prove the semisimplicity, it suffices to show that for A, u € X (T)T, we
have

Ext}yo1r) IC3.. IC,,) = Homp(gr) (IC;., IC,,[1]) = 0. (3.1.5.1)

(i) In the case A = p, (3.1.5.1) follows from Extll_lol(Grﬂ)(LGru, LGr,) =
H!(Gr,, L) = 0 (Lemma 3.1.3).
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(i1) Then we consider the case either A < u or u < A. Since the dual
functor D induces an anti-equivalence, we may assume that © < A. We denote
by i : Gr<, — Grg, the closed immersion and we have

Homp(Gr) (IC1, it IC,[11) ~ Homp(Gr..,.) (i T IC;., IC, [1]).

Note that i+ IC; has cohomological degrees < —1 (2.1.10(i)). Each (L*G)-
equivariant holonomic module HI (T ICy, lcr,,) is smooth and hence is con-
stant (3.1.3). If there exists a non-zero morphism g : i 7 IC; — IC,[1], then
it would induce a non-zero morphism 4 : HLGTIC, lGr,) = Lar, [2p(w)].
Given aclosed point x of Gr ,, the restriction of the fiber functor i F[—dim Gr ]
to smooth objects is exact [3, 2.4.15]. Then the fiber it (™' (i " IC;. |gr,)) is
isomorphic to H 1 TIM G (i F1Cy). If H™' (i TIC), |Gr,) is non-zero, then it
contradicts to 3.1.4 as i is c-t-exact. The equality (3.1.5.1) in this case follows.

(iii) In the case 2 £ w and £ A, we prove (3.1.5.1) by base change in the
same way as in [13, 4.3]. O
3.1.6. We refer to [79, 1.2.12, 1.2.13] for the definition of the twisted product
Gr X Gr and of the convolution morphism m : Gr X Gr — Gr. The morphism
m is ind-proper and (L G)-equivariant with respect to the left (L*G)-actions.

Given two objects Aj, A of Satg, we denote by A;X.A, their external
twisted product on Gr X Gr (see 2.5.2 and 2.5.4), and define the convolution
product by

Ap x Ay = my (AIXA). (3.1.6.1)

We will show that A .45 is an object of Sats and that x defines a symmetric
monoidal structure on Satg. To do it, we will interpret the convolution product
as the specialization of a fusion product on Beilinson—Drinfeld Grassmannians
in the next subsection.

3.2 Fusion product

3.2.1. Let X be the affine line A,l, n an integer > 1 and X" the n-folded
self product of X over k. We denote by ¢" : Grg x» — X" the Beilinson—
Drinfeld Grassmannian associated to G over X" [17], cf. [79, § 3]. If there is
no confusion, we will write simply Gry» instead of Grg, x».

We refer to [79, 3.1] the definition of global loop groups (LT G)x» and
(LG)xn over X". There exists a canonical isomorphism of fpqc-sheaves

(LG)xn/(LYG)xn — Grg.xn. We consider the left action of (L*G)x» on
Grg, x» over X" and denote by Hol(; +g),, (Grx») the category of (LTG)xn-
equivariant holonomic modules on Grx» (2.5.4).
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There exists an isomorphism Gry =~ Gr x X. Given a holonomic module
A on Gr, the holonomic module Ay = A X Lyx[1] is ULA with respect
tog : Gry — X (2.5.3). If A is moreover (L' G)-equivariant, then Ay is
(L* G)x-equivariant. By Proposition 2.1.6, we obtain a fully faithful functor

. : D(Gr) — D(Gry), A Ay. (3.2.1.1)

We denote the essential image of Satg via ¢ by Saty, which is a full subcategory
of HO](L*G)X (Gl‘x).

To define the fusion product on Saty, we will use the factorization structure
of Beilinson—Drinfeld Grassmannians. Let U be complementof A : X — X2.
Then there exists a canonical isomorphism, called the factorization isomor-
phism [79, 3.2.1(iii)]

¢:Gry2 xy2U = (Grx x Gry) x 2 U. (3.2.1.2)

The involution o : X2 — X2, (x, y) — (y, x), induces an involution A(o’) :
Gry2 — Gryo.
3.2.2. The morphism m (3.1.6) also admits a globalization. We refer to [79,
3.1.21] for the definition of convolution Grassmannian Gry X Gry and con-
volution morphism m : Gry X Gry — Gry2 over X 2

Using a (LTG)x-torsor E — Gry xX [79, 3.1.22], one can identify
Gry X Gry with the twisted product (Gry x X)X x Gry (2.5.4). In summary,
we have the following diagram over X2

Gry x Gry = (Gry xX) xx Grx < E xx Grx — Grx x Grx = Gry> .
(3.2.2.1)

Let Ay, Az be two objects of Saty. Note that (A; X Ly) Xy Ay ~ A KAy
is holonomic. We denote by AX.A, the twisted product of A; X Lx and A,
on Gry X Gry (2.5.4).

Proposition 3.2.3 (i) There exists a canonical isomorphism of holonomic
modules on Gry:

my (A4 = iy (A1 K A lp). (323.1)
The left hand side, denoted by Ay & A, is ULA with respect to g : Gr x2 —>
X2,
(i1) There exists a canonical isomorphism of holonomic modules on Gry:

AT[=11(A; B Ay) = A'1](A; B A)).
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We denote one of the above module by Ay ® Ay and call it fusion product of
A1, Aa. This holonomic module is ULA with respect to q : Gry — X.

Proof (i) The holonomic module A; X A5 on Gry x Gry is the inverse image
of a holonomic module on Gr x Gr and hence is ULA with respect to the
projection Gry x Grxy — X 2 Recall that A;X.A4; is constructed by descent
along a quotient by a smooth group scheme over X (2.5.4, 3.2.2.1). Hence it
is ULA with respect to the projection to X 2 by Proposition 2.2.3(iii). Since
m is ind-proper, then m, (A;X.A4,) is ULA with respect to g2 : Gry» — X?.
Since m|y is an isomorphism [79, 3.1.23], under (3.2.1.2) we have

AR Ay = Al R Ay,

which is holonomic. Then we deduce the isomorphism (3.2.3.1) from Propo-
sition 2.2.5(i).
Assertion (ii) follows from Proposition 2.2.5. O

By repeating the argument of [79, lemma 5.4.6, remark 5.4.7], we obtain
the following corollary.

Corollary 3.2.4 Let Ay, Ay be two objects of Satg.
(1) There exists a canonical isomorphism on Gry (3.1.6.1)

(A1 x A)x =~ Aj x ® Ao x.

(ii) The convolution product A x Aj is still holonomic and belongs to Satg.
The category Satg equipped with the bifunctor x and the unit object 1Cq forms
a monoidal category.

3.3 Hypercohomology functor and semi-infinite orbits

Proposition 3.3.1 The hypercohomology functor H*, defined by

H* : Satg — Vec,, A~ @H”(Gr, A, (3.3.1.1)

nez
is exact and monoidal.

Proof Since Satg is semisimple (3.1.2), H* is exact. Let .4 be an object of
Satg and 7w : Gr — Spec(k) the structure morphism. By the Kiinneth formula
[3, 1.1.7], there exists a canonical isomorphism

g+(A)[=1] ~ 74 (A) B Ly. (3.3.1.2)
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The monoidal property of H* follows from Corollary 3.2.4(i), (3.3.1.2) and
the following lemma O

Lemma 3.3.2 Given two objects A1, Ay of Saty, there exists a canonical
isomorphism

g+ (A1 ® A2)[—1] = (g+(AD[-1D ® (g+(A)[-1D.

Proof 1t suffices to construct a canonical isomorphism
g7 (A1 B Az) =~ g4 (A1) B g1 (A). (3.3.2.1)

By (3.2.3.1) and the Kiinneth formula [3, 1.1.7], such an isomorphism exists
onU = X? — A(X).

Let t : X> — X be the morphism sending (x, y) to x — y. Both sides
of (3.3.2.1) are ULA with respect to t by Propositions 2.2.3 and 3.2.3. By
Proposition 2.2.5, we deduce a canonical isomorphism on X

Al g7 (A1 B A2)) > A(g4 (A1) K gy (A).

Then the isomorphism (3.3.2.1) follows from the distinguished triangle
ALA = id — jjT —. o

Remark 3.3.3 For objects Aj, A, of Satg, we have
H*(A; » A2) >~ H* (A1) ® H*(Ay).

The above proof also applies to arithmetic Z-modules with Frobenius
structures. If A, A, are equipped with Frobenius structures, the above iso-
morphism is compatible with Frobenius structures.

3.3.4. In the following, we study the p-adic cohomology of objects of Satg
on semi-infinite orbits of Grg following Mirkovi¢ and Vilonen [62]. Let BP
be the opposite Borel subgroup. The inclusion B, B°? — G and projections
B, B°? — T induce morphisms

T i 7’ i’
Grr < Grp — Grg, Grr < Grgop — Grg.

Via i, each connected component of Grp is locally closed in Grg.

The affine Grassmannian Grr is discrete, whose k-points are given by L; =
T (k[[t])/ T (k[t]) € Grr(k), » € Xo(T). For A € X,(T), we denote by Sy,
(resp. T3) the ind-subscheme i (' (L)) (resp. i’(w'~1(L;)) of Grg. The
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union S<; = U,r<;3 Sy is closed in Grg and S;, is open and dense in S<;. We
set cohomology functors H (S, —) and H% (Grg, —) to be

H: (83, —) = H*((mi*(-)),).  H, (Grg, —) = H*(7}i" (—)2).

Proposition 3.3.5 (i) For any object A of Satg, there exists a functorial iso-
morphism

H. (S, A) ~ H}, (Grg, A).

Both sides vanish if i # 2p(A).

(ii) For p € X (T)™, the dimension of ng(k)(S;h, IC,)) is equal to the
number of geometrically irreducible components of S, N Grg . If we set
ICy = ju+(Lar,[20()]) as an object of D(Gr, LF), then the Frobenius
acts on ng (A)(S »» 1Cy,) by multiplication by q” At

(iii) For any integer i, there exists a functorial isomorphism

H'(Grg, A~ P HLS:, A).
reXo(T)

(iv) The hypercohomology functor H* (3.3.1.1) is faithful.

If we consider the action of G,, on Grg induced by 25, Grp (resp. Grpop,
Grr) is the attractor (resp. repeller, resp. closed subscheme of fixed points) of
Grg (cf. 2.6.1). When the intersection S; N Grg,, is non-empty, it has pure
dimension p(A + ). Then the proposition can be proved in the same way as
in [62, 3.5, 3.6] by Braden’s theorem (2.6.2). The faithfulness of H* follows

Proposition 3.3.6 Given two objects Ay, A; of Satg, there exists a canonical
isomorphism

HP W (S, Al x Ay >~ @) HP V(S A @ HPP2(S),, Ay).
AM+Ar=A
(3.3.6.1)

Proof We consider the action of G,, on Grg x» induced by 25, which is
compatible with the action of G,, on Grg on each fiber of x € |X"|. We
denote the connected components of Grg, xn (resp. Grg; v, ), parametrized by
L € Xo(T), by S, (X™) (resp. To.(X™)) (cf. [62] 6.4). The fiber of S; (X?) (resp.
Th(X¥))atx = (x,x) € A(X) C X?is isomorphic to S, (resp. 7)) and its
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fiber at x = (x, y) € X2 - A(X)is isomorphic to l—[MHz:/\ Sy, X Sy, (resp.
[, 45,22 Toy X Tiy). Consider the following diagram of ind-schemes:

2

S (X2) Lo §5(X2) = Grg g L X2 (3.3.6.2)
v ’
i
Let A, A; be two objects of Satg, A x, A2 x their extensions to Grg, x

(3.2.1.1)and B = A; x @A x.Fori € Z, we define the constructible module
LS (A, Az) on X2 to be

L (A, A) = “H (g5 (i1 (5 B))) =~ “H' (g7 (i}, (i B))),

where the second isomorphism follows from Braden’s theorem (2.6.2). By
3.3.5, [,i (Aq, Ay) vanishes unless i = 2p(A) and the stalk of Eipm(Al, A2)
at a k-point (x, x2) of X Zis isomorphic to

L (AL AD) ) (3.3.6.3)

He" ™ (85, Aj + Ay) if x; = x2,
— 2 2 .
D;, 13,0 HE (S0, AD @ HPU2 (83, Ay) if xy # 0.

The adjunction morphisms id — zT;thszr and jij T — id (3.3.6.2) induce
canonical morphisms

HPD (g2 (A x B Az x)) — “HPD (g% 0 T3)40, B) < L£7°P (A1, Ay,
(3.3.6.4)

where the first arrow is an epimorphism and the second arrow is an
isomorphism in view of the calculation of their fibers (3.3.5). By apply-

ing a dual argument to 73 (X?), we obtain a section [,ip (k)(Al,Az) —
CHZ M (g2 (A1 x B Az x)) of (3.3.6.4). In view of Proposition 3.3.5, we
deduce a decomposition

Higi(Ax B AL )~ P Li(ALA.
2p(N)=i

The left side is a constant module with value H! (Gr, A; x A>3) by (3.3.1.2,

3.3.2.1). Then each summand Li(Al, A») is also constant and fibers of
L‘g (A1, Ay) (3.3.6.3) are isomorphic. The proposition follows. O
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3.4 Tannakian structure and the Langlands dual group

Theorem 3.4.1 (i) The monoidal category (Satg, 1Cy, *), equipped with the
constraints c¢ defined below and the functor H* (3.3.1.1), forms a neutral
Tannakian category over L. _

(ii) The Tannakian group G = Aut® H* of the Tannakian category Satg is
a connected reductive group scheme over L. If T is a maximal torus of G, then
T is a maximal torus of G. _

(ii1) The reductive group G is the Langlands dual group of G over L. More
precisely, the root datum of G with respect to T is dual to that of (G, T).

We prove Theorem 3.4.1 in the same way as in [79, 5.2.9, § 5.3] using Propo-
sitions 3.3.5 and 3.3.6. We briefly review the construction of the constrains ¢
in the following.

The permutation o : {1, 2} — {1, 2} induces an involution A(o) : Gry2 —
Gry2 over the involution o : X?> — X2, (x,y) — (y,x) (3.2.1). Let
A1, Ay be two objects of Satg. We deduce from the factorization isomorphism
(3.2.1.2) and (3.2.3.1) a canonical isomorphism A(U)+(A1,x A2.x) =
A> x B A; x. Taking its fiber at (x, x), we obtain a canonical isomorphism
C:41,A2 Ak Ay >~ Ay x AL

We modify 6141, A by a sign as follows (see [62] after Remark 6.2). The
morphism p : Xo(T) — Z/27, i+ (—1)?°" defines a Z/27Z-grading on
simple objects of Sats. Given two simple objects A1, A» of Satg, we define
anew constraint c4,, 4, = (—1)1’(“41)1’(“42%:41

Since Satg is semisimple, the definition of ¢ A,.A, €xtends to any pair
(A1, Az) of objects of Satg. Proposition 3.3.5 and the same argument of [79,
proposition 5.2.6] allow us to deduce the following commutative diagram

CALA

H*(A; x A) H*(A % Ay)

) 3

H* (A1) ® H*(A2) —% H*(A) @ H*(Ay),

where the isomorphism cve is the usual commutativity constraint on vector
spaces, i.e cvec(V @ w) = w Q@ v.
3.4.2. For our applications of the geometric Satake equivalence for arithmetic
2-modules, it is important to consider the Frobenius structure on the Satake
category. In the following, we study the full Langlands dual group constructed
by the Satake category equipped with Frobenius structures.

We suppose that the geometric base tuple {k, R, K, L} underlies to an arith-
metic base tuple {k, R, K, L,t,0} (2.1.2), where ¢ is an integer (which may
be different from the degree s of k over ¥ ).
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The ¢-th Frobenius pullback functor F, = Férr Kk © o* : Hol(Gr /L) =

Hol(Gr /L) [3, 1.1.3 remark] induces a o -semi-linear equivalence of tensor
categories F,. : Satg = Satg. We denote by F-Satg the category of pairs

(X, p) consisting of an object X of Sat and a Frobenius structure ¢ : F¢; X =
X. Morphisms are morphisms of Satg compatible with ¢ (cf. [3] 1.4.6). We
will show that F- Satg is a Tannakian category.
3.4.3. We first study some general constructions in the Tannakian formalism
following [69].

For n € Z, we denote abusively by ¢” the equivalence of categories
(=) ®L.on L : Vec, = Vecy..

Let (C, w) be a neutralized Tannakian over L. We suppose that, for each
n € Z, there exists a o"-semi-linear equivalence of tensor categories

7,:C—>C

and an isomorphism of tensor functors ¢, : w o 7, — ¢" o w. For any pair
n,m € 7, we suppose moreover that there exists an isomorphism of tensor
functors ¢ : 1, 0 T, = T4, such that

(id oat,) 0 (0t 0id) = Appin o w(8) :wo Ty 0T, ~ " o w.
Since w is faithful, such an isomorphism ¢ is unique.

Let H be the Tannakian group of (C, w). The above structure defines a
homomorphism

t:7Z — Aut(H(L)), (3.4.3.1)

—1 .

by letting t(n) send 4 : © - wtow N o "oworty heid, 0 owoT, -5 .

We define the category CZ of Z-equivariant objects in C as follows. An object
(X, {cn}nez) consists of an object X of C and isomorphisms ¢, : 7,(X) =
X satisfying cocycle conditions ¢4, = ¢, o T,(c;). A morphism between
(X, {cnlnez) and (X', {c},}nez) is a morphism of C compatible with ¢, c),.
3.4.4. Let I be an abstract group and ¢ : I' — Z a homomorphism. We say
an action of I on an L-vector space V' is o-semi-linear (with respect to ¢) if it
is additive and satisfies y (av) = 09" (a)y(v) fory e ',a € Landv € V.
We denote by Rep; (') the category of o-semi-linear representations of I'
on finite dimensional L-vector spaces.

We denote by H(L) x Z the semi-direct product of H(L) and Z via ¢
(3.4.3.1). The short exact sequence 1| — H(L) - H(L) X Z — 7Z — 1
allows us to define the category Rep; ,(H (L) x Z).
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Proposition 3.4.5 Keep the assumption and notation as above.

(i) The category C% is a Tannakian category over Ly = L°=! neutralized
by w over L [36, § 3].

(i) Suppose that the Tannakian group H of (C, w) is a split reductive group
over L. Then w induces an equivalence of tensor categories

C% = Repj ,(H(L) x Z),

where RepOL’U (H (L) X Z) is the full subcategory of Repy, ,(H (L)% Z)(3.4.4)
consisting of representations whose restriction to H (L) is algebraic.

Proof (i) We define a monoidal structure on C7 by letting
(X, {en) ® (X', {ep, ) = (X", {ep ),

where X” = X ® X’ and ¢ is the composition 7,(X") =~ 1,(X) ®
n®
7 (X') =

S x ®X'. This defines a structure of symmetric monoidal category
on CZ.
We apply [35, 2.5] to show that (CZ, ®) isrigid. Given an object (X, {c,}) of
C”, we denote by X be the dual of X in C and then we have 7, (X) =~ 7,(X)".
For each n, we have an isomorphism

VXY S (X)) ~ (X Y).

Cn

In view of [36, 1.6.5], the evaluation and coevaluation morphisms of X and of
7,(X) are compatible via 7,,. So (XV, {(c)Y)~'}) is the dual of (X, {c,}) in CZ,
as the evaluation and the coevaluation morphisms of (X, {c,}) in CZ satisfying
the axiom of [35, 2.1.2]. Hence CZ is a rigid abelian tensor category.

Since 7, is o"-semi-linear, we have End(id,z) >~ L. The forgetful tensor
functor CZ — (C is exact and faithful. Hence the fiber functor w of C defines a
fiber functor @ : C% — Vec [36, 3.1]. Then the assertion follows from [35,
1.10-1.13], see also [36, footnote 12].

(i1) It suffices to construct an equivalence of tensor categories

W : Rep, (H)” = Repj ,(H(L) x Z). (3.4.5.1)

Let ((V, p), {cn}) be an object of Rep; (H )Z. Then we define a representation
(V,p)of RepCL’ﬁ (H(L) x Z), for any element (h, n) € H(L) % Z, by letting
0 (h, n) to be the composition

a; ! ol o
@V, p)) s w(ta (V. 0)) 224 w(ta(V, ) 2> 0 (V. p). (3.4.5.2)
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Using the cocycle condition, one checks that (3.4.5.2) defines a representation.
Then we obtain the functor W (3.4.5.1). The natural functor Rep; (H) —
Rep; (H(L)), p = p(L), is fully faithful. In view of (3.4.5.2), we deduce
that W is fully faithful. We leave the verification of the essential surjectivity to
readers. O

3.4.6. The Frobenius pullback functor F§. = Fa“r K © o* : Satg — Satg
satisfies H* o F§, > o o H*. We take for every integer n the tensor equivalence
T, on Satg to be |n|-th composition of Fér (or a quasi-inverse of Fc”;r ifn < 0)
(3.4.3). These functors satisfy the assumption of 3.4.3. With the notation of
3.4.3, F-Satg is equivalent to the category Sat%. In this case, we obtain the

following result by 3.4.5.

Theorem 3.4.7 (i) The category F-Satg is a Tannakian category over Ly,
neutralized by the fiber functor H* over L. Ift = s and o = idy, then F- Satg
is a neutral Tannakian category.

(ii) There exists a canonical equivalence of tensor categories

F-Satg — Rep] ,(G(L) x Z),

compatible with fiber functors.

3.4.8. We work with the arithmetic tuple ¥ = {k, R, K, L, s, id;} and we
suppose there exists a square-root p'/? of p in L. This allows to define half
Tate twist functor (%) for n € Z by sending each object .# € D(X/LF),
equipped with the Frobenius structure @, to (.#, p~>"/2 . ).

For u € X, (T), we denote by ICY®! = j, 11 (Lar,)[2p(1)](p (1)) the
holonomic module in F'- Satg with weight 0, and by S the full subcategory of
F-Satg consisting of direct sums of ICXV"H’S.

The category S is closed under the convolution on F'- Satg, i.e. ICXVe“ * ICLVE’“
is isomorphic to a direct sum of IC,\)V"‘“. Indeed, by Proposition 3.3.5(ii),
the Frobenius acts on the total cohomology H* (ICX"e“) by a diagonalizable
automorphism with eigenvalues ¢”/%, n € Z. Since H* is compatible with
Frobenius structure (3.3.3), so is the Frobenius action on H* (IC}"el! « ICXVGH).
We have a decomposition IC; xIC,, >~ @IC,. Then the claim follows from
the fact that the the action of Frobenius on cohomology determines the iso-
morphism class of an object of F'- Satg whose underlying holonomic module
is isomorphic to a direct sum of IC,,’s.

The canonical functor F-Satg — Satg induces an equivalence of tensor
categories S = Satg. In particular, we obtain equivalences of tensor cate-
gories

Sat : Rep; (G) ~ Satg ~ S. (3.4.8.1)
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3.4.9. We briefly review the action of outer automorphism group of G on Satg
(resp. on S).

Let (C, w) be a Tannakian category over L and H the associated Tannakian
group. We denote by Aut®(C, w) the set of isomorphism classes of pairs (z, o)

of a tensor equivalence t : C — C and an isomorphism of functors o :

@ — w o . This set has a natural group structure. A similar construction
as in 3.4.3 defines a canonical morphism Aut®(C, w) — Aut(H), which is
an isomorphism [47, lemma B.1]. We apply this to the Satake category S
(or Satg) equipped with the fiber functor H*. The action of Aut(G) on Grg
induces an action on (S, H*), and therefore an action of Aut(G) on é, i.e.a
homomorphism ¢ : Aut(G) — Aut(é).

Lemma 3.4.10 There is a natural pinning (B,T,N) of G such that that map
t factors as Aut(G) — Out(G) 5 AutT(Cv}, I;’, 7v", N) C Aut(é).

The lemma can be shown in the same way as in [47, lemma VB.2] or [69,
lemma A.6]). In particular, for 0 € Aut(G) and V € Rep(G), we have
o*Sat(V) >~ Sat(t(o)V).

4 Bessel F-isocrystals for reductive groups

In this section, we construct Bessel F-isocrystals for reductive groups and
calculate their monodromy groups. We use notations from 1.3.8, with k being
a finite field of ¢ = p*® elements. We assume moreover that there exists an
element 7 € K satisfying 77~! = —p and a square root of p in K. We fix an
arithmetic base tuple {k = F,, R, K, L, s,id.} (2.1.2) and an isomorphism
K ~ C (in order to talk about weight).

We fix {0, oo} C P! (over some base that we will specify in each subsection),
and set X = P! — {0, oo}. Although X ~ G,,, it is more convenient to regard
it as a curve with a simply transitive G,,-action.

Throughout this section, let G be a split reductive group (over some base).
We fix a Borel subgroup B C G and a maximal torus 7 C B.Let U C B be
the unipotent radical of B, and U°P C B°P the opposite Borel and its unipotent
radical. Let T,y C Bag C Gag denote the quotients of T C B C G by the
center Z(G) of G. We denote by (G, B, T) the Langlands dual group of G
over L, constructed by the geometric Satake equivalence (3.4).

4.1 Kloosterman F-isocrystals for reductive groups
In this subsection, we follow the method of Heinloth—Ngd—Yun [47] to produce

overconvergent F-isocrystals on X via the geometric Langlands correspon-
dence.
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We work with schemes over k. We will consider with both geometric coef-
ficients and arithmetic coefficients, but for simplicity, we omit L, from the
notation Hol(—/L,), D(—/L,) and L from Rep; (—).

4.1.1. Let G = G x P!. For a coordinate x on P!, so y = x~
coordinate around oo, we denote by

I'is a local

1(0) = {g € G(k[y]) | g(0) € B} the Iwahori subgroup,
I(1) = {g € G(k[y]) | g(0) € U} the unipotent radical of 1(0),
Z(G)() = {g € Z(G)K[YD 1 g0) =1 mod y},
1(2) = Z(G)(HI (D), I(D)],
1(i)°? C G(k[x]) the analogous groups obtained by opposite Borel subgroup.

If G is semisimple, 1 (2) = [I/(1), I(1)]. On the other hand, if G is a torus,
then 7(2) = 1(1). (So our definition of 7 (2) is slightly different from [47] 1.2
when G is not semisimple, but for G = GL,, coincides with the one in [47]
3.1.) These groups are independent of the choice of x.

By abuse of notations, we use the same notations for the corresponding
(ind)-group schemes over k. Then

I/~ @ U

« affine simple

where Uy (k) C G(k[s]) is the root subgroup corresponding to . We also
write

Q = NG (k(xy) (1 (0)P) /T (0)°P,

which is regarded as a discrete group over k.
We denote by G(m, n) the group scheme over P! such that [47, 1.2]

Gm,n)|x =G x X,
G(m,n)(0p) = I(m)°® C G(0h), G(m,n)(Ox) = 1(n) C G(Ox).

We denote by Bung,, ) the moduli stack of G(m, n)-bundles on Pl Let
Bung(m’n) denote its connected component containing the trivial G(m, n)-
bundle » : Spec(k) — Bung(y n). For each y € €, there is a canonical
isomorphism Hk, : Bung,,) = Bung ) given by the Hecke modification
of G(0, n)-bundles at 0 € P! corresponding to y [47, Corollary 1.2]. This
induces a canonical bijection between €2 and the set of connected components
of Bungg, ) (and therefore all Bung, »)). Let Bung (m.n) denote the connected
component corresponding to y under the bijection. For y € , let i, =

Hk,, () : Spec(k) — Bung, .
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There is also the action of /(1)/1(2) on Bung,2) by modifying G(0, 2)-
bundles at co. Let

J 1 x1(1)/1(2) — Bung,2), (4.1.1.1)

be the open immersion of the big cell, defined by applying the action of
I(1)/1(2) x Q to the trivial G(0, 2)-bundle [47, Corollary 1.3]. Let j, :
I(1)/1(2) — Bung(o,z) denote its restriction to the component corresponding
to y.

4.1.2. The stack of Hecke modifications Heckeé(m n of G(m, n)-torsors (over
X) classifies quadruples (&7, &3, x, B), where &; € Bung(n.»), X € X and

B x—x = &3] x—x. There exist natural morphisms
Bun L HeckeX LN Bun x X 4.1.2.1)
G(m,n) G(m,n) G(m,n) ) el

where pr; (resp. pry) sends (&1, &2, x, B) to &1 (resp. (&2, x)).

Following [47], we denote by GR the Beilinson—Drinfeld Grassmannian of
G(m, n) with modifications on X. Note that GR >~ Grg x =~ Grg xX and
therefore is independent of (m, n). There exists a smooth atlas @ : U —
Bung ) such that [47, remark 4.1]

U XBung(m,n),PH HeCkeg(m,n) = U X GR, (4122)
(U X X) X(Bung(m’n) x X),prs HeCkeé((m’n) ~U x GR.

For V € Rep(é), we associate a holonomic module Sat(V) on Grg by
the geometric Satake equivalence (3.4.8.1). We denote abusively by ICy the
holonomic module on Heckeé(mﬁ) defined by smooth descent of Ky xx X
Sat(V) on U x X x Grg (supported in a subscheme U x X x Grg,y). Then
ICy is supported in a substack Heckeé(myn)’v of Heckeé(m’n).

The geometric Hecke operators is defined as a functor

Hk : Rep(G) x D(Bung(n.»)) — DBung .y xX),
(V, M) — Hky (M) := pry,(pr{  (#) @ ICy).
Herepr, y : Hecke, .\ — Bunggm,n andpry |eex : Heckel,, ) v

G(m,n),V
— Bungu,») x X are schematic (4.1.2.2), which allows us to apply cohomo-

logical functors of pr; y, pry (2.2.7).
We call a tensor functor

E : Rep(é) — Sm(X/L) (resp.Sm(X/LF)), V — Ey
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G-valued overconvergent isocrystal (resp. F-isocrystal) E on X. A Hecke
eigen-module with eigenvalue E is a holonomic module .#Z on Bunggy )

together with isomorphisms Hky (.#) S MREy, Ve Rep(é), which are
compatible with tensor structure on Rep(é) and composition of Hecke oper-
ator. We refer to [17, 5.4.2] for the precise definition and detailed discussions.
4.1.3. We take a non-trivial additive character ¥ : F,, — K> and denote by
7 € K the associated element satisfying 77~! = —p (2.1.1). Let <y, be the
Dwork F-isocrystal on A! (2.1.1).

We fix a generic linear function ¢ of 1(1)/1(2), that is, a homomorphism
¢ I(1)/IQ2) — Al of algebraic group over k whose restriction to each Uy
is an isomorphism

b0 = dlu, : Us = A (4.13.1)

Let ¢ = ot (7). (Note that our notation is slightly abusive as this sheaf
depends only on the character ¥ o try /E, ¢ of 1(1)/1(2) as a p-group). We

denote by HOl(Bung(o,z))I (/12). 44 the category of holonomic modules on
Bung,2) which are (1(1)/1(2), <7y 4)-equivariant.

By repeating the argument of [47, 2.3], we obtain a parallel result for holo-
nomic modules.

Lemma 4.1.4 [47,2.3] (i) The canonical morphism j, \(<y ) = Jy.+ (@)
is an isomorphism.

(i1) The functor

Hol(X) — Hol(Bun, , x X)! W@ Sys - g s j, \(Hyp) R M
is an equivalence of categories, with a quasi-inverse given by

N > (i x idx) T () = @iy x idx)' (A).

We denote by Ayg the object of HO](Bung(o’z))I - defined by
(Jy,1(#y ) [dim Bung2)])y cq-

Theorem 4.1.5 (i) For (m,n) = (0, 2), the holonomic module Ay (4.1.4)

is a Hecke eigen-module with Hecke eigenvalue a G-valued overconvergent
F-isocrystal

Klgg(wd)) : Rep(é) — Sm(X/LF). 4.15.1)
(ii) For every representation V of G, Klgg v (Y @) is pure of weight zero.
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If ¢ (resp. ¥ and ¢) is clear from the context, we simply write Klgg(l//¢)

by Klrég (¢) (resp. Kerfg). In the remainder of this section, we skecth the proof
of the above theorem by repeating the strategy in the £-adic case, following
[47]. Using [6, 1.3.13] and the cleanness of .27 (4.1.4), one can show the
holonomicity.

Lemma 4.1.6 [47,4.1] Forevery V € Rep(é), the complex Hky (Ay¢)[1] is
holonomic.

Proof of 4.1.5 (i) The action of 1(1)/1(2) on Bung, ) extends to an action
on the diagram (4.1.2.1). For each y € £, Hky(Ayg)lgun”

is
g2 *X
(I1(1)/1(2), oty ¢)-equivariant. By 4.1.4, for each y € @, we have

HkV (Al/f¢)|Buny

! o <X AL, REY,
where E 3[1] is a holonomic module on X. By the same argument as in [47,
4.2], we show that E ‘); is canonically isomorphic to E (‘),. So we will drop the
index y in the following.

Since ICy is ULA with respect to the projection GR — X (3.2.1), we have
d(ICy) = 0 (2.2.6). Since taking vanishing cycle functor commutes with
smooth pull-back and proper push-forward [4, 2.6], we deduce that

Ayp RO (Ey) = O(Ayp W Ev) = pry (P (pr] , (Aye) @ ICy))
= pry (pr y (Ayg) ® @(ICy)) = 0.

By Corollary 2.3.4, Ey is smooth. Then assertion (i) follows.

(i1) In the following, we present a concrete way to calculate the Hecke
eigenvalue.

We denote by » € Bung, ) the base point corresponding to the trivial
bundle G(0, 2). The base change of convolution diagram (4.1.2.1) to * x X
can be written as

Bung(ovz) -pé GR % X. 4.1.6.1)

We denote by GRy C GR =~ Gr xX the support of Sat(V) X Ly, by GR®
the inverse image of the big cell j(/(1)/1(2) x ) by p1, and by GRj, =
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GRy NGR°. Consider the following diagram:

°C— ~GRy (4.1.6.2)

LT N

A< 1(1)/12) x Q<> Bung g X.

The argument of [47, § 4.1-4.2] shows that the following canonical mor-
phism is an isomorphism

P3Py (Hyg) ®ICy lare) = P34 (PTy (Hyg) @ ICy [re). (4.1.6.3)

The overconvergent F-isocrystal Ey can be calculated by one of the above
pushforward and is therefore pure of weight zero. In particular, Theo-
rem 4.1.5(ii) follows. O

4.1.7. There is the following “trivial” functoriality between Kloosterman F-
isocrystals. We fix 1. Let G’ — G be a homomorphism of reductive groups
inducing the same adjoint quotient G, 5> Gag. Then it induces an iso-
morphism 7'(1)/1’(2) >~ I(1)/1(2), and therefore we can abusively use the
notation ¢ to denote the “same” linear functions on these spaces under the
identification. On the other hand, it induces a homomorphism of dual groups
G — G’ and therefore a tensor functor Res : Rep(é’ ) — Rep(é) by restric-
tions. Then Klr(f}% is the push-out of Kerfg along G —> G Concretely, this
means that there is a canonical isomorphism of tensor functors (we omit both
Y and ¢ from the notations)

KI# ~ K17 oRes : Rep(G') — Sm(X/Ly)

This allows use to reduce certain questions of KI':® to the case when G is

simply-connected. We also obtain the following exceptional isomorphisms
(due to coincidences of Dynkin diagrams in low rank cases)

rig ~ rig rig ~ rig
Klgr, sym2 = Klsos s Klg, xerp2—1) = Klsog s 417D

rig ~ Yr1rig rig rlg
KlSO4,Std - KlSL2 x SLo,Std X Std? KlSO ,Std — Kl A2? (4.1.7.2)
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where 1 denotes the trivial representation, Std the standard representation,
Sym* and A® the symmetric powers and wedge powers of the standard repre-
sentation.

4.1.8. There is a natural action of G,, on X C P!. On the other hand,
the group of automorphisms Aut(G, B, T') acts on G(m, n). It follows that
Gy x Aut(G, B, T) actson (4.1.2.1), and therefore on (4.1.6.1). It also acts on
1(1)/1(2) x 2 as group automorphisms such that the open embedding (4.1.1.1)
is G, x Aut(G, B, T')-equivariant. Recall that the natural action of Aut(G) on
the Satake category induces ahomomorphism: : Aut(G) — Aut(é, é, T, N)
(3.4.10). Given§ = (a,0) € (G, x Aut(G, B, T))(k)and V € Rep(é),then
there is a canonical isomorphism

Klrclffv(w(q) 08)) ~at Klg%t(a_l)v(w¢), (4.1.8.1)

given by the composition

P21(piy (i 0 )T y) ® ICY) =~ po (8 py, (g ) ® ICY)
~a* pri(pfy (it ) ® 6HTICY)
~ at pri(pyy (i Hy) @ (IC,,-1yy)).

In particular, given ¢ € Tyq(k) C Aut(G, B, T), the element 6 = (1,1¢)
induces an isomorphism

K]gg(llf(qﬁ 08)) ~ Kerig(w). (4.1.8.2)

That is, Kerfg (¥ ¢) depends only on the T,q-orbit of ¢. On the other hand, let a
be an element of G, (k), ¥, the additive character defined by ¥, (—) = ¥ (a—),
t, € Tyq the unique element such that «(#,) = a for every simple root « of
G and h the Coxeter number of G. By applying § = (a",1,) in (4.1.8.1), we
deduce that

KIZE (Yag) =~ KIE (Y (¢ 0 ) =~ (@") T KIE (v 9). (4.1.8.3)

In addition, given a generic linear function ¢ of 1(1)/1(2), the collection
{¢g} from (4.1.3.1) for those o being simple roots of G, provide a pinning of
(G, B, T), and therefore induces a splitting Out(G) — Awt(G, B,T). If G
is almost simple, not of type A,,, then every element o € Out(G) fixes the
remaining ¢,. If G is of type Ay, the unique non-trivial element op € Out(G)
send the remaining ¢, to —¢,. Therefore, if either G is almost simple not of
type Aay,, or if p = 2, then for every o € Out(G), we have ¢ o (1,0) = ¢
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and a canonical isomorphism

rig ~ 1l
KIE, (W) ~KIZ (V).
compatible with the tensor structures. On the other hand, if G is almost simple
of A, and if p > 2, then the element 6 = (—1, og) induces a canonical
isomorphism (4.1.8.1)

rig ~ 1\ i
Kle”, (W) = (=D KIS (o), (4.1.8.4)
where V'V denotes the dual representation of V, compatible with the tensor
structures. o

4.1.9. Let £ be a prime different from p. We take an isomorphism ¢ : K >~ Q,.
Using the £-adic Artin—Schreier sheaf ASy, on A,l associated to ¥, Heinloth,

Ngd and Yun construct a £-adic G local system
Klg"f(w) : Rep(G) — LocSysm(X). (4.1.9.1)

By the trace formula [41], [6, 4.3.9] angi Gabber—Fujiwara’s. £-independence
[6, 4.3.11], the Frobenius traces of Klg’l;/(wq)) and of Klr(f;gv(wqﬁ) at each

closed point of X}, coincide via ¢.

4.1.10. There is a variant of Heinloth—Ngd—Yun’s construction using algebraic
2-modules instead of £-adic sheaves to produce a G-connection on X g in zero
characteristic [47, 2.6], as all the geometric objects used in the construction
has analogues over K. Namely, we replace the Artin—Schreier sheaf AS,, on
A,ﬁ by the exponential -module E; = K (x, d,)/(dy — A) with parameter
A € K on A}{. Then we have a tensor functor

KI%R(MS) : Rep(G) — Conn(Xg).

Here we identify homomorphisms ¢ : 1(1)/1(2) — A! of algebraic group
over K with Homg (Lie 7(1)/1(2), K) via differentiation, so A¢ is regarded
as a linear function on Lie(/ (1)/1(2)).

4.2 Comparison between Kl‘(!,;R and Klréig

In this subsection, we work with schemes over R and we keep the notation of
4.1. We say a linear function ¢ : I(1)/1(2) — A over R is generic, if it is
generic modulo the maximal ideal of R. We take such a function ¢ and we
denote abusively its base change to k (resp. K) by ¢. The following theorem
is our main result of this subsection.
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Theorem 4.2.1 We set L = K. For every representation V of G, there exists
a canonical isomorphism of Ox-modules (1.3.8) with connection (2.4.2)

i (KIE (—ren’ = Klg%v(¢), 4.2.1.1)

compatible with tensor structures.

Remark 4.2.2 There is a variant of the construction of KI®R(A¢) (resp.
& P

Klrég(Wqﬁ)) with multiplicative characters: Kummer Z-modules (resp. Kum-
mer isocrystals), which slightly generalizes Ay (cf. [47] remark 2.5). In this
setting, one can also compare de Rham and p-adic local systems as above by
the same argument, if the corresponding multiplicative characters match.

4.2.3. We first consider the case where V is associated to a minuscule coweight
A. In this case, Gr, is isomorphic to a partial flag variety and is smooth and
projective, and ICy is isomorphic to Kgy, [dim Gr;] supported on GRy =~
Gr) x X. We show the above theorem by comparing the relative twisted de
Rham cohomologies and the relative twisted rigid cohomologies along the
morphism

p; :GR} — X

in (4.1.6.2). To do so, we first show that the associated de Rham and rigid
cohomologies at each fiber of X are isomorphic.

We regard (4.1.6.2) as a diagram of schemes over R. We denote M :=
p‘f‘t o ¢ (E_,)[dim Gr; ], which is a line bundle with connection on GR“’,’ K
The bundle with connection M on (GR‘{,y )™ (cf. 2.4.2) is overconvergent

and underlies to the arithmetic Z-module pf;,“ opT (o7y)[dim Gr; ] on GRY, 4>
denoted by . .

Lemma 4.2.4 Let s be a point of X(R). If My (resp. .#) denotes the +-
pullback of M (resp. # ) along the fiber at s, then the specialisation morphism
(2.4.3.2)

HZ';R((GR‘{,J)K, M) — Hfig((GR“’/,s)k, M) 4.24.1)
is an isomorphism. Moreover, these cohomology groups vanish except for the
middle degree 0.

Proof We set Y = GRC",’ , and we write M (resp. .#) instead of M (resp.
M). Since Y admits a smooth compactification Gr; whose boundary is a
divisor, we can calculate above cohomology groups by direct image of cor-
responding algebraic (resp. arithmetic) Z-modules (2.1.4). Note that KI%RV
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(resp. Kl e ) is a bundle with connection (resp. overconvergent F-isocrystal)

of rank d1m V. By the base change, cohomology groups in (4.2.4.1) vanish
except for the middle degree and have dimension dim V' in the middle degree.
By (4.1.6.3), the canonical morphism ¢ : H;kig,c(Yk’ M) — H;“ig(Yk, M) is
an isomorphism. In view of Proposition 2.4.5, we deduce that the specialisation
morphism (4.2.4.1) is surjective. Then the assertion follows. O

4.2.5. Proof of Theorem 4.2.1 in the minuscule case. Now we use the rela-
tive specialization morphism (2.4.7.1) to compare (Kl‘éRV)T and Klggv. Let

Grpi — P! be the Beilinson-Drinfeld Grassmannian of G over P! and
o : Gry p1 — P! the closed subscheme associated to A. Note that o is a
locally trivial fibration over P! with smooth projective fibers Gr;, and defines
a good compactification of pJ in the sense of 2.4.7.

We take again the notation of 2.4.7 for the smooth R-morphism p5. We set
A=T(X, 0x), Ak = A[$1,A% = Z[%] the ring of analytic functions on X"i¢
and AT = F(IP’}C, Ox). We have inclusions Agx C AT c AV 1f Dy, denotes
the ring of algebraic differential operators on Xk, there exists a canonical
Dy -linear specialization morphism (2.4.7.1)

dR rig
I'(Xk, Klé’v) — (X, Klé,v)’

where the left (resp. right) hand side is coherent over A g (resp. AT). The above
morphism induces a horizontal A'-linear morphism

. d i
ty : T(Xk KIE ) @45 AT = DX KIEE ),

which gives rise to the morphism (4.2.1.1). Recall that the homomorphism
AT — AV is faithfully flat [20, 4.3.10)]. To prove ty is an isomorphism, it
suffices to show that the induced horizontal A%-linear morphism:

ty @0 A T(Xk, KIR ) @4, A” = T(X, Kerigv) @4 A (425.1)

is an isomorphism. Let A — R be a continuous homomorphism and s :
A — R the associated R-point of G,,. By base change and [3, 2.4.15], the
fiber ¢t ® 4+ K coincides with the morphism (4.2.4.1) associated to the point
s € X(R) and is an isomorphism (4.2.4). Since both sides of (4.2.5.1) are
coherent A°-modules, the morphism ty ® 4+ A? is an isomorphism and the
assertion follows. O
4.2.6. Next, we consider the case where V is associated to the quasi-minuscule
coweight A. In this case, Gr<, contains a smooth open subscheme Gr; whose
complement is isomorphic to Spec(R), and admits a desingularisation Gr<,\
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(cf. [63] § 7). We take an isomorphism GRy =~ X x Grg; and set GR}® =
GRY, N(X x Gr;) to be the smooth locus of GRY, (4.1.6.2). We denote by
J : GRY? — GRY, the open immersion and by

T=p50j:GRy - X (4.2.6.1)

the canonical morphism, which admits a good compactification Gro), x P! —
P! in the sense of 2.4.7. Indeed, GRS, <> X x Grs; is defined by the
nonvanishing of sections of - some line bundles [47, remark 4.2] and so is
GRy — X x qrf‘ Since Gr<p — Grx, is the blowup outside Gr;, then
GR}’ < X x Grg, is the comoplement of some ample divisors. Hence,
GR7/ is affine and so is 7.

Let M be the line bundle with connection pfr(E_n)[dim er]|GR<>ViK and
. the smooth arithmetic Z-module pf(sz@)[dim Gr, ] |GR?/°,1<‘ The holonomic
module ICy is constant on GR77. Then we deduce that

Jr(M) = pl(E_7) ®ICy |GRg, o+ Jir (M) = p{ () ®ICy crs, -

Note that ji (M)[1], ji+(#)[1] are holonomic.

Lemma 4.2.7 (i) The complex vy (A )[1] (resp. Tk +(M)[1]) is holonomic.

(1) Let s be a point of X (k). We choose a lifting in X (R) and still denote it
by s. If we denote by My (resp. M) the +-pullback of M (resp. A ) along the
fiber at s, then the specialisation morphism (2.4.3.2)

Hir ((GRY )k, M) — Hi, ((GRY Ok, )

induces an isomorphism

HiR ((GRY, ). jir (M) = HY, (GRS k. jis (). (4.2.7.1)

Proof (i) Leti : Z — GRY, be the complement of GRJ? in GRY,, which is
isomorphic to X. Consider the distinguished triangle on GRZ, ,

(1] = jo(A)[1] - C — .

By2.1.10,C =~ i'(ji4 (.#))[2] has degree > 0 and is supported on Z. Applying
p5 ., to the above triangle, we obtain

P3G ()] = T ()[1] — p§ . (C) —,

where the first term is holonomic (cf. 4.1.6), and the second term has cohomo-
logical degrees < 0 because 7 is affine and the last term has cohomological
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degrees > 0 since pj|z is the identity. Then we deduce that each term in the
above triangle is holonomic.

(i1)) We set Y = GRV s U= GR‘{/o , and we write simply M (resp. .#)
instead of M, (resp. My). By applymg the argument (resp. a dual argu-
ment) of (i), we deduce that the canonical morphism of cohomology groups
O (Yi, i (A)) — Hng(Uk ) is injective. (resp. Hrlg Uk, M) —

ng Yk, jiy () is surjective). In summary, we have a sequence whose
composition is the canonical morphism tyg:

r1g

Uy, M) — iy (Ve jip (M) = Y (Ye, iy () — HY

rig,c

(U, M),
4.2.7.2)

r1g c rig

where the middle isomorphism is due to the cleanness (4.1.6.3).
We construct an analogue sequence of (4.2.7.2) for de Rham cohomology
of M on Ug. These two sequences fit into a commutative diagram (2.4.5)

HYp (U, M) ——= HY (Vi i (M)) ——> H (Yx . jus (M) H (Ug, M)

(U, ) ——= WS, (Vi joy (M) —— HY, (Ye, juy (M) HS, (Ug, M)
(4.2.7.3)

né c

Let E be the image of Hrlg Uk, M) — HgR(YK, Ji+(M)). Then the special-
isation morphism pys sends E surjectively to the subspace H?ig(Yk, Ji+(A)).
Since dim E < dim HY (Y, jir (M)) = dim Hgg(Yk, jip (), we deduce
that £ = HgR(YK, Ji+(M)) and that pys induces an isomorphism (4.2.7.1). O

4.2.8. Proof of Theorem 4.2.1 in the quasi-minuscule case. By 4.2.7(1), we
have a diagram of Dy, -modules

I'(Xk, Kl‘éRV) ——=T(Xg, 1.+ (M))

(X, Klggv) o DXy, T ()

where the vertical arrow is the relative specialization morphism (2.4.7.1). Let
U be an open dense subscheme of Xy such that 7 4 (#)|y is smooth, & the
corresponding formal open subscheme of Xand Z = IP’I \U.

By 4.2.7, (4.2.7.3) and the same argument of 4.2. 5 the above diagram
induces an injective morphism of Oy -modules with connection (Kl‘(j\;Rv)T oy
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Ov — 14(#) ®oy Oy and then induces an isomorphism of Oy -modules
with connection:

KIE ) @0y Oy = Klrgfv ®0yOu. (4.2.8.1)

In particular, the left hand side is overconvergent along Z. Since the con-
vergency of an Ogrig-module with connection can be checked by restricting
to a dense open subscheme of X [64, 2.16], the O%ig-module with connec-
tion (KI‘};RV)TI %iie 1s convergent. Then we deduce that the Ox-module with

connection (KI%RV)f is overconvergent along {0, oo}. The restriction functor

Isoc’(Xx/K) — Isoc’(U/K) is fully faithful (cf. [53] 6.3.2). Then the iso-
morphism (4.2.8.1) gives rise to an isomorphism (4.2.1.1) and the assertion
follows. O
4.2.9. In the end, we show the general case of Theorem4.2.1. Let Vi, ..., V,, be
minuscule and quasi-minuscule representations of G. Then we have a decom-
position of representations

Viehe Vi~ P mwW,
WeRep(G)

where my denotes the multiplicity of W. Each representation W of Rep(é)
appears as a summand of the above decomposition for some minuscule and
quasi-minuscule representations Vi, ..., V,.

Then we obtain the associated decomposition of bundles with connection
on X and of overconvergent F-isocrystals on X g respectively:

n n

= D B Qi =~ P iy
(X)Klavi ~ v my KIS . . KL, ~ V mw KIE .
i=1 WeRep(G) i=1 WeRep(G)

(4.2.9.1)

Theorem 4.2.1 in the minuscule and quasi-minuscule cases provides an
isomorphism of overconvergent isocrystals

dR ~ rig
@ KIF, )" — @ K e (4.2.9.2)
By [19, 2.2.7(iii)], the connection on left hand side, restricted on each com-
ponent (KI%RW)T, is overconvergent. We denote abusively the associated

overconvergent isocrystal on X by (Kl‘éRW)?.
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The isomorphism (4.2.9.2) induces a commutative diagram

EndRep(é) (®:—1=1 V,')

y KIE
G G

Endcomx) (@i KIEX ) Endsmx,/x) (i1 Klrjv )
(4.2.9.3)

Indeed, choose a k-point s of Xy and a lift 5 to X(K). The isomorphism
(4.2.9.2) induces an isomorphism between fibers (KldéRVA )3 and (Klrég v )s. The

composition of the functor Kl‘(lv;R (resp. Klgg) with the fiber functor at s (resp.

s) is the forgetful functor Rep(é) — Vecg. Since fiber functors are faithful,
we deduce the commutativity of (4.2.9.3) by considering their fibers.

If e denotes the idempotent of EndRep ©) (®:_, Vi) corresponding to a sum-
mand W, then its image via left (resp. right) vertical arrow is the idempotent
corresponding to KldR (resp. Klrlg ) (4.2.9.1. By (4.2.9.2) and (4.2.9.3), we

deduce a canonical 1som0rphlsm of overconvergent isocrystals on Xy
C(KIR PSS K
tw s (Kl ) G.w

One verifies that the above isomorphism is independent of the choice of
idempotent e and then of the choice of minuscule representations {V;}?_,.
Isomorphisms ¢y are compatible with tensor structures due to (4.2.9.2). Now
Theorem 4.2.1 follows. O

4.3 Comparison between Kl‘clv;R and Be

In this subsection, we recall the Bessel connection Be (é ) of G on X con-
structed by Frenkel and Gross [42] and identify it with KI%R (@) (4.1.10).

We work with schemes over K. Let (g, 5 {) denote the Lie algebras of
(é, é, T) over K.
4.3.1. Let Ax denote the ring of algebraic functions of X. There exists a
grading on the affine Lie algebra gafr := § ® Ak, which on g-part is given by
Ad p(G,,), and on A -part is given by the h- -multiple of the grading induced
by the natural action of G, on X. Here as before p € X'(T) ® Qis the half
sum of positive roots of G (and therefore is a cocharacter of Gad) and /1 is the
Coxeter number of G.
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Let gagr (1) C gagr be the subspace of degree 1. Then

fair (1) = @ Daff i

« affine simple

where g,  is the root subspace corresponding to the affine simple root & of
Gatr. Let & € gagr(1) be a generic element, by which we mean each of its &-
component 5& # 0. In [42], Frenkel and Gross defined a g-valued connection
on the trivial G-bundle on X by the following formula:

Bey () =d+§d7x. 4.3.1.1)

Here x is a coordinate of X U{0} ~ A!. Note that ‘i—x itself is independent of the
choice of the coordinate x, and is a generator of the module of log differentials
on X U {0} with logarithmic pole at 0.

We may write N = ) 55,, where the sum is taken over simple roots of
g (instead of gagr). This is a principal nilpotent element of §. The remaining
affine root subspaces are of the form xg_ G0 where x is a coordinate as above

and 6; is the highest root of the simple factor g; of g. So we may write the sum
of the remaining affine root vectors as xE for some E € ) g . Then the

. . 1
connection can be written as

Bey (£) =d+(N+xE)Ci—x, (4.3.1.2)

which is the form as used in [42]. This connection is regular singular with
a principal unipotent monodromy at O and has an irregular singularity at co,
with maximal formal slope 1/ h [42, §5].

We regard Be (£) as a tensor functor from the category Rep(é) of rep-

resentations of G to the category Conn(X) of bundles with connection on
X.

4.3.2. We will identify KI%R (A¢) and Beé(é) as G-bundles with integrable
connections on X. For this purpose, we need to discuss how these connections
depend on parameters. We identify the dual space g} of gafr := g ® Ag with
g* ® wy via the canonical residue pairing

9 . d
G®A)® @ Qwx) > K. E®f.ERg) = (. 5>Resx:oofg7x.
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Recall that A¢ is a linear function Lie(/(1)/1(2)) — K. We identify
Homg (Lie I(1)/1(2), K) with

g = P g

« affine simple

where g, C g is the dual of the root subspace corresponding to o.
By (4.1.8.2) (applied to the Z2-module setting), KldéR (L¢) depends only on

the T,q-orbit of the functional A¢. In addition, T,q-orbits of generic linear func-
tions on Lie(/(1)/1(2)) are parameterized by the GIT quotient g (1) / Tag.

On the other hand, the group G, x Aut(G, B, T) acts on gaff preserving
the grading. For § = (a, &), a gauge transform implies that the analogue of
(4.1.8.1) holds, namely

Beg , (5(6)) ~ a™ Beg 5, (). 432.1)

It follows that the analogue of (4 1.8.2) and of (4.1.8. 3) also hold for Bessel
connectlons In particular, Be (’;‘ ) only depends on the Tq-orbit ofé Agam

ad -orbits of generic ‘;‘ are parameterized by the GIT qugtlent Gare (1)) Tad.
Here is the main theorem of this subsection. When G is of adjoint type, a
weaker version of this theorem was the main result of [80].

Theorem 4.3.3 There exists a canonical isomorphism of affine schemes

g ()T = G (1)) T, (4.33.1)

such that if the Tyq-orbit through A¢p and the Tad-orbit through é match under
this isomorphism, then

KIG () > Be (€)

as G-bundles with connection on X.

4.3.4. We first explain the isomorphism (4.3.3.1). Let wx denote the canonical
bundle on X and by abuse of notation, we sometimes also use it to denote
the space of its global sections. Via the open embedding j, : I(1)/1(2) —
Bung, ), weidentify 7 (1)/1(2) x gl (1) with T* Bung, ¢ o) |, (1(1)/12))- The
Hitchin map (e.g. see [17] Sect. 2, and [80])

he . T* Bun, — Hitch(X) := T'(X, ¢* x®" wy)

G(0.2)

induces a closed embedding A< : g.(1)/ T — Hitch(X), where ¢* := g*/ G
is the GIT quotient of g* by the adjoint action of G, equipped with a G,,-action
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induced by the natural G,,-action on g*. (For an explicit description of the
image of the map when g is simple, see the discussions before [80] lemma
18).

On the other hand, there exists a canonical morphism

. dx | e
9aff(1)7 Cg®wx — I'(X, ¢ x7 wx)

where ¢ := g/ G, which also induces a closed embedding Gare (1)) T —
r(X,¢ x Gm a)X) The identification (Lie T)* = Lie T induces a canonical

isomorphism ¢* = ¢ One checks easily that there is a unique isomorphism
gD/ T = Garr (1)/ T that fits into the following commutative diagram

g (D) T ——— Garr () T

C(X, c* x®m wy) ——=T(X, ¢ xCm wy)

where the bottom isomorphism is induced by ¢* — ¢.

In the case G and G are almost simple, unveiling the definition, we see that
A¢ and é match to each other if the following holds: Let r be the rank of G and
G. Recall that the ring of invariant polynomials on g* (resp. ¢) has a generator
P, (resp. P, homogeneous of degree h = h. We choose them to match each
other as functions on ¢* >~ ¢. Then A¢ matches S if and only if

AP (¢) = P (Ap) = Pr(E). (4.3.4.1)

This condition is independent of the choice of P, and 15r (as soon as they match
to each other).

For concrete computations, it is convenient to fix a coordinate x € A' ¢ P!,
and a pinning N = Z&e& 55, of (é, é Yv"). Then we may rewrite (4.3.3.1) as
an isomorphism

O (D) T = 8as(DJT ~N+x) 8 5 ~xY» § 4. (4.3.4.2)

4.3.5. We prove Theorem 4.3.3 by quantizing (4.3.3.1) and applying the Galois-
to-automorphic direction of geometric Langlands correspondence. By descent,
it suffices to prove the theorem after base change from K to K. So we assume
that all the geometric objects below are defined over K, and omit the subscript.
Let G g denote the adjoint group of G.
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We denote by Opé(X ) the ind-affine scheme of éad—opers onX [17,3.1.11].
We consider the subscheme of Opg = Opé(Pl)(o,w(O)),(oo,l/i;) C Opé(X),

which is the moduli of G ad-opers on X which are

e regular singular with principal unipotent monodromy at 0;
e possibly irregular of maximal formal slope < 1/h at co.

See the discussions before [80, lemma 20] (where slightly different notations
were used). In this case, the action of I' (X, ¢ x Gm ¢ x) on Opé (X) induces a free

and transitive action of x ) _, EL@? >~ Gagr (1)) T (4.3.4.2) on Opy. In particular,
FunOpE1 has a natural filtration whose associated graded is (Funﬁaff(l))f.
On the other hand, the space Opy has a distinguished point, corresponding
to the G ad-oper that is tame at both Q and oo. Therefore, we obtain a canonical
isomorphismx ), §_ G € far (1) /T = Opy(X). Explicitly, this isomorphism

sends xE € x) ; §_ g 1o the connection d + (N + xE)<- dx o the trivial G-
bundle which has a natural oper form. Now the quantlzatlon of (4.3.3.1) gives
a canonical isomorphism of filtered algebras [80, lemma 21]

U(Lie I(1)/1(2))" ~ FunOp;,
whose associated graded gives back to (4.3.3.1). Here U (V) is the universal
enveloping algebra of V = Lie I (1)/1(2), equipped with the usual filtration.

As V is abelian, it is also canonically isomorphic to (FunV*)7 . Putting all the
above isomorphisms together, we obtain the following commutative diagram

(Fung? (1))7 ——> (Fungiag(1))7

Nl N lw

U(Lie I(1)/1(2)T FunOpy

Together with the main result of [80], we obtain the proof of Theorem 4.3.3
in the case when G = éad.

4.3.6. Next, we explain how to extend it to allow G to be a general semisimple
group.

One approach is to generalize the work of [17] to allow certain level struc-
tures, as what [80] did for simply-connected groups. In this approach, one must
deal with the subtle question of the construction of “square root” of the canon-
ical bundle on the moduli of G-bundles. In our special case, we have another
short and direct approach, using the isomorphism Kl‘(’;;Rd (L) ~ Beéad ) just

established.
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First, we claim that up to isomorphism, there exists a unique de Rham G-
local system on X, which induces Be . (&), and has unipotent monodromy at
a

0. Indeed, any two such de Rham G-local systems differ by a de Rham Z-local
system on X U {0} =~ Al (. e. one is obtained from the other by twisting a de
Rham Z-local system). As Z is a finite group, the wild part of the differential
Galois group at oo of this local system must be trivial, and therefore this local
system itself is trivial.

Now since both Kl‘(iv;R (A¢) and Be, (é ) have the property as in the claim (to
see that KldéR (A¢) has unipotent monodromy at 0, one uses the same argument
as [47] theorem 1 (2)), they must be isomorphic. O

4.4 Bessel F-isocrystals for reductive groups

In this subsection, we construct Bessel F-isocrystals for reductive groups, by
putting the above ingredients together. We keep the notation of 4.2.
4.4.1. We take a non-trivial additive character ¢ : F, — K> and a generic
linear function ¢ : I(1)/1(2) — Al over R (4.2). Weset A = — € K corre-
sponding to i (asin2.1.1). Leté € gafr (1) match —7 ¢ under the isomorphism
(4.3.3.1).

We write Be () more explicitly as follows. Choose a coordinate x of

X U {0} over R, and a pinning N = Z&eA éa of (é, é, ]v"). By (4.3.4.2), there
is aunique element £ = E¢ € ), §_; such that

dR dx
Klé (1-¢)~d+ (N+xE)—, (4.4.1.1)
X
By (4.3.4.1), we deduce that
drR h dx v
KIS (~7¢) = d + (N + (=m)"xE) = = Beg (€).

Now we can define the object appearing in the title of the paper. Let Beg 3

denote the composition of Beg (é ) : Rep(é) — Conn(Xg) with the (—)"-
functor from (2.4.2.1). By Theorem 4.2.1, a choice of above isomorphism
endows BeTé (é) with a Frobenius structure, i.e. a lifting of BeTé (é) as a func-

tor Rep(é) — F-Tsoc’ (Xy /K), or alternatively, an isomorphism of tensor
functors

¢:F} o Beg(é) = Beg(é) : Rep(G) — Isoc’ (Xi/K),
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where F ;k s IsocT(Xx/K) — Isoc’(Xy/K) denotes the s-th Frobenius pull-
back functor. From the calculation of the differential Galois group of Be in
[42] coro. 9, coro. 10 (see (1.2.6.1)) that the automorphism group of Be is

ZG(K). Therefore, the Frobenius structure on Beg (5 ) is independent of the
choice of the isomorphism Be (5 ) ~ Kl‘éR (Ap). We use (Be?é (é ), @) (or sim-
ply Beg(é) if there is no confusion) to denote the G-valued overconvergent
F-isocrystal

(Beg(é), ¢) : Rep(G) — F-Isoc’ (X /K), (4.4.1.2)

which we call the Bessel F-isocrystal of G.

4.4.2. For each representation p : G — GL(V), the restriction of BeTv (E ) at
0 defines an object Be p (S )o of MC(Rk /K) (2.3.1) equipped w1th a Frobe—
nius structure and is therefore is solvable at 1 [54, 12.6.1]. By (4.3.1.1), the
p-adic exponents of Be (E) |o are 0. Then it is equivalent to the connection
d 4+ dp(N) over the Robba ring by [54, 13.7.1]. Hence, Be! & (é)lo satisfies

the Robba condition (i.e. it has zero p-adic slope [29]) and i 1s umpotent

We denote by F- Isoc!oguni ((Al, 0)/K ) the category of log convergent F -
isocrystals on A,i with a log pole at O relative to K and nilpotent residue, and
are overconvergent along 0o (2.3.2). By [53, 6.3.2], this category is equivalent
to the full subcategory of F-Isoc'(Xy/K) consisting of objects Wthh are
unipotent at 0. Then the G-valued overconvergent F-isocrystal (Be &), )
(4.4.1.2) factors through:

(Beg(é), @) : Rep(G) — F-Isoc°®Mi((Al, 0)/K).

4.4.3. Here is amore concrete description of the Frobenius structure on Beg (é ).
Note that its underlying bundles of Beg’ v (5 ) are free O Al -modules (1.3.8). If
weset AT =T (IP’1 , O Al ) (1.1.3.1), by the Tannakian formalism, the Frobenius
structure on Beg(é ) is equivalent to an element ¢ € CV}(AT) satisfying

xfz_f‘p_l +Ady(N + (—1)"xE) = g(N + (—=n)"x7E).  (443.1)

Given a pointa € |A,1| and @ : AT — K its Teichmiiller lifting, we denote by
Qa = ]_[?i%(“)_l @(@?"). When a # 0, the Frobenius trace of (Beg(é), @) ata
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can be calculated by the trace of ¢,. Now we rephrase the above discussions
as follows, which is the first main result of our article.

Theorem 4.4.4 There is a unique element ¢ € G(Ah satisfying the differen-
tial equation (4.4.3.1) such that via a (fixed) isomorphism K ~ Qy, for every
ael|X|andV € Rep(G)

_ ét,l
Tr(¢a, V) = Tr(Froba, Kl ;") - (V).

When a = 0, we can describe ¢ more precisely.

Proposition 4.4.5 Let 2p be the sum of positive coroots in X.(YV"V). Then ¢y =
2p(/q) in the semisimple conjugacy classes Conj**(G(K)) of G(K).

Proof The Frobenius endomorphism ¢y at 0 satisfies ¢, 'n @0 =qN (4.3.1).
Since N is principal nilpotent and Ad, ) N = g~ 'N, we deduce that ¢y =
ep(q) in Conjss((v?(f)) for some element ¢ in the center Z - (f)

To show ¢ = id, it suffices to investigate Frobenius eigenvalues of W (BeG v)

(2.3.3) for V € Rep(G) which is same as those of \D(Klew ) by 4.1.10
and Gabber—Fujiwara’s £-independence [3, 4.3.11]. By a result of Gortz and
Haines [45], the i-th graded piece of the weight filtration of lIl(Klevt o ) has the

same dimension as the dlmensmn of HZ (Grg, ICy) and is equ1pped with a
Frobenius action by xg' (cf. [47] 4.3). Then we deduce that ¢ = id. m|

4.5 Monodromy groups

4.5.1. In this subsection, we keep the notation of 4.4 and we take L to be K.
We drop ¢y from the notation.

We denote by (Beg) (resp. (Beg, @), resp. (Beg)) the full subcategory
of Sm(Xy/K) (resp. Sm(Xy/K r), resp. Conn(X%)) whose objects are all
the sub-quotients of objects Beg v (resp. (Beg v ©), resp. Beév) forV e

Rep(é). Then (Beg) (resp. (Beg, @), resp. (Bey)) forms a Tannakian cate-

gory over K and we denote by Ggeo (resp. Garith, resp. Ggar) the associated
Tannakian group (with respect to a fiber functor w, but is independent of the
choice of the fiber functor up to isomorphism [35]). The tensor functors on
the left side of the following diagrams induce closed immersions of algebraic
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groups on the right side

(Bezv;’ % /Garith\
(Be'.) /Rep(é> Ggeo\ / G
(Beg) Gaal

In [42, Cor. 9, 10] Frenkel and Gross showed that the differential Galois
group Gy of the G-connection Be Rep(G) — Conn(X%) is a connected

closed subgroup of G and explicitly calculated it when G is almost simple (cf.
(1.2.6.1)). The main theorem of this subsection is as follows.

Theorem 4.5.2 Let G be a split almost simple group over R and G its Lang-
lands dual group over K. We denote by X the outer automorphism group of
G and by Out(§) the outer automorphism group of g.

a) If G is not of type Ay, or char(k) > 2, then Ggeo — Ggal is an isomor-
phism. In particular,

e Ggeo = éz,o’ ifé is not type Az, (n > 2) or Bz or Dy, (n > 2) with
Y £ Outv(ﬁ). 5
o Ggeo = G, if G is of type Aoy,

e Ggeo 5 G, ifé is of type B3z or of type Dag.
o Ggeo — Sping,_; if G is of type Day with & == {1} (n > 3).

(ii) IfG = SLay 11 andchar(k) = 2, then Ggeo(Befy , ) = Ggeo(Bels, ).
In particular,

o Ggeo — SOni1, ifn # 3,
° Ggeo; Gy, ifn =3.

In particular, Ggeo # Ggal in this case.
(iii) The map Ggeo — Garith is always an isomorphism.

4.5.3. We first study the local monodromy at 0 and oo.
In view of 4.4.2, the restriction functor at 0 (2.3.2.1) induces

Rep(G) — <Bei> MC"™(R/K) = Vec!,
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sending p : G — GL(V) to (V,dp(N)) € Vecn?ﬂ. Then, it induces closed
immersions of Tannakian groups

Gy — Ggeo - é, 4.5.3.1)

whose composition sends 1 € K ~Lie(G,)to N € g.

Lemma 4.5.4 The restriction functor |oo : (Beg) — MCF(R/E) 2.3.2.1)

at oo € IP’,i induces a homomorphism I x Gy — Ggeo Which is non-trivial
on P.

Proof If the image Py in égeo were trivial, by the Grothendieck—Ogg—

ét, ¢
é v

£-adic representation 71 (X3) — G would factor through the tame quotient

Shafarevich formula, K1.’" would also be tame at 0, co. Then the associated

7{*™M€(X7), which is isomorphic to I2™ as X >~ G,,. Since Klg:l;/ is pure of
weight zero for every V € Rep(é), the geometric monodromy group of Kl

would be semisimple and then finite. This contradicts to fact that Klg’z has a
principal unipotent monodromy at O [47, Thm. 1]. O

4.5.5. Since every overconvergent F-isocrystal Beg v is pure of weight 0 and

[¢]

is therefore geometrically semi-simple [6, 4.3.1], the neutral component G geo
is semi-simple [31]. Therefore, (4.5.3.1) implies that it contains a principal
unipotent element and hence its projection to the adjoint group Ga of G
contains a principal PGL,. Then it is almost simple and its Lie algebra appears
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in one of the following chains:

sly —— sp,, —shy,

Slop41

7

§ly ——= 502,41

I

502,42

sl7

sl ——gr — 507

508

sh——=fa——¢
5[2—>e7

5[24>eg

Lemma 4.5.6 I/’ G is not of type Ay, and not of type Ay when p = 2, the
image Ggeo — Gad cannot be contained in a principal PGL; of G 4.

Proof The image of the wild inertia group P, (resp. ) in PGL; is a finite
p-group (resp. a solvable group). In view of the all possible finite groups
contained in PGLj, there are two possibilities:

(a) the image of P is contained in G,, C PGLy;

(b) p = 2 and the image of I, (resp. Pxo) is isomorphic to the alternating
group Ay (resp. the group Z /27 x Z./27.).

To prove the lemma, we follow a similar argument of [47, 6.8], but with
the quasi-minuscule representation replaced by the adjoint representation Ad.
In any case, by a result of Baldassarri [14] (cf. [10] 3.2), the maximal p-adic
slope of Bel. islessor equal to the maximal formal slope 1/ h of Bes ad

G,Ad )

(4.3.1). Let r be the rank of G and h the Coxeter number of G. Then we deduce
that

: rank Ad /i + 1
IrrcBe, )< —— = 7 r<r+1, 4.5.6.1)
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T
and hence Irryo (Beé’Ad) <r.

On the other hand, we have a decomposition Ad =~ 69{215%' as represen-
tations of principal PGL,, where {¢; + 1, ..., £, + 1} is the set of exponents
of g.

Case (a). Since Irro (BeG) # 0, the image of P in PGL; contains 1, and
the image of I is contained in N(G,,). By a similar argument of [47, 6.8], we
deduce Irroo(Sze) > ¢ — [¢/p] > 1. Under our assumption, max;{¢;, p} > 2,
so there is least one i such that ¢; — |¢;/p] > 1. Then Irroo(Beg Ad) > r.
Contradiction! ’

Case (b). Recall that there are four irreducible representations of Ay4: id, two
non-trivial one dimensional representation V/, VIN, the standard representation
V3. Via the inclusion A4 — PGL,, we have

SP~vy, St~Viev ev, S ~idevd?,

S ~idevie v, & Vi,

sSP~viev, e v®, s2~id®eovieVv, oV,
~idaVi eV, & Ve

In particular, we have Irroo(SZZ) > 2 for £ = 3,4,5,6,7. In general, I
acts non-trivially on 52" and we have Irrao (S2¢) > 1. Then we deduce that
Irroo (Ad) > r(G) + 1. Contradiction! |

4.5.7. Proof of Theorem 4.5.2. By the “trivial” functoriality (4.1.7), it is enough

to prove the theorem when G is simply-connected, so that GZ is connected.
(a) The case where G is not of type Aj,. In view of lemma 4.5.6, and

the calculation of Ggy (1.2.6.1), we deduce that Gg., — Ggeo — Gyl are

1som0rphlsms Using 4.1.8, we see Garith C GZ. ThlS implies that Gy, =
Ggeo unless G is of type B3. In this last case, if G = Sping, and Gyim C

Gy x Z (G). Taking into account of the Frobenius at 0 (4.4.5), we see that
Gaiith = Ggeo'

geo

(b) The case where G is of type Ao, and p > 2. It suffices to exclude that
Ggeo 1s contained in SOy, 1. Suppose it is true by contrast. Let o be the

generator of ¥ and § = (=1, 09) in G,;, x Aut(G, B, T). Then we deduce
isomorphisms of overconvergent isocrystals on Xy

i £\ ~ +Rat £\~ +pat pA
Begp,, .50 = (=17 Beg v (&) = (=D Begr, | 51a(6)
where the first isomorphism follows from (4.1.8.4), and the second one is due to

Std" >~ Std as representations of SO»,, ;1. Since char k > 2, this isomorphism
provides a “descent datum” so that BeéLz”+I sa(8) descends to Gy, /pa. It
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follows that its Swan conductor at oo is at least two, if non-zero. On the other
hand, using Lemma 4.5.4 and the result of Baldassarri [14] (cf. [10] 3.2) again,
the Swan conductor of Bengn+1 Std (§) at oo is 1, contradiction!

(c) The case where G is of type Ao, and p = 2. In appendix (A1), we will
identify Begoh+I Std with BegLZn+I Std- Then we reduce to the case (a). O

We end this section by some corollaries of our calculation of the monodromy
groups.

Corollary 4.5.8 Assume that G is almost simple. The monodromy groups
Gt Gﬁrith of the Klg’z(lfld)) over @g (4.1.9.1) are calculated as in Theo-

geo’

rem 4.5.2.
Note that this gives a different proof of the main result of [47] theorem 3.

Proof The monodromy group Gﬁmh (resp. Garith) can be calculated by that of
Klg’ev (resp. Beg v) for a faithful representation V of G. The semisimplifi-

cation of Kler’l;/ and Beg , are semi-simple and have same Frobenius traces.

¢
arith

Since they are both closed subgroups of G, they must be isomorphic to each
other and the assertion follows. O

Then by [32, 4.1.1, 4.3.2], there exists a surjective morphism G — G arith-

Corollary 4.5.9 Assume that G is almost simple. Let Ad be the adjoint rep-
resentation of G. '

(i) We have H! (P!, jg+(BeTé W) =0foralli.

(i) We have Trroo(Be'. ) = r(G), the rank of G. In addition, Ad'> = 0,

G,Ad
and the nilpotent monodromy operator Noo = 0 (4.5.3). Therefore, the local

Galois representation I — G is a simple wild parameter in the sense of
Gross—Reeder [46, § 6].

Proof The corresponding assertions for the algebraic connection Be, , 4 are
provedin [42, §14]. Set & = Beg Ad’ which is self dual. We have HO(X, &) =

AdC=0 = 0 and H*(X, &) = 0 by 2'-affinity. We obtain H.(X, &) = 0
for i = 0, 2 by the Poincaré duality. By the Grothendieck—Ogg—Shafarevich
formula and (4.5.6.1), we have

H (X, &) = liroo(&) < r(G).
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Let j : X — P! be the inclusion. The distinguished triangle /(&) —
J1 (&) — i(}Lj!+(£) @il ji+ (&) — induces a long exact sequence:

0 — HP', juy (&) — if jur (&) @it jus (6) S HA(X, &) — (4.5.9.1)
H'(P', ji1 (£) - 0 — H(X, &) = 0 — H*(P', ji;(£)) > 0.

By the Poincaré duality, we conclude that H! (P!, J1(&) =0fori =0,2.

For x € {0, oo}, the restriction of & at x gives rise to an action of the inertia
group I, on Ad and a commuting nilpotent monodromy operator NV, : Ad —
Ad (2.3.1). By Proposition 2.3.3, we have:

it (i (©) ~ A Nx = Ker(W, : Ad™ — Ad™).

The Bessel isocrystal is unipotent at 0 yvith Ny = [—, N] (4.4.2). We have
Adlo-No = AgN , which has dimension r (G). Then the morphism d in (4.5.9.1)
is both injective and surjective. We deduce that

AdlNe =0, H'(P', ji,(£) =0.

Since N is still a nilpotent operator on Ad’>~_ we conclude assertions (i) and
(ii). O

Remark 4.5.10 (i) By Corollary 4.5.8 and the same arguments, we recover
[47] prop. 5.3 on the analogous statements for Kl 5 (and remove the restriction
of the characteristic of k in loc. cit.).

(ii) It follows from [46] prop. 5.6 that when p does not divide the order §W
of Weyl group, the only non-zero break of Beg Ad (and K1) at oo is 1 /fz.

Indeed, the local Galois representation /o, — G is described explicitly in [46]
prop. 5.6 and § 6.2.
(iii) It is expected that the description in (ii) of the local monodromy of Beg

(and K1:) at co should hold when (p, 7)) = 1. When G = GL,, this is indeed

the case. For K1, this was proved by Fu and Wan [43, Theorem 1.1]. For Be;(,,
this can be shown by studying the solutions of Bessel differential equation
(1.1.1.1) at co. We omit details and refer to [65, 6.7] for a treatment in the case
when n = 2.

(iv) Using Theorem 4.5.2 (ii), which will be proved in the Appendix A1, we
see that when p= 2 and n is an odd integer, the associated local Galois repre-
sentation of BeSO at oo coincides with the simple wild parameter constructed
by Gross—Reeder [46] § 6.3. In particular, the image of the inertia group I in

the case G = SOj3 is isomorphic to A4. Together with Beso Std = ~ Be! SL2 Sym?
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(4.1.7.1), this allows us to recover André’s result on the local monodromy
group of Beg at oo in the case p = 2 [10, § 7, 8].

5 Applications

In this section, we give some applications of our study of Bessel F-isocrystals
for reductive groups.

5.1 Functoriality of Bessel F-isocrystals

We may ask all possible Frobenius structure on Beg (é ) (not necessarily the one
from 4.4.1), i.e. all possible isomorphisms of tensor functors ¢ : F o Beg =
Be'..

G

Lemma 5.1.1 The Frobenius structure on Beg (f,:- ) is unique up to an element
in the center Z, (K) of G.

Proof Given two Frobenius structures @1, @2, u := @200, Yisan isomorphism
of tensor functors Beg (5 ) = Beg (é ). If w denotes a fiber functor of (BeTé (5 )),

then w o u is an element in é(?) commuting with Ggeo (K) by the Tannakian
formalism. Then the assertion follows from Z &(Ggeo) = Z. |

5.1.2. Let G, G be two split, almost simple groups over R whose Langlands
dual groups G' C G over K appear in the same line in the left column of
the (1.2.6.1). Up to conjugation, we can assume that the inclusion G cG
preserves the pinning. Then itinduces a natural inclusion g} (1) C @afr(1). Let
¢’ be a generic linear function of G’ over R (4.4.1) and é the generic element in
g, (1) corresponding to —m ¢’ (4.3.3.1). Note that £ is also a generic element
in ﬁaff (1)

Proposition 5.1.3 (i) There exists a generic linear function ¢ of G over R
such that —nd) matches 5 € Gaff (1) under the isomorphism (4.3.3.1).
(i1) Let (Be (5) @) (resp. (Be (S) ©)) be the Bessel F-isocrystal of G

(resp. G ) constructed by ¢’ (resp. ¢ ) in4.4.1. Then (Beé (S ), @) is the push-out
of Bel,, (), ¢).
Proof (1) Let ¢ be the generic linear function of G over K such that —7¢

corresponds to & under the isomorphism (4.3.3.1). We will show that ¢ is
naturally integral.
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By construction, Beé(é) is the push-out of Beg, (é). In particular, for
V e Rep(é), the connection (Beé’v(g ) has a Frobenius structure and is
overconvergent. Let x be a generic linear function of G over R and 17 € gagr (1)
the corresponding generic element. Then there exists an element ¢ € K™ such

that we can rewrite two Bessel connections for the adjoint representation of G
as follow (4.3.1.2):

dx v dx
BeG Ad(77) d+ (N +xE)7, Beé’Ad(g) =d+ (N +ch)7.

Via (4.3.3.1), it suffices to show that c € R*.

Both the above two connections admit Frobenius structures and decompose
in the categories Conn(X%), Sm(Xk/f) and Sm(Xk/fp) in the same way
Theorem 4.5.2. Let V be a non-trivial irreducible component of Ad in Rep(é/ )
and V (7), V(é ) the corresponding overconvergent F-isocrystal. Since V ()]
is unipotent, if {e;} denotes a basis of V, there exists a solution

u:e — fi(x) € Sol(V(mlo) (2.3.1.2)

whose convergence domain is the open unit disc of radius 1. Then u. : ¢; —
fi(cx) belongs to Sol(V(é )]o) and has the same convergent radius. If ¢ is not a
p-adic unit, then V (1) (or V (5 )) admits the trivial overconvergent isocrystal on
X as a quotient, which contracts to their irreducibility. The assertion follows.

(i1) By (i), the G-valued overconvergent isocrystal Be'. (S ) is the push-

out of Beé,(§ ). It remains to identify two Frobenius structures on G-valued

overconvergent isocrystals BeTé (é ) >~ Beg/ (é ) X ¢’ é, which are different by

an element ¢ in the center Z (K) by (5.1.1). Taking account of the extension
of Frobenius structures to 0 (4.4.5), we deduce that ¢ = id and the assertion
follows. ]

Now we can prove the following conjecture of Heinloth—-Ngd—Yun [47,
conjecture 7.3].

Theorem 5.1.4 We keep the notation of 5.1.2 and fix a non-trivial additive
character . Assume that G’ C G over Qy appear in the same line in the left
column of the (1.2.6.1). For every generic linear function ¢’ of G' overk, there
let,ﬂ

is a generic linear function ¢ of G over k such that KI'.)” (Y ¢) is isomorphic

to the push-out of Klevt ¢

Xk.

(V') along G C G as t- adlc G-local systems on

Proof By the “trivial” functoriality (4.1.7), we may assume that G is simply
connected. We lift ¢ to be a generic linear function of G’ over R and take ¢’

@ Springer



Bessel F-isocrystals for reductive groups

as in 5.1.3. We need to show that Kl‘g"’(w) ~ Klg;f(qu’) xG" G as G-local
systems. It follows from Theorem 4.4.4 and Proposition 5.1.3 that for every
representation V € Rep(é), regarded as a representation of G’, and every
a € | Xg|, we have

ét,l . ét,l
Tr(FrObal KICV;’\/’[;) = Tr(FI'Oba| Kl(v}/,V,t})'

Note thatif ¥ is the group of pinned automorphisms of G, the closed embed-
ding G*¥ — G induces a L surjective homomorphism of K-rings K (Rep(G)) ®
Q — K(Rep(GE)) ® Q. Then the homomorphism K(Rep(G)) RQ, —»
K (Rep(Ggeo)) ® Qy is also surjective. It follows that if we replace V by any

representation W of Ggeo (C G’ C G), the above equality holds. This implies

that Frobenius conjugacy classes of KIS

Ggeo/ G geo- Therefore, for a faithful representation W of Ggeo, two represen-
tations Klg’g, Klg;g : (X, X) = Ggeo (@g) are conjugated in GL(W) by an
element g, which induces an automorphism of Ggeo. It fixes every Frobenius
conjugacy class and therefore fixes Ggeo/ Ggeo. Then g must be inner. That is
these two representations are conjugate in Ggeo and the assertion follows. O

and of Klef;Z have the same image in

5.2 Bessel F-isocrystals for classical groups

5.2.1. The Kloosterman sheaf and the Bessel F-isocrystal for (G = GL,,, G =
GL, ) have been extensively studied. As usual, let 7, denote the identity matrix
and E;; denote the n x n-matrix with the (i, j)-entry 1 and all other entries
0. We choose the standard Borel B of the upper triangular matrices and the
standard torus 7 of the diagonal matrices. We choose a coordinate x of Al
Then there is a canonical isomorphism

n—1

-1
sap) = I + ZaiEi,i-i-l +apx Ep .
i=1

Gl ~I1(1)/1(2), (ai,...

We choose ¢ : G/, — G, to be the addition map. Under the isomorphism
(4.3.3.1) and (4.3.4.1), ¢ corresponds to § =N+ Edx (4.4.1.1) with

010 ...0 000 ...0
001 ...0 000 ...0

N=|::- CE=|:iio (5.2.1.1)
000 ...1 000 ...0
000 ...0 100 ...0
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On the other hand, by 4.1.7 and [47, §3], we have KleL s > Klf(’wfL s Klet
Therefore, the Kloosterman connection is isomorphlc to the classical Bessel
connection (1.1.1, 1.1.4)

KISY sa(A@) ~Be,,  KIgf ¢4(¢) ~Be/.

Recall that the connection Be,, corresponds to the Bessel differential equation
(1.1.1.1).
5.2.2. Consider

G =S0241, é=Sp2n={A€SL2n |AJAT=]},

where J is the anti-diagonal matrix with J;; = (— 1)“8,-,2,”1_ j- Then matrices

(N, E) as in (5.2.1.1) are in § and Be (é) is given by the same formula as
GL;, case. Then we deduce an isomorphism of overconvergent F-isocrystals

Begpzmsm(é ) ~ Be}, by (5.1.3).
5.2.3. Consider

G = S0y, G = SO0y, = {A € SLy,, AJAT = J},

where J is the anti-diagonal matrix with J;; = (—1)max{i’j}5i’2n+1_j. There
exists a canonical isomorphism

G~ 1(1)/1(2),
n—1

@1, .. ang) > D+ Y (Eiit1 + Exnion-it1)
i=1

+(En—1,n41 + Ep ny2) + x_l(El,znq + E221).

Then we take ¢ : G;’“ — (G, to be the addition map. When n > 3, under the
isomorphism (4.3.3.1) and (4.3.4.1), A¢ corresponds to é = N + A" 2Ex
(4.4.1.1) with
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01 00 ......... 0 000 0 ......... 0)
01 10..0 .0 00 0..0

N 00 1 e .0 0 0

1 0 0

0 0 0 0
00 1 10 .0
\00 0 ... 0/ 01 0...... 0)

(5.2.3.1)

The corresponding Bessel connection is written as

. dx
Beso,, sw(€) =d + (N + AZ”’ZEx)Y.

Ifeq, ..., ey, denote a basis for the above connection matrix, the restriction of
the above connection to the subbundle generated by e,, — e,41 is trivial. The
other horizontal subbundle, generated by e, + e,+1 and other basis vectors, is
isomorphic to the Bessel connection Beso,,, .St (5) discussed below (5.2.6.4).
5.2.4.In [58], T. Lam and N. Templier identified the diagram (4.1.6.2) with the
Laudau—Ginzburg model for quadrics [66] and used it to calculate the asso-
ciated Kloosterman Z-modules. We briefly recall this construction following
[66, § 3]. Let 02,2 = G/P be the (2n — 2)-dimensional quadric and let
(po : -+ pp—1 : P;z—l : pn i -+ 1 pa—2) be the Pliicker coordinates of
Qo2 satisfying

Pa-1Pjy = Pu—2Pu + -+ (=" popra—2 = 0. (5.2.4.1)
Consider the open subscheme
an—z = Q2n—2 - D7

with the complement D = Do+ D1+ - -+ D, 1+ D;/1—1’ where D; is defined
by

Dy := {po = 0},
¢
Dy =Y (=1 peipma-esx =0 forl <€ <n-3
k=0
Dy :={pym-—2=0}, Dp1:={ps-1=0}, D, :={p, =0}
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The divisor D is anti-canonical in Q»,—_2. For simplicity, we set
e
8 = Z(—l)kpﬁ—kPZn—Z—Z-i-k» for0 <¢<n-3.
k=0

If x denotes a coordinate of G,,, we define a regular function W : Q5 _, x
G, — Al tobe

n—3
22—
Wipi:ppix) =0 Y PPty Py Py P
PO S 3 Pn—1 Pu—1 P2n—2

(5.2.4.2)

The Kloosterman overconvergent F-isocrystal and connection are calcu-
lated by

KIZE  oa(@) = pry, (W (& D[20n — D(n — 1),
KIS, sa () = pry,(WHED)[2(n — D).

We deduce that the Frobenius trace Klso,, sid of Klrs%z,,, siq (@) 1s defined for
a € Fy by

-3

1 |\ Pt Pan—2—t

Klso,,.su(a) = P > v (Tr]Fq/]Fp (% +y %
¢

(Pivp,/,,l)GQS,,,z(Fq) =1

(5.2.4.3)

+ Pn + I/7n +a P1 ))
Pn—1 Py P2n—2

Proposition 5.2.5 (i) When n = 2, we have Klgo, swu(a) = K1(2; a)t.
(i) When n > 3, we can simplify above sum as

Klsoy, sua(@) (5.25.1)
! X1+Xx2 3
B "‘1<Z ‘”(TW"/FP()”*“'+x2n—2+a—))+<q—1)q" 2).
q x; eFX X1 ... X2n—
i q

Proof Assertion (i) is easy to prove and is left to readers. It also follows from
(4.1.7.2).

(i1) The equality follows from subdividing the sum (5.2.4.3) into the fol-
lowing parts:
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(a) Case py, Pp+1, - - -, pan—3 # 0: we replace p;, p, | by x;, yi € Fj as
follows:

1 if k =0,

X1 oo Xp—1 (xx + yr) ifl<k<n-2,
Pk = X1...-Xp—2Xp—1 ifk=n-1,

X1 oo Xp—2Xn—1Yn—1 ifk =n,

X Xp—2Xn—1Yn—1Yn—2 - - - Y2n—1—k» otherwise,

/
Ppn—1 =X1.--Xn-2Yn-1-

Then the sum (5.2.4.3) becomes the toric exponential sum in (5.2.5.1).

(b) Case p, = 0 and py,—2—¢ #* O for some ¢ € {1,...,n — 3}:
we assume £ is maximal. By dividing p/_,, we consider the affine coordi-
nates po, ..., pon—2 and we replace p,_; by the equation (5.2.4.1). Since
DPns -+ s P2n—2—¢—1 = 0, pgy1 can be taken in [, regardless of the condition
8¢ # 0. Then we have Zpe+1equ w(%i"‘z“) = 0 and that the sum (5.2.4.3)

equals to zero in this case.

(c) Case p, = put+1 = - -+ = pap—3 = 0: it is easy to show that the sum
(5.2.4.3) equals to qT_l, which is the constant part of (5.2.5.1). O
5.2.6. Consider

G =Spy,, G =S02,41={AcSLyyi | AJAT = J},

where J is the anti-diagonal matrix with J;; = (— 1)i6i,2n+2_ j- There exists a
canonical isomorphism

G~ 1(1)/1(2),
n—1

@1, ang) &> Dy + Y (Eiivt + Eynion-it1) + En—tn +x " Egy 1.

i=l

Then we take ¢ : G**! — G, to be the addition map. Under isomorphisms
(4.3.3.1) and (4.3.4.1), A¢ corresponds to é = N + A?Ex (4.4.1.1) with N
as in (5.2.1.1), which belongs to g, and
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00...... 0
E=|oo. | €& (5.2.6.1)

20...... 0

020 ...0

Then we can write the Bessel connection as

. dx
KISS,, 1,50 () = Besoy,y sua(€) =d + (N + 22" Ex)—

After taking a gauge transformation by the matrix

1 0 ...... 0
0o 1 ...... 0
0

we obtain the scalar differential equation associated to Beso,,,std (5):

d d
(xd_)2n+1 _ )Lan(4xd_ +2)=0. (5.2.6.2)
X X

When n > 2, we can rewrite £ as

010 00 00 ...... 0\
0 : 0
0 v2 0 : :
<o 2n
§ = 0 0 32 + A : : x, (5.2.6.3)
: 00 0 .0 0. 0
0.. . 1 10 ...... 0
00 ... 0) 01 0...0

where /2 is a square root of 2 in K and appears in positions (1, n + 1) and
(n + 1, n + 2). Via the natural inclusion 07,41 — 502,42 the above element
£ € (502n41)air(1) corresponds to & € (§02,42)air(1) defined in (5.2.3.1).
The standard (2n 4 2)-dimensional representation of s0,,, decomposes as a
direct sum of the trivial representation and the standard (2n + 1)-dimensional
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representation of 502,41 as representations of s0,,.1. Then we obtain decom-
positions of Bessel connections and Bessel F'-isocrystals by Proposition 5.1.3

Besoy,,a.5(E) =~ Beso,,, . su) ® (06, . d), (5.2.6.4)

i N o~ pal £
BCSOQnJrz,Std(S) = B6502n+1,std(g) @ (O(Gm, d).

In the remaining of this subsection, we omit £ from the notation.

Remark 5.2.7 The fact that matrix E in (5.2.6.1) takes value 2 in its non-zero
entries is delicate. On the one hand, it comes from the calculation of invari-
ant polynomials. On the other hand, it ensures the existence of a Frobenius
structure on the differential equation (5.2.6.2) with parameter A = —m. For
instance, for every prime number p, the convergence domain of the unique
solution of (5.2.6.2) (A = —m) at 0 :

2 — 1!
Fx) = Z((:‘)le(znz")’x’,
r>0 ’

is the open unit disc of radius 1. In particular, F (x) belongs to K{x} (2.3.1.1)
and it justifies (2.3.1.2).

5.2.8. The equation (5.2.6.2) is closely related to the hypergeometric difter-
ential equations and hypergeometric F-isocrystals studied by Katz [51] and
Miyatani [61]. We briefly recall them in the following.

Let n > m be two non-negative integers, m € K associated to ¢ (2.1.1)
and B = (Bi, ..., Bm) a sequence of elements of ﬁZ — Z. We denote by
Hyp,, (n, B) the p-adic hypergeometric differential operator on G,,

_ d n n+m n—m - d .
Hyp,(n, p) = (xa) — (=)' x XE(XE - Bj). (5.2.8.1)

We denote by 7 ypr (n, B) the 9%1 Q({O, oo})-module

Hypa(n, ) = 7, (10, 00)/(F4, ({0, oD Hyp (1, ).

In [61], Miyatani showed that 77 yp (n, §) underlies to a pure overconver-
gent F-isocrystal on G, x of rank n and weight n + m — 1. Moreover, the the
overconvergent isocrystal 7Z yp, (n, B) is irreducible and admits a unique (up
to a scalar) Frobenius structure. N
5.2.9. Normalised Hypergeometric sum. The overconvergent F-isocrystal
Hypr(n, ) has a maximal unipotent monodromy at zero. If Ny denotes
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this monodromy action, then the space (J€ ypy (n, ﬁ)|O)N‘) of Np-invariants
is one-dimensional on which Froby acts as « = (—1)" ]_[';-1:1 G(wfl, pj_l)
(cf. [52] 2.6.1 for a proof in the £-adic case), where Gy, ,oj_l) denotes the
Gauss sum associated to ¢ ~! and /oj_1 , and p; is defined for & € k* and E the
Teichmiiller lifting of &, by p; (§) = £~ DA,

Any lifting Fy in the decomposition group Dy at 0 of the Frobenius automor-
phism has eigenvalues set {o, ga, . .., g*"a} (cf. [50] 7.0.7). After twisting a

geometrically constant rank one overconvergent F-isocrystal, we denote by
Hypy (n, p) the normalised hypergeometric F-isocrystal whose the Frobe-

nius eigenvalues at 0 is {g~"~1/2, ... ¢"=D/2} Then by [61, proposition
i. 1.6], its Frobenius trace function, called the normalised hypergeometric sum
Hy (n, p) is defined for a € F(; by

Hy (n, p)(a)
1

T v T G o))

X(Zlﬁ(Trk//F,,(in - yj)) : 1_[ ,Ojl(Nmk//k(yj'))),
i—1 1 i=1

where the sum take over (x1,...,X,, V1,...,Ym) € (k)™ satisfying
[T=ixi=a HT:] Yj
When m = 0, we have 7 ypy, (n, ¥)) = Bej, (1.1.4).

Proposition 5.2.10 (i) When p > 2, there exists an isomorphism of overcon-
vergent F-isocrystals (5.2.9)

Beéoz,,ﬂ,sm ~ [x > 4x]+d“%‘7yp¢(2n +1,p), (5.2.10.1)

where p denotes the quadratic character of k™.
(i) When p = 2, there exists an isomorphism of overconvergent F -
isocrystals Begoh+1 S > Bezn 11 In particular, the SLy,+1-overconvergent

F-isocrystals Bengn+ is the push-out ofBegozn+l along SO2,4+1 — SLoj+1.

1

Proof (i) If we rescale x by x +— }lx, the differential equation (5.2.6.2) turns
to the hypergeometric differential equation Hyp,, (2n + 1; p) associated to p
(5.2.8.1). Frobenius structures on two sides of (5.2.10.1) are of weight zero and
have Frobenius eigenvalues {¢ ™", ..., ¢!, 0,q,...,¢"} at 0 (4.4.5, 5.2.9).
Then these two Frobenius structures coincide by 5.2.8 and the isomorphism
(5.2.10.1) follows.

(i1) We will prove the assertion in Appendix A. O
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Corollary 5.2.11 (i) The Frobenius trace function Klso,, , , st of Begoznﬂ Sud
is equal to

Klso,,, 5@ = > Klsosua(x) Kl@2n —2; y)
x,yek* ,xy=a
K1(2n +1;a), =2,
H¢(2n + 1; p)(4a), p > 2.

(i1) We have an identity of exponential sums (5.2.5.1)

Kls0,,.5,std(@) — 1 = Klso,,, ,std(@).

Proof (i) Let x denote the (multiplicative) convolution of arithmetic Z-
modules [61, 2.1.1]. By the convolution interpretation of hypergeometric
overconvergent F-isocrystals [61, Main theorem (ii) and 3.3.3], we deduce
an isomorphism of overconvergent F-isocrystals

T ~ T T
Bego,,, 1.5t = Beso, sia *Bes, s -

Then the first equality follows. The second one follows from 5.2.10(i—ii).
(i1) It follows from Proposition 5.2.5 and (5.2.6.4). O

In particular, by (4.1.7.1) and Corollary 5.2.11(i), we obtain (1.2.9.1). Using
the trivial functoriality 4.1.7 and the exceptional isomorphism for groups of
low ranks (4.1.7.1, 4.1.7.2), one can similarly obtain other identities between

exponential sums, whose sheaf-theoretic incarnations were obtained by Katz
[52].

5.3 Frobenius slopes of Bessel F-isocrystals

5.3.1 We first recall the definition of the Newton polygon of a conjugacy class
in G(K ). Let X, (T)+ be the set of dominant coweights of G and Xe (T)Jr the
positive Weyl chamber, equipped with the following partial order <: © < A
if A — u can be written as a linear combination of positive coroots of G with
coefficients in R We identify (Xo(7) ®z R)/ W and X,(T). Recall that p
denotes the half sum of positive roots of G

= % Z o € XN(T) = Xo(T).

acdt

Letv : K — QU {oo} be the p—adivc order, normvalised by v(g) = 1. It
induces a homomorphism of groups v : T(K) — X, (7T) ®zR. By identifying

@ Springer



D. Xu, X. Zhu

T (K) / W and the set of semisimple conjugacy classes Con;j*® (G(E)) in é(f),
we deduce a homomorphism:

NP : Conj™(G(K)) = T(K)/W — (Xu(T) ®2 R)/ W = Xo(T)jf.

When G = GL,,, NP is equivalent to the classical p-adic Newton polygon (cf.
[571§ D).

Theorem 5.3.2 Let x € |A1 | be a closed point and ¢, € (V?(f) the Frobenius
automorphism of (Be , ) at x (4.4.3). Let v be the p-adic order normalised

by v(gdee™y = | ana’ NP defined as above.
(i) Except for finitely many closed points of |A,£ |, we have NP(¢y) = p.
(i1) Suppose that G is oftype Ay, By, Cy, Dy, or Gy, then we have NP (¢,) =
p for every x € |A,1|.

Proof (i) In [57, 2.1], V. Lafforgue shows that the Newton polygon of the
Hecke eigenvalue of a cuspidal function is < p. In particular, we deduce that
NP(¢,) < p forall x € |G,, «|. By 4.4.5, we have NP(¢p) = NP(p(q)) = p.
That is the Newton polygon achieves the upper bound p at 0. We take a finite
set of tensor generators {Vy, ..., V,} of Rep(é). Then the assertion follows
by applying Grothendieck—Katz’ theorem (cf. [30] 1.6) to log convergent F'-
isocrystals Beg v

(i1) (a) The case where G is of type A,, C,. By functoriality (5.1.3), we
reduce to study the Frobenius slope of Bessel F-isocrystal Bej, of rank n
(1.1.4). In this case, the assertion follows from the work of Dwork, Sperber
and Wan [40,72,76].

(b) The case where G is of type By, Dy, G». By functoriality (5.1.3), we
reduce to show that the Frobenius slope set of BeSO ,.sta ateach closed point
isequalto {—n,—n+1,...,n}. If p = 2,it follows from 5.2.10(ii) and the
case(a). If p > 2,in View of 5.2.9 and 5.2.10(i), it follows from the following
lemma. O

Lemma 5.3.3 The Frobenius slope set of 7 ypy (2n + 1; p) (5.2.8) at each

closed point is equal to
13 1
=, 2 — 1.
{2’2’ ”+2}

Proof We deduce this fact from Wan’s results on Frobenius slope of certain
toric exponential sums [76,77].
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For a € qu and a divisor d of p — 1, consider the following Laurent

polynomial in F[x{", ..., x5, ]
d
ax
d 2n+1
fa(xt, o X)) = x1 4+ x0n — X5, 0+ —————.
X1X2...X2p

For m > 1, we denote by S,,(fs) the exponential sum associated a Laurent
polynomial:

Swlf) =) w(Trqu/F,, fd(X1,---,X2n+1))-

X
x,-eIqu

Then we have an identity

Su(f)=Su(f)+ D x/f(Trqu /B, (X1 4+ Xong1 — y))
X]...X2p41=0ay
xiEF;m

(5.3.3.1)
<o~ (NmE,, . (),

where the last term is the Frobenius trace of JZypy (2n + 1; p).
The L-function associated to these exponential sums is a rational function:

Tm
L(fs. T) = exp(Z Sm(fd>7).

m>1

We denote by A(f,) the convex closure in R¥"*! generated by the origin
and lattices defined by exponents appeared in fz: {(0,...,0),(1,...,0),...,
©,...,1,0),(,...,0,d), (-1, ...,—1,d)}. The polyhedron A( f;) is 2n+
1)-dimensional and has volume %. The Laurent polynomials f; is non-
degenerate (cf. [77] Def. 1.1). After Adolphson—Sperber [9], the L-function
L(fa, T) is a polynomial of degree d(2n + 1).

We denote by NP( f;) the (Frobenius) Newton polygon associated to L-
functions L(fy, T') (cf. [77] 1.1) and by HP( f;) the Hodge polygon defined
in term of the polyhedron A(fy) (cf. [77] 1.2). The (multi-)set of slopes of
HP(fa) is

0, L2 2 +—d_1 (5.3.3.2)
) T e e ey n .
d d
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The Newton polygon lies above the Hodge polygon [9]. A Laurent polyno-
mial is called ordinary if these two polygons coincide. Let § be a co-dimension
1 face of A which does not contain the origin and f cf the restriction of f; to
8 which is also non-degenerate. The Laurent polynomial f j is diagonal in the
sense of [77, § 2]. If V1, ..., Va,41 denote the vertex of § written as column
vectors, the set S(8) of solutions of

r
Vi, ooty Vops1) : =0 (mod 1), r;rational,0 <r; <1,
2n+1
forms an abelian group of order d (cf. [77] 2.1). Since d is a divisor of p — 1,
we deduce that for each &, f, j is ordinary by [77, Cor. 2.6]. By Wan’s criterion
for the ordinariness [76] (cf. [77] Thm. 3.1), f; is ordinary.

In view of (5.3.3.1) and the slope sets of HP(f1), HP(f>) (5.3.3.2), the
assertion follows. O

Acknowledgements We would like to thank Benedict Gross, Shun Ohkubo, Daqing Wan,
Liang Xiao and Zhiwei Yun for valuable discussions. We are also grateful to an anonymous
referee for his/her careful reading and valuable comments. X. Z. is partially supported by the
National Science Foundation under agreement Nos. DMS-1902239 and a Simons Fellowship.

Appendix A. A 2-adic proof of Carlitz’s identity and its generalization

As mentioned in introduction, Carlitz [24] proved the following identity
between Kloosterman sums:

Ki(3;a) =KI(2;a)> =1, VaelF.

In this appendix, we reprove and generalize this identity by establishing an
isomorphism between two Bessel F-isocrystals Be;n 4 and Begozll+1 std- The
following is a restatement of Proposition 5.2.10(ii).

Proposition A1 There exists an isomorphism between following two overcov-
ergent F-isocrystals on Gy, ,:

2n+1
Be), | <xa> +22Hy =0, (A11)

; 2n+1 - d
4 . ) )
BeSOan,Std : (xd_x) — 27" x <2xd—x + 1) =0.

Our strategy is first to show that their maximal slope quotient convergent
F-isocrystals are isomorphic. Then we conclude the proposition by a dual
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version of a minimal slope conjecture (proposed by Kedlaya [56] and recently
proved by Tsuzuki [74]) that we briefly recall in the following.

Let X be a smooth k-scheme and .# " an overconvergent F-isocrystal on
X /K . We denote the associated convergent F-isocrystal on X /K by .# . When
the (Frobenius) Newton polygons of .# are constant on X, .# admits a (dual)
slope filtration, that is a decreasing filtration

M= M DM DM DM =0 (A12)

of convergent F-isocrystals on X/K such that

o /' /. is isoclinic of slope s’ and

o sV >l > .5 g1

Theorem A2 (Tsuzuki, [74] theorem 1.3) Let X be a smooth connected
curve over k. Let M7, VT be two irreducible overconvergent F-isocrystals
such that the corresponding convergent F-isocrystals M , N admit the slope
filtrations { A"}, { N} respectively. Suppose there exists an isomorphism
h: NN N4 /A" of convergent F-isocrystals between the maximal
slope quotients. Then there exists a unique isomorphism g% : N1 S oot
of overconvergent F-isocrystals, which is compatible with h as morphisms of
convergent F-isocrystals.

A3 Following Dwork’s strategy [39, § 1-3], we study the maximal slope quo-
tients of Be;n 41 and of Begozn% siq 1n terms of their unique solutions at 0.

In the following, we assume k = [, We first recall Dwork’s congruences
and show a refinement of his result in the 2-adic case. Consider for every
i >0,amap B¥)(—) : Z=o — K> and the following congruence relation for
O0<a<pandn,m,s € Z=o:

(a) BY(0) is a p-adic unit for all i > 0,

B®
by BTN ol > 0,
B(l-l-l)(n)
B® s+1 B®
(c) (C.l +nptmp ) = (a +np) mod p**! foralli > 0.
B+ (p + mp?*) B+ (n)
B(i) 2 2s+1 B(i) 2
() When p = 2, 2_latn2tm27) _ ., B @tn2)

B(H—l)(n + m2%) B(H—l)(n)
mod 2°*! for all i > 0,where u(i,s,m)=1ifs #landu(@, 1,m) =1
or —1 depending on i and m.
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If conditions (a—c) (or (a,b,c’)) are satisfied, then B?)(n) € R foralli,n > 0.
We set

o0
FOw) =Y BP()x/ € K[x],
j=0
(m+1)p*—1
FOx = Y BYG)x) eKlx], s=0.

Jj=mp®
We write Féfs) by F. v(i) for simplicity.
Theorem A4 (i) [39, theorem 2] If conditions (a—c) are satisfied, then

FO@FD &P =FY 0)F PP mod p™* BEHD gm)[x].
(A41)

(') If conditions (a,b,c’) are satisfied (in particular p = 2), then
FOFN 6 = FO L 0F D@ mod 2B D m)[x].  (A42)

(ii) [39, theorem 3] Under the assumption of (i) or (i’ ) and suppose moreover
that

(d) BY(0) = 1fori > 0.
(e) Bt = BW forall i > 0 and some fixed r > 1.

Let U be the open subscheme of A}( defined by Fl(i)(x) # 0, fori =
0,1,...,r — 1. Then the limit

o) = lim F“’)1 (x)/FD(xP) (A43)

defines a global function on the formal open subscheme il of K}? associated
to U, which takes p-adic unit value at each rigid point of 3"8.

We prove assertion (i’) in the end (A11). We briefly explain Dwork’s result
(ii) in the language of formal schemes. The assumption implies that F, s(l) #0
on U (cf. [39] 3.4). For s > 1, the congruences (A41) or (A42) imply that

FQ0/FP Py = FO0)/FD (eP) e T, 6u/p* ™" 6y).
This allows us to use (A43) to define a global function f of J.
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ASLet F(x) = 350 B(j)x/ be a formal power series in R[x]. We say F
satisfies Dwork’s congruences if by setting B (j) = B(j) for every i > 0,
conditions of Theorem A4(ii) are satisfied.

We take such a function F' and then we obtain a function f € I'(U, O)
coinciding with F(x)/F (x?) in K{x} (2.3.1.1) (i.e. the open unit disc). More-
over, by [39, lemma 3.4(ii)], there exists a function n € I"(Ll, Oy) coinciding
with F/(x)/F (x) in K {x} defined by

nx) = F;H(x)/FsH(x) mod p°.
The functions f(x) and n(x) satisfy a differential equation:
J'(x)
fx)

Note that f(0) = F(0)/F(0) = 1. Then we deduce that the following corol-
lary.

+ pxPIn(xP) = n(x).

Corollary A6 The connectiond —n on the trivial bundle Ui and the function
f form a unit-root convergent F-isocrystal & on U/K, whose Frobenius
eigenvalue at 0 is 1.

A7.Let.#" be an overconvergent F-isocrystal on G,, ; over K of rank r whose
underlying bundle is trivial and the connection is defined by a differential
equation:

P =8 +p8 '+ 4+ p =0,

where § = x%, pi € F(&1 , ﬁ’&}e)[%]. We assume moreover that .Z " is

unipotent at O with a maximal unipotent local monodromy. Then .# T extends
to a log convergent F-isocrystal .#'°¢ on (A', 0) and its Frobenius slopes at
0 are

SOssl=s"—1>...5 1= -1.

Note that .ZT is indecomposable in F- IsocT(Gm,k/K ) and so is .Z in
F-Isoc(Gy, k/K). Then by Drinfeld—Kedlaya’s theorem on the generic Frobe-
nius slopes [38], we deduce property (i): '

(i) The generic Frobenius slopes (mult-)set is {s*, ..., s ™!} with s/ =

0 .

s’ —({—1).

(i1) In view of (2.3.1.2), the differential equation D = 0 admits a unique
solution at O:

F(x) =Y Amax" €K{x}), withA(0)=1.

n>0
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Proposition A8 Suppose the function F(x) satisfies Dwork’s congruences
(A5) and let &F be the associated unit-root convergent F-isocrystal on U C
A,i. Then

(i) There exists an epimorphism of log convergent isocrystals .#'°¢ — &p
on (U, 0).

(ii) As convergent isocrystals, & coincides with the maximal slope quotient

M) 0% of A% (A12).

Proof (i)Weset A = T'(U, Oy) [%]. We claim that there exists a decomposition
of differential operators:

P@) =0@®)@E—xn), QO =8""+q 18"+ -+q, g €A
(A81)

Indeed, by the Euclidean algorithm [54, 5.5.2], there exists » € A such that
P = Q(5 — xn) + r. By evaluating the above identity at F (in the ring K {x}
containing A), we obtain

PG)(F)=0= Q)6 —xn)(F)+rF =rF.

Then we deduce r = 0 and (A81) follows.

Let eq, ..., e, be a basis of .# such that Vs(e;) = ¢j+1,1 <i <r —1
and Vs(e,) = —(prer + -+ - + p1e1). We consider a free Oig-module with
a log connection .4~ with a basis fi,..., fr—1 and the connection defined

by Vs(fi) = firts Vs(fro1) = —(@r—1fr—1 + -+ + q1 f1). By (A81), the
morphism f] — e> —xne; induces a horizontal monomorphism .4 — .#1°¢
whose cokernel is isomorphic to &f.

(ii) Note that Pic(4"8) ~ Pic(U) [75, 3.7.4] is trivial. Then the rank one
convergent isocrystal .#1°2 /_#/1°¢! can be represented as a connection d — A
on the trivial bundle O .

Since .#'°¢ has a maximal unipotent at 0, the rank one quotient of the
restriction .#'°¢|q of .#'°2 at the open unit disc around 0 is unique (2.3.1).
In particular, d — A kills the unique solution F of P(§) = 0. By analytic
continuation, we have A = n and the assertion follows. O

Remark A9 The unique solution F (x) belongs tothering K [x]o = R[x]|®r K
of bounded functions on open unit disc, which is a subring of K {x}. Assertion
(ii) can be viewed as an example of Dwork—Chiarellotto—Tsuzuki conjecture on
the comparison between the log-growth filtration (of solutions) and Frobenius
slope filtration [28]. This conjecture was recently proved by Ohkubo [65].

Proof of Proposition A1 We set k = [F, and apply the above discussions to
overconvergent F-isocrystals .#' = Bezn 41 and A T = Begoh+I S On
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G F,/K (All). Their unique solutions at O are:

(—2)@ntbr 2@t bror — it
F(.X) = Z (;/-!)THX , G(X) = Z (r!)2n+1

r>0 r>0

In the following lemma, we show that F and G satisfy Dwork’s congru-
ences and that the associated maximal slope quotients & and &g (AS8) are
isomorphic. Then Proposition A1 follows from theorem A2 and the following
lemma. O

Lemma A10 (i) The functions F (x) and G(x) satisfy Dwork’s congruences
(A5) and define unit-root convergent F-isocrystals & and &g on A,i respec-
tively. R

(i) The function F (x)/ G (x) extends to a global function of A}e and induces

an isomorphism 8 — &F.

Proof (1) Conditions (a,b,d,e) are easy to verified. The coefficients of F(x)
(resp. G (x)) satisfy condition (c’) (resp. (¢)), that is

(_2)(2n+1)(a+42+m2f+‘)/((a +£2+m2s+1)!)2n+1
(_2)(2n+1)(2+m2“)/((£ + m2~‘)!)2”+1

(—2)@nHD@+E2) /(g 4 £2)1)21+]
(—2)@n+DeE /(g1)2n+1

= u(s, m) mod 25t

where u(1,m) = (—1)" and u(s, m) = l if s # 1, and

2(a + €2 + m2s+1) _ 1)!!2(2n+1)(a+52+m2s+1)/((a + 02 + m25+1)!)2n+1
2(¢ + m25) — 1)!!2(2n+1)(€+m25)/((£ + mZS)!)Z”'H

_(2(a +€2) — DIRCAFDEHD) /(g + £2)1) 2+
- 20 — 1)!!2(2n+1)e/(g!)2n+1

mod 251,

Since Fj(x) = G((x) =1 mod 2, the F-isocrystals &F, &g are defined over

1
A @n+1)
.. _2 n r
(ii) We set BO (r) = E2 (r!))zn+1

B Then these sequences satisfy conditions (a,b,c’,d,e). For condition (c’),
the constants u(i, 1, m) are given by

and BO() = 220 g )
M(Ovl,m)zla M(lvlam)=(_1)ma u(i+2,1,m)=u(i,l,m).

Since Fi(x) =G(x) =1 mod 2, F(x)/G(xz) extends to a global function
of ﬁ&}e by Theorem A4 and so is F(x)/G(x). Then the assertion follows. O
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A11 Proof of Theorem A4(i’). We prove assertion (i’) by modifying the
argument of [39, theorem 2]. Note that condition (¢’) implies the following
congruence relation:

B(l) 2 2S-‘r1 B(l) 2
atn2+m27) _BTat+n2) o (Al11)
B(H—l)(n + m2%) B("H)(n)

When n < 0, we set BO(n) = 0. Weset A = BO, B = BM and for
a€{0,1}, j, N € Z, we set

Us(j, N) = A(a+2(N — j))B(j) — B(N — j)A(a +2j),
(m+1)25—1

Hy(m,s,N)= Y Ud(j,N).
j=m2’

Then the assertion is equivalent to
H,(m,s,N)=0 mod 2°B“*D(m), fors>0,m>0,N>0. (Al12)
By condition (b), we have A(a + 2m)/B(m) € R and hence
U,m, N)=0 mod B(m).

Then equation (A112) for s = 0 follows from the fact that H,(m, 0, N) =
U,(m, N).
We now prove by induction on s. We write the induction hypothesis

o Hy(m,u, N) =0 mod 2“B“*V(m), foru €0,s),m, N > 0.

We may assume «; for fixed s > 1. The main step is to show for 0 < ¢ < s
that

ﬁt,s : U(S, ta m)Ha(m, Sa N + mzv)
|
= Y BV +m2 Y Hy(j. 1. N)/BUTV(j) mod 2° BOHD (m),
j=0

where v(s, t, m) = 1 or —1 depending on s, ¢, m.
We list some elementary facts (cf. [39, 2.5-2.7])

T
> Hu(m,s,N)=0 if (T +1)2° > N (A113)

m=0
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H,(m,s, N)=H,2m,s —1,N)+ H,(1 +2m,s —1,N) ifs >1
(Al14)
BY (i +m2) =0 mod Bt (m) if0<i<2"—1,51>0. (AllS)

We first prove By 5. We have

25—1
Hy(m,s,N+m2") =Y U, (j +m2°, N+m2"), (A116)
j=0
Ua (j +m2°, N + m2*)
= A(a+2(N — j)B(j +m2°) — B(N — )A (a +2j +m2*t").

By (A111), we have
A(a+2j+m2™) = Aa +2j)B(j +m2%)/B(j) + X ;2° B(j +m2°),
where X; € R. Then the right hand side of (A116) is

B (j+m2) (Ua(j, N)/B(j) —2'X;B(N — j))-

Since U,(j, N) = H,(j, 0, N), we obtain

21
Hy (m,s, N +m2) = > B(j+m2") Ha(j, 0, N)/B(j)
j=0
21
—2° Y " XjB(j+m2") B(N — j).
j=0

Since X j B(N—j) € R,itfollows from (A115)(B = BW) that the second sum
is congruent to zero modulo 25 BS+D (1m). This proves By s with v(s, 0, m) =
1.

With s fixed, s > 1, ¢ fixed, 0 <t < s — 1, we show that §; ; together with
ag imply Biy1s. To do this we put j = u + 2i in the right side of 8; ¢ and
write it in the form

1 2s—t—1

D030 B (w20 m2 ) HoGu 20,1, N)/ B u + 20).
n=0 i=0
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By condition (c’), we have,

BU+D (/L +2i + mZS_’)
—ut+1,5s—1—1,m) (B(’“)(u +20) BT (i 4 m2s ) /B(’+2)(i))

+X,;M2“’B(’+2) (i + mzs—t—l) ’

where X; ;, € R. Thus the general term in the above double sum is
u(t+1,s—1—1, m)<B<’+2> G +m2 7" "YH,(u+2i, 1, N)/B<’+2>(i)) +Yi

where the error term:
Yip = Xi 27 BUTD (i +m25 770 Hy(ue 4 2i, 1, N)/BYUTD (u + 20).
For this error term, since ¢ < s, we can apply «; to conclude that
Y, =0 mod B 4+ m25~7 12,
Then we can use (A115) to conclude that
Yi, =0 mod 2°BYTD(m).
After modulo 2* B¢+ (m), the right side of f; s is equal to

1 271

u(t-l—l,s—t—l,m)z Z BT (i 4 m2 )

n=0 i=0
x Hy(u 4+ 2i,t, N)/BU+2 ().

By reversing the order of summation and using (A114), the above sum is the
same as

2s—t—171
u(t+1,s —t—1,m) Z B+ (i +m2s—z—1)
i=0
X H(i, 1 + 1, N)/ B (D),

which proves ;11 5. In particular, we obtain f; s, which states

v(s,s,m)H,(m,s, N + m2°%) (A117)
= B"*Dm)H,(0,s, N)/B®*tD(0) mod 2 BE+D (m).
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We now consider the statement (with s fixed before)

yN i H; (0,5, N) =0 mod 2°.

We know that yy is true for N < 0. Let N’ (if it exists) be the minimal value
of N for which yy- fails. For m > 1, since BG*+D(0) is a unit, we have by
(A117)

H,(m,s,N') = v(s, s, m)B"TV(m)H,(0,s, N' — m2*)/B“TD(0)
=0 mod 2°.

Applying this to (A113), we obtain that

H,0,s,N)=0 mod 2°.

Thus yy is valid for all N and Eq. (A117) implies o 1. This proves assertion

.

O
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