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Extending group actions on metric spaces

C. Abbott, D. Hume, D. Osin

Abstract

We address the following natural extension problem for group actions: Given a group
G, a subgroup H < G, and an action of H on a metric space, when is it possible to extend
it to an action of the whole group G on a (possibly different) metric space? When does
such an extension preserve interesting properties of the original action of H? We begin by
formalizing this problem and present a construction of an induced action which behaves
well when H is hyperbolically embedded in G. Moreover, we show that induced actions can
be used to characterize hyperbolically embedded subgroups. We also obtain some results
for elementary amenable groups.
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1 Introduction

1.1. The extension problem for group actions on metric spaces. All actions of groups
on metric spaces considered in this paper are assumed to be isometric by default. Thus, by a
group action on a metric space we mean a triple (G, S, ¢), where G is a group, S is a metric
space, and ¢ is a homomorphism from G to Isom(S), the group of isometries of S. If no
confusion is possible, we omit ¢ from the notation and denote the action (G, S, ) by G ~ S.

The main goal of this paper is to address the following natural question.

Question 1.1 (Extension Problem). Given a group G, a subgroup H < G, and an action
H ~ R of H on a metric space R, does there exist an action of G on a (possibly different)
metric space that extends H ~ R?

There are several ways to formalize the notion of an extension. Since our interest in this
question arose in the context of geometric group theory, we accept a “coarse” definition, which
focuses on large scale invariants of groups and spaces.

Let H be a group acting on metric spaces, (R,dg) and (5,dg). Recall that amap f: R — S
is said to be

— coarsely H—equivariant if for all x € R, we have

sup dg(f(hz), hf(x)) < oo; (1)
heH

— a quasi-isometric embedding if there is a constant C' such that for all z,y € R we have

1

cdr(,y) = € <ds(f(2), f(y)) < Cdr(z,y) + C; (2)
if, in addition, S is contained in the e—neighborhood of f(R) for some constant e, f is
called a quasi-isometry.

Definition 1.2. Let H be a subgroup of a group G and let H ~ R be an action of H on a
metric space R. An action G ~ S of G on a metric space S is an extension of H ~ R if there
exists a coarsely H—equivariant quasi-isometric embedding R — S. We say that the extension
problem is solvable for the pair H < G if the answer to Question [1.1]is affirmative for every
action of H on a metric space.

In many cases the answer is negative, the most striking example being the following.

Ezample 1.3. Every countable group H embeds in Sym(N), the group of all permutations of
natural numbers. However it is known that every action of Sym(N) on a metric space has
bounded orbits [§]. Thus no action of H with unbounded orbits can be extended to an action
of Sym(N)

On the other hand, there are many examples of pairs H < G for which the answer is
obviously affirmative.



Ezample 1.4. (a) The extension problem for a pair H < G is solvable whenever H is finite.
Indeed, for any action of a finite group H on a metric space R, the trivial action of G on
R is an extension of H ~ R.

(b) Let H be a retract of G and let p: G — H be a homomorphism such that p|g = idg. It
is easy to see that for every action H ~ R, the action of G on the same metric space R
defined by gx = p(g)z for all ¢ € G and = € R is an extension of H ~ R. Indeed the
identity map R — R is an H-equivariant isometry.

If the group G is finitely generated, solvability of the extension problem imposes strong
restrictions on the geometry of the embedding H < G.

Proposition 1.5 (Prop. . Let G be a finitely generated group. Suppose that the extension
problem is solvable for some H < G. Then H is finitely generated and undistorted in G.

It is worth noting that the extension problem may not be solvable even for finite index
subgroups of finitely generated groups, which are always undistorted.

Ezxample 1.6. Let
G = (a,bt|t* =1, t lat = b) = F(a,b) X Zy

and H = (a,b) = F(a,b), where F(a,b) is the free group with basis {a,b}. Then the action of
H that factors through the translation action of (a) = Z on R does not extend to an action
of G. Indeed, if such an extension G ~ S existed, the subgroup (b) (respectively, (a)) would
have bounded (respectively, unbounded) orbits in S. However this is impossible since a and b
are conjugate in G.

Proposition [1.5] implies that solvability of the extension problem for all subgroups of a
given group is a rather rare phenomenon. For example, we prove the following in Section 4.1.

Theorem 1.7. Let G be a finitely generated elementary amenable group. Then the extension
problem is solvable for all subgroups of G if and only if there exists a finite index free abelian
subgroup A < G and the action of G on A by conjugation factors through the action of 7./27
by inversion.

We then turn to the opposite side of the group theoretic universe and study Question
for groups with hyperbolic-like properties. Our main result in this direction is the following.

Theorem 1.8 (Cor. [4.10). Let G be a group, H a hyperbolically embedded subgroup of G.
Then the extension problem for H < G is solvable.

The notion of a hyperbolically embedded subgroup was introduced by Dahmani, Guirardel,
and Osin in [9]. For the definition we refer to the next section. Examples include peripheral
subgroups of relatively hyperbolic groups and maximal virtually cyclic subgroups containing
a pseudo-Anosov element (respectively, a fully irreducible automorphism) in mapping class
groups of closed surfaces (respectively, Out(F},)), etc. For details and more examples see [9].

We mention one application of Theorem to hyperbolic groups. Recall that a subgroup
H of a group G is almost malnormal if |[HN g 'Hg| < oo forall g € G\ H.



Corollary 1.9 (Cor. 4.18). Let G be a hyperbolic group.

(a) Suppose that H is quasiconvex in G and either virtually cyclic or almost malnormal.
Then the extension problem is solvable for H < G.

(b) Conversely, if the extension problem is solvable for a subgroup H < G, then H is quasi-
conver.

Notice that the extension problem for the pair Fy < Fy x Z/27, where F5 is the free group
of rank 2, is solvable (see Example (b)) while Fy is neither virtually cyclic nor almost
malnormal in Fy x Z/27Z. Thus the sufficient condition from part (a) is not necessary for the
extension problem to be solvable. On the other hand, Example [I.6] shows that the necessary
condition from part (b) is not sufficient.

1.2. Induced actions. Our proof of Theorem [I.§ and the “if” part of Theorem [1.7]is based
on the construction of an induced action. We only present it for geodesic metric spaces in this
paper, although a similar theory can be developed in general settings. Restricting to geodesic
spaces makes our exposition less technical and still allows us to answer Question in the full
generality since any action of any group on a metric space extends to an action of the same
group on a geodesic metric space (see Proposition .

Induced actions can be defined in a functorial way if we consider group actions on metric
spaces up to a natural equivalence relation. In order to avoid dealing with proper classes, we
fix some cardinal number ¢ > ¢, where ¢ is the cardinality of the continuum and, henceforth,
we assume all metric spaces to have cardinality at most c¢. All results proved in this paper
remain true for every such c¢. For most applications, it suffices to take ¢ = «.

Definition 1.10. We say that two actions G ~ R and G ~ S of a group G on metric spaces
R and S are equivalent (and write G ~ R ~ G ~ S), if there exists a coarsely G—equivariant
quasi-isometry R — S.

It is easy to see that ~ is indeed an equivalence relation (see Proposition [3.13)). The
equivalence class of an action G ~ R is denoted by [G ~ R]; we also denote by A(G) the set
of all equivalence classes of actions of G on geodesic metric spaces (of cardinality at most c).

Suppose that a group G is generated by a subset X relative to a subgroup H; that is,
G = (X U H). Associated to such a triple (G, H, X) is a natural map

Indy: A(H) = A(G),

called the induced action. Our construction is especially easy to describe in the particular case
when H is generated by a set Y and A € A(H) is the equivalence class of the natural action
of H on its Cayley graph I'(H,Y"). Then

Indx(4) = [G ~AT(G, X UY)].

In the general case, the definition is a bit more technical: Indx ([H ~ R]) is defined by mixing
the left action of G on the coset graph of H (with respect to X) and the given action H ~ R



in a natural way. This involves several additional parameters, but the resulting action is
independent of them up to the equivalence introduced above. If G is finitely generated modulo
H, Indx turns out to be independent of the choice of a finite relative generating set X and is
denoted simply by Ind.

Given H < G, we say that B € A(G) is an extension of A € A(H) if some (equivalently,
any) action G ~ S € B is an extension of some (equivalently, any) H ~ R € A. Obviously
Indx (A) cannot always be an extension of A € A(H), as such an extension may not exist at
all. However, our next theorem shows that the induced action is, in a certain sense, the best

thing we can hope for. Here we state our result for relatively finitely generated groups and
refer to Theorem for the general case.

Theorem 1.11. Let G be group and let H < G. Assume that G is finitely generated relative
to H. Then the following conditions are equivalent.

(a) The extension problem for the pair H < G is solvable.
(b) For every action A € A(H), Ind(A) is an extension of A.

(¢) The subgroup H is incompressible in G.

The notion of an incompressible subgroup is introduced in Section 3.4. One can think
of it as a stronger version of the notion of an undistorted subgroup of a finitely generated
group. Unlike solvability of the extension problem, the property of being incompressible can
be defined for a subgroup H of a group G in intrinsic terms, without mentioning any actions
at all. Incompressibility and a generalization of Theorem are instrumental in all proofs of
extendability results in our paper.

Since hyperbolicity of a geodesic space is a quasi-isometry invariant, we can define hyperbolic
elements of A(G) to be equivalence classes of G-actions on hyperbolic spaces. The following
theorem shows that the construction of the induced action behaves well for hyperbolically
embedded subgroups and, moreover, it can be used to characterize hyperbolic embeddings.

Theorem 1.12. Assume that a group G is generated by a set X relative to a subgroup H.

(a) If H is hyperbolically embedded in G with respect to X, then for every A € A(H), Indx (A)
is an extension of A; if, in addition, A is hyperbolic then so is Indx(A).

(b) Suppose that H is countable and for every hyperbolic A € A(H), Indx(A) is a hyperbolic
extension of A. Then H is hyperbolically embedded in G with respect to X.

Remark 1.13. The countability assumption in part (b) cannot be dropped, see Example
Also the condition that Indx (A) is a hyperbolic extension of A for every hyperbolic A € A(H)
cannot be replaced with the assumption that every action of H on a hyperbolic space extends
to an action of G on a hyperbolic space, see Example

Theorem [I.12] can be applied to construct interesting actions of acylindrically hyperbolic
groups on hyperbolic spaces. Recall that the class of acylindrically hyperbolic groups includes
mapping class groups of closed hyperbolic surfaces, Out(F;,) for n > 2, groups of deficiency



at least 2, most 3-manifold groups, and many other examples. It is proved in [9] that every
acylindrically hyperbolic group G contains a hyperbolically embedded subgroup isomorphic to
Iy x K, where K is finite and F5 is free of rank 2. Thus one can get interesting actions of G
on hyperbolic spaces starting from actions of F5 and applying Theorem (and Example
(b)). This idea is used in [I] to obtain several results about hyperbolic structures on groups.
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2 Preliminaries

2.1 Metric spaces and group actions: notation and terminology

In this paper we allow distance functions on metric spaces to take infinite values. More pre-
cisely, we extend addition and ordering from [0,00) to [0,00] in the natural way: ¢+ co =
00+c =00 and ¢ < oo for all ¢ € [0,400]. Following the standard terminology, by an extended
metric space we mean a set S endowed with a function dg: S x S — [0, +00] that satisfies the
standard axioms of a metric, where addition and ordering are extended as described above.
The function dg is called an extended metric.

Given an (extended) metric space S, we always denote the (extended) metric on S by dg
unless another notation is introduced explicitly. All graphs (not necessarily connected) are
considered as extended metric spaces with respect to the standard combinatorial metric.

Given a path p in a metric space in a metric space .S, we denote by p_ and py the origin
and the terminus of p, respectively. The length of p is denoted by ¢(p). A path p in a metric
space S is called (), ¢)—quasi—geodesic for some A > 1, ¢ > 0 if

U(q) < Ms(q—,q4) +c

for any subpath ¢ of p.

For a subset X of a group G, we denote by I'(G, X) the Cayley graph of G with respect to
X. We do not assume that X generates G here and therefore Cayley graphs are not necessarily
connected. However we always assume that all subsets X C G used to form Cayley graphs,
as well as all generating sets of G, are symmetric. That is, given x € X, we always assume
that z=! € X. By dx (respectively, | - |x) we denote the extended word metric (respectively
length) on G associated to a subset X C G. That is, |g|x is the usual word length if g € (X)
and oo otherwise; the metric is defined by dx(a,b) = |a~1b|x.

In this paper we understand properness of actions in the metric sense. That is, an action
of a group G on a metric space S is called

— proper if for every bounded subset B C S the set {g € G | gB N B # 0} is finite;



~ cobounded if there exists a bounded subset B C S such that S = J,c; 9B;

— geometric if it is proper and cobounded.

We will need the following well-known fact about actions of finitely generated groups. We
provide the proof for convenience of the reader.

Lemma 2.1. Let G be a group generated by a finite set X. For every action of G on a metric
space S and every s € S, there exists a constant M such that, for all g € G, we have

ds(s,gs) < M|g|x. (3)
Proof. Let
M = maxdg(s, zs).
zeX
Suppose that an element g € G decomposes as g = x1x3 ... T, for some z1,29,...,z, € X and

n = |g|x. Then we have

ds(s,gs) < dg(s,z18) +dg(x1s,z1me8) + -+ +dg(x1 - Tp_15,21 -+ Ty S)

(4)
< ds(s,z15) + dg(s,xes) + -+ +dg(s,zns) < Mn = M|g|x.

O]

2.2 Hyperbolic spaces

In this paper, we say that a geodesic metric space S is d-hyperbolic for some § > 0 if for every
geodesic triangle A in S, every side of A belongs to the union of the d-neighborhood of the
other two sides.

We will use two properties of hyperbolic spaces. The first one is well-known and can be
found, for example, in [5, Theorem 1.7, p.401].

Lemma 2.2. For any d >0, A > 1, ¢ > 0, there exists a constant » = (5, \,c) > 0 such that
every two (X, ¢)—quasi—geodesics in a §-hyperbolic space with the same endpoints belong to the
closed »-neighborhoods of each other.

The next lemma is a combination of a simplified version of Lemma 10 from [14] and the
fact that in a d-hyperbolic space every side of a geodesic quadrilateral belongs to the closed
24-neighborhood of the other 3 sides.

Lemma 2.3. Let S be a subset of the set of sides of a geodesic n—gon P = pip2...pn in
a 6—hyperbolic space. Assume that the total lengths of all sides from S is at least 103cn for
some ¢ > 300. Then there exist two distinct sides p;, p;, and subsegments u, v of p; and p;,
respectively, such that p; € S, min{l(u),l(v)} > ¢, and u, v belong to 150-neighborhoods of
each other.

We will also make use of group actions on combinatorial horoballs introduced by Groves
and Manning [13].



Definition 2.4. Let T" be any graph. The combinatorial horoball based on T', denoted H(T"),
is the graph formed as follows:

1) The vertex set #(O(T) is T x ({0} UN).

2) The edge set HM(I') consists of three types of edges. The first two types are called
horizontal, and the last type is called vertical.

(a) If e is an edge of I' joining v to w then there is a corresponding edge € connecting
(v,0) to (w,0).

(b) If k € N and 0 < dr(v,w) < 2%, then there is a single edge connecting (v, k) to
(w, k).

(¢) If k € N and v € I'©) there is an edge joining (v,k — 1) to (v, k).

By dr and dyr) we denote the combinatorial metrics on I' and H(T'), respectively. The
following results were proved in [I3], Theorem 3.8 and Lemma 3.10].

Lemma 2.5. (a) For every connected graph I, H(T') is hyperbolic.

(b) For every two vertices a,b € ', there exists a geodesic p = pi1qpa between a and b such
that p1 and py entirely consist of vertical edges and q has length at most 3.

Finally will need a well-known homological variant of the isoperimetric characterization of
hyperbolic graphs. Let ¥ be a graph. Given a loop ¢ in X, we denote its homology class in
H,(X,7Zs) by [c]. Let £(c) and diam(c) denote the length and the diameter of ¢, respectively.

Proposition 2.6 (Bowditch, [4, §7].). For any graph ¥ the following conditions are equivalent.

(a) ¥ is hyperbolic.

(b) There are some positive constants M, L such that if ¢ is a simple loop in 3, then there
exist loops c1, ..., cx in X with diam(c¢;) < M for alli=1,...,k such that

[c] =[a1] + .-+ [ck] (5)
and k < L{(c).

2.3 Hyperbolically embedded subgroups

Hyperbolically embedded subgroups were formally introduced by Dahmani, Guirardel, and the
third author in [9] although the idea goes back to the paper [17], where this notion was studied
in the context of relatively hyperbolic groups.

Let G be a group with a fixed collection of subgroups {H)} ea. Given a (symmetric)
subset X C G such that G is generated by X together with the union of all Hy’s, we denote
by I'(G, X UH) the Cayley graph of G whose edges are labeled by letters from the alphabet
X UH, where

H = |_| H,. (6)

AEA
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That is, two vertices g, h € G are connected by an edge going from ¢ to h which is labeled by
a € X UH if and only if a represents the element g~ 'h in G.

Notice that the unions in the definition above are disjoint. This means, for example, that
for every h € Hy N H,, the alphabet H will have two letters representing the element A in G:
one in H)y and the other in H,,. It can also happen that a letter from H and a letter from X
represent the same element of G.

In what follows, we think of the Cayley graphs I'(H), H)) as naturally embedded complete
subgraphs of T'(G, X UH).

Definition 2.7. For every A € A, we introduce an extended metric dy: Hy x Hy — [0, +0o0]
as follows. Let

Ay = F(G,X L H) \ E(F(H)\,H)\))

be the graph obtained from I'(G, X UH) by excluding all edges (but not vertices) of I'( Hy, Hy).
Then for h,k € Hy, dx(h, k) is the length of a shortest path in Ay that connects h to k (we
think of h and k as vertices of I'(G, X LUH) here). If no such a path exists, we set dy(h, k) = oc.
Clearly d) satisfies the triangle inequality.

Definition 2.8. Let G be a group, X a (not necessary finite) symmetric subset of G. We say
that a collection of subgroups { Hy}xca of G is hyperbolically embedded in G with respect to X
(we write {H)}xen <—n (G, X)) if the following conditions hold.

(a) The group G is generated by X together with the union of all Hy and the Cayley graph
I'(G, X UH) is hyperbolic.

(b) For every A € A, the extended metric space (Hy,dy) is proper, i.e., any ball of finite
radius in Hy contains finitely many elements.

Further we say that {H)}xca is hyperbolically embedded in G and write {Hy}xepn —pn G if
{Hx}ren —n (G, X) for some X C G.

For details and examples we refer to [9]. The following proposition relates the notions of a
hyperbolically embedded subgroup and a relatively hyperbolic group. Readers unfamiliar with
relatively hyperbolic groups may think of it as a definition.

Proposition 2.9 ([9, Proposition 4.28]). Let G be a group, {Hx}xea a finite collection of
subgroups of G. Then G is hyperbolic relative to {Hx}xea if and only if {Hx}rer —n (G, X)
for some finite subset X C G.

We will need the following.

Lemma 2.10 ([9, Corollary 4.27]). Let G be a group, {Hx}xca a collection of subgroups of G,
X1, Xy two relative generating sets of G modulo {H)}xep such that X1 A Xo is finite. Then
{H)\}/\EA —h (G, Xl) Zf and only Zf {H)\}/\EA —h (G,XQ).

In Sections 4.2 and 4.3 we will use terminology and results that first appeared in [16] and
[18] in the context of relatively hyperbolic groups and then were generalized to hyperbolically
embedded subgroups in [9].



Definition 2.11. Let ¢ be a path in the Cayley graph I'(G, X LU’H). A (non-trivial) subpath
p of ¢ is called an H)—subpath, if the label of p is a word in the alphabet Hy. An Hy—subpath
p of q is an Hy—component if p is not contained in a longer Hy—subpath of g; if ¢ is a loop, we
require in addition that p is not contained in any longer Hy—subpath of a cyclic shift of q.

Two Hy—subpaths p;,p2 of a path ¢ in I'(G, X UH) are called connected if there exists an
edge ¢ in I'(G, X U H) that connects some vertex of p; to some vertex of py is labeled by an
element of H). In algebraic terms this means that all vertices of p; and ps belong to the same
left coset of Hy. A component of a path p is called isolated in p if it is not connected to any
other component of p.

It is convenient to enlarge the domain of the extended metric dy: Hy x Hy — [0, oo] defined
above to G X G by assuming

R d)\(f_lgal)a if f_lgEH,\
Aif9): = { dx(f,g) = oo, otherwise.

Given a path p in the Cayley graph I'(G, X U H), we let p_, p; denote the origin and
the terminal point of p, respectively. The following result, which is a simplified version of [9,
Proposition 4.13], will play a crucial role in Section 4.2.

Lemma 2.12. Assume that {H)}xen —n (G, X). Then there exists a constant D such that
for any geodesic n—gon p in I'(G, X UH), any A € A, and any isolated Hy—component a of p,
we have dy(a—,a+) < Dn.

We will also use an isoperimetric characterization of hyperbolically embedded subgroups,
which generalizes the corresponding definition of relatively hyperbolic groups. We briefly recall
all necessary definitions and refer to [9] for more details.

Let G, {Hx}xen, H, and X be as above. The group G is a quotient group of the free

product
F = (xxeaHy) x F(X), (7)

where F'(X) is the free group with the basis X. Suppose that kernel of the natural homomor-
phism F' — G is a normal closure of a subset R in the group F'. For every A € A, we denote
by Sy the set of all words over the alphabet H) that represent the identity in H). Then the

group G has the presentation
(X,H|ISUR), (8)

where § = |J S). In what follows, presentations of this type are called relative presentations
AEA
of G with respect to X and {H)}xen.

Definition 2.13. A relative presentation is called bounded if the lengths of words from
the set R are uniformly bounded; if, in addition, for every A € A, the set of letters from H)
that appear in words R € R is finite, the presentation is called strongly bounded.

Let A be a van Kampen diagram over . As usual, a 2-cell of A is called an R-cell
(respectively, a S-cell) if its boundary is labeled by a word from R (respectively S).

10



Given a word W in the alphabet X U #H such that W represents 1 in G, there exists an
expression

k
w=p [[ 7B 9)
i=1
where the equality holds in the group F, R; € R, and f; € F for ¢ = 1,..., k. The smallest
possible number k in a representation of the form @]) is called the relative area of W and is
denoted by Area" (W).

Obviously Area™ (W) can also be defined in terms of van Kampen diagrams. Given a
diagram A over , we define its relative area, Area"(A), to be the number of R-cells in
A. Then Area” (W) is the minimal relative area of a van Kampen diagram over @) with

boundary label W.

Definition 2.14. A function f: N — N is a relative isoperimetric function of if for every
n € N and every word W of length at most n in the alphabet X U H representing 1 in G, we
have Area™ (W) < f(n). Thus, unlike the standard isoperimetric function, the relative one
only counts R-cells.

The following can be found in [0, Theorem 4.24].

Theorem 2.15. Let G be a group, {Hx}rxen a collection of subgroups of G, X a relative
generating set of G with respect to {Hx}xepn. Then {Hx}rea —n (G, X) if and only if there
exists a strongly bounded relative presentation of G with respect to X and {H)}xep with linear
relative isoperimetric function.

2.4 Weights, length functions, and metrics on groups

Throughout this section, let G denote a group. When dealing with metrics on G, it is often
convenient to restrict to those metrics which take values in non-negative integers. For this
reason, we formally introduce the following.

Definition 2.16 (The set of integral valued left invariant metrics on a group). Let M(G)
denote the set of all left invariant metrics on G taking values in NU {0}. That is, a function
d: G x G — NU{0} belongs to M(G) if and only if it satisfies the following conditions.

(M;) d is a metric on G.

(MQ) For all fag7h € G7 d(fgafh) = d(97 h)

One way to define a metric on a group is through weight functions.

Definition 2.17 (Weights on groups). A weight function on G is a map w: G — N U {0, 0o}
satisfying the following conditions for all g € G.

(W1) w(g) =0 if and only if g = 1.

(W2) w(g) =w(g™).

11



To every weight function w on G one can associate a function d,,: G — N U {0,00} by

letting
k

dw(fa g) = min { Z w(xl)

=1

x1,...,75 € G, xl-"xk:f_lg} (10)

for every f, g € G. Here the minimum is taken over all possible decompositions f~1g = z1 - - -z},
of f~1g. If the minimum in is attained at a decomposition f~1g = x1 - -z, we call it a
geodesic decomposition of f~1g.

It is easy to see that d,, € M(QG) if and only if the set
supp(w) = {g € G | w(g) < oo}
generates G. In this case we call d, the metric on G associated to the weight function w.

We now discuss the notion of an induced metric used later in this paper. Let { Hy} ca be a
collection of subgroups of G, X a generating set of G relative to { Hy} ea. That is, we assume

that
G:<XU(UHA>>. (11)
AEA

Suppose that we are also given a collection C = {dpy, } xep of metrics dg, € M(H)).

First, for every g € G, we define
Alg) ={r e Alge Hy}.
Further, let

0, if g=1,

1, if g € X\ {1},
wex(9) =0 min{d, (Lg) | A€ Alg)}, if Alg) 0 and g ¢ X,

o0, in all other cases.

Obviously we, x is a weight function on G. Let dg x = dw x be the metric on G associated
to we, x -
Definition 2.18. In the notation introduced above, we call dc,x € M(G) the metric on G

induced by the collection C' (and corresponding to a relative generating set X ).

Remark 2.19. Alternatively, the induced metric can be defined in the following non-constructive
way. Given two metrics dq,dy € M(G), we write d; < dg if di(f,g) < da(f,g) for all f,g € G.
Obviously < is a partial order on M(G). Then d¢, x is the greatest element of the subset

{de M(G) |d(1,z) =1Vzx e X\ {1} and d|g, = dg, VA € A} (12)
Indeed it is clear that d¢ x defined above belongs to the subset described by . The fact
that it is the greatest element follows immediately from and the triangle inequality.

We conclude with an elementary example.

Ezxample 2.20. Let G be a group and let H be a subgroup of G. Suppose that Y is a generating
set of H and let dy denote the corresponding word length. Let C' = {dy}. Let X be a relative
generating set of G with respect to H. Then the corresponding induced metric d¢, x on G is
dxuy, the word metric on G corresponding to the generating set X UY.
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3 The extension problem and induced actions

Throughout the rest of the paper, we deal with collections of subgroups of a given group.
Sometimes we require the collections to be finite while in other cases our arguments go through
without this assumption. To make it easier for the reader to distinguish between these situa-
tions we adopt the following convention: we use {Hi,..., H,} to denote a finite collection of
subgroups and {H)} e to denote collections which are not necessarily finite.

3.1 The extension problem for group actions on metric spaces

We begin by formalizing the extension problem for group actions on metric spaces in the most
general situation. Let G be a group and let {H)} ea be a (finite or infinite) collection of
subgroups of G.

Definition 3.1 (Extension of subgroups’ actions). We say that an action G ~ S of a group
G on a metric space S is an extension of a collection of actions {H) m~ Ry}aca of subgroups
H) < G on metric spaces Ry, A € A, if for every A € A, there exists a coarsely Hy-equivariant
quasi-isometric embedding Ry — S.

Problem 3.2 (Extension problem). Given a group G, a collection of subgroups {Hx}xea of
G, and a collection of actions {Hy ~~ Ry}xea as above, does there exist an extension of
{Hx ™~ R)}xea to a G-action on a metric space?

Definition 3.3. Given a group G and a collection of subgroups { Hy}xep of G, we say that the
extension problem is solvable for {H)}xen and G if the answer to Problem is affirmative
for every collections of actions {H)x ™ Ry}aen-

Remark 3.4. If the extension problem is solvable for a collection of subgroups {H)}xep of a
group G, then it is obviously solvable for every Hy < G. The converse is false. Indeed there is
an obvious obstacle: for any two subgroups Hi, Hy from the given collection, the given actions
of Hy N Hy on the corresponding spaces Ry and Ro must be equivalent for the extension to
exist.

As we already mentioned in the introduction, the extension problem may not be solvable
even for a single subgroup. Let us discuss some further examples.

Recall that a group G is called strongly bounded if every isometric action of G on a metric
space has bounded orbits. It is easy to show that a countable group is strongly bounded if
and only if it is finite. However, there are plenty of examples of uncountable strongly bounded
groups: Sym(N), wi—existentially closed groups, and (unrestricted) infinite powers of finite
perfect groups. For details on these we refer to [§].

Example 3.5. It is clear that whenever G is strongly bounded and H < G, no action of H with
unbounded orbits extends to a G—action.

We now turn to finitely generated groups. Recall that a finitely generated subgroup H of
a finitely generated group G is undistorted if the inclusion H — G induces a quasi-isometric
embedding (H,dy) — (G, dx), where dx and dy are word metrics associated to some (equiv-
alently, any) finite generating sets X and Y of G and H, respectively. This is obviously

13



equivalent to the requirement that there exists a constant C' such that |hly < C|h|x for all
heH.

Lemma 3.6. Let G be a group generated by a finite set X, H < G, and let d be a left invariant
metric on H. Suppose that the left action of H on the metric space (H,d) extends to an action
of G. Then there exists a constant K such that

d(1,h) < Klh|x
for allh € H.

Proof. Let G ~ S be an extension of H ~ (H,d) and let f: H — S be the corresponding
coarsely H-equivariant quasi-isometric embedding. Since f is a quasi-isometric embedding,
there is a constant C' such that for every h € H, we have

d(L,h) < Cds(f(1), f(h)+C
< C(ds(f(1),hf(1) +ds(hf(1), f(h) +C (13)

< Cdg(f(1),hf(1))+CD+C,

where D = sup,czds(hf(1), f(h)) < oo by coarse H-equivariance of f. Further by Lemma
applied to s = f(1) we have

ds(f(1), hf(1)) < M|h|x

for some constant M independent of h. Combining this with we obtain the required
inequality. O

Proposition 3.7. For any finitely generated group G and any H < G, the following hold.

(a) If the extension problem is solvable for H < G, then H is finitely generated.

(b) Suppose that H is finitely generated. Then some (equivalently, any) geometric H—-action
on a geodesic metric space extends to a G—-action if and only if H is undistorted in G.

Proof. (a) Let X denote a finite generating set of G and let dx be the corresponding metric
on G. Arguing by contradiction, assume that H is not finitely generated. Then we can find
an infinite generating set Y = {y; | ¢ € N} of H with the property that

Yir1 & Y155 i) (14)

for all i € N. We choose any increasing sequence (M;) C N such that
llirn Mi/|yi|X = o0 (15)
11— 00

and define a weight function on G by the rule

| M;, if g=y;for somei € N,
w(g) = { 0o, otherwise.

14



Let d,, be the associated metric on H. By our assumption, the left action of H on itself
endowed with the metric d,, extends to an action of G. Therefore, by Lemma [3.6) we have
dw(1,h) < Klh|x for some constant K independent of h. In particular, we have d,(1,y;) <
Klyi|x = o(M;) as i — oo by (15)). On the other hand, we have d,(1,y;) > M; for all i; indeed
every decomposition of y; into a product of elements of Y must contain an element of weight
at least M; by . A contradiction.

(b) Let X (respectively, Z) be a finite generating set of G (respectively, H). If H is undis-
torted in G, it is straightforward to verify that G ~ (G,dx) is an extension of H ~ (H,dz).
By the Svarc-Milnor Lemma (see Proposition 8.19 in Chapter 1.8 of [5]), every geometric H-
action H ~ R on a geodesic space R is equivalent to H ~ (H,dy); therefore, G ~ (G,dy) is
an extension of H n~ R as well. Conversely, suppose that H ~ (H,dz) extends to a G—action.
By Lemma there exists a constant K such that |h|z < K|h|x for all h € H. Thus H is
undistorted in G. O]

Example 3.8. Let
G = {(a,b| b tab=d?).

Then the extension problem for H = (a) and G is unsolvable. Moreover, the natural action of
H = 7 on R does not extend to an action of G. Indeed it is well-known and easy to see that
H is (exponentially) distorted in G.

Recall that solvability of the extension problem does not pass to finite index subgroups
(see Example . However we have the following result, which will be used in the proof of

Corollary

Lemma 3.9. Let G be a group, H a subgroup of G, K a finite index subgroup of H. Suppose
that the extension problem is solvable for K < G. Then it is solvable for H < G.

Proof. Let H ~ R = (H,R,«) be an action of H on a metric space R and let K ~ R =
(K,R,a|k). Let G ~ S denote an extension of K ~ R and let f: R — S be a coarsely
K—equivariant quasi-isometric embedding. Fix some r € R. Let T be a finite subset of H such
that H = KT. Further let

M = max ds(f(tr),tf(r))

and

C = max sup ds(f(ktr), kf(tr)).

Since f is coarsely K—equivariant, C is finite. For every h € H, we have h = kt for some t € T
and k € K. Therefore,

ds(f(hr), hf(r)) < ds(f(ktr),kf(tr)) + ds(kf(tr), ktf(r)) < C+ds(f(tr), tf(r)) < C+ M.

Thus f is also coarsely H—equivariant and hence G ~ S is an extension of H ~ R. O

We conclude this section with an elementary observation which allows us to reduce the
extension problem to the particular case of group actions on geodesic metric space.
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Proposition 3.10. Let G be a group acting on a metric space R. Then there exists an
extension G ~ S of G ~ R such that S is geodesic.

Proof. Let S be the complete graph with the vertex set V(S) = R. For every z,y € R such
that = # y, we identify the edge connecting = and y with a segment of length dr(x,y). This
induces a metric on S in the obvious way. The action of G on V(S) = R extends (in the usual
sense) to an isometric action on S and it is straightforward to check that the identity map
R — R =V(S) induces a G-equivariant isometric embedding R — S. O

3.2 Equivalence of group actions

We begin by showing that the relation ~ introduced in Definition is indeed an equivalence
relation. This is fairly elementary and straightforward to prove. Nevertheless, we decided to
provide a complete proof since this concept is central to our paper.

Definition 3.11. Let X and Y be two metric spaces and let «: X — Y be a map. We say
that a map §: Y — X is a (right) coarse inverse of « if

dy(acf(y),y) <e (16)
forally e Y.

Lemma 3.12. Let G ~ X and G ~ Y be two actions of a group G on metric spaces. Let
a: X — Y be a coarsely G—-equivariant quasi-isometry. Then there exists a coarse inverse
B:Y — X of a and every coarse inverse of « is a coarsely G—equivariant quasi-isometry.

Proof. Since « is a quasi-isometry, Y coincides with the e—neighborhood of «(X) for some
constant €. Therefore, to every y € Y we can associate a point 3(y) € X such that holds.
Thus we get a map 5: Y — X, which is a coarse inverse of a.

Let now C denote the quasi-isometry constant of « (as defined in the Introduction) and let
B:Y — X be any map satisfying . Giveny € Y, let

D = sup dy (a(gB(y)), g0 B(y))-

Then for every g € GG, we have

dx(B(gy),9B8(y)) < C(dy(aopB(gy),a(9B(y))) +C) <
C(dy(ao B(gy),gacB(y)) + C+ D) <

C(dy(ao B(gy), gy) + dy(g9y,9(a o B(y))) + C+ D) < C(2e + C + D).

Thus g is coarsely G—equivariant.

Further, for every 41,52 € Y, we have

dx (B(y1), B(y2)) < C(dy(ao B(y1), a0 B(y2)) + C) < C(dy(y1,y2) +2e +C) .
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Similarly, we obtain

Ax(Bly), B)) 2 & (v (o Blur), @ Blum)) — €) 2 & (dy (ur,12) 22 = ©).

Finally, we note that X belongs to the closed C(e 4+ C')-neighborhood of 5(Y). Indeed for
every x € X, we have

dx(z,Boa(r)) < C(dy(a(z),aocfoal(zx))+C) <C(e+C)
by . Thus g is a quasi-isometry. O

Proposition 3.13. The relation ~ introduced in Definition [1.10 is an equivalence relation.

Proof. Reflexivity and transitivity are obvious. That ~ is symmetric follows from Lemma

O

Recall that given a connected graph I', we can think of it as a metric space with respect to
the standard combinatorial metric (that is, the metric obtained by identifying every edge of T’
with [0, 1]). The fact stated below will be used in the next section.

Proposition 3.14. For any group G, any action of G on a geodesic metric space is equivalent
to an action of G on a graph (endowed with the combinatorial metric) with trivial vertex
stabilizers.

Proof. Suppose that G acts on a geodesic metric space S. Let I' be the graph with vertex set
V(I') = G x S and the set of edges consisting of all pairs {(g1, 1), (92, $2)} € G x S such that
ds(s1,82) < 1. The given action of G on S and the left action of G on itself extend (in the
usual sense) to an action on V(I'), which in turn can be extended to a G-action on I since we
define edges in a G-equivariant way. It is straightforward to verify that the action of G on V(T)
is free and the map s — (1, s) induces a coarsely G-equivariant quasi-isometry S — T ]

Remark 3.15. Note however that the action of G on I' constructed in Proposition [3.14] may
not be free as edges may have non-trivial (setwise) stabilizers generated by involutions. We
could make the action of G free by doubling these edges, but having free action on the vertex
set is sufficient for our goals.

Definition 3.16. Given a group G, we denote by A(G) the collection of all equivalence classes
of actions of G' on geodesic spaces (of cardinality at most c).

Definition 3.17. Given a group G, a collection of subgroups {H)}rea, and A € A(G),
(Ba)aea € XaeaA(Hy) we say that A is an extension of B if every action A € A is an
extension of every action By € B) for all A € A.

The following proposition allows us to replace ‘every’ with ‘some’ in the definition above.

Proposition 3.18. Let G be a group and {Hy}xepn a collection of subgroups of G. Let A €
A(G) and (Bx)xea € XaeaA(H)y). Then A is an extension of B if and only if for all A € A,
some action A € A is an extension of some action By € B).

Proof. This follows immediately from the fact that a composition of a quasi-isometry and a
quasi-isometric embedding (in any order) is again a quasi-isometric embedding. O
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3.3 Induced action

We are now ready to introduce the concept of an induced action. Throughout this section, let
G be a group, {Hi,...,H,} a finite collection of subgroups of G, and let X be a generating
set of G relative to {H1,..., Hy,}. Proposition and Proposition imply that in order
to solve the extension problem, it suffices to deal with actions on connected graphs whose
restrictions to vertex sets are free. Henceforth, we fix a collection of actions

.A:{Hl le,...,HnmRn}
on graphs Ry,..., R, such that the restrictions of these actions to the vertex sets V(R1), ...,

V(R,,) are free.

We denote by I'(G, X) the Cayley graph of G with respect to X. Notice that I'(G, X) is
not necessarily connected since X may not generate G by itself.

Roughly speaking, the induced action of G associated to these data is the natural action
of G on the space obtained from I'(G, X) by gluing copies of R; to all cosets gH; along a
fixed H;—orbit in R;. The construction will depend on the choice of coset representatives of H;
and particular orbits in each R;. However, all induced actions constructed in this way will be
equivalent; finiteness of the collection of subgroups will be essentially used in proving this.

To define the induced action formally, we fix a collection of base vertices
B={b,...,bn},

where b; € V(R;). For each ¢ we also fix a collection T; of representatives of left cosets of H;
in G and denote by t;: G — T; the map assigning to an element g € G, the representative of
the coset gH;. Without loss of generality, we can (and will) assume that

ti(h) =1 VY heH,. (17)
Let
T={t1,....tn}.
We call T the transversal of G with respect to {H,..., Hy}.

Foreachi=1,...,n, let

We think of Y; as a graph, which is a disjoint union of copies {gH;} X R; of R;, for all
gH; € G/H;. We endow every Y; with the combinatorial metric (which may take infinite
values as Y; is not connected unless H; = GG), so every Y; becomes an extended metric space.

We first want to define an action of G on each Y; such that:

(A1) It extends the action of H; on R; (R; is identified with {H;} x R;) in the set theoretic
sense, i.e., h(H;,r) = (H;, hr) for all h € H; and r € R;.

(A2) G permutes subsets {aH;} x R; according to the rule g({aH;} x R;) = {gaH;} x R; for
all g,a € G.
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It is fairly easy to see that there is a unique way to define such an action of G. For every
ie{l,...,n},r € R, and g,a € G, we let

g(aH;,r) = (gaH;, ai(g,a)r) (19)
where

ai(g,a) = (ti(ga)) " gti(a). (20)
Note that «;(g,a)r € R; is well-defined since «;(g,a) € H;.

Lemma 3.19. Formulas (@ and (@) define an isometric action of G on each Y; satisfying
conditions (A1) and (Agz). The restriction of this action to each vertex set V(Y;) is free.

Proof. Throughout the proof we fix some i € {1,...,n}. First let us check that the identity
element acts trivially. We obviously have a;(1,a) = (¢;(a))"'¢;(a) = 1 and hence 1(aH;,r) =
(aH;, o;(1,a)r) = (aH;, r). Further, using we obtain

ai(fg.a) = (ti(fga))~'fati(a) = (ti(fga))~" fti(ga)((t:(ga)) " gti(a)) = -
21

a;(f, ga)ai(g, a)
for all f,g,a € G. Therefore,

(fg)(aH;,r) = (fgaHi, oi(fg,a)r) = (fgaH;, ai(f, ga)ai(g,a)r) =

f(gaH;, ai(g, a)r) = f(g(aH;,r)).

Thus formulas and indeed define an action of G.

That the restriction of the action to V(Y;) is free easily follows from our assumption that
the action H; ~ V(R;) is free. Indeed assume that we have

g(aH;,r) = (aH;, 1) (22)

for some (aH;,r) € V(Y;). Without loss of generality we can assume that a € T;, i.e., t;(a) = a.
Comparing to , we obtain ga € aH; and hence t;(ga) = a. Together with , this
implies a;(g,a) = a~'ga. Again combining and , we obtain a~'gar = r. Since the
action of G on V(R;) is free, we have a~'ga = 1 and hence g = 1.

If h € H;, we obtain a;(h, 1) = (t;(h))~'ht;(1) = h using (17). This implies (A;). Condition
(Azg) follows from immediately.

It remains to show that G ~ Y; is isometric. Let y; = (a1H;, 1) and yo = (agH;,72) be
two points of Y;. First assume that a; H; # asH;. Then dy,(y1,y2) = co. By we also have
dy;(gy1, gy2) = 0o as ga1 H; # gagH; in this case. Further if a; = ag = a, then

dy; (gy1, gy2) = dr,(i(g, a)r1, ai(g, a)ra) = dr,(r1,72) = dy; (y1,92)

by and the definition of the extended metric on Y;. O
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Definition 3.20 (The induced action). Let Sx 7 5.4 denote the graph obtained by gluing Y3,
i=1,...,n, to I'(G, X) by identifying vertices g(H;,b;) € V(Y;) and g € V(I'(G, X)) for all
g€ Gandi=1,...,n. We call the graph Sx 7 5 4 the space of the induced action.

Since Sx 7 85,4 is obtained by gluing, vertices of Sx 7 5, 4 are, formally speaking, equivalence
classes. By abuse of notation, we will use representatives of these equivalence classes to denote
vertices of Sx 75 .4. Thus we think of a vertex of Sx 75 .4 is a pair (9H;,v), where g € G
and v € V(R;) for some i. If v does not belong to the H;-orbit of b;, then the equivalence
class of (¢gH;,v) consists of a single pair. Otherwise the corresponding vertex has exactly n
representatives. Indeed, in the graph Sx 7 5 4, we have

(g9Hi, ti(9) " gbi) = g(Hi, bi) = g(Hj, b;) = (gHj,t5 " (9)gb;) (23)

for alli,j € {1,...,n}.

Since the gluing maps used to construct Sx 7 5.4 are G-equivariant, the actions of G' on
graphs Y; and I'(G, X) induce an action of G on Sx 7.5 4, denoted by Indx 7 5(.A).

Since the actions H; ~ V(Y;) are free by Lemma the natural (G-equivariant) maps
Y; = Sx 784 and I'(G,X) — Sx 7,84 are injective. Henceforth, we will think of I'(G, X)
and Y;, i =1,...,n, as subgraphs of Sx 7 5.4.

Lemma 3.21. The graph Sx 75,4 15 connected.

Proof. By construction, every vertex (¢H;,v) in Sx 75,4 can be connected to the vertex g =
g(H;, b;) of I'(G, X) C Sx 78,4 inside {gH;} x R; CY;. Thus it suffices to show that every
two vertices of I'(G, X)) can be connected by a path in Sx 75,4

Let y = y(H;,b;) and z = z(H;,b;) be any two vertices of I'(G, X). Since X U (U;, H;)
generates G, we have

z=yx1hixoho ... xphm,

where z; € X U {1} and h; € H;g) for each j. By construction, any two vertices of the
form g = g(H;,b;) and gx; = gx;(H;, b;) are connected by an edge of I'(G, X'), while any two
vertices of the form g = g(H;, b;) = g(H,(j), bi;)) and gh; = gh;(H;, b;) = ghj(H;(y, b)) are
connected by a path in the subgraph {gH;;} x Ry of Sx 75.4. Thus, there is a path in
Sx,7,8,4 connecting y to z. O

We are now ready to prove the main result of this section.

Proposition 3.22. Let G be a group and let {Hy,...,Hy,} be a collection of subgroups of G.
Let X, X' be generating sets of G relative to {Hy, ..., Hy} such that | X A X'| < oo. Let

T={t1,...,tn} and T ={t,...,t,}
be transversals of G with respect to {Hy, ..., H,}. Let

A={Hi~Ry,...,H,~R,} and A ={H,~R},...,H, ~ R}
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be collections of actions on graphs R; and R) such that the restrictions of these actions to
vertex sets are free and Hy ~ R; ~ H; ~ R}, for alli. Finally let

B={by,....,bp} and B ={b},..., b}
be collections of base vertices in graphs R; and R}, respectively. Then
Indx 7 8(A) ~ Indx: 7 5 (A).
Proof. We fix coarsely H;-equivariant quasi-isometries p;: R; — R]. Since changing p; by

a bounded function does not violate the property of being a coarsely H;-equivariant quasi-
isometry, we can assume that p; maps V(R;) to V(R}) and

pi(bi) = b; (24)

without loss of generality. We also fix a constant C' such that the following inequalities hold
foralli=1,...,n:

sup dg;(pi(hbi), hpi(bi)) < C, (25)
heH;
and
dr(pi(z), pi(y)) < Cdg,(z,y) + C. (26)

To prove the proposition, we will construct coarsely G-equivariant quasi-isometries between
the vertex sets

Vi = V(SxT15.4) 25 Vo=V (Sx15.4) 2 Va=V(Sxrmu) -2 Vi=V(Sx 1p5.4)

We assume that every Vj is equipped by the metric induced from the corresponding graph; this
metric is denoted by d;.

To change the transversals we use the map defined by
p1(aH;,v) = (aH;, ti(a) " ti(a)v)

foralla € G, i =1,...,n, and v € V(R;). Notice that this map is well-defined. Indeed if a
point of Sx 7 5.4 has more than one representative of type (aH;, v), then these representatives
must be of the form and we have

e1(gHi, ti(9) " gbi) = (9Hi, ti(9) " gbi) = (9H;, t;(9) " gbs) = @1(9Hj,t;(9) " gb))
for all 4,5 € {1,...,n}.
To change the actions and basepoints, we define

. _ (aHi’ a;’(‘% 1)b;)’ ifv= O‘;(C% 1)bl7
pa(aHs,v) = { (aH;, pi(v)), otherwise,

where o/, is defined in the same way as a; using 77 instead of T i.e., o}(a,b) = ti(ab) " tat}(b).
Finally, to change relative generating sets we use the map defined by

w3(aH;,v) = (aH;,v).
As above, it is straightforward to verify that @9 and 3 are well-defined.

The proof of the proposition is based on two lemmas.
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Lemma 3.23. The maps o1, p2, and @3 are coarsely G-equivariant.

Proof. Indeed, @1 is G-equivariant:

9(¢1(aH;,v)) = glaH;, ti(a) Hi(a)v) = (gaH;, aj(g, a)ti(a) ' ti(a)v)
= (gaH;, tj(9a) ' gti(a)v) = pr(9(aH;,v)).
We next check 9. Fix some g € G. First suppose that © = a(H;,b;) for some a € G and
i€ {1,...,n}; then using we obtain
p2(g7) = p2(gaH;, o/ (ga, 1)b;) = (gaH;, o' (ga, 1)b;) = g(aH;, o' (a, 1)b]).
In particular, o2 is equivariant on vertices of I'(G, X). If =z ¢ V(I'(G, X)), then we have
g9¢p2(x) = (9aH;, (g, a)pi(v)) and @(gz) = (9aH;, pi(;(g,a)(v))). Hence

sup ds(2(97), gp2(2)) < supdg, (di(g, a)pi(r), pi(ei(g, a)v))) < oo
geG geq

since the maps p; are coarsely H;-equivariant.

Finally, for 3 there is nothing to prove, its G-equivariance is obvious. ]

Lemma 3.24. The maps p1, p2, and @3 are Lipschitz.

Proof. In each case it suffices to verify that there exists a constant K such that if two vertices
z,y € Vj span an edge in the corresponding graph, then

djp1(pj(x), 0i(y) < K (27)
for j =1,2,3.
We consider two cases.

Case 1. Assume that z and y are connected by an edge of I'(G, X)) C Sj. Then we have
r = f(H;, b)), y = g(H;,b;), and f~'g € X. It is easy to see that K = 1 works for i = 1,2 by
equivariance and for i = 3 we can take

K = sup dy(f(H;, b;), fo(H;, b)) = sup da((H;, b;), 2(H;, bi)) < oo
zeX zeX

as dq((Hi, bi), x(H;,b;)) <1for all z € X" and | X A X'| < oc.

Case 2. Next we assume that x and y are connected by an edge of Y; for some i. Then
x = (aH;,u), y = (aH;,v) and u,v span an edge of R;. In this case it is straightforward
to see that K = 1 works for i = 1,3. Let us now consider the case i = 2. If none of x, y
is of the form (aH;,a}(a,1)b;), then we can take K = 2C by (26)). Further, we can assume
that the first line in the definition of 9 applies to at most one of =, y (otherwise Case 1
applies). Thus it suffices to consider the case u = o (a, 1)b;, p2(aH;, u) = (aH;, o/ (a,1)b]) and
@a(aH;,v) = (aH;, pi(v)). Combining (24), (25)), and we obtain

d3(p2(), p2(y)) < dp;(ai(a, 1)bj, pi(v)) = dp;(ai(a, 1)pi(bi), pi(v))
< dgy(ei(a, 1)pi(bi), pi(w) + dg; (pi(u), pi(v)) < 3C.
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Let us now return to the proof of Proposition It is easy to see that (¢ and 3 are
bijective on vertex sets and the inverse maps are obtained by reversing the roles of 7 and T’
(respectively X and X') in the construction. Thus Lemmas and apply to gol_l and
P 1 as well. This easily implies that ¢; and ¢3 are quasi-isometries.

Further, recall that a map f: R — S between two metric spaces is called coarsely surjective
if there exists a constant e such that S coincides with the closed e-neighborhood of f(R). The
map (2 is coarsely surjective because so are all p;. To find a coarse inverse of @9, choose a
coarsely H;-invariant coarse inverse p) of each p; (see Definition and Lemma . The
map ¢, defined in the same way as @2 but reversing the roles of (A, B) and (A’, B') and using
the quasi-isometries p), we see that ¢5(p2(y)) = y whenever y = a(H;,b;) for some a € G,
otherwise for y = (H;,v) we have

ds(y, pa(p2(y))) < dg,(r, pi(pi(r)))

which is uniformly bounded. Thus ¢} is indeed a (coarsely G-equivariant) coarse inverse of
po. It is straightforward to check that the existence of such a map implies that ¢y is also a
quasi-isometry.

To complete the proof of the proposition, it remains to note that for every group G acting
on graphs R, S, every coarsely G-equivariant quasi-isometry V(R) — V(S) can be extended to
a coarsely G-equivariant quasi-isometry R — S. Thus the actions of G on the spaces Sx 15,4,
Sx 18,4, Sx7.8.4, and Sx 7 g 4 are equivalent. O

Recall that A(G) denotes the set of all equivalence classes of actions of a group G on
geodesic metric spaces (of cardinality at most ¢). Proposition allows us to formulate the
following.

Definition 3.25 (Induced action). Let
A= ([Hy ~Ry],...,[Hy ~Ry]) € A(Hy) X -+ x A(H,,). (28)

By Proposition we can assume that every R; is a graph and the action of H; on V(R;) is
free. We define the induced action Indx(A) € A(G) by the formula

Indy (A) = [Indx 7 5(A)],

where T is any transversal of G with respect to {Hy,...,Hy,}, B = {bi1,...,b,} is any collection
of base vertices b; € V(R;), and

A:{Hlle,...,HnmRn}.

In the situation where G is finitely generated relative to Hi, ..., H, the induced action
does not depend on the choice of finite relative generating set by Proposition SO we may
also define a map

Ind: A(Hy) % -~ x A(Hy) — A(G)

by the formula
Ind(A) = [Indx,7,5(A)],

for every A as in (28), where X is any finite relative generating set.
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Notice that properness and coboundedness of a group action of a metric space is invariant
under equivalence. Thus it makes sense to define proper and cobounded elements of A(G).
The following proposition summarizes some elementary properties of the induced action, which
follow immediately from our construction.

Proposition 3.26. Let G be a group, {Hi,...,H,} a collection of subgroups of G, X a
generating set of G relative to {H1,...,Hy}. Let A= (A1,...,Ayp) € A(Hy) x -+ x A(Hy,).

(a) Assume that A; is cobounded for all i. Then so is Indx(A).

(b) Suppose that H; is generated by a set Y; and let Y = \J!_,Y;. If Ay = [H; ~ T'(H;,Y;)],
then Indx(A) =[G ~T(G,X UY)].

(¢) If G is finitely generated relative to {Hy, ..., H,} and A; is proper for all i, then Ind(A)
1S proper.

In order to better understand the construction of the induced actions, we also recommend
the reader to consider the following.

Example 3.27. Let G be the fundamental group of a finite graph of groups with vertex groups
{Gy}vev. Let A = (A,)pev be the collection of equivalence classes of trivial actions A, =
[Gy, ~ {pt}]. Then G is finitely generated relative to {Gy},ev and Ind(A) is the equivalence
class of the action of G on the associated Bass-Serre tree.

3.4 Incompressible subgroups

Our next goal is to introduce the notion of an incompressible collection of subgroups and
to prove Theorem [1.11}] The reader is encouraged to review Section 2.4 before reading the
following.

Definition 3.28 (Incompressible subgroups). Let G be a group, { Hy}ea a (possibly infinite)
collection of subgroups of G, and let X be a generating set of G relative to {H)} en. We say
that the collection {H\}rea is incompressible in G with respect to X if for every collection
C = {dn, }ren of left invariant metrics dg, € M(H)), the inclusion map Hy — G gives rise
to a quasi-isometric embedding (Hy,dn,) — (G,dc,x) for every A € A, where d¢ x is the
corresponding induced metric on G (see Definition .

Further, if G is finitely generated with respect to {H)}rea, we say that the collection of
subgroups {H)}aea is incompressible in G if it is incompressible with respect to some finite
generating set X of G relative to {H)}xea. In particular, this definition makes sense if G is
finitely generated.

We could replace “some finite generating set” with “any finite generating set” in the defi-
nition above. Moreover, we have the following.

Lemma 3.29. Let X,Y be two generating sets of G with respect to {Hx}xepn such that the
symmetric difference X AY is finite. Then {H)}xen is incompressible with respect to X if and
only if it is incompressible with respect to 'Y .
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Proof. 1t is easy to see using the definition of the induced metric that for every collection
C = {dm, }rea of left invariant metrics dy, € M(H)), the identity map (G,d¢c x) = (G,dcy)
is Lipschitz with the Lipschitz constant max,cx{|z|y }; the maximum exists since XAY is
finite. O

In particular, Lemma holds true if both X and Y are finite.

The main result of this section is the following (Theorem is clearly a particular case
of it).

Theorem 3.30. Let G be a group, {Hi,...,Hy,} a collection of subgroups of G. Suppose that
G s finitely generated relative to {Hy, ..., H,}. Then the following conditions are equivalent.

(a) The extension problem for {Hi,...,Hy,} and G is solvable.
(b) {Hi,...,Hp} is incompressible in G.
(c) For every A € A(Hy) x -+ x A(Hy,), Ind(A) is an extension of A.

Using this and Proposition we see that incompressible subgroups are finitely generated
and undistorted. Example [1.6] shows that the converse fails.

We break the proof of Theorem [3.30] into two lemmas.

Lemma 3.31. Let G be a group, {Hi,...,Hy,} a collection of subgroups of G. Suppose that
G is finitely generated modulo {Hy,...,Hy,} and the extension problem for {Hy,...,Hy,} and
G s solvable. Then {Hy,...,Hy} is incompressible in G.

Proof. Given a collection C' = {dp,,...,dn, } of metrics dy, € M(H;), let dc x be the metric
on G induced by C and a finite relative generating set X (see Definition . For each 1, let
@i: (H;,dn,) = (G,dc,x) be the map induced by inclusion. Our goal is to prove that it is a
quasi-isometric embedding. It is clear that ¢; is Lipschitz. Thus we only need to prove that
p; cannot “compress points too much,” i.e., that it satisfies the left inequality in .

Our proof will be based on the following observation, which is straightforward to verify
using the definitions: if a composition of two Lipschitz maps is a quasi-isometric embedding,
then each of these maps is a quasi-isometric embedding.

Let G ~ S be an extension of {H; ~ (H1,dm,),...,Hy ~ (Hy,dpg,)}. By the defini-
tion of an extension, for every 7 there is a coarsely H;-equivariant quasi-isometric embedding
Bi: (Hi,dm,) = S. We fix s € S. Without loss of generality we can assume that ;(1) = s for
all 7.

Assume that each (; satisfies the definition of a quasi-isometric embedding and the
property of being coarsely H;-equivariant with a constant K. Since

sup {ds(hs, Bi(h))} = sup {ds(hB(1), Bi(h1))} < K,
heH; heH;

the orbit map O : (H;,dn,) — (His,ds) is also a quasi-isometric embedding. It is clear that

Oy, = O o ;.
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As we remarked above, it suffices to show that Of, is Lipschitz.

Let f,g € G and let f; ... fi be a geodesic decomposition of f~lg; that is,

f1, ...,fke<XUUH>\{1} and de x(f,9) chxf]
=1
If f; € H; for some i and we, x (f;) = dm, (1, fj), then
ds(s, fjs) = ds(Bi(1), Bi(f3)) + ds(Bi(f), [;8:(1)) < Kdp, (1, f;) + 2K < Kwe x(f;) + 2K.

As f; # 1, it follows that we x (f;) > 1, and thus dg(s, fjs) < 3Kwe, x(f;). Further, if f; € X,
then dg(s, fjs) < M = maxgecx dg(s,xzs). Hence, we have

s(fs.9s)

IIMw

k
Z 3K+M wcx(fj) (SK—I—M)dC,X(f,g)-
7j=1

Thus, OF, is Lipschitz, as required. O

Lemma 3.32. Let G be a group, {Hi,...,H,} a collection of subgroups of G, X a (not
necessarily finite) generating set of G modulo {Hy,...,Hp}. Suppose that {Hy,..., H,} is
incompressible in G with respect to X. Then for every A € A(Hy) X --- x A(Hy), IndX (A) is
an extension of A.

Proof. Let A = (A4,...,A,). By Proposition we can choose H; ~ R; € A; for each ¢
so that R; is a graph and the action of H; restricted to the vertex set of R; is free. We fix a
transversal 7 = {t1,...,t,} and a collection of basepoints B = {b1,...,b,} as in Section 3.3.
Let S = Sx, 78,4, where A = {H; ~ Ry,...,H, ~ Ry}, be the space of the induced action
(see Definition [3.20]).

By Proposition [3.18] it suffices to prove that, for each 4, the natural inclusion
Vi V(R) = V(S) given by ;(r) = (H;,7)

is an H;-equivariant quasi-isometry. The H;-equivariance follows immediately from condition
(A1) in the definition of the induced action. Note that 1); extends to an embedding of R; as a
subgraph of S, so each ); is 1-Lipschitz. Thus we only need to prove that ; satisfies the left
inequality in the definition of a quasi-isometric embedding .

We define left invariant metrics dg, on subgroups H; by

du, (91, 92) = dg,(91bi, g2b;) (29)

for all g1,92 € H;, and set C = {dg,,...,dn,}. Since {Hi,...,H,} is incompressible, there
exists a constant D > 1 such that

dw,(91,92) < Dde,x (g1, 92) (30)

for all ¢1, 92 € H;.

26



We claim that
dex(91,92) < ds(g1(H;, bi), g2(H;, b)) (31)
for any g1,92 € G. (In fact, this is an equality, but the inequality is sufficient for our goal.)

Indeed let p be a geodesic path in the graph S connecting g1(H;,b;) to ga(H;,b;). Let
vy = g1(H;, bi),v2, ..., k11 = g2(H;, b)) be consecutive vertices of p that belong to G(H;, b;),
the set of vertices of I'(G, X) considered as a subgraph of S. That is, for every j =1,..., k+1,
we have v; = u;(H;, b;) for some u; € G (recall that these are independent of the choice of 1,
see ), where u; = g1 and ug41 = g2. Let f; = uj_l'U/j+1. For every j = 1,...,k, the vertices
vj,vj+1 either span an edge of I'(G, X) or simultaneously belong to some

Zj = {ujHig)} % Rij) = {uj1Hi)} < Rigj).-
In the former case, we have f; € X and therefore

wex (fj) =1 =ds(vj,vj41).

In the latter case, we have f; € H;y and vj11 = u;fi(Hy), bij)) = wj(Higy, fibi;)) by
property (Aj) (see Lemma (3.19)). Hence

we,x (f5) < dmyg) (1, f5) = dryg, (0i)s Fibi)) = dvig, ((Hiy, b)), (Higy, fibiy))
= dy ;) (uj(Higg), b)), wi (Higy), £ibis)) = vy (v, 0541) < ds(vj,vj41),
where Yj is defined as in Section 3.3, see (18)). Therefore,

k k
dex(g1:92) =dex (g, g1fi -+ fi) <D wex(fi) < ds(vy,vj41)

j=1 j=1
= ds(91(Hi, b;), g2(H;, b;)).

This finishes the proof of .

Now let i be fixed and let 1,7 be vertices of R;. Let ¢ be a geodesic path from (H;,71) to
(Hj,r2) in S. If this path does not intersect G(H;, b;), then dg,(r1,r2) = ds(¢i(r1), i(r2)) and
we are done. Otherwise, let g1 (H;, b;) and go(H;, b;) be the first and last vertices in ¢gNG(H;, b;).
Clearly g1, g2 € H;. Using , , and we obtain

ds(i(r1),vi(r2)) = ds((Hi, r1), (Hs, g1bs)) + ds((Hy, g1bs), (H;, g2bs)) + ds((Hy, g2bs), (Hy, r2))
> dg, (71, 91b;) + de x (91, 92) + dg, (g2bi, 72)
> dpg, (1, 91b;) + D™ 'dp, (g1, 92) + dr, (g2bi, 2)
= dg, (r1, 91b:) + DR, (91bi, g2bi) + g, (g2bi, 2)
> DY dg, (r1,72). O

Proof of Theorem [3.30, That (a) implies (b) follows from Lemma Further (b) implies (c)
by Lemma Finally, (c) implies (a) by Proposition O
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4 Proofs of the main results

4.1 The extension problem for elementary amenable groups

Recall that the class of amenable groups is closed under the following four operations:

(S) Taking subgroups.

)
(Q) Taking quotient groups.
(E) Group extensions.

)

(U) Directed unions.

As in [I0], let EG denote the class of elementary amenable groups, that is, the smallest
class which contains all abelian and finite groups and is closed under the operations (S)—(U).
In particular, EG contains all solvable groups.

To prove Theorem we will need several elementary facts. The first one is well-known;
we provide a brief outline of the proof for convenience of the reader.

Lemma 4.1. Every subgroup of a finitely generated virtually abelian group is undistorted. That
is, if G is a virtually abelian group generated by a finite set X and H < G is generated by a
finite set Y, then the natural map (H,dy) — (G,dx) is a quasi-isometric embedding.

Proof. Let A < G be a free abelian subgroup of finite index in G. It is easy to show that
H is undistorted in G if (and only if) H N A is undistorted in A. The latter result follows
from the well-known (and easy to prove) facts that every subgroup of a finitely generated free
abelian group A is a retract of a finite index subgroup of A and that retracts and finite index
subgroups of finitely generated groups are undistorted. O

The following lemma can be found in [15].

Lemma 4.2. Let G be an elementary amenable group such that every subgroup of G is finitely
generated. Then G is virtually polycyclic.

The next result is also well-known (see, for example, the proof of Proposition 4.17 in [5]).

Lemma 4.3. Let G be a virtually polycyclic group. If every subgroup of G is undistorted, then
G is virtually abelian.

We are now ready to prove Theorem
Proof of Theorem[1.7, Assume first that G is a finitely generated virtually abelian group that
splits as described in Theorem We want to show that the extension problem is solvable for

all H < G. By Lemma(3.9] we can assume that H < A without loss of generality. Furthermore,
by Theorem it suffices to show that every H < A is incompressible in G.
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Let X be a finite generating set of G. Let C = {dg}, where dg € M(H) (see Definition
. Let we,x and de x denote the corresponding weight function and the induced metric
on G (see Definition . Finally let Y be a finite generating set of H. By Lemma there
exists a constant D such that

hly < Dihlx (32)

for every h € H.

Let
g=fr-.. fx (33)

be a geodesic decomposition of an element g € H; that is, we have f; € X U H for all 4 and
k
dox(1,9) =Y wex(fi): (34)
i=1

By our assumption, for every a € A and every g € G, we have
ga =atlg. (35)

In particular, this is true for every a € H since H < A. We can rearrange the multiples in
using so that fi,..., fn € X\ {1} and fo41,...,fx € H\ (X U{1}) for some 0 < n < k.
Let f=fi1--fnand h = fu41--- fr; we assume here that f = 1 (respectively, h=1)if n =0
(respectively, n = k). Thus g = fh. Since g,h € H, we have f € H. Since Y is finite, there
exists M = maxycy du(1,y). Using we obtain

du(L, f) < M|fly < MD|f|x < MDn =MD wecx(f)

i=1
and
k k
du(1,h) < Y du(L, fi) = > wex(fi).
i=n+1 i=n+1

Taking these two inequalities together and using , we obtain

k
dH(lvg) < dH<17 f) + dH(la h) < (MD + 1) ZwC,X(fi> = (MD + 1)dC7X(17g)'
i=1
Hence dg(a,b) < (MD+1)d¢c x(a,b) for all a,b € H. This completes the proof of the backward
implication in Theorem

To prove the forward implication, we first note that if the extension problem is solvable
for all H < G, then G must be virtually abelian. Indeed by part (a) of Proposition and
Lemma [£.2] the group G must be virtually polycyclic and hence it is virtually abelian by part
(b) of Proposition and Lemma Let A <G be a finite index free abelian subgroup of G.
We will first show that holds for all a € A and g € G. (Note that this is a priori weaker
than the assumption that the action of @ = G/A on A factors through the action of Z/27Z
by inversion as the exponent of a in the right side of may depend on a.) Since A is free
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abelian, it suffices to prove under the assumption that a is not a proper power, i.e., (a) is
a maximal cyclic subgroup of A.

Arguing by contradiction, assume that gag~! = b # a*! for some a € A and g € G. If
(a, b) is cyclic, then b = a™ for some n € Z since (a) is a maximal cyclic subgroup of A. Hence
we have gag~! = a™ and n # £1. Since A is of finite index in G, there exists k € N such that
g* € A and we have
a=gtag™" = a”’.
This contradicts the assumption that A is torsion free.

~

Thus the subgroup H = (a, b) has rank 2 and therefore is naturally isomorphic to (a)® (b) =
7Z?. Let H ~ R be the action of H such that a acts trivially and b acts by translation: bz = z+1
for all z € R. Then for any extension G ~ S of H ~ R, the subgroup (a) will have bounded
orbits in S while the orbits of (b) will be unbounded. However this is impossible as these
subgroups are conjugate in G. This means that the action H ~ R does not extend to an
action of G.

Thus we have for all a € A and g € G. To complete the proof it remains to show that
the choice of the exponent in the right side of depends only on g. Assume that there are
a1,as € A\ {1} such that ga;g~! = a1 and gasg™! = a2_1. Then a1a2_1 = gajazg~! = (a1az)™'.
However the equality ajas L (ara)™! is impossible for non-trivial elements a;, as of a free
abelian group. This contradiction completes the proof. O

4.2 Lipschitz retractions to hyperbolically embedded subgroups

Our next goal is to show that hyperbolically embedded collections of subgroups are incom-
pressible with respect to suitable relative generating sets. We prove a slightly stronger result,
Proposition [£.6] which seems to be of independent interest and may have other applications.

Throughout this section we fix a group G, a (possibly infinite) collection of subgroups
{H\}aen of G, and a generating set X of G relative to {H)}aea. Until Proposition we do
not assume that { Hy} ca is hyperbolically embedded in G.

Definition 4.4 (Equivariant nearest point projection). For every g € G and A € A, let
m: G — H) be a map satisfying

dxun (9, m(9)) = f{g}g dxun (g, h). (36)

Then we call 7y a nearest point projection of G to Hy. If, in addition, my(hg) = hmwy(g) for
all h € Hy and g € G, we say that ) is an equivariant nearest point projection. (Note that
“equivariant” refers to “Hy—equivariant”, not “G—equivariant” here.)

Lemma 4.5. For every A € A, an equivariant nearest point projection wy: G — H) exists.

Proof. Let Ty be the set of representatives of right cosets of Hy in G. For every t € T}, define
m(t) to be an arbitrary element of H satisfying and for every g € Hyt define

ma(g) = gt~ ma(t). (37)
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Then we have
dxun (9, m(9)) = dxun (9, gt~ ' ma(t)) = dxun (£, ma(1))-
On the other hand, we obtain

dxun (9, Hy) = dyxun (tg g, tg T H)) = dxun (t, Hy) = dxuw (8, mA(1))

since tg~! € H)y. Therefore, dxuy (9, 7m2(9)) = dxun (g, Hy), i.e., Ty is indeed a nearest point
projection. It remains to note that for every ¢ € Th, h € Hy, and g € H,t, we have hg € H,t.

Using we obtain
mA(hg) = hgt~'mA(t) = ha(g),

i.e., ) is equivariant. ]
The main result of this section is the following.

Proposition 4.6. Suppose that {H)}xcpn —n (G, X) and let C = {dg, }rer be a collection
of metrics dg, € M(H)). Let dc,x denote the corresponding induced metric on G. Then for
every A € A, every nearest point projection wy: G — H) induces a Lipschitz map (G,dc x) —
(H)\v dHA ) .

Proof. Throughout this proof, we fix A € A. Let K be a positive integer satisfying
K > max{dy,(1,h) | h € Hy, dx(1,h) < 4D}, (38)

where D is the constant from Lemma .12 Note that the maximum is taken over a finite set
since {Hy}xea —n (G, X). We will show that for every f,g € G,

da, (mA(f), ma(9)) < Kdex (f, 9)- (39)

Let f~'g = fi--- fi be a geodesic decomposition. That is, fi,..., fi are elements of the

set
Y =XU (U HA>
AEA
and
k
dox(f,9) = wox(fi)- (40)
i=1
To prove we first show that
da, (ma(a), ma(at)) < Kwex (1) (41)

foreverya e Gand t €Y.

To this end we denote by u (respectively w) a geodesic path in I'(G, X UH) that goes from
mz(a) to a (respectively, from at to my(at)). Without loss of generality, we can assume that
t # 1. Let e be the edge labeled by an element of H) that connects 7y (at) to my(a). Finally,
let v denote the edge of I'(G, X UH) starting at a and labeled by t (see Fig. |1f).
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Figure 1: The proof of Proposition

If e is connected to an edge € of u labeled by an element of Hy, then e/ € Hj and
dxun (a,€/,) < dxuy (a,mx(a)), which contradicts our assumption that 7y is a nearest point
projection. Similarly e cannot be connected to an edge of w labeled by an element of Hy. Thus
e is an isolated Hy—component of the path weu.

‘We now consider two cases.

Case 1. First assume that e is isolated in the geodesic quadrilateral p = weuwv. Then
dx(ma(a), mx(at)) = dy(e—,ey) < 4D

by Lemma Therefore, dg, (mx(a),mx(at)) < K by [3§). In particular, holds since
we,x takes values in NU {0} and we x(t) = 0 only if ¢t = 1.

Case 2. Suppose now that e is not isolated in p. Since e is isolated in weu, it can only be
connected to v. In particular, we have t € H). Without loss of generality, we can also assume
that

wC7x(t) = dH)\(l, t) (42)

in this case. Indeed, recall that labels of edges of I'(G, X U H) are taken from the disjoint
union of X and subgroups H,, € A. Thus if we also have ¢t € H,, for some 1 # A, we can
simply replace v with another edge of I'(G, X LI'H) with the same endpoints as v and the label
t € H,,, which makes Case 2 impossible. Similarly we rule out the case t € X. Thus, without
loss of generality, we can assume that ¢t ¢ X and A(t) = {A} in the notation of Definition
hence holds by the definition of w¢ x.

Since e is connected to v, we have a = v_ € Hy and at = v4 € H). Since ) is a nearest
point projection, it is identical on Hy. In particular, we have my(a) = a and 7)(at) = at.
Therefore, by we have

dHA(W,\(a),m\(at)) = dH)\(a, at) = dHA(l,t) = wcyx(t)

in this case. This completes the proof of .

Now let
ho =mA(f), hai=m(ff1), -y he=mA(ff1- fx) = mA(g)
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Using the triangle inequality, and , we obtain

k k
da, (ma(f),ma(9) < D diy (himr, hi) <) Kwex (fi) = Kdox (f, 9)-
=1 =1

O]

Since every nearest point projection G — H) is the identity on Hy, we obtain the following
corollary of Lemma [£.5 and Proposition

Corollary 4.7. Assume that {Hx}xen —n (G, X). Then for every collection of left invariant
metrics C = {dp, }, where dg, € M(H)), and every A € A, there exists an H)—equivariant
Lipschitz map (G,dc,x) — (Hx,dm,) whose restriction to Hy is the identity map.

Finally, we pass from the property of being a Lipschitz retract to the property of being
undistorted. This is a fairly standard argument.

Corollary 4.8. Suppose that {H)}xepn —n (G, X). Then {Hx}xep is incompressible in G
with respect to X. In particular, if G is finitely generated and hyperbolic relative to a collection
of subgroups {H1,...,Hy,}, then {Hy,...,Hy,} is incompressible in G.

Proof. Fix any A € A. Let C' = {dg, }, where dg, € M(H)). Let mx: (G,dc,x) = (Hx,dm,)
be a Lipschitz map whose restriction to H) is the identity map. Let L be the corresponding
Lipschitz constant. Then for every g, h € H), we have

dm, (9, h) = dm, (7a(9), ma(h)) < Ldc,x (g, h)-

The opposite inequality dc x (g, k) < dg, (g, h) for all g,h € H is obvious from the definition
of the induced metric. Thus the inclusion H)y — G induces a quasi-isometric embedding
(Hx,dm,) — (G,dc,x). To derive the claim about relatively hyperbolic groups we only need
to refer to Proposition [2.9 O

4.3 Extending actions of hyperbolically embedded subgroups

Recall that an equivalence class A € A(G) is called hyperbolic if it consists of G-actions on
hyperbolic metric spaces. The main goal of this section is to prove the following result; Theorem
follows from it immediately via Proposition [2.9

Theorem 4.9. Let G be a group, {H1,...,H,} a collection of subgroups of G, and let X a be
relative generating set of G with respect to {Hu,...,Hy}.

(a) Suppose that {Hq,...,Hy,} <, (G,X). Then for every collection
A= (Ay,...,An) € A(Hy) x -+ x A(Hy), (43)

the induced action Indx (A) is an extension of A; if, in addition, each A; is hyperbolic,
then so is Indx (A).
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Figure 2: Constructing the loop ¢

(b) Conversely, suppose that Hy,...,H, are countable and for every collection , where
each A; is hyperbolic, the induced action Indx (A) is a hyperbolic extension of A. Then
{Hy,...,Hy} —p (G, X).

Proof. (a) That Indx(A) is an extension of A follows from Corollary and Lemma [3.32]
Thus we only need to prove hyperbolicity. The proof is fairly standard; it essentially repeats
the proof of [0 Lemma 6.45] with obvious adjustments.

For details about van Kampen diagrams, isoperimetric functions, etc., we refer to Sec-
tion 2.2 and [9]. Given a (combinatorial) path p in a van Kampen diagram A over a group
presentation, we denote by Lab(p) the label of p.

Theorem [2.15] provides us with a strongly bounded relative presentation
G=(X,H|SUR) (44)

with linear relative isoperimetric function.

Let A = {Hy ~ Ry,...,H, ~ Ry}, where for each i we have H; ~ R; € A;, R; is a
hyperbolic graph, and the action of H; restricted to the vertex set of R; is free. We fix some
transversal 7 and collection of base points B as in Section 3.3 and let G ~ S = Indx 7 5(A) €
Indx(A). In what follows we naturally think of I'(G, X) as a subgraph of both I'(G, X L H)
and S.

We will show that condition (b) from Proposition holds for S. Let ¢ be a loop in S.
Without loss of generality we can assume that ¢ has at least one vertex in I'(G, X)) as otherwise
it is contained in a copy of a hyperbolic graph R; and the isoperimetric inequality follows.
(Notice that we need finiteness of the collection {Hj, ..., H,} here to ensure uniformness of
the isoperimetric constants.)

To every such ¢ we associate a loop in I'(G, X UH) as follows. Let by, ..., by be the set of
all maximal subpaths of ¢ such that each b; belongs to some {g; H j(i)} X Rj(;). We replace each
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b; with the corresponding edge e; in I'(G, X U H) connecting (b;)— to (b;)+ and labeled by an
element of Hj(;). This naturally defines a loop ¢’ in I'(G, X LUH).

Consider a van Kampen diagram A over such that:

1) The boundary label of A is Lab(¢).

2) A has minimal number of R-cells among all diagrams satisfying 1).

)
)

3) Every edge of OA labeled by a letter from H belongs to an S-cell.
)

4) A has minimal number of S-cells among all diagrams satisfying 1)-3).

Note that we can always ensure 3) by gluing cells labeled by hh~! where h € H (the so-called
0O-cells) to the boundary of A. In what follows we identify OA with ¢

The maps e; — b; naturally induce a continuous map ¢ from ¢’ to S whose image is c.
Observe that 4) implies that no edge of A can belong to two S-cells, for otherwise these S-cells
could be replaced with a single cell. Thus every internal edge e of A belongs to an R-cell
and hence Lab(e) € X UY, where Y is the set of all letters from H that appear in relations
R € R. Since is strongly bounded, Y is finite. By Proposition and Lemma we
can assume without loss of generality that for every y € Y there exists x, € X such that x,
and y represent the same element of G. This allows us to extend ¢ to the 1-skeleton of A by
mapping every internal edge e of A to the corresponding edge of I'(G, X)) C S (edges labeled
by y € Y are mapped to the corresponding edges labeled by z, € X).

Let f(n) = Cn be a relative isoperimetric function of and let M = maxpger || R||. Note
that M < oo as is bounded. The map ¢: Sk(l)(A) — S gives rise to a decomposition of
[c] into the sum of at most C¢(c) homotopy classes of loops of length at most M corresponding
to R-cells of A (here we use the fact that no e; belongs to the boundary of an R-cell, which
is ensured by 3)) plus [s1] + - + [s;], where all s; are images of boundaries of S-cells of A.
Clearly the total length of all loops [s;] does not exceed 2 times the total number of internal
edges of A plus ¢(c). Again taking into account that every internal edge e of A belongs to an
R-cell and using the isoperimetric inequality we obtain

zmzﬁ(si) <2MCU) + L(c) < (2MC + 1)l(c). (45)

i=1

Note that every s; is a loop in {g;H;(;) } X R;(;) for some g; € G and j(i) € {1,...,n}, which
is an isometric copy of the (hyperbolic) graph Rj(;). Therefore there exist constants A, B such
that every [s;] decomposes into the sum of at most A¢(s;) homotopy classes of loops of length
at most B. Consequently [c] decomposes into the sum of at most (C + A2MC + 1)){(c)
homotopy classes of loops of length at most max{M, B}. This completes the proof of (a).

(b)Applying Proposition to the collection A = (Ay,...,A,), where A; = [H;
I'(H;, H;)], we obtain that Indx (4) = [G ~ I'(G, X UH)]. It follows from our assumption that

the relative Cayley graph I'(G, X LI H) is hyperbolic. Thus it remains to verify condition (b)
from Definition 2.8
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Arguing by contradiction, assume that condition (b) from the definition of a hyperbolically
embedded collection of subgroups does not hold. We are going to construct a specific collection
of actions of subgroups H; on hyperbolic spaces such that the corresponding induced action of
G is not a hyperbolic extension.

By the Higman-Neumann-Neumann theorem, every countable group embeds in a finitely
generated group. We embed H; into a finitely generated group K;. Let Z; be a finite generating
set of K; and let |- |z, denote the corresponding word length. That is, for some j € {1,...,n},
some C' € N, and every N € N, there exist a path ¢ of length at most C in

A; =T(G, X UH)\ E(T(Hj, Hy))

connecting 1 to a vertex h € Hj such that |h|z, > N. Let R; = H(I'(Kj;, Z;)) for all i (see
Definition and let A= (Hy ~ Ry,...,H, ~ Ry).

We fix some transversal 7 and a collection of base points B as in Section 3.3. By Lemma
all R; are hyperbolic. Therefore, so is the space S = Sx 7 5.4 of the induced action.
Let u = gr, where r is the edge of I'(G, X LIH) labeled by h=! € Hj; and connecting h to 1.
Then r is an isolated H;-component of u. Let v be a loop in S obtained from u by replacing
all H;-components of w (for all i) with geodesics in corresponding graphs {gH;} x R;. We
call these subpaths of v R;-components. Since Indx(A) is an extension of A, geodesics in the
graphs {gH;} x R; are (A, ¢)-quasi-geodesics in S for some A > 1, ¢ > 0.

Let s denote the subpath of v corresponding to the H;-component r of u; thus s is a geodesic
in {1H,} x R; and therefore it is a (), ¢)-quasi-geodesic in S. If N is large enough compared to
C, the hyperbolicity constant § of S, and the constant » = (4, \, ¢) provided by Lemma
the combination of Lemma[2.2)and Lemma 2.3 provide us with a subpath sg of s and a subpath
to of some other R;-component ¢ of v such that so and ¢y belong to (2s¢ 4+ 15d)-neighborhoods
of each other and ¢(sg) > 2(2sc + 155) + 4. Note that ¢ cannot belong to {1H;} x R; as r is
an isolated Hj-component of u. Since sg is a geodesic in {1H;} x R;, which is an isometric
copy of the combinatorial horoball R;, it must contain a vertical subsegment of length greater
than 2sc4 15§ by Lemma Thus sy cannot belong to the closed (2s¢+ 15§)-neighborhood of
I'(G, X). This contradicts the fact that sy belongs to a (2s¢+ 150)-neighborhood of . Indeed
to belongs to some {gH;} x R; # {1H;} x R; and every path in S originating in {1H;} x R;
and terminating in {gH;} x R; must intersect I'(G, X). This contradiction completes the proof
of part (b) of Definition and the theorem. O

The following immediate corollary is a generalization of Theorem

Corollary 4.10. Let G be a group, {Hi,...,Hy} a collection of hyperbolically embedded sub-
groups of G. Then the extension problem for {Hu,...,H,} and G is solvable.

Yet another corollary follows immediately from Theorem and Proposition 2.9

Corollary 4.11. Let G be a group, {Hi,...,Hy} a collection of subgroups of G.

(a) Suppose that G is hyperbolic relative to {Hy,...,Hy}. Then for every collection ,
the induced action Ind(A) is an extension of A and if each A; is hyperbolic, then so is
Ind(A).
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(b) Conversely, suppose that G is finitely generated relative to {Hy,...,Hy}, the subgroups
H,y,...,H, are countable, and for every collection , where each A; is hyperbolic,
Ind(A) is a hyperbolic extension of A. Then G is hyperbolic relative to {H1,...,Hy}.

We consider a couple of examples illustrating that part (b) of Theorem can fail under
certain weaker assumptions.

Ezample 4.12. Let H = Sym(N) and let G = H xZ/27. As we already mentioned, all actions of
H on metric spaces have bounded orbits. This easily implies that for every A € A(H), Ind(A)
is an extension of A. In addition, if [H ~ R] is hyperbolic then the space of the induced
action is quasi-isometric to two copies of R glued along a bounded subset; in particular, this
space is also hyperbolic. Thus all assumptions of part (b) of Theorem are satisfied except
countability of H. However the conclusion fails: G is not hyperbolic relative to H as peripheral
subgroups of relatively hyperbolic groups must be almost malnormal.

Ezample 4.13. Let G = Z x Z/2Z. Then H = Z x {1} < G is a retract of G, hence every
action of H on a hyperbolic space extends to an action of G on the same hyperbolic space, see
Example (b). However G is not hyperbolic relative to H. This shows that the condition
that Ind(A) is a hyperbolic extension of A for every hyperbolic A € A(H) cannot be replaced
with the assumption that every action of H on a hyperbolic space extends to an action of G on
a hyperbolic space. More specifically, when the action A is of Z on its combinatorial horoball,
the action Ind(A) is on the Cayley graph of G where we attach a combinatorial horoball onto
each coset of Z. This space is not hyperbolic.

We now turn to the proof of Corollary from the introduction. Recall that two elements
a, b of infinite order of a group H are called commensurable in H if some non-trivial powers of
a and b are conjugate in H. We will need the following.

Definition 4.14. We say that a group embedding H < G is commensurability preserving if
infinite order elements of H are commensurable in H whenever they are commensurable in G.

Example 4.15. If H is almost malnormal in G, then the embedding H < G is commensurability
preserving. Indeed suppose that a,b € H are infinite order elements and are commensurable
in G. Then there exists t € G and m,n € N such that t~'a™t = b*". In particular, the
intersection H N t~'Ht contains (b") and therefore it is infinite. By almost malnormality,
we get t € H, which means that a and b are commensurable in H. Note, however, that
malnormality is a strictly stronger condition. (Hint: consider the embedding 27 < Z.)

We will need two more lemmas.

Lemma 4.16. Let H be a subgroup of a hyperbolic group G and let a,b € H be two non-
commensurable (in H) elements of infinite order. Then there exists an action of H on a
metric space such that the orbits of {(a) are bounded while the orbits of (b) are unbounded.

Proof. By [9, Theorem 6.8] applied to the action of H on the Cayley graph of G with respect
to a finite generating set, a and b are contained in virtually cyclic subgroups E(a), E(b) of H
such that {E(a), E(b)} <, (H, X) for some X C H. Let A € A(E(a)) be the equivalence class
of a geometric action of E(a) and let B € A(E(b)) be the the equivalence class of the trivial
action on the point. By Theorem there is an extension of the pair (A4, B) to an H-action
C € A(H). Clearly C satisfies the required conditions. O

37



Lemma 4.17. Let G be a virtually cyclic group. Then the extension problem is solvable for
all subgroups of G.

Proof. Without loss of generality we can assume that G is infinite. Let A = Z be a normal cyclic
subgroup of finite index in G. It is clear that Theorem [1.7| applies to G since Aut(Z) = Z/2Z.
Thus the extension problem is solvable for all subgroups of G. O

Corollary [T.9] is a simplified version of the following.

Corollary 4.18. Let G be a hyperbolic group.

(a) Suppose that H is quasiconvex in G and either virtually cyclic or almost malnormal.
Then the extension problem is solvable for H < G.

(b) Conversely, if the extension problem is solvable for a subgroup H < G, then H is quasi-
convez and the embedding H < G is commensurability preserving.

Proof. (a) Assume first that H is quasiconvex and almost malnormal. Then by a result of
Bowditch [3], G is hyperbolic relative to H and hence the extension problem for H < G is
solvable by Theorem [3.30] Now assume that H is virtually cyclic. If H is finite the claim is
obvious, so we assume that H is infinite. Then there exists a maximal virtually cyclic subgroup
E of G containing H. By Lemma |4.17] every H-action on a metric space extends to an F-
action. By [9, Theorem 6.8] we have E <, G and therefore every E-action in turn extends to
a G—action. Thus the extension problem is solvable for H < G in this case as well.

(b) Assume that the extension problem is solvable for H. Then H is finitely generated and
undistorted in G by Proposition This is well-known to be equivalent to quasiconvexity.

To prove that the embedding H < G is commensurability preserving we argue by contra-
diction. Assume that there are elements a,b € H of infinite order that are commensurable in
G but not in H. By Lemma there exists an H-action such that the orbits of (a) are
bounded while the orbits of (b) are not. Since the extension problem is solvable for H < G,
there is an action of G with the same property. However, this contradicts the fact that a and
b are commensurable in G. O

The following example shows that the sufficient condition for the extension problem to be
solvable from part (a) is not necessary.

Example 4.19. Let G = H x K, where K is a non-trivial finite group and H is a finitely
generated non-cyclic free group. Then G is hyperbolic and H is neither virtually cyclic nor
malnormal. However the extension problem for H < G is solvable since H is a retract of G.

We conclude with few open problems.

Problem 4.20. Is the sufficient condition for the extension problem to be solvable from Corol-
lary (a) necessary in case G is torsion free?

The negative answer can likely be obtained by studying the case of G = F(a,b), the free
group with basis {a, b}, and H = (a2, %) < G.
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Problem 4.21. Is the necessary condition for the extension problem to be solvable from Corol-

lary[4.18 (b) sufficient?

It would be also interesting to address the extension problem for individual subgroups in
other classes of groups.

Problem 4.22. Describe incompressible subgroups of finitely generated nilpotent groups, poly-
cyclic groups, free solvable groups, etc.
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