

1 Hydrogeochemical Evolution of Formation Waters Responsible
2 for Sandstone Bleaching and Ore Mineralization in The Paradox
3 Basin

4 **Ji-Hyun Kim¹, Lydia Bailey², Chandler Noyes¹, Rebecca L. Tyne³, Chris J. Ballentine³, Mark
5 Person⁴, Lin Ma⁵, Mark Barton², Isabel Barton⁶, Peter W. Reiners², Grant Ferguson^{1,7} and Jennifer
6 McIntosh^{1,7}**

7 ¹ Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, AZ, USA

8 ² Department of Geosciences, The University of Arizona, Tucson, AZ, USA

9 ³ Department of Earth Sciences, University of Oxford, Oxford, England, UK

10 ⁴ Department of Earth and Environmental Science, New Mexico Tech, Socorro, NM, USA

11 ⁵ Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA

12 ⁶ Department of Mining and Geological Engineering, The University of Arizona, Tucson, AZ, USA

13 ⁷ Department of Civil, Geological and Environmental Engineering, University of Saskatchewan,
14 Saskatoon, Canada

15

16 **ABSTRACT**

17 The Paradox Basin in the Colorado Plateau has some of the most iconic records of paleofluid flow, including
18 sandstone bleaching and ore mineralization, and hydrocarbon, CO₂ and He reservoirs, yet the sources of fluids
19 responsible for these extensive fluid-rock reactions are highly debated. This study, for the first time, characterizes
20 fluids within the basin to constrain the sources and emergent behavior of paleofluid flow resulting in the iconic rock
21 records. Major ion and isotopic ($\delta^{18}\text{O}_{\text{water}}$; $\delta\text{D}_{\text{water}}$; $\delta^{18}\text{O}_{\text{SO}_4}$; $\delta^{34}\text{S}_{\text{SO}_4}$; $\delta^{34}\text{S}_{\text{H}_2\text{S}}$; $^{87}\text{Sr}/^{86}\text{Sr}$) signatures of formation waters
22 were used to evaluate the distribution and sources of fluids and water-rock interactions by comparison with the rock
23 record. There are two sources of salinity in basinal fluids: 1) diagenetically altered highly evaporated paleo-
24 seawater-derived brines associated with the Pennsylvanian Paradox Formation evaporites; and 2) dissolution of
25 evaporites by topographically-driven meteoric circulation. Fresh to brackish groundwater in the shallow Cretaceous
26 Burro Canyon Formation contains low Cu and high SO₄ concentrations and shows oxidation of sulfides by meteoric
27 water, while U concentrations are higher than within other formation waters. Deeper brines in the Pennsylvanian
28 Honaker Trail Formation were derived from evaporated paleo-seawater mixed with meteoric water that oxidized
29 sulfides and dissolved gypsum and have high $^{87}\text{Sr}/^{86}\text{Sr}$ indicating interaction with radiogenic siliciclastic minerals.
30 Upward migration of reduced (hydrocarbon- and H₂S-bearing) saline fluids from the Pennsylvanian Paradox
31 Formation along faults likely bleached sandstones in shallower sediments and provided a reduced trap for later Cu
32 and U deposition. The distribution of existing fluids in the Paradox Basin provides important constraints to
33 understand the rock record over geological time.

34 **INTRODUCTION**

35 Multiple episodes of paleofluid flow through the Earth's crust are apparent in sedimentary basins
36 worldwide (e.g., Bethke and Marshak, 1990; Hanor, 2001; Gupta et al., 2012; Engle et al., 2016). These
37 episodes of fluid flow have resulted in widespread diagenesis (Hanshaw et al., 1971; Back et al., 1983;
38 Machel, 1999), transport of hydrocarbons (Garven, 1989; Villegas et al., 1994), CO₂ and He (Crossey et
39 al., 2009), and deposition of ore minerals (Cu, U, V, Co, Pb, Zn, etc; Kotzer and Kyser, 1995; Sanford,
40 1992; 1994). The Paradox Basin in the Colorado Plateau exhibits some of the most iconic
41 examples/records of paleofluid flow, including extensive exposures of bleached (former red bed)
42 sandstones, abundant hydrocarbon, CO₂ and He reservoirs and bitumen, widespread Cu and U-V
43 mineralization, Fe/Mn oxide accumulations, and carbonate/silica metasomatism (e.g., M. Barton et al.,
44 2018). We hypothesize that these multiple manifestations of paleofluid flow were the result of emergent
45 behavior – defined as the result of spatial and temporal interactions of independent factors (e.g., pulsed
46 migration and mixing of different fluid chemistries) leading to complex results that cannot be related to
47 individual processes.

48 Previous studies in the Paradox Basin have shown that economic Cu deposits, hosted near faults
49 in the siliciclastic Cretaceous Burro Canyon and Dakota formations, formed as a result of two separate
50 fluid flow events (Hahn and Thorson, 2006; Thorson, 2018). Early migration of reduced, hydrocarbon-
51 bearing saline fluids through fracture zones initially bleached the sandstones and reduced or removed the
52 oxidized minerals (e.g., hematite reduction to pyrite or hematite dissolution and removal), enabling
53 subsequent migration of oxidized Cu-bearing fluids to precipitate copper sulfide minerals at a reduced
54 trap. However, the source of the reduced saline fluids and Cu is unclear.

55 Merin and Segal (1989) hypothesized that the early, reduced acidic fluids involved in bleaching
56 of Jurassic sandstones were sourced from the geographically associated Mississippian petroleum reservoir
57 in the Lisbon Valley oil field. Thorson (2018) inferred that the reduced saline fluids originated from

58 organic-rich shales (hydrocarbon source rocks) interbedded within evaporite units in the underlying
59 Pennsylvanian Paradox Formation (Fm). Morrison and Parry (1986) suggested that the sources of Cu
60 were immature red beds of the Permian Cutler Fm by analogy with prior work in other systems (Zielinski
61 et al., 1983; Rose, 1989; Walker, 1989; Rose and Bianchi-Mosquera, 1993). Alternatively, the moderately
62 metals-enriched shales within the Paradox Fm could have provided adequate Cu (23 ppm average
63 concentration; Tuttle et al., 1996), if an appropriate transporting fluid were available and the geochemical
64 and hydrologic conditions were permissive (Thorson, 2018).

65 Genetic models for U and V deposits in the Jurassic Morrison and Triassic Chinle formations in
66 the northeastern Paradox Basin have also invoked mixing of two different fluids – dilute, oxidized, U- and
67 V-bearing groundwaters (local flow system) and reduced saline fluids carrying hydrocarbons, humate, or
68 other reduced species derived from organic matter (regional flow system) – at density-stabilized
69 interfaces (Turner-Peterson et al., 1986; Northrop et al., 1990; Sanford, 1994). Similar to the Cu deposits,
70 U and V deposits are found in sandstones that were previously bleached and commonly contain remnant
71 hydrocarbons (Shawe, 2011; I. Barton et al., 2018). The question remains whether reduced and oxidized
72 fluids were sequential or coeval to U and V mineralization in reduced traps. The source of U is debated
73 given the lack of direct evidence connecting deposits to potential uraniferous source rocks, which include
74 tuffaceous volcanic material in Morrison and Chinle formations (Waters et al., 1949; Christiansen et al.,
75 2015); granitic debris (Thorson, 2018); or Paradox Fm organic-rich shales (which contain up to 70 ppm
76 U, Whidden et al., 2014, Thorson, 2018). Similarly, the source of V has yet to be identified.

77 The Paradox Basin also hosts stratigraphically and structurally-controlled Fe/Mn oxides and
78 carbonates (e.g., from hollow hematite pipes to large nodules to massive veins) at the top of the Navajo
79 and Entrada sandstones (Chan et al., 2000; Garcia et al., 2018). These may have been deposited by saline
80 fluids thought to have been reduced via interaction with organic acids, H₂S, petroleum or CO₂ reservoirs
81 (Chan et al., 2000; Loope et al., 2010; Wigley et al., 2012). The deeper reducing fluids are interpreted to

82 have removed Fe and Mn in red bed sandstones and locally precipitated Fe/Mn oxides under more
83 oxidizing conditions by mixing with oxidized groundwater (Chan et al., 2000; Reiners et al., 2014; I.
84 Barton et al., 2018; Garcia et al., 2018), which could have also contributed to the supergene alteration and
85 oxidation of Jurassic U-V ore deposits (Shawe, 2011). However, without adequate geochemical and
86 isotopic data on formation waters it is difficult to verify the source and pathways of fluids responsible for
87 widespread sandstone bleaching and metallic (Cu, V, U, Fe and Mn) mineralization.

88 Waters of variable salinities remain in the Paradox Basin today – from shallow fresh to brackish
89 aquifers to surficial brine seeps and deep, saline formation waters. The few studies of existing fluids in
90 the Paradox Basin lack key chemical (e.g., Br, Cu, and U) and isotopic (e.g., $\delta^{18}\text{O}/\delta\text{D}$) data (Hanshaw and
91 Hill, 1969; Thackston et al., 1981; Williams-Stroud, 1994), necessary to delineate sources of salinity and
92 metals, and proportions of fluid mixing. Previous investigations of paleofluid flow and solute transport
93 have been primarily focused on the rock record with inferences about the origin, composition, flowpaths
94 and mixing of paleofluids (Shawe, 1968; Morrison and Parry, 1986; Breit et al., 1990; Chan et al., 2000;
95 Loope et al., 2010; Wigley et al., 2012). This study provides, for the first time, a detailed investigation of
96 the chemical and isotopic composition, distribution, and mixing of various fluids in different formations
97 within the Paradox Basin and compares them to the rock record, to reveal key chemical and
98 hydrogeologic processes and their timing to demonstrate emergent behaviors in sedimentary basin
99 systems.

100 **STUDY AREA**

101 The Paradox Basin covers ~85,000 km² of southeastern Utah and southwestern Colorado on the
102 Colorado Plateau (Fig. 1a). The basin developed as a northeastward-deepening flexural response to
103 crustal loading by reverse faulting that generated the Late Paleozoic Uncompahgre uplift of the ancestral
104 Rocky Mountains (Baars and Stevenson, 1982; Barbeau, 2003; Leary et al., 2017). The subsidence of
105 northeastern side of the Paradox Basin led to initial deposition of carbonates, shales and siltstones,

106 followed by deposition of up to 2.5 km of marine evaporites in the Pennsylvanian Paradox Fm (Hite et al.,
107 1984; Nuccio and Condon, 1996). Arkosic sandstone of the Cutler Fm and related units sourced from the
108 Uncompahgre Uplift overlie the Paradox Fm and underlie the Triassic through Cretaceous eolian and
109 fluvial sediments (Fig. 1c). Beginning in the Permian, plastic flow of the Paradox evaporites created salt
110 anticlines, associated faults, and sub-basins, such as in the Lisbon and Paradox Valley areas, along the
111 northeastern side of the basin (Fig. 1a).

112 **Geological Background**

113 Above the Proterozoic crystalline basement, basal Cambrian formations consist of conglomerate
114 – mixtures of sandstone, limestone, and shale, limestone, and dolomite deposited in diverse marine
115 conditions – in the Paradox Basin (Nuccio and Condon, 1996). Ordovician, Silurian, and Early and
116 Middle Devonian age formations are not found in the Paradox Basin because of post-Cambrian erosion
117 (Nuccio and Condon, 1996). The Late Devonian Elbert Fm (Fig. 1c and 2) was deposited in a shallow
118 marine environment and is composed of the basal McCracken Sandstone (Ss) member and a dolomite and
119 shale upper member (McBride, 2016). Sea-level fall after deposition of the Ouray Limestone (Ls) ended
120 the Devonian Period (Fig. 1c and 2). Renewed transgression of the sea from the west initiated deposition
121 of the Mississippian Leadville Ls or Redwall Ls (Fig. 1c and 2) with a series of transgressive and
122 regressive events (Nuccio and Condon, 1996). A final regression of the sea in the Late Mississippian
123 exposed the limestones to a subaerial environment. A regolith developed on this surface, as well as
124 cavities and karst topography formed by fresh water in some exposed areas (Sanford, 1990a; 1990b;
125 Nuccio and Condon, 1996). A large northwest-trending graben-faulted anticline consisting of late
126 Precambrian through Mississippian rocks is thought to have provided the site of Pre-Pennsylvanian
127 reservoir facies and thick Pennsylvanian salt deposition (Fig. 1b) (Baars ,1966).

128 The Paradox Fm, an extensive evaporitic unit (up to 1.8 km thick where the salt is not severely
129 disturbed), consisting of cyclical dolomite, black shale, anhydrite, halite, sylvite, carnallite and other

130 bittern facies salts, that represent repeated marine flooding of the basin and evaporation in an arid climate
131 (Fig. 1 and 2) (Hite and Lohman, 1973; Hite and Buckner, 1981; Nuccio and Condon, 1996). Interbedded,
132 black dolomitic shales, especially the Ismay-Desert Creek and Cane Creek members of the Middle
133 Pennsylvanian Paradox Fm (Fig. 2), contain up to 11 % total organic carbon, which are an important
134 source of hydrocarbons (Nuccio and Condon, 1996), and are moderately metal-rich (Tuttle et al., 1996;
135 Whidden et al. 2014). In the northeastern part of basin, the relatively thick Tertiary sedimentary sequence
136 combined with increased basinal temperatures in the Tertiary resulted in high thermal maturities (0.1 to
137 0.5 of production index (PI) for the Ismay-Desert Creek members; >0.5 of PI for the Cane Creek member)
138 compared to the south-central to southwestern part of basin (<0.1 of PI for the Ismay-Desert Creek
139 members; >0.1 of PI for the Cane Creek member; Nuccio and Condon, 1996). In the Lisbon Valley, in the
140 structurally deeper part of the basin, significant oil generation began around 79 Ma for the Ismay-Desert
141 Creek members and 100 Ma for the Cane Creek member – much earlier than other oil fields in the basin –
142 and the source rocks reached their maximum burial around 25 Ma (Nuccio and Condon, 1996). In the
143 southwestern part of the basin (e.g., Greater Aneth oil field), the Paradox Fm is dominated by shelf
144 carbonates, including algal-mound buildups that act as petroleum reservoirs (Fig. 1b).

145 The overlying Pennsylvanian Honaker Trail Fm (Fig. 1c and 2) consists of limestone, sandstone,
146 and shale deposited in a cyclic pattern from the evaporitic marine conditions of the Paradox Fm to normal
147 marine conditions. The Honaker Trail Fm contains significant eolian and fluvial beds, especially on the
148 northeastern side of the basin (Nuccio and Condon, 1996). The Permian Cutler Fm (Fig. 1c and 2) is
149 mostly a product of erosion of the Uncompahgre Uplift and consists of arkosic sandstone (Cater and
150 Craig, 1970; Nuccio and Condon, 1996). Deposition of the Cutler Fm was strongly influenced by the
151 concurrent growth of the salt walls with consequent impact on facies distribution and, ultimately,
152 hydrologic characteristics (Trudgill, 2011; Lawton et al., 2015).

153 Triassic and Jurassic sedimentation in the Paradox Basin was influenced by intrusion of laccoliths
154 (28 ± 1 Ma; Nuccio and Condon, 1996; Friedman and Huffman, 1997; M. Barton et al., 2018; Murray et
155 al., 2019), such as the La Sal, Abajo, and Ute mountains (Fig. 1a). Large volumes of volcanic ash were
156 deposited in the Triassic and Jurassic sediments derived from the Mesozoic magmatic arc (Christensen et
157 al., 1994). During the denudation of the Colorado Plateau in the Late Tertiary to Holocene (<10 Ma:
158 Lazear et al., 2011; <4-6 Ma: Murray et al., 2016; Murray et al., 2019), most of the Cretaceous (and
159 Cenozoic) rocks of the Paradox Basin, for example, the Mancos Shale, were removed by erosion (Nuccio
160 and Condon, 1996). Emplacement of the laccoliths and recent denudation of the Colorado Plateau also
161 created higher topographic gradients.

162 The Triassic Moenkopi and Chinle formations are composed of siltstone, shale, conglomerate,
163 and sandstones and host U and V deposits in the Slick Rock district (Fig. 2; Shawe, 2011; I. Barton et al.,
164 2018). The Jurassic formations are composed of eolian sandstones and fluvio-lacustrine sandstones and
165 shales (Fig. 2). The Jurassic Wingate Ss, Navajo Ss and Entrada Ss include bleached/red bed sandstones
166 (Fig. 2). The lower Salt Wash member of Jurassic Morrison Fm contains bleached sandstones, which host
167 economic U and V deposits in the Slick Rock district and Lisbon Valley (Shawe, 2011; I. Barton et al.,
168 2018), as well as Cu deposits in the Lisbon Valley (Fig. 2; I. Barton et al., 2018). The upper Brushy Basin
169 member of Jurassic Morrison Fm is dominated by mudstone, siltstone, and volcanic ash, which is
170 considered as the source for U (Fig. 2). The early Cretaceous age Burro Canyon Fm, overlying the
171 Jurassic Morrison Fm, is composed of conglomeratic sandstone and mudstone derived from fluvial and
172 flood plain deposits (Nuccio and Condon, 1996) and hosts economic Cu deposits in bleached zones in the
173 Lisbon Valley (Fig. 2; Thorson, 2018). The overlying Dakota Ss also contains economic Cu deposits in
174 the Lisbon Valley (Fig. 2; Thorson, 2018). All of the known Cu deposits in the Lisbon Valley lie along
175 the Lisbon Valley Fault system.

176 The salt anticlines and associated faults evolved along on the northeastern portion of the basin,
177 for example in the Paradox and Lisbon valleys (Fig. 1c; Chan et al., 2000), as Permian through Jurassic
178 sediments eroded from Uncompahgre Uplift were deposited onto thick sequences of the Middle
179 Pennsylvanian Paradox Fm evaporites (Fig. 1a; Nuccio and Condon, 1996). Significant fault systems
180 started to grow in the Permian (Doelling, 1988; Trudgill, 2011) and continued through the Mesozoic (e.g.,
181 Hartley and Evenstar, 2018) and into the Cenozoic (Cater and Craig, 1970; Lawton and Buck, 2006) with
182 collapse due to salt withdrawal and/or dissolution. In some of the salt anticlines, for example the Paradox
183 Valley anticline, the bounding faults extend below the anticline to cut Pre-Pennsylvanian rocks (Fig. 1c,
184 Baars, 1966; Hite and Lohman, 1973).

185 **Hydrological Background**

186 Regional groundwater flow in the Paradox Basin is generally towards the southwest from major
187 recharge areas along the Uncompahgre Uplift and San Juan Mountains towards the Colorado River
188 (Hanshaw and Hill, 1969). Deviations from regional-scale flow occur due to barriers to flow, such as
189 dikes and faults or the influence of intrabasin recharge areas (e.g., topographic highs created by laccolith
190 intrusions; Hanshaw and Hill, 1969; Thackston et al., 1981). In the upper hydrostratigraphic unit,
191 consisting of the post-Paleozoic and Permian formations and the Upper Honaker Trail Fm above the salt
192 (Fig. 1c), groundwater flow is mainly controlled by topography (Hanshaw and Hill, 1969; Thackston et
193 al., 1981; King et al., 2014). The presence of salt anticlines and topographically-driven groundwater
194 recharge within the basin are responsible for the discharge of highly saline water into surface water in the
195 valleys in the northeastern region (King et al., 2014). For example, meteoric waters recharged from the La
196 Sal Mountains flow downgradient into sediments beneath the Paradox Valley, dissolve evaporites in the
197 underlying salt anticline of the Paradox Fm, and discharge as brines into the Dolores River with an
198 average total dissolved solids (TDS) concentration of 260 g/L, prior to installation of brine pumping wells
199 (Chafin, 2003; King et al., 2014). A similar flow system has been evoked for solute transport in the

200 Gypsum Valley (Reitman et al., 2014) and the La Sal Mountains provide recharge to the Glen Canyon
201 Group in the Spanish Valley with discharge to the Colorado River (Gardner et al., 2020). We hypothesize
202 recharge from the La Sal Mountains drives salt dissolution and saline water discharge into Salt Creek in
203 the Sinbad Valley.

204 The middle hydrostratigraphic unit, composed of the lower Honaker Trail and Paradox Salt
205 formations (Fig. 1c), is a regional confining unit (Thackston et al., 1981; Hanshaw and Hill, 1969).
206 Regional Honaker Trail Fm permeabilities range between 6×10^{-17} and $5 \times 10^{-14} \text{ m}^2$ (Woodward-Clyde
207 Consultants, 1982). Permeabilities reported for the isolated, most porous zone within the Paradox Fm by
208 the oil industry range between 1×10^{-16} and $5 \times 10^{-13} \text{ m}^2$ (Woodward-Clyde Consultants, 1982). While no
209 direct measurements of evaporite permeability are available for the Paradox Fm, they are likely very low
210 (Beauheim et al. 1993).

211 The Mississippian Leadville Ls through Devonian Elbert Fm are considered as a single, lower
212 hydrostratigraphic unit beneath the salt (Fig. 1c) with a regionally extensive flow system toward the
213 southwest (Hanshaw and Hill, 1969; Thackston et al., 1981; Woodward-Clyde Consultants, 1983). This
214 unit receives recharge locally around groundwater mounds in the Abajo and La Sal mountains or along
215 the margins of the salt anticlines (Hanshaw and Hill, 1969; Thackston et al., 1981). The lower
216 potentiometric surface of the lower hydrostratigraphic unit compared to the upper hydrostratigraphic unit
217 has been interpreted to suggest that fluids today flow downward throughout the Paradox Basin, although
218 this lower aquifer system is less affected by local topography than the upper aquifer system (Hanshaw and
219 Hill, 1969). Regional lower unit permeabilities vary between 2×10^{-17} and $2 \times 10^{-12} \text{ m}^2$ for the Leadville
220 Ls and between 2×10^{-16} and $9 \times 10^{-14} \text{ m}^2$ for Devonian rocks (Woodward-Clyde Consultants, 1982).
221 Precambrian rocks, underlying the Paradox Basin have up to > 9 % porosity and several open and hairline
222 fractures (Bremkamp and Harr, 1988), indicating there is likely flow within the basement rocks, although
223 there is little hydrologic data (e.g., permeability values). Measured crystalline basement permeability

224 from hydraulic tests elsewhere have reported relatively high permeability values (10^{-15} m^2 ; Stober and
225 Bucher, 2007), but there is significant variability (Achtziger-Zupančič et al., 2017). Induced seismicity
226 reported by Ake et al. (2005) indicated that the fluid pressure associated with brine injection into the
227 Leadville Ls along the Dolores River propagated downward more than 1 km into the underlying
228 crystalline basement suggesting at least moderate permeability conditions.

229 **METHODS**

230 **Sample Locations**

231 To constrain the composition, origin and mixing relationships of different fluid types in the
232 Paradox Basin present today, a total of 44 water samples were collected from various depths (0-2 km) in
233 2018 and 2020 (Table 1). Water samples were collected from local rivers, seeps, shallow groundwater
234 monitoring wells, shallow brine extraction wells, deeper oil and gas wells, and one deep lithium
235 exploration well where access was permitted. The approximate spatial location and geologic formation of
236 water samples are shown in Figs. 1a and 2. The formation water sample from the lithium exploration well
237 (northwest of Moab, Utah) is from the Cane Creek member of the Pennsylvanian Paradox Fm. Eleven
238 formation water samples were collected from oil and gas wells in the Pennsylvanian Honaker Trail,
239 Mississippian Leadville, and Devonian McCracken formations in the Lisbon Valley near the Utah-
240 Colorado border. Six groundwater samples were also collected from monitoring wells in the Lisbon
241 Valley completed in the Jurassic Navajo and Cretaceous Burro Canyon formations. In the Paradox Valley,
242 in western Colorado, four surface water samples were collected from the Dolores River and four
243 groundwater samples were collected from the U.S. Bureau of Reclamation's brine pumping wells
244 completed in the Dolores River alluvial aquifer. In the Sinbad Valley, in western Colorado, three surface
245 water samples were collected from Salt Creek and two groundwater samples from seeps adjacent to the
246 creek. In the Greater Aneth oil field, south of Blanding, Utah, 13 formation water samples were collected

247 from oil wells producing from the Ismay-Desert Creek members of Pennsylvanian Paradox Fm.
248 Formation water samples from the Greater Aneth oil field were taken from areas with historical water
249 flooding activity (identified by asterisk symbol in Table 1).

250 **Sample Collection**

251 In the oil and gas fields, a mixture of oil and produced water was collected directly from the well
252 head (where possible) or from the oil-brine separator tank (when oil to water cuts were high) into a 19 L
253 Nalgene carboy filled to the top and capped, following similar procedures as Kharaka et al. (1987) and
254 McIntosh et al. (2002). After the formation water had settled to the bottom of the carboys (with oil on
255 top), the formation water was removed through a spigot at the bottom of the carboy and filtered through a
256 1.6 μ m glass fiber filter to remove any residual oil. For samples from the lithium exploration well,
257 groundwater monitoring wells, and brine pumping wells, water was collected from the well head. Water
258 samples from the flowing Dolores River and Salt Creek, and seeps along Salt Creek were collected using
259 syringes.

260 All water samples were filtered through 0.45 μ m nylon membrane filters into pre-cleaned HDPE
261 bottles. Sample aliquots for cations, trace metals and $^{87}\text{Sr}/^{86}\text{Sr}$ were acidified by adding two drops of
262 concentrated Optima-grade nitric acid into 30 mL pre-acid-washed HDPE sample bottles. All samples
263 were kept on ice in the field and at \sim 4 °C in the refrigerator in the laboratory prior to analysis. pH, specific
264 conductance and temperature were measured using a Thermo Scientific Orion 5 Star meter and electrodes
265 in the field. Both pH and specific conductance meters/electrodes were calibrated daily before each
266 sampling event. Alkalinity was measured within 12 hours by gran titration (Gieskes and Rogers, 1973)
267 and density was measured using a Mettler Toledo hand-held density meter.

268 **Analyses**

269 All water samples were analyzed for cations, anions, trace metals, $\delta^{18}\text{O}$ and δD of water, $\delta^{34}\text{S}$ and
270 $\delta^{18}\text{O}$ of SO_4 and $^{87}\text{Sr}/^{86}\text{Sr}$. Select water samples were analyzed for aqueous H_2S concentrations and $\delta^{34}\text{S}$ of
271 H_2S . Cation (Ca, Mg, Na, and K) and Si concentrations of all samples prior to 2020 were analyzed via
272 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES, Perkin-Elmer 5300DV) in the
273 Department of Hydrology and Atmospheric Sciences at the University of Arizona (UA). Analytical
274 precision (1σ) was $<5\%$ for all cations using a standard reference sample (USGS T219). Anions (Cl, Br,
275 and SO_4) were measured via Ion Chromatography (DIONEX ICS-3000) with an IonPac AS23 column in
276 HAS at UA. Analytical precision (1σ) was $<0.8\%$ errors for all anions using a standard reference sample
277 (USGS M126). Trace metals were determined via ICP-Mass Spectrometry in the Department of
278 Geological Sciences at the University of Texas at El Paso (UTEP) in the range of 3 % to 24 % analytical
279 precision (1σ) using a standard reference sample (USGS T217). Charge balances were $<5\%$ for all water
280 samples. All water samples collected in 2020 were analyzed for cations and anions in the Environmental
281 Analytical Laboratories at the Saskatchewan Research Council. For the additional samples, Ca, K, Na and
282 SO_4 were determined using an ICP-OES. Br was analyzed by an ICP-MS. Cl was determined via
283 automated colorimetric determination on a ThermoFisher Gallery Plus Discrete Analyzer. Aqueous H_2S
284 was fixed in the field by reacting with pre-weighed CdCl_2 . Precipitated CdS was isolated from water,
285 dried and weighed to determine the H_2S concentration. Because aqueous H_2S can be degassed during
286 sampling, the calculated H_2S concentration is the minimum H_2S concentration in water sample.

287 $\delta^{18}\text{O}$ and δD of water was measured by laser spectrometer (Los Gatos Research DLT-100 Liquid
288 Water Isotope Analyzer) in HAS at UA. Analytical precision (1σ) for all samples was 0.1 ‰ for $\delta^{18}\text{O}$ and
289 0.5 ‰ for δD . Fourteen duplicate brine samples of relatively high TDS ($>200\text{ g/L}$) were also analyzed for
290 $\delta^{18}\text{O}$ and δD via isotope ratio mass spectrometer (Finnigan Delta S) in the Environmental Isotope
291 Laboratory (EIL) in the Geosciences Department at UA. Corresponding $\delta^{18}\text{O}$ and δD data from the mass
292 spectrometer were converted from an activity basis to a concentration basis using the empirical methods
293 of Sofer and Gat (1972; 1975). $^{87}\text{Sr}/^{86}\text{Sr}$ were determined using a Nu Plasma multiple collector-

294 Inductively Coupled Plasma-Mass Spectrometer at UTEP. Analytical precision of strontium isotopic
295 ratios was 0.00009 for all samples. $\delta^{34}\text{S}_{\text{SO}_4}$, $\delta^{18}\text{O}_{\text{SO}_4}$, and $\delta^{34}\text{S}_{\text{H}_2\text{S}}$ were measured by continuous-flow gas-
296 ratio mass spectrometer (ThermoQuest Finnigan Delta PlusXL and Thermo Electron Delta V,
297 respectively) in the EIL at UA. Analytical precision for $\delta^{34}\text{S}_{\text{SO}_4}$ and $\delta^{18}\text{O}_{\text{SO}_4}$ was 0.2 ‰ and 0.4 ‰,
298 respectively. New results from this study were supplemented with the limited existing hydrochemical data
299 for the Paradox Basin (Mayhew and Heylmun, 1965; Nuckolls and McCulley, 1987; Rosenbauer et al.,
300 1992; Spangler et al., 1996; Naftz et al., 1997; Kharaka et al., 1997; Blondes et al., 2018).

301 **PHREEQC modeling**

302 The PHREEQC code (version 3.6.2) was used to calculate saturation indices of barite, calcite,
303 dolomite, gypsum, halite, sylvite, CuS, chalcocite, and chalcopyrite, using analyzed chemical data,
304 including pH, alkalinity, Ba, Br, SO₄, Ca, Mg, Na, K, Sr, H₂S, Mn, Fe, Cu, and U. The concentrations of
305 HCO₃ and H₂CO₃ were calculated with PHREEQC using the same chemical dataset to compute dissolved
306 inorganic carbon (DIC) values; CO₃ concentrations were too low to consider. The Pitzer database based
307 on Pitzer equations (Plummer, 1988) was used to calculate ion activity coefficients for the high ionic
308 strength brackish water and brine samples. The Pitzer database was modified to include species (e.g., Mn,
309 Fe, Cu, and U) from the PHREEQC database, which were not included in the original Pitzer database.

310 In order to simulate mixing proportions of various water sources contributing to groundwater
311 collected from the brine pumping wells and formation water collected from the Mississippian Leadville
312 Ls, we performed inverse mixing modeling (ST1 and 2; Appelo and Postma, 2004) using the Pitzer
313 database. Inverse mixing modeling assumes that the mole-balance of selected elements for a final solution
314 is evolved from a mixture of two initial solutions. For the fresh, meteoric water endmember as a first
315 initial solution, the average concentrations of major ions (Ca, Na, K, Cl, Br, HCO₃, and SO₄) and pH of
316 shallow groundwaters in the Burro Canyon Fm and Navajo Ss were used. The major ions and pH of
317 formation water in the Cane Creek member of the Paradox Fm were used as the second initial solution,

318 representing the most evaporated paleo-seawater endmember. A final solution for each inverse mixing
319 model used the average concentrations of major ions and pH of groundwater from the brine pumping
320 wells or formation water collected from the Leadville Ls. Halite, gypsum, anhydrite, sylvite and calcite
321 were defined as dissolution phases to simulate dissolution of evaporites. Mole-balance equations for all
322 elements that were found in the phases input (e.g., Na, Ca, Cl, SO₄, K, and HCO₃) were automatically
323 included in inverse modeling with the default uncertainty limits to determine the mixing proportions
324 under the specific dissolution phases. Br was also considered as a balance element, which was essential to
325 determine the proportions of the second (evaporated paleo-seawater) endmember in each final solution.

326 RESULTS

327 Chemical and isotopic compositions of all water samples are summarized in Table 2. The TDS of
328 groundwater in the Cretaceous Burro Canyon Fm and Jurassic Navajo Ss is 0.5 to 2.0 g/L, within the
329 range of fresh to brackish water (Stanton et al., 2017). Dolores River and Salt Creek samples show a wide
330 range of TDS (0.5 to 16.5 g/L and 1 to 87 g/L, respectively) from freshwater to brine. Groundwater
331 samples from shallow brine pumping wells in the Paradox Valley, overlying a salt anticline structure,
332 have high TDS (245 to 256 g/L), hereinafter referred to as the “salt anticline brine.” Most of the formation
333 water samples from the Pennsylvanian Honaker Trail Fm, Mississippian Leadville Ls, and Devonian
334 McCracken Ss are considered brines with 70 to 308 g/L TDS. Formation water samples from the Ismay-
335 Desert Creek members of Pennsylvanian Paradox Fm in the Greater Aneth oil field are also considered
336 brines (hereafter the “Desert Creek brine”) with 63 to 255 g/L TDS, with the exception of one sample
337 (Anasazi 1) which has 34 g/L TDS (close to seawater salinity). The highest TDS (335 g/L) formation
338 water sample is from the Cane Creek member of the Paradox Fm (hereafter the “Cane Creek brine”).

339 Based on experimental data on evaporated modern seawater by McCaffrey et al. (1987), the
340 enrichment or depletion of major cations in basinal brine samples were plotted relative to Br
341 concentration to determine the origin of salinity and chemical modifications via diagenetic reactions (Fig.

342 3). Most of the deep basinal brine samples, except for formation waters from the Leadville Ls, are
343 depleted in Na, K and Mg and enriched in Ca relative to evaporated seawater. In contrast, the salt
344 anticline brine and brines from the Leadville Ls are enriched in Na, K and Ca and depleted in Mg relative
345 to evaporated seawater. The majority of brine samples from the Paradox Basin have relatively low
346 measured alkalinity (< 7.97 meq/L) and pH (5.18-6.75) values (Table 1) compared to endogenic springs
347 in the Grand Canyon region of the Colorado Plateau, which have higher alkalinity values (up to 37.70
348 meq/L, assuming HCO_3 is dominant) and slightly acid to neutral pH (6-7.5) (Crossey et al., 2006). Three
349 brine samples (TOHO 1, McIntyre 17-21, and Lisbon B8-10) have elevated alkalinity (11.36-12.55
350 meq/L) and pH (6.78-7.25) values. Five samples of Desert Creek brines and one of the Honaker Trail Fm
351 brines exhibit elevated DIC values (21.48-42.57 meq/L) with high H_2CO_3 concentrations, calculated using
352 PHREEQC, relative to other brines (Table 3).

353 The salt anticline brine, salt anticline-related surface water and brines from the Leadville Ls have
354 higher Cl/Br and Na/Br than modern seawater (Riley and Chester, 1971; Fig. 4a) and fall on the halite
355 dissolution line with a 1:1 relationship between Na and Cl (Hanor, 2001; Grasby and Chen, 2005; Gupta
356 et al., 2012; Engle et al., 2016). The salt anticline brine, which plots on the halite saturation line in Fig. 4b
357 (Grasby and Chen, 2005), is at saturation with respect to halite and gypsum, and is undersaturated with
358 respect to sylvite (Table 3). The Leadville Ls brine is at saturation with respect to gypsum and is
359 undersaturated with respect to halite and sylvite (Table 3). In contrast, brines in the Honaker Trail,
360 Paradox (Desert Creek and Cane Creek members), and McCracken formations exhibit lower Cl/Br and
361 Na/Br than seawater (Fig. 4a) and plot along or to the right of the evaporated modern seawater line
362 (McCaffrey et al., 1987; Fig. 4b). The Cane Creek brine has the lowest Cl/Br and Na/Br, and highest Cl
363 (6,083 mmol/L) and Br (38.91 mmol/L) concentrations compared to other basinal brines in this study.

364 Inverse modeling using major ion chemistry was conducted to quantify the various sources of
365 salinity and mixing of different fluids. Note that for inverse mixing modeling for the salt anticline brine,

366 we assumed that some portion of evaporated paleo-seawater within the Paradox Fm shale interbeds
367 (represented by the Cane Creek brine chemical composition) may have mixed with brines formed by
368 dissolution of the Paradox Fm evaporites in the salt anticline. There were two possible modeling results
369 for the salt anticline brine, both indicating mixing of 97.5 % meteoric water and 2.4 % Cane Creek brine,
370 accompanied by dissolution of 4.1 ± 1.6 moles of halite, 0.04 ± 0.001 moles of gypsum (or anhydrite) and
371 0.1 ± 0.05 moles of sylvite. For the inverse mixing modeling for brines in the Mississippian Leadville Ls,
372 we assumed that evaporated paleo-seawater within the Paradox Fm shale interbeds (represented by the
373 Cane Creek brine) could have migrated via diffusion (Hanor and McIntosh, 2007) into underlying
374 Mississippian formations. There were four possible modeling results for Leadville Ls brine, showing
375 mixing of 95.8 % meteoric water and 4.2 % Cane Creek brine, accompanied by the dissolution of $0.9 \pm$
376 0.1 moles of halite, 0.005 ± 0.0001 moles of calcite, 0.01 ± 0.002 mole of gypsum (or anhydrite) and 0 to
377 0.02 moles of sylvite.

378 $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values were used to constrain the source of water and mixing relationships of
379 different fluids (Table 4 and Fig. 5), plotted with the local meteoric water line (LMWL; Kendall and
380 Coplen, 2001) and the global meteoric water line (GMWL; Craig, 1961). $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values for
381 the salt anticline brine, salt anticline-related surface waters, and groundwater in the Burro Canyon Fm and
382 Navajo Ss plot closest to the LMWL. Some of the groundwater samples of the Burro Canyon Fm are
383 within the range of local modern precipitation in the Abajo Mountains, which ranges from -16.7 to -15.8
384 ‰ $\delta^{18}\text{O}_{\text{water}}$ and -122 to -115 ‰ $\delta\text{D}_{\text{water}}$ (Spangler et al., 1996). The four salt anticline brine samples have
385 consistent $\delta^{18}\text{O}_{\text{water}}$ (-14.71 to -14.65 ‰) and $\delta\text{D}_{\text{water}}$ (-110.86 to -110.18 ‰) values. The Salt Creek
386 surface waters have lower $\delta^{18}\text{O}_{\text{water}}$ (-14.71 to -12.29 ‰) and $\delta\text{D}_{\text{water}}$ (-108.81 to -97.77 ‰) values, while
387 the Dolores River has relatively high $\delta^{18}\text{O}_{\text{water}}$ (-13.30 to -8.75 ‰) and $\delta\text{D}_{\text{water}}$ (-94.00 to -73.02 ‰) values.
388 Most of the brines from the Honaker Trail, Paradox, Leadville, and McCracken formations plot to the
389 right of the LMWL and are consistent with $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values of fluid inclusions in halite in the
390 Paradox Fm (Petrychenko et al., 2012). The Cane Creek brine sample plots furthest to the right of the

391 LMWL with the highest $\delta^{18}\text{O}_{\text{water}}$ (4.98 ‰) and $\delta\text{D}_{\text{water}}$ (-7.57 ‰) values. The Honaker Trail Fm brines
392 show a linear mixing trend in stable water isotope values between an evaporated endmember and the
393 LMWL, which has a different slope than the linear mixing trend for Desert Creek brines (Fig. 5).

394 $\delta^{34}\text{S}_{\text{SO}_4}$ and $\delta^{18}\text{O}_{\text{SO}_4}$ values were examined to identify the sources of SO_4 (Table 4 and Fig. 6).
395 $\delta^{34}\text{S}_{\text{SO}_4}$ and $\delta^{18}\text{O}_{\text{SO}_4}$ values of groundwater from the Burro Canyon Fm and Navajo Ss plot in the
396 established fields of sulfide oxidation and soil (Clark and Fritz, 1997; Fig. 6a). Groundwater in the Burro
397 Canyon Fm has relatively high SO_4 concentrations (up to 10.3 mmol/L) in contrast to the Navajo Ss (up
398 to 1.5 mmol/L SO_4 ; Fig. 6b). $\delta^{34}\text{S}_{\text{SO}_4}$ and $\delta^{18}\text{O}_{\text{SO}_4}$ values of the salt anticline brine, the Salt Creek and
399 brines from the Paradox, Leadville, and McCracken formations plot in the established field of evaporites
400 (Fig. 6a). $\delta^{34}\text{S}_{\text{SO}_4}$ and $\delta^{18}\text{O}_{\text{SO}_4}$ values of the Cane Creek brine correspond to previously reported values for
401 Paradox Fm evaporites (Holt et al., 2014; Chen et al., 2016). The salt anticline brine and Salt Creek have
402 high SO_4 concentrations (65.8-82.7 mmol/L and 21.5-31.7 mmol/L, respectively) compared to brines
403 from Honaker Trail, Paradox, Leadville, and McCracken formations (up to 15.4 mmol/L; Fig. 6b). $\delta^{34}\text{S}_{\text{H}_2\text{S}}$
404 values were only measured for select salt anticline brine and Salt Creek samples (Table 4) and $\delta^{34}\text{S}_{\text{SO}_4-\text{H}_2\text{S}}$
405 values of these waters are 24-39 ‰ within the range of bacterial sulfate reduction (Clark and Fritz, 1997).
406 $\delta^{34}\text{S}_{\text{SO}_4}$ values of the Honaker Trail Fm brines vary between the sulfide oxidation and evaporite fields
407 despite consistent SO_4 concentrations (Fig. 6b). Dolores River waters and Honaker Trail Fm brines each
408 show a linear mixing trend between SO_4 sourced from sulfide oxidation and evaporites (Fig. 6a). There is
409 no negative correlation between $\delta^{34}\text{S}_{\text{SO}_4}$ values and SO_4 concentrations for the Dolores River or Honaker
410 Trail water samples (Fig. 6b), as would be expected for bacterial sulfate reduction (Clark and Fritz, 1997).

411 Sr isotopes are sensitive tracers of the interaction of formation waters with specific rocks and
412 minerals with different ages and Rb/Sr, indicating compartmentalization, mixing, and/or transport of
413 fluids (e.g., Stueber et al., 1987; Naftz et al., 1997; Crossey et al., 2006). The Cane Creek brine has the
414 lowest $^{87}\text{Sr}/^{86}\text{Sr}$ (0.70843) and highest Sr concentration (20.54 mmol/L). The Desert Creek brines have

415 $^{87}\text{Sr}/^{86}\text{Sr}$ (0.70845-0.70930) closer to the Cane Creek brine, but have lower Sr concentrations (1.35 to 8.83
416 mmol/L). $^{87}\text{Sr}/^{86}\text{Sr}$ of both Cane Creek and Desert Creek brines are close to the values of anhydrite
417 (0.7085; Breit et al., 1990) in the Paradox Fm (Table 4 and Fig. 7). Most of the Honaker Trail Fm brines
418 have high $^{87}\text{Sr}/^{86}\text{Sr}$ (0.70946-0.71204), comparable to the range of previously reported values for the
419 Permian Cutler Fm waters (0.7094-0.7100; Spangler et al., 1996), but with much higher Sr concentrations
420 (5.70-8.80 mmol/L) than Permian Cutler formation water. The Leadville Ls brine exhibits the highest
421 $^{87}\text{Sr}/^{86}\text{Sr}$ (0.7175) and contains 1.48 mmol/L of Sr. Brines from the underlying McCracken Ss also show
422 very high $^{87}\text{Sr}/^{86}\text{Sr}$ (0.71281 and 0.71375) and varied Sr concentrations (2.25 and 7.42 mmol/L). $^{87}\text{Sr}/^{86}\text{Sr}$
423 of the salt anticline brine are slightly higher (0.70863-0.70868) with much lower Sr concentrations (0.45-
424 0.49 mmol/L) than those of the Cane Creek brine and anhydrite in the Paradox Fm. The Salt Creek and
425 Dolores River each show a mixing trend toward the salt anticline brine (Fig. 7). For the Dolores River, the
426 mixing trend is composed of meteoric water endmember (DR-BR-a) of 0.01 mmol/L Sr and $^{87}\text{Sr}/^{86}\text{Sr}$ of
427 0.7097 and a salt anticline brine endmember of 0.47 mmol/L Sr and $^{87}\text{Sr}/^{86}\text{Sr}$ of 0.7087 on average. Salt
428 Creek plots on a mixing trend between an estimated meteoric water endmember (PW-11b; groundwater in
429 Navajo Ss) of 0.04 mmol/L Sr and $^{87}\text{Sr}/^{86}\text{Sr}$ of 0.7097 (dashed line in Fig. 7) and the average salt anticline
430 brine endmember. $^{87}\text{Sr}/^{86}\text{Sr}$ for groundwater in the Burro Canyon Fm and Navajo Ss correspond to that for
431 hematite, calcite, or barite in Jurassic sandstones (Chan et al., 2000).

432 Metal (Cu, U, Fe and Mn) and H_2S concentrations in the fluids are summarized in Table 2 and
433 Fig. 8. The maximum Cu concentrations of groundwaters from Cretaceous Burro Canyon and Jurassic
434 Navajo formations is 0.09 $\mu\text{mol/L}$ (Fig. 8a). H_2S in the relatively oxic shallow groundwaters (Noyes et
435 al., 2021) was assumed to be negligible. The Cane Creek brine has the highest Cu concentration (0.48
436 $\mu\text{mol/L}$) with moderate H_2S (8.9 mmol/L) within the range of values reported for a spring in California
437 with similar chemistry (Aqua de Ney Spring; 0.47 $\mu\text{mol/L}$ Cu and 11.7 mmol/L H_2S , White, 1963). One
438 of the Honaker Trail Fm brine samples also has detectable Cu (0.44 $\mu\text{mol/L}$) with moderate H_2S (7.1
439 mmol/L). Most of the Honaker Trail Fm brine and Desert Creek brine have Cu below the detection limit

440 ($< 0.001 \mu\text{mol/L}$) with variable H_2S concentrations. Desert Creek brine has the highest H_2S concentration
441 (14 mmol/L). Leadville Ls brine has Cu contents below the detection limit with high H_2S (8.5 mmol/L)
442 similar to the 0.2 to 1.1 mol % H_2S reported by Paradox Resources (unpublished data). The salt anticline
443 brine contains detectable Cu ($0.06\text{--}0.09 \mu\text{mol/L}$) and high H_2S ($5.8\text{--}7.1 \text{ mmol/L}$), slightly higher than
444 previously measured by the U.S. Bureau of Reclamation (2.2 mmol/L ; unpublished data), but lower Cu
445 and H_2S than the Cane Creek brine.

446 Uranium concentrations are higher in shallower formation waters compared to deeper fluids (Fig.
447 8b). Groundwaters in the Burro Canyon Fm have the highest concentration of U (up to 363 nmol/L) with
448 the next highest concentrations found in the Navajo Ss (up to 30 nmol/L). U concentrations at depth
449 decrease in the following order: Honaker Trail Fm brines (up to 8 nmol/L), Cane Creek brine (0.08
450 nmol/L), and Leadville Ls brine (0.01 nmol/L). Most of Desert Creek brines have low U below the
451 detection limit ($< 0.001 \text{ nmol/L}$). The salt anticline brine contains less U compared to the Cane Creek
452 brine.

453 Most of deep basinal brines have a moderate to high range of Fe and Mn concentrations (Fig. 8c
454 and 8d) with the highest concentrations in the Cane Creek brine ($7,185 \mu\text{mol/L}$ Fe and $1,772 \mu\text{mol/L}$ Mn).
455 The salt anticline brine contains moderate Fe and Mn concentrations. In contrast, groundwaters in the
456 Burro Canyon, Morrison (Phoenix, 1959) and Navajo Ss formations have a low to moderate range of Fe
457 and Mn concentrations (Table 2).

458 **DISCUSSION**

459 **Two Distinct Sources of Salinity in Paradox Basinal Brines**

460 ***Evaporated Paleo-Seawater-Derived Brine***

461 The Cane Creek brine in the Paradox Fm, with lower Cl/Br and Na/Br than seawater (Fig. 4a),
462 high Br and Cl concentrations (Fig. 4b), and the highest $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values that plot to the right of
463 the LMWL (Fig. 5), likely formed from subaerial evaporation of seawater, past halite saturation, during
464 the Pennsylvanian, and were deposited with the extensive marine evaporites and shales within the
465 Paradox Fm. The Desert Creek brines in the Paradox Fm also have lower Cl/Br and Na/Br than seawater
466 (Fig. 4a) and high Br and Cl concentrations (Fig. 4b), although not as high as the Cane Creek brine (Fig.
467 4a), indicating they also derived their salinities from evaporated paleo-seawater. The Ca-Cl type brines
468 ($\text{Ca}/(\text{SO}_4+\text{HCO}_3) > 1$; Bein and Dutton, 1993; Hanor and McIntosh, 2006) in the Paradox Fm have
469 similar water stable isotope compositions as fluid inclusions within evaporite minerals (Fig. 5;
470 Petrychenko et al., 2012). The limited previous brine data from the Paradox Fm (Mayhew and Heylmun,
471 1965; Hanshaw and Hill, 1969; Naftz et al., 1997; Blondes et al., 2018) show similar chemistries (e.g., Cl,
472 Na, and Br, Fig. 4) to the Cane Creek brine, while others show similar isotopic compositions (e.g.,
473 $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$, Fig. 5; $^{87}\text{Sr}/^{86}\text{Sr}$, Fig. 7) with the Desert Creek brines.

474 The low permeability of the Paradox Fm – a regional confining hydrostratigraphic unit – and high
475 density of residual brines leading to negative buoyancy likely enabled retention of the evaporated paleo-
476 seawater within the Paradox Fm since the Pennsylvanian and prevented it from being completely flushed
477 by meteoric recharge, despite relatively high topographic gradients in the Paradox Basin today (Ferguson
478 et al., 2018). Some portion of these highly saline fluids were likely expelled with hydrocarbons during
479 maximum burial and compaction (Nuccio and Condon, 1996) through faults and fractures (Merin and
480 Segal, 1989) or via diffusion (Hanor and McIntosh, 2007) into adjacent formations. Brines in the
481 Pennsylvanian Honaker Trail Fm contain evidence of evaporated paleo-seawater from the underlying
482 Paradox Fm that was subsequently diluted by meteoric water (Fig. 5 and 9).

483 The high $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values of the evaporated paleo-seawater endmember for the
484 Honaker Trail Fm brines plot towards the Paradox Fm Cane Creek brine (Fig 5), while the meteoric water

485 endmember (corresponding to the intersection of the mixing line with the LWML) has $\delta^{18}\text{O}_{\text{water}}$ and
486 $\delta\text{D}_{\text{water}}$ values consistent with groundwater in the Permian Cutler Fm (Spangler et al., 1996; Fig. 5).
487 Meteoric waters likely circulated through the overlying Permian Cutler Fm, which is part of the same
488 aquifer system (upper hydrostratigraphic unit; Hanshaw and Hill, 1969; Thackston et al., 1981), and
489 mixed with evaporated paleo-seawater to form the Honaker Trail Fm brines.

490 The Paradox Fm Desert Creek brines also indicate mixing of evaporated paleo-seawater and
491 meteoric influx, but plot on a distinct mixing trend from the Honaker Trail Fm brines with a slightly
492 different saline water endmember (plotting further from seawater, with a lower δD value) (Fig. 5).
493 Differences in the saline endmember isotopic composition may be due to differences in the geographic
494 location of the samples and variations in evaporated paleo-seawater-derived brines within the Paradox
495 Fm. The estimated meteoric water endmember that diluted Desert Creek brines has a relatively high
496 $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ value (dashed line in Fig. 5), compared to the estimated meteoric water endmember
497 of Honaker Trail Fm brines (dashed line in Fig. 5). This difference in meteoric water endmembers can be
498 attributed to known water injection activity in the Ismay-Desert Creek members of Paradox Fm in the
499 Greater Aneth oil field (Table 1), while there was no water injection activity in the Honaker Trail Fm in
500 the Lisbon Valley area. Together the chemical and isotopic results suggest evaporated paleo-seawater
501 (represented by the Cane Creek brine chemical composition) is one of the major sources of salinity in
502 Paradox Basin brines.

503 ***Salt Dissolution-Derived Brines***

504 The salt anticline brine and Mississippian Leadville Ls brines, with higher Cl/Br and Na/Br than
505 seawater (Fig. 4a) and lower Br concentrations than the evaporated seawater line (Fig. 4b), likely derived
506 their salinity from the dissolution of evaporites (e.g., halite) around salt anticline structures or at the base
507 of the Paradox Fm salts, respectively (Fig. 9). The elevated K (Fig. 3) and SO₄ (Fig. 6b) concentrations,
508 relative to evaporated seawater, in the salt anticline and Leadville Ls brines are also consistent with the

509 dissolution of evaporites (e.g., sylvite, carnallite, kainite, or gypsum). Sr concentrations and $^{87}\text{Sr}/^{86}\text{Sr}$ of
510 the Dolores River and Salt Creek exhibit a simple binary mixing model between surface waters and salt
511 anticline brine endmember compositions (Fig. 7), consistent with the compositions of surface waters
512 around salt anticline structures controlled by dissolution of salt through meteoric water circulation.

513 $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values of the salt anticline brine and Leadville Ls brines that plot on or close
514 to the LMWL (Fig. 5) confirm meteoric water recharge promoted evaporite dissolution (e.g., McIntosh
515 and Walter, 2005). The $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values of the salt anticline brine are comparable to Holocene
516 age (<11 ka based on ^{14}C) groundwater from the Burro Canyon Fm and are distinct from ^{18}O - and D-
517 depleted Late Pleistocene groundwater (15 to 36 ka) from the Navajo Ss (Noyes et al., 2021), suggesting
518 meteoric recharge and salt dissolution around the salt anticlines has occurred since at least the Holocene
519 (e.g., Zhu et al., 2003).

520 Although both the salt anticline brine and Leadville Ls brine are dominantly derived from
521 dissolution of evaporites, the presence of Br in both brines, above typical concentrations in evaporite
522 minerals (Holser et al., 1979; Kesler et al., 1996), suggests introduction of some component of evaporated
523 paleo-seawater likely associated with the Paradox Fm. The brines in the Leadville Ls have lower Na, K,
524 and Mg concentrations and higher $\delta^{18}\text{O}_{\text{water}}$ and $\delta\text{D}_{\text{water}}$ values further from the LMWL than the salt
525 anticline brine (Fig. 3), suggesting greater contributions of evaporated paleo-seawater in the Leadville Ls
526 brine compared to the salt anticline brine. This is consistent with the PHREEQC inverse mixing model
527 results that show slightly greater contribution of evaporated paleo-seawater in the Leadville Ls brine
528 (4.2 %) compared to the salt anticline brine (2.4 %).

529 We hypothesize the influx of meteoric waters and salt dissolution are likely a relatively recent
530 phenomenon that followed intrusion of the laccoliths (~28 Ma; Friedman and Huffman, 1997; M. Barton
531 et al., 2018) and denudation of the Colorado Plateau (<10 Ma: Lazear et al., 2011; <4-6 Ma: Murray et al.,
532 2016; Murray et al., 2019), which created higher topographic gradients, removed shale confining units,

533 and brought the salt anticlines closer to the surface and into contact with meteoric water circulation (Fig.
534 9). For example, for at least the past ~36 ka (Noyes et al., 2021), topographically-driven meteoric waters
535 has flowed downgradient from the La Sal Mountains through permeable sediments into the Paradox
536 Valley and dissolved evaporites near the top of the salt anticline, which are discharging salt-derived
537 brines into the Dolores River (Chafin et al., 2003; King et al., 2014). Our study results indicate a similar
538 flow system is active in the adjacent Sinbad Valley with discharge of salt anticline-derived brines into
539 Salt Creek, and previous studies have shown similar brine generation mechanisms in Gypsum Valley
540 (Reitman et al., 2014). Meteoric waters recharged around the La Sal and Abajo mountains or along the
541 margins of the salt anticline structures could have flowed into the lower hydrostratigraphic unit (Hanshaw
542 and Hill, 1969; Thackston et al., 1981), underlying the Paradox Fm salts, and may have contributed to the
543 flushing of evaporated paleo-seawater-derived brines (assuming they were present) and generation of
544 more recent evaporite dissolution-derived brines in the Leadville Ls. The flushing of basal aquifers is
545 similar to what was found in the Illinois Basin (Labotka et al., 2015).

546 **Water-Rock Interactions in Basinal Fluids above/below the Paradox Formation**

547 Ca enrichment and Mg and K depletion of the Cane Creek and Desert Creek brines in the Paradox
548 Fm (Fig. 3c and 3d), relative to evaporated seawater (McCaffrey et al., 1987), indicate diagenetic
549 alteration via reaction with siliciclastic and carbonate rocks: e.g., formation of potassium aluminosilicates
550 (Fig. 3b), as well as albitization of plagioclase, saturation with respect to calcite and gypsum (Fig. 3c),
551 and dolomitization (Fig. 3d) (Carpenter, 1978; Hanor, 2001). These diagenetic alterations have been
552 commonly observed in basinal brines at depth in other sedimentary basins, such as the Alberta (Connolly
553 and Walter, 1990), Appalachian (Breen et al., 1985; Lowry et al., 1988; Sanders, 1991), Illinois (Stueber
554 et al., 1993; Stueber and Walter, 1994), and Michigan (Dollar et al., 1991; Wilson and Long, 1993a;
555 1993b; Martini et al., 1998) basins. We hypothesize these fluid-rock reactions within the Paradox Fm
556 altered the evaporated paleo-seawater derived brines in-situ. As some portion of Paradox Fm brines

557 migrated into over- and under-lying formations they were likely further diagenetically altered (e.g.,
558 Honaker Trail Fm, Leadville Ls and McCracken Fm brines).

559 The radiogenic Sr isotope signatures of basinal brines from the Honaker Trail Fm above the
560 Paradox Fm are consistent with $^{87}\text{Sr}/^{86}\text{Sr}$ of groundwater in the Permian Cutler Fm (Spangler et al., 1996;
561 Fig. 7) and indicate that the evaporated paleo-seawater-derived brines (mixed with more recent meteoric
562 recharge) in the Honaker Trail Fm have interacted with abundant radiogenic minerals (e.g., alterations of
563 feldspar and micas) of the red, arkosic sandstones (i.e., siliciclastic rocks) in the overlying Cutler and
564 Upper Honaker Trail formations (Breit et al., 1990). The lower K concentration of the Honaker Trail Fm
565 brines compared to the Cane Creek brine (Fig. 3b) may be explained by formation of potassium
566 aluminosilicates by further interaction of brines with siliciclastic rocks within the Honaker Trail Fm. A
567 mixing trend of the Honaker Trail Fm brines in Fig. 6a is evidence of at least two sources of SO_4 : 1)
568 oxidation of (^{34}S -depleted) sulfides in the Honaker Trail Fm by influx of meteoric waters and 2)
569 dissolution of (^{34}S -enriched) gypsum associated with the underlying Paradox Fm.

570 The occurrence of the highest $^{87}\text{Sr}/^{86}\text{Sr}$ in basinal brines from the Mississippian Leadville Ls and
571 Devonian McCracken Ss below the Paradox Fm (Fig. 7), higher than any previously reported
572 measurements of Paradox Basin sediments (Breit et al., 1990; Chan et al., 2000), suggests that the brines
573 have interacted with a highly radiogenic crustal source – likely Precambrian rocks from the Uncompahgre
574 Uplift or crystalline basement beneath the basin (Fig. 9). The Precambrian silicic crystalline rocks from
575 the Uncompahgre Uplift, along the northeastern margin of the basin, have $^{87}\text{Sr}/^{86}\text{Sr}$ of 0.715-0.735 (Hedge
576 et al., 1968; Mose and Bickford, 1969). Furthermore, the elevated Sr isotope ratios in the Leadville Ls and
577 Devonian McCracken Ss brines are consistent with deeply derived endogenic springs (0.711-0.734
578 $^{87}\text{Sr}/^{86}\text{Sr}$) in the Grand Canyon region of the Colorado Plateau, that have interacted with Precambrian
579 basement rocks (Crossey et al., 2006). Alternatively, radiogenic Sr in Mississippian Leadville Ls and
580 Devonian McCracken Ss brines could have come from interaction with intervening shale units.

581 Unlike the deeply derived endogenic springs in the Grand Canyon region of the Colorado Plateau
582 (Crossey et al., 2006), most of the brines sampled as part of this study are not CO₂-rich with high
583 alkalinitiess or DIC (Tables 1 and 3). Three brine samples (TOHO 1, McIntyre 17-21, and Lisbon B8-10)
584 have slightly elevated alkalinitiess (11.36-12.55 meq/L) and pH (6.78-7.25) values (Table 1), which belong
585 to the range of the endogenic springs. Six brine samples have high calculated DIC values (21.48-42.57
586 meq/L; Table 3), likely dominated by H₂CO₃ at relatively low pH (< 6.5). Potential sources of elevated
587 alkalinity and DIC include influx of mantle CO₂, as seen in the endogenic springs (Crossey et al., 2006;
588 2009), bacterial sulfate reduction (Clark and Fritz, 1997), or decarboxylation (Surdam and MacGowan,
589 1987). Future work using carbon stable isotopes and noble gases are needed to delineate the various
590 sources of alkalinity and DIC.

591 **Paleofluid Flow, Sandstone Bleaching, and Metal Mineralization**

592 *Relative Redox Conditions*

593 Relative redox conditions for the modern fluids in the Paradox Basin were determined based on
594 the source of water and presence of hydrocarbons and H₂S. Previous studies have shown shallow
595 groundwaters in the Cretaceous Burro Canyon Fm and Jurassic Navajo Ss are oxidized fluids in contact
596 with circulating meteoric waters (Noyes et al., 2021). The salt dissolution-derived brines in the sediments
597 overlying the salt anticlines may be oxidized due to meteoric recharge, but in locations where those salt
598 anticline brine came in contact with black shales there is high H₂S (e.g., Paradox and Sinbad valleys),
599 likely from bacterial sulfate reduction at near-surface temperatures (Clark and Fritz, 1997). The
600 evaporated paleo-seawater-derived brines in the Pennsylvanian Honaker Trail and Paradox formations
601 and salt dissolution-derived brines in the Mississippian Leadville Ls are relatively reduced, as they are
602 associated with hydrocarbons sourced from black shales within the Paradox Fm (Nuccio and Condon,
603 1996). High H₂S concentrations in these formations likely came from thermochemical sulfate reduction
604 (Machel, 2001) associated with gypsum, hydrocarbons, and high maximum burial temperatures (at least

605 120 °C in the Paradox Fm; Nuccio and Condon, 1996). According to the timing of hydrocarbon
606 generation (Nuccio and Condon, 1996), these deep basinal brines have likely been H₂S- and hydrocarbon-
607 bearing reduced fluids since at least the Paleogene (66 to 23 Ma).

608 ***Reduced Fluids Involved in Sandstone Bleaching***

609 Brines from the Pennsylvanian Honaker Trail and Paradox formations were likely a major source
610 of reduced, saline and acidic fluids that were expelled by compaction during maximum burial, ascended
611 along faults, such as the Moab and Lisbon Valley faults, and bleached shallow red-bed sandstones
612 (Entrada Ss, White Rim Ss, Navajo Ss, Wingate Ss). The presence of hydrocarbon residues, such as
613 bitumen, for example in veins between the Page Ss and Entrada Ss along the segment of the Moab fault
614 (Foxford et al., 1998; Hodson et al., 2016) and within the Cutler Fm and Wingate Ss, along the Lisbon
615 Valley anticline, and in the Wingate Ss in the Paradox Valley anticlines (Merin and Segal, 1989; Thorson
616 and MacIntyre, 2005), suggest that acidic reducing brines associated with mobile hydrocarbons were
617 responsible for sandstone bleaching in the Moab fault and the Lisbon and Paradox valley anticlines.

618 Stable isotope and fluid inclusion studies from the faults provide further evidence of the
619 migration of hydrocarbon-associated reducing fluids upward, resulting in the removal of hematite and
620 precipitation of pyrite (Breit et al., 1990; Chan et al., 2000; Garden et al., 2001). The high salinity (5-20
621 wt. %) of fluid inclusions and calculated $\delta^{18}\text{O}_{\text{water}}$ values (-6.1 to 0.6 ‰) of fluids in carbonate veins
622 (Chinle, Cutler, and Paradox formations) in the Lisbon Valley anticline (Morrison and Parry, 1986) are
623 similar to the salinity (3-26 wt. %) and $\delta^{18}\text{O}_{\text{water}}$ values of deep basinal brines in the Honaker Trail and
624 Paradox formations, indicating the upward migration of reduced, evaporated paleo-seawater-derived
625 brines along faults. This is further supported by the $\delta^{18}\text{O}$ value of carbonate cements (-5 to -0.1 ‰ VPDB)
626 in the Moab fault having a source fluid composition similar to seawater (Hodson et al., 2016). Although
627 the salt anticline brine with H₂S could have been another potential reducing fluid, the δD and $\delta^{18}\text{O}$ values
628 of the salt anticline brine are lower than those of the fluid inclusions in carbonate veins and cements.

629 ***Source of Fluids for Cu Mineralization***

630 Presently, there is no clear gradient in Cu concentrations with depth in the Paradox Basin (Fig. 8).
631 If the situation was similar at the time of Cu mineralization, this suggests few constraints on the possible
632 fluid sources involved in Cu mineralization. Shallow sources of Cu could have been immature red beds of
633 the Permian Cutler Fm (Morrison and Parry, 1986) eroded from the Precambrian rock uplift.
634 Alternatively, the deep sources of Cu could have been moderately metal-enriched shales within the
635 Paradox Fm (Tuttle et al., 1996; Thorson, 2018). Compared to the much higher Cu concentrations of
636 Jurassic Morrison Fm groundwaters (0.47 and 1.10 $\mu\text{mol/L}$, Phoenix, 1959; Fig. 8a), the low Cu
637 concentrations of groundwaters (< 0.09 $\mu\text{mol/L}$) in the ore-hosting Burro Canyon Fm and Navajo Ss
638 indicate that the abundant supergene Cu minerals are still (meta)stable within the formations in the
639 presence of these relatively oxic meteoric waters.

640 Although detectable Cu was found in the Paradox Fm Cane Creek brine and one Honaker Trail
641 Fm brine sample, these fluids were unlikely to have been the source of Cu mineralization in shallower
642 sediments as they have likely been reduced H₂S-bearing brines, unsuitable for Cu transport, since the
643 Paleogene or Late Cretaceous (Tuttle et al., 1996; Whidden et al., 2014; Thorson, 2018). This is
644 consistent with the saturation index results showing these fluids are currently supersaturated with respect
645 to CuS and chalcopyrite (Table 3). The salt anticline brine, with similarly high H₂S as deeper brines, has
646 low Cu concentrations (0.06-0.09 $\mu\text{mol/L}$), and is also unlikely to have transported Cu for mineralization.

647 It is possible that deeper brines could have been more oxidized in the past prior to hydrocarbon
648 generation and salt anticline-derived brines could have been more oxidized in areas where fluids were not
649 in contact with organic-rich shales. Under these more oxidizing conditions, both types of brines could
650 have acquired ore-forming concentrations of Cu from reaction with Cu-bearing sediments (Sverjensky,
651 1987). Calcite associated with Cu minerals in Lisbon Valley has a small range of $\delta^{18}\text{O}$ values that is
652 consistent with precipitation in equilibrium with residual marine or isotopically evolved meteoric water

653 (Breit and Meunier, 1990), suggesting that upwelling of evaporated paleo-seawater along faults may have
654 been associated with Cu mineralization. However, hydrocarbon-bearing reduced fluids preceded Cu
655 mineralization to provide a reduced trap for the Cu (Hahn and Thorson, 2006; Thorson, 2018). In addition
656 to this, if a deeper fluid like the Paradox Fm Cane Creek brine, with 0.48 $\mu\text{mol/L}$ Cu, formed the 62×10^9
657 kg Cu deposit of the Lisbon Valley (Hahn and Thorson, 2006), it would have required approximately $4.6 \times 10^{13} \text{ m}^3$ of brine to have been driven upwards along a fault during maximum burial. This flux of Cu-bearing fluid from the Paradox Fm is unlikely given its low permeability and relatively short time period
659 of maximum burial and upward flow driven by compaction. Therefore, regional flow driven by
660 topographic gradients or more localized thermo-haline convection-driven circulation are more likely to
661 have delivered Cu for mineralization from near-surface source(s). The requirement of an initial flux of
662 saline, reduced, acidic fluids followed by more oxic Cu-bearing fluids represents an emergent behavior,
663 where a certain sequence of independent events is required to create a Cu-deposit.

665 ***Sources of Fluids for U Mineralization***

666 Unlike Cu, there is a clear decrease in U concentrations with depth in the Paradox Basin (Fig. 8b),
667 suggesting a near-surface source of U for U mineralization within the Jurassic Morrison and Triassic
668 Chinle and other formations or more reducing conditions with depth (Thorson, 2018), assuming the
669 situation was similar at the time of U mineralization. U is immobile under relatively reduced conditions
670 (Langmuir, 1978). Consequently, although the black shale within the Paradox Fm has a high U content
671 (~70 ppm; Thorson, 2018), little of that U is likely to be mobilized in the hydrocarbon and H₂S-associated,
672 evaporated paleo-seawater-derived brines associated with the Paradox Fm.

673 Another potential U source is granitic debris derived from the U-enriched Precambrian rocks of
674 the Uncompahgre Uplift (Thamm et al., 1981; Thorson, 2018). Relatively oxic meteoric waters could
675 have interacted with the granitic debris in the shallower clastic sediments and transported U into adjacent
676 units. Previous studies have suggested that tuffaceous volcanic materials in the Morrison and Chinle

677 formations were also a potential source of U (Waters et al., 1949; Christiansen et al., 2015).
678 Groundwaters in the Morrison Fm contain very high U concentrations (84-75,621 nmol/L, Phoenix, 1959;
679 Fig. 8b). However, sufficiently high fluid fluxes through the low-permeability Brushy Basin shale
680 member of the Morrison Fm are unlikely to have occurred and there are no known U deposits in
681 tuffaceous regions of the Morrison Fm.

682 Although reduced fluids were unlikely to have been the source of U, they may have played a role
683 in providing a trap for U mineralization. Most historical interpretations have attributed U reduction and
684 precipitation to solid reducing matter, such as coalified plant trash, or to humate or other dissolved species
685 emanating from decomposing plant materials. While high-grade zones can localize around solid
686 reductants, the overall relationship between known plant and animal remains and U-V concentrations is
687 inconsistent (Shawe, 2011). Recent findings of remnant hydrocarbons in Chinle- and Salt Wash-hosted
688 deposits indicate that hydrocarbon-associated fluids, such as the Paradox Fm brines, may have
689 contributed to U-V mineralization – although as reducing traps rather than metal sources (I. Barton et al.,
690 2018).

691 CONCLUSIONS

692 Synthesizing the various chemical and isotopic tracers, we found that highly evaporated paleo-
693 seawater-derived brines are retained within the Pennsylvanian Paradox Fm (containing evaporites) with
694 no evidence of meteoric water flushing. Some portion of these reduced, saline fluids were likely expelled
695 with hydrocarbons into overlying formations during maximum burial, ascending through faults, bleaching
696 former red bed Cretaceous and Jurassic sandstones, and precipitating reduced minerals, consistent with
697 the presence of some component of evaporated paleo-seawater within the Honaker Trail Fm. Honaker
698 Trail Fm brines were further modified by reaction with radiogenic siliciclastic minerals. Cu was unlikely
699 to have been sourced from metal-rich black shales in the Paradox Fm and co-transported with brines into
700 shallower formations due to high H₂S concentrations and insufficient fluid fluxes from these deep units.

701 Salt dissolution-derived brines were identified around salt anticlines and underlying the base of
702 the Paradox Fm evaporites. The shallow salt dissolution-derived brines were also unlikely to have
703 transported Cu due to high H₂S concentrations from bacterial sulfate reduction. The relatively recent
704 intrusion of laccoliths (28 Ma) and denudation (<4-10 Ma) of this part of the Colorado Plateau likely
705 setup a more active topographically-driven flow system that resulted in deeper meteoric water circulation,
706 flushing of evaporated paleo-seawater-derived brines in the basal units, and dissolution of evaporites
707 above and below the Paradox Fm salts. Relatively high ⁸⁷Sr/⁸⁶Sr of formation waters in the Mississippian
708 and Devonian aquifers suggests circulation of fluids through radiogenic Precambrian rocks from the
709 Uncompahgre Uplift or underlying crystalline basement and/or intervening shales in basal sediments.

710 Meteoric circulation of more oxic waters contributed to high U concentrations of groundwater in
711 the Burro Canyon Fm, Morrison Fm, and Navajo Ss, compared to deep, reduced brines, indicating a near-
712 surface source for U mineralization, if the hydrochemical stratigraphic configuration was similar at the
713 time of U mineralization. Hydrocarbons and other reduced materials introduced into formerly oxidized
714 units likely provided a trap for U carried by later, oxidized, fluids. Similarly, circulation of oxic waters
715 through Cu-enriched shallow red beds eroded from the Precambrian rock uplift was likely responsible for
716 Cu transport and subsequent Cu mineralization in areas of residual bitumen and/or reduced minerals.

717 Multiple sequential episodes of paleofluid flow from different sources and subsequent fluid-rock
718 reactions were required to explain the emergent behavior of sandstone bleaching by a reduced saline fluid,
719 and ore mineralization likely by circulation of more oxic, saline waters across the Colorado Plateau.
720 Further investigation of the timing of regional groundwater flow and flushing of residual brines is needed
721 to constrain the timescales, pathways and drivers of paleofluid flow.

722 **ACKNOWLEDGEMENTS**

723 Funding for this research was provided by the W.M. Keck Foundation, CIFAR Earth4D
724 Subsurface Science and Exploration program, and NSF EAR (#2120733). The authors would like to
725 acknowledge the U.S. Bureau of Reclamation, Paradox Resources, Navajo Petroleum, US Oil and Gas
726 INC, Anson Resources, Lantz Indergard (Lisbon Valley Mining Co.), Ambria Dell’Oro, and Mohammad
727 Marza for help with sampling. Dr. Steven Lingrey provided insights on stratigraphy in the Paradox Basin.
728 Tim Corley provided laboratory assistance. The authors also would like to acknowledge the Associate
729 Editor and reviewers (Drs. Laura Crossey, Jean-Philippe Nicot, and Ipsita Gupta) for their significant
730 comments that greatly improved the manuscript.

731 REFERENCES CITED

732 Achtziger-Zupančič, P., Loew, S., and Mariethoz, G., 2017, A new global database to improve predictions
733 of permeability distribution in crystalline rocks at site scale: *Journal of Geophysical Research: Solid Earth*, v. 122, no. 5, p. 3513-3539.

735 Ake, J., Mahrer, K., O'Connell, D., and Block, L., 2005, Deep-injection and closely monitored induced
736 seismicity at Paradox Valley, Colorado: *Bulletin of the Seismological Society of America*, v. 95,
737 no. 2, p. 664-683.

738 Appelo, C. A. J., and Postma, D., 2004, *Geochemistry, groundwater and pollution*, AA Balkema,
739 Rotterdam, The Netherlands.

740 Baars, D. L., 1966, Pre-Pennsylvanian paleotectonics—Key to basin evolution and petroleum occurrences
741 in Paradox Basin, Utah and Colorado: *American Association of Petroleum Geologists Bulletin*, v.
742 50, no. 10, p. 2082-2111.

743 Baars D. L., and Stevenson G. M., 1982, Subtle stratigraphic traps in Paleozoic rocks of Paradox Basin, in
744 Halbouty, M. T., ed., *The Deliberate Search for the Subtle Trap*: American Association of
745 Petroleum Geologists Memoir, 32, p. 131-158.

746 Back W., Hanshaw B. B., Plummer L. N., Rahn P. H., Rightmire C. T., and Rubin M., 1983, Process and
747 rate of dedolomitization: mass transfer and ^{14}C dating in a regional carbonate aquifer: *Geological Society of America Bulletin*, v. 94, no. 12, p.1415-1429.

749 Barbeau, D. L., 2003, A flexural model for the Paradox Basin: implications for the tectonics of the
750 Ancestral Rocky Mountains: *Basin Research*, v. 15, no. 1, p. 97-115.

751 Barton I., Barton M. D., and Thorson J., 2018, Characteristics of Cu and UV Deposits in the Paradox
752 Basin (Colorado Plateau) and Associated Alteration: *Society of Economic Geologists, Guidebook series*, v. 59, p. 73-102.

754 Barton, M. D., Barton, I., and Thorson, J., 2018, Paleofluid Flow in the Paradox Basin:
755 Introduction: Society of Economic Geologists, Guidebook series, v. 59, p. 1-12.

756 Bein, A., and Dutton, A. R., 1993, Origin, distribution, and movement of brine in the Permian Basin
757 (USA): A model for displacement of connate brine: Geological Society of America Bulletin, v.
758 105, no. 6, p. 695-707.

759 Beauheim, R. L., Roberts, R. M., Dale, T. F., Fort, M. D., and Stensrud, W. A., 1993, Hydraulic Testing
760 of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Second Interpretive
761 Report, Sandia National Laboratory, no. SAND-92-0533.

762 Bethke, C. M., and Marshak, S., 1990, Brine migrations across North America—the plate tectonics of
763 groundwater: Annual Review of Earth and Planetary Sciences, v. 18, p. 287-315.

764 Blondes, M.S., Gans, K.D., Engle, M.A., Kharaka, Y.K., Reidy, M.E., Saraswathula, V., Thordsen, J.J.,
765 Rowan, E.L., and Morrissey, E.A., 2018, U.S. Geological Survey National Produced Waters
766 Geochemical Database: U.S. Geological Survey data release, ver. 2.3, January.

767 Breen, K. J., 1985, Chemical and isotopic characteristics of brines from three oil-and gas-producing
768 sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources: U.S.
769 Geological Survey Water-Resources Investigations Report, no. 84-4314, 58 p.

770 Breit, G. N., and Meunier, J. D., 1990, Fluid inclusion, $\delta^{18}\text{O}$, and $^{87}\text{Sr}/^{86}\text{Sr}$ evidence for the origin of fault-
771 controlled copper mineralization, Lisbon Valley, Utah, and Slick Rock District, Colorado:
772 Economic Geology, v. 85, no. 4, p. 884-891.

773 Breit G. N., Goldhaber M. B., Shawe D. R., and Simmons E. C., 1990, Authigenic barite as an indicator
774 of fluid movement through sandstones within the Colorado Plateau: Journal of Sedimentary
775 Research, v. 60, no. 6, p. 884-896.

776 Bremkamp, W., and Harr, C. L., 1988, Area of least resistance to fluid movement and pressure
777 rise: Paradox Valley Unit, Salt Brine Injection Project, Bedrock, Colorado: a report prepared for
778 the U.S. Bureau of Reclamation, Denver, Colorado, 39.

779 Carpenter, A. B., 1978, Origin and chemical evolution of brines in sedimentary basins: In SPE Annual
780 Fall Technical Conference and Exhibition, Society of Petroleum Engineers, January.

781 Cater, F. W., and Craig, L. C., 1970, Geology of the salt anticline region in southwestern Colorado: U.S.
782 Geological Survey Professional Paper, no. 637, 80 p.

783 Chafin D. T., 2003, Effect of the Paradox Valley Unit on the dissolved-solids load of the Dolores River
784 near Bedrock, Colorado, 1988-2001: U.S. Geological Survey Water-Resources Investigations
785 Report, no. 2-4275.

786 Chan M. A., Parry W. T., and Bowman J. R., 2000, Diagenetic hematite and manganese oxides and fault-
787 related fluid flow in Jurassic sandstones, southeastern Utah: American Association of Petroleum
788 Geologists Bulletin, v. 84, no. 9, p. 1281-1310.

789 Chen F., Turchyn A. V., Kampman N., Hodell D., Gázquez F., Maskell A., and Bickle M., 2016, Isotopic
790 analysis of sulfur cycling and gypsum vein formation in a natural CO_2 reservoir: Chemical
791 Geology, v. 36, p. 72-83.

792 Christensen, E. H., Kowallis, B. J., and Barton, M. D., 1994, Temporal and spatial distribution of volcanic
793 ash in Mesozoic sedimentary rocks of the western interior: An alternative record of Mesozoic
794 magmatism, *in* Caputo, M.V., Peterson, J.A., and Franczyk K.J., eds., Mesozoic Systems of the
795 Rock Mountain Region, USA: Rocky Mountain Section [SEPM], p. 73-94.

796 Christiansen E. H., Kowallis B. J., Dorais M. J., Hart G. L., Mills C. N., Pickard M., and Parks, E., 2015,
797 The record of volcanism in the Brushy Basin Member of the Morrison Formation: Implications
798 for the Late Jurassic of western North America: Geological Society of America Special Paper, v.
799 513, p. 399-439.

800 Clark I. D., and Fritz P., 1997, Environmental isotopes in hydrogeology: CRC press, Boca Raton, 328 p.

801 Connolly, C. A., Walter, L. M., Baadsgaard, H., and Longstaffe, F. J., 1990, Origin and evolution of
802 formation waters, Alberta basin, western Canada sedimentary basin. I. Chemistry: Applied
803 Geochemistry, v. 5, no. 4, p. 375-395.

804 Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, no. 3465, p. 1702-1703.

805 Crossey L. J., Fischer T. P., Patchett P. J., Karlstrom K. E., Hilton D. R., Newell D. L., Huntoon P.,
806 Reynolds A. C., and De Leeuw, G. A., 2006, Dissected hydrologic system at the Grand Canyon:
807 Interaction between deeply derived fluids and plateau aquifer waters in modern springs and
808 travertine: Geology, v. 34, no. 1, p. 25-28.

809 Crossey L. J., Karlstrom K. E., Springer A. E., Newell D., Hilton D. R., and Fischer T., 2009, Degassing
810 of mantle-derived CO₂ and He from springs in the southern Colorado Plateau region—
811 Neotectonic connections and implications for groundwater systems: Geological Society of
812 America Bulletin, v. 121, no. 7-8, p. 1034-1053.

813 Doelling, H. H., 1988, Geology of Salt Valley anticline and Arches National Park, Grand County, Utah.
814 Salt deformation in the Paradox region, Utah: Utah Geological and Mineral Survey Bulletin, v.
815 122, p. 1-60.

816 Dollar, P. S., Frape, S. K., and McNuff, R. H., 1991, Geochemistry of formation waters, southwestern
817 Ontario, Canada and southern Michigan, USA: Implications for origin and evolution: Queen's
818 Printer for Ontario.

819 Engle M. A., Reyes F. R., Varonka M. S., Orem W. H., Ma L., Ianno A. J., Schell T. M., Xu P., and
820 Carroll, K. C., 2016, Geochemistry of formation waters from the Wolfcamp and "Cline" shales:
821 Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin,
822 USA: Chemical Geology, v. 425, p. 76-92.

823 Ferguson, G., McIntosh, J. C., Grasby, S. E., Hendry, M. J., Jasechko, S., Lindsay, M. B., and Luijendijk,
824 E., 2018, The persistence of brines in sedimentary basins: Geophysical Research Letters, v. 45,
825 no. 10, p. 4851-4858.

826 Foxford, K. A., Walsh, J. J., Watterson, J., Garden, I. R., Guscott, S. C., and Burley, S. D., 1998,
827 Structure and content of the Moab Fault Zone, Utah, USA, and its implications for fault seal
828 prediction: Geological Society, London, Special Publications, v. 147, no. 1, p. 87-103.

829 Friedman, J.D., and Huffman, A.C., 1997, Laccolith complexes of southeastern Utah: Time of
830 emplacement and tectonic setting: U.S. Geological Survey, Bulletin, no. 2158.

831 Garcia V. H., Reiners P. W., Shuster D. L., Idleman B., and Zeitler, P. K., 2018, Thermochronology of
832 sandstone-hosted secondary Fe-and Mn-oxides near Moab, Utah: Record of paleo–fluid flow
833 along a fault: *Geological Society of America Bulletin*, v. 130, no. 1-2, p. 93-113.

834 Garden, I. R., Guscott, S. C., Burley, S. D., Foxford, K. A., Walsh, J. J., and Marshall, J., 2001, An
835 exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system, Entrada Sandstone of
836 SE Utah, USA: *Geofluids*, v. 1, no. 3, p. 195-213.

837 Gardner, P. M., Nelson, N. C., Heilweil, V. M., Solder, J. E., and Solomon, D. K., 2020, Rethinking a
838 groundwater flow system using a multiple-tracer geochemical approach: A case study in Moab-
839 Spanish Valley, Utah: *Journal of Hydrology*, v. 590, no. 125512.

840 Garven, G., 1989, A hydrogeologic model for the formation of the giant oil sands deposits of the Western
841 Canada sedimentary basin: *American Journal of Science*, v. 289, no. 2, p. 105-166.

842 Gieskes, J. M., and Rogers, W. C., 1973, Alkalinity determination in interstitial waters of marine
843 sediments: *Journal of sedimentary research*, v. 43, no. 1, p. 272-277.

844 Grasby, S. E., and Chen, Z., 2005, Subglacial recharge into the Western Canada Sedimentary Basin—
845 Impact of Pleistocene glaciation on basin hydrodynamics: *Geological Society of America*
846 *Bulletin*, v. 117, no. 3-4, p. 500-514.

847 Gupta I., Wilson A. M., and Rostron B. J., 2012, Cl/Br compositions as indicators of the origin of brines:
848 Hydrogeologic simulations of the Alberta Basin, Canada: *Geological Society of America*
849 *Bulletin*, v. 124, no. 1-2, p. 200-212.

850 Hahn, G. A., and Thorson, J. P., 2006, Geology of the Lisbon Valley sandstone-hosted disseminated
851 copper deposits, San Juan County, Utah: *Utah Geological Association Publication*, v. 32, p. 511–
852 533

853 Hanor J. S., 2001, Reactive transport involving rock-buffered fluids of varying salinity: *Geochimica et*
854 *Cosmochimica Acta*, v. 65, no. 21, p. 3721-3732.

855 Hanor, J. S., and McIntosh, J. C., 2006, Are secular variations in seawater chemistry reflected in the
856 compositions of basinal brines?: *Journal of Geochemical Exploration*, v. 89, no. 1-3, p. 153-156.

857 Hanor, J. S., and McIntosh, J. C., 2007, Diverse origins and timing of formation of basinal brines in the
858 Gulf of Mexico sedimentary basin: *Geofluids*, v. 7, no. 2, p. 227-237.

859 Hanshaw B. B., and Hill G. A., 1969, Geochemistry and hydrodynamics of the Paradox basin region,
860 Utah, Colorado and New Mexico: *Chemical Geology*, v. 4, no. 1-2, p. 263-294.

861 Hanshaw B. B., Back W., and Deike R. G., 1971, A geochemical hypothesis for dolomitization by ground
862 water: *Economic Geology*, v. 66, no. 5, p. 710-724.

863 Hartley, A., and Evenstar, L., 2018, Fluvial architecture in actively deforming salt basins: Chinle
864 Formation, Paradox Basin, Utah: *Basin Research*, v. 30, no. 1, p. 148-166.

865 Hedge, C. E., Peterman, Z. E., Case, J. E., and Obradovich, J. D., 1968, Precambrian geochronology of
866 the northwestern Uncompahgre Plateau, Utah and Colorado: *U.S. Geological Survey Professional*
867 *Paper*, no. 600, p. C91-96.

868 Hite R. J., Anders D. E., and Ging T. G., 1984, Organic-rich source rocks of Pennsylvanian age in the
869 Paradox Basin of Utah and Colorado, *in* Woodward, J., Meissner F.F., and Clayton J.L., eds.,
870 Hydrocarbon Source Rocks of the Greater Rocky Mountain Region: Rocky Mountain Association
871 of Geologists, Denver, Colorado, p. 255-274.

872 Hite, R.J., and Buckner, D.H., 1981, Stratigraphic correlations, facies concepts, and cyclicity in
873 Pennsylvanian rocks of the Paradox basin, *in* Wiegand D.L. ed., Geology of the Paradox Basin:
874 Rocky Mountain Association of Geologists, p. 147-159.

875 Hite R. J., and Lohman S. W., 1973, Geologic appraisal of Paradox basin salt deposits for water
876 emplacement: U.S. Geological Survey Open-File Report, No. 73-114 (4339-6).

877 Hodson, K. R., Crider, J. G., and Huntington, K. W., 2016, Temperature and composition of carbonate
878 cements record early structural control on cementation in a nascent deformation band fault zone:
879 Moab Fault, Utah, USA: *Tectonophysics*, v. 690, p. 240-252.

880 Holt N. M., García-Veigas J., Lowenstein T. K., Giles P. S., and Williams-Stroud S., 2014, The major-ion
881 composition of Carboniferous seawater: *Geochimica et Cosmochimica Acta*, v. 134, p. 317-334.

882 Kendall, C., and Coplen, T. B., 2001, Distribution of oxygen-18 and deuterium in river waters across the
883 United States: *Hydrological processes*, v. 15, no. 7, p. 1363-1393.

884 Kharaka, Y. K., Ambats, G., Thordsen, J. J., and Davis, R. A., 1997, Deep well injection of brine from
885 Paradox Valley, Colorado: Potential major precipitation problems remediated by
886 nanofiltration: *Water resources research*, v. 33, no. 5, p. 1013-1020.

887 Kharaka, Y. K., and Hanor, J. S., 2003, Deep fluids in the continents: I. Sedimentary basins: *Treatise on
888 geochemistry*, v. 5, p. 1-48.

889 Kharaka, Y. K., Maest, A. S., Carothers, W. W., Law, L. M., Lamothe, P. J., and Fries, T. L., 1987,
890 Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, USA: *Applied
891 Geochemistry*, v. 2, no. 5-6, p. 543-561.

892 King V. M., Block L. V., Yeck W. L., Wood C. K., and Derouin, S. A., 2014, Geological structure of the
893 Paradox Valley Region, Colorado, and relationship to seismicity induced by deep well
894 injection: *Journal of Geophysical Research: Solid Earth*, v. 119, no. 6, p. 4955-4978.

895 Kotzer T. G., and Kyser T. K., 1995, Petrogenesis of the Proterozoic Athabasca Basin, northern
896 Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and
897 paleohydrogeology: *Chemical Geology*, v. 120, no. 1-2, p. 45-89.

898 Labotka, D. M., Panno, S. V., Locke, R. A., and Freiburg, J. T., 2015, Isotopic and geochemical
899 characterization of fossil brines of the Cambrian Mt. Simon Sandstone and Ironton-Galesville
900 Formation from the Illinois Basin, USA: *Geochimica et Cosmochimica Acta*, v. 165, p. 342-360.

901 Langmuir, D., 1978, Uranium solution-mineral equilibria at low temperatures with applications to
902 sedimentary ore deposits: *Geochimica et Cosmochimica Acta*, v. 42, no. 6, p. 547-569.

903 Lazear, G. D., Karlstrom, K. E., Aslan, A., Schmandt, B., Beard, L. S., and CREST Working Group,
904 2011, Denudational flexural isostasy of the Colorado Plateau: Implications for incision rates and
905 tectonic uplift, *in* Beard, L.S., Karlstrom, K. E., Young, R. A., and Billingsley, G. H., eds., C

906 Revolution 2—Origin and Evolution of the Colorado River System, Workshop Abstracts: U.S.
907 Geological Survey Open-File Report 2011-1210, p. 287-295.

908 Lawton, T. F., and Buck, B. J., 2006, Implications of diapir-derived detritus and gypsic paleosols in
909 Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah: *Geology*, v. 34, no.
910 10, p. 885-888.

911 Lawton, T. F., Buller, C. D., and Parr, T. R., 2015, Provenance of a Permian erg on the western margin of
912 Pangea: Depositional system of the Kungurian (late Leonardian) Castle Valley and White Rim
913 sandstones and subjacent Cutler Group, Paradox Basin, Utah, USA: *Geosphere*, v. 11, no. 5, p.
914 1475-1506.

915 Leary, R. J., Umhoefer, P., Smith, M. E., and Riggs, N., 2017, A three-sided orogen: A new tectonic
916 model for Ancestral Rocky Mountain uplift and basin development: *Geology*, v. 45, no. 8, p. 735-
917 738.

918 Loope D. B., Kettler R. M., and Weber K. A., 2010, Follow the water: Connecting a CO₂ reservoir and
919 bleached sandstone to iron-rich concretions in the Navajo Sandstone of south-central Utah,
920 USA: *Geology*, v. 38, no. 11, p. 999-1002.

921 Lowry, R. M., Faure, G., Mullet, D. I., and Jones, L. M., 1988, Interpretation of chemical and isotopic
922 compositions of brines based on mixing and dilution, “Clinton” sandstones, eastern Ohio,
923 USA: *Applied geochemistry*, v. 3, no. 2, p. 177-184.

924 Machel H. G., 1999, Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate
925 aquifers: *Hydrogeology Journal*, v. 7, no. 1, p. 94-107.

926 Machel, H. G., 2001, Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new
927 insights: *Sedimentary Geology*, v. 140, no. 1-2, p. 143-175.

928 Martini, A. M., Walter, L. M., Budai, J. M., Ku, T. C., Kaiser, C. J., and Schoell, M., 1998, Genetic and
929 temporal relations between formation waters and biogenic methane: Upper Devonian Antrim
930 Shale, Michigan Basin, USA: *Geochimica et Cosmochimica Acta*, v. 62, no. 10, p. 1699-1720.

931 Mayhew, E. J., and Heylmun, E. B., 1965, Concentrated Subsurface Brines in the Moab Region, Utah:
932 Utah Geological and Mineralogical Survey Special Studies, v. 13, p. 28.

933 McBride, E. F., 2016, Stratigraphy, petrography, and depositional history of the Ignacio Quartzite and
934 McCracken Sandstone Member of the Elbert Formation, southwestern Colorado, USA: *Rocky
935 Mountain Geology*, v. 51, no. 2, p. 23-68.

936 McCaffrey, M. A., Lazar, B. H. D. H., and Holland, H. D., 1987, The evaporation path of seawater and
937 the coprecipitation of Br⁻ and K⁺ with halite: *Journal of Sedimentary Research*, v. 57, no. 5, p.
938 928-937.

939 McIntosh, J. C., and Walter, L. M., 2005, Volumetrically significant recharge of Pleistocene glacial
940 meltwaters into epicratonic basins: Constraints imposed by solute mass balances: *Chemical
941 Geology*, v. 222, no. 3-4, p. 292-309.

942 McIntosh, J. C., Walter, L. M., and Martini, A. M., 2002, Pleistocene recharge to midcontinent basins:
943 effects on salinity structure and microbial gas generation: *Geochimica et Cosmochimica Acta*,
944 v. 66, no. 10, p. 1681-1700.

945 Merlin I. S., and Segal D. B., 1989, Diagenetic alteration of the Wingate Formation: Possible indications
946 of hydrocarbon microseepage, Lisbon Valley, Utah: *The Journal of Geology*, v. 97, no. 6, p. 719-
947 734.

948 Morrison, S. J., and Parry, W. T., 1986, Formation of carbonate-sulfate veins associated with copper ore
949 deposits from saline basin brines, Lisbon Valley, Utah; fluid inclusion and isotopic
950 evidence: *Economic Geology*, v. 81, no. 8, p. 1853-1866.

951 Mose, D. G., and Bickford, M. E., 1969, Precambrian geochronology in the Unaweep Canyon, west-
952 central Colorado: *Journal of Geophysical Research*, v. 74, no. 6, p. 1677-1687.

953 Murray, K. E., Reiners, P. W., and Thomson, S. N., 2016, Rapid Pliocene–Pleistocene erosion of the
954 central Colorado Plateau documented by apatite thermochronology from the Henry Mountains:
955 *Geology*, v. 44, no. 6, p. 483-486.

956 Murray, K. E., Reiners, P. W., Thomson, S. N., Robert, X., and Whipple, K. X., 2019, The
957 thermochronologic record of erosion and magmatism in the Canyonlands region of the Colorado
958 Plateau: *American Journal of Science*, v. 319, no. 5, p. 339-380.

959 Naftz D. L., Peterman Z. E., and Spangler, L. E., 1997, Using $\delta^{87}\text{Sr}$ values to identify sources of salinity
960 to a freshwater aquifer, Greater Aneth Oil Field, Utah, USA: *Chemical Geology*, v. 141, no. 3-4,
961 p. 195-209.

962 Northrop H. R., Goldhaber M. B., Landis G. P., Unruh J. W., Reynolds R. L., Campbell J. A., Wanty R.
963 B., Grauch R. I., Whitney G., Landis G. P., and Rye R. O., 1990, Genesis of the tabular-type
964 vanadium-uranium deposits of the Henry Basin, Utah: *Economic Geology*, v. 85, no. 2, p. 215-
965 269.

966 Noyes, C., Kim, J., Person, M., Ma, L., Ferguson, G., and McIntosh, J. C., 2021, A geochemical and
967 isotopic assessment of hydraulic connectivity of a stacked aquifer system in the Lisbon Valley,
968 Utah (USA), and critical evaluation of environmental tracers: *Hydrogeology Journal*, p. 1-19.

969 Nuccio V. F., and Condon S. M., 1996, Burial and thermal history of the Paradox Basin, Utah and
970 Colorado, and petroleum potential of the middle Pennsylvanian Paradox Formation: U.S.
971 Geological Survey Bulletin 2000-O, 41 p.

972 Nuckolls, H. M., and McCulley, B. L., 1987, Origin of saline springs in Cataract Canyon, Utah, in
973 Campbell, J. A., ed., *Geology of Cataract Canyon and vicinity: Four Corners Geological Society*,
974 10th Field Conference, Guidebook, p. 193–199.

975 Petrychenko, Y., Williams-Stroud, S., and Peryt, T. M., 2012, The relationship of brine chemistry of the
976 Pennsylvanian Paradox Evaporite Basin (southwestern USA) to secular variation in seawater
977 chemistry: *Geological Quarterly*, v. 56, no. 1, p. 25-40.

978 Phoenix, D. A., 1959, Part 4. Occurrence and chemical character of ground water in the Morrison
979 Formation: U.S. Geological Survey Professional Paper, no. 320, p. 55-64.

980 Plummer, L. N., 1988, A computer program incorporating Pitzer's equations for calculation of
981 geochemical reactions in brines: Department of the Interior, U.S. Geological Survey, v. 88, no.
982 4153.

983 Reiners, P. W., Chan, M. A., and Evenson, N. S., 2014, (U-Th)/He geochronology and chemical
984 compositions of diagenetic cement, concretions, and fracture-filling oxide minerals in Mesozoic
985 sandstones of the Colorado Plateau: Geological Society of America Bulletin, v. 126, no. 9-10, p.
986 1363-1383.

987 Reitman, N. G., Ge, S., and Mueller, K., 2014, Groundwater flow and its effect on salt dissolution in
988 Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA: Hydrogeology Journal, v. 22,
989 no. 6, p. 1403-1419.

990 Riley, J. P., and Chester, R., 1971, Introduction to marine chemistry: Academic, New York.

991 Rose, A.W., 1989. Mobility of copper and other heavy metals in sedimentary environments, *in* Boyle,
992 R.W., Brown, A.C., Jefferson, C.W., Jowett, E.C., and Kirkham, R.V., eds., Sediment-Hosted
993 Stratiform Copper Deposits: Geological Association of Canada, Special Paper, v. 36, p. 97-110.

994 Rose A. W., and Bianchi-Mosquera G. C., 1993, Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on goethite
995 and hematite; a control on metal mobilization from red beds into stratiform copper
996 deposits: Economic Geology, v. 88, no. 5, p. 1226-1236.

997 Rosenbauer, R. J., Bischoff, J. L., and Kharaka, Y. K., 1992, Geochemical effects of deep-well injection
998 of the Paradox Valley brine into Paleozoic carbonate rocks, Colorado, USA: Applied
999 geochemistry, v. 7, no. 3, p. 273-286.

1000 Sanders, L. L., 1991, Geochemistry of formation waters from the lower Silurian Clinton formation
1001 (Albion sandstone), eastern Ohio: American Association of Petroleum Geologists Bulletin, v. 75,
1002 no. 10, p. 1593-1608.

1003 Sanford R. F., 1990a, Paleo hydrogeology of the Colorado Plateau-background and conceptual models:
1004 The Geochemical Society Special Publication, no. 2, p. 285-311.

1005 Sanford, R. F., 1990b, Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-
1006 hosted uranium deposits: Geology, v. 18, no. 11, p. 1099-1102.Sanford R. F., 1992, A new model
1007 for tabular-type uranium deposits: Economic Geology, v. 87, no. 8, p. 2041-2055.

1008 Sanford R. F., 1994, A quantitative model of ground-water flow during formation of tabular sandstone
1009 uranium deposits: Economic Geology, v. 89, no. 2, p. 341-360.

1010 Shawe, D. R., 1968, Petrography of Sedimentary Rocks in the Slick Rock District, San Miguel and
1011 Dolores Counties, Colorado. U.S. Geological Survey Professional Paper, no. 576-B, 34 p.

1012 Shawe D. R., 2011, Uranium-vanadium deposits of the Slick Rock district, Colorado. U.S. Geological
1013 Survey Professional Paper, no. 576-F, 80 p.

1014 Sofer, Z., and Gat, J. R., 1972, Activities and concentrations of oxygen-18 in concentrated aqueous salt
1015 solutions: analytical and geophysical implications: Earth and Planetary Science Letters, v. 15, no.
1016 3, p. 232-238.

1017 Sofer, Z., and Gat, J. R., 1975, The isotope composition of evaporating brines: effect of the isotopic
1018 activity ratio in saline solutions: *Earth and Planetary Science Letters*, v. 26, no. 2, p. 179-186.

1019 Spangler L. E., Naftz D. L., and Peterman, Z. E., 1996, Hydrology, chemical quality, and characterization
1020 of salinity in the Navajo aquifer in and near the Greater Aneth Oil Field, San Juan County, Utah:
1021 U.S. Geological Survey Water-Resources Investigations Report, no. 96-4155, 90 p.

1022 Stanton, J. S., Anning, D. W., Brown, C. J., Moore, R. B., McGuire, V. L., Qi, S. L., Harris A. C.,
1023 Dennehy K. F., McMahon P. B., Degnan J. R., and Böhlke, J. K., 2017, Brackish groundwater in
1024 the United States: U.S. Geological Survey Professional Paper, no. 1833, 202 p.

1025 Stevenson, G. M., and Baars, D. L., 1986, The Paradox: A Pull-Apart Basin of Pennsylvanian Age, *in*
1026 Peterson, J.E. ed., *Palcotectonics and Sedimentation in the Rocky Mountain Region, United*
1027 *States: American Association of Petroleum Geologists Memoir*, 41, p. 513-539.

1028 Stober, I., and Bucher, K., 2007, Hydraulic properties of the crystalline basement: *Hydrogeology Journal*,
1029 v. 15, no. 2, p. 213-224.

1030 Stueber A. M., Pushkar P., and Hetherington E. A., 1987, A strontium isotopic study of formation waters
1031 from the Illinois basin, USA: *Applied Geochemistry*, v. 2, no. 5-6, p. 477-494.

1032 Stueber, A. M., Walter, L. M., Huston, T. J., and Pushkar, P., 1993, Formation waters from
1033 Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints
1034 on evolution and migration: *Geochimica et Cosmochimica Acta*, v. 57, no. 4, p. 763-784.

1035 Stueber, A. M., and Walter, L. M., 1994, Glacial recharge and paleohydrologic flow systems in the
1036 Illinois basin: Evidence from chemistry of Ordovician carbonate (Galena) formation
1037 waters: *Geological Society of America Bulletin*, v. 106, no. 11, p. 1430-1439.

1038 Surdam, R. C., and MacGowan, D. B., 1987, Oilfield waters and sandstone diagenesis: *Applied*
1039 *Geochemistry*, v. 2, no. 5-6, p. 613-619.

1040 Sverjensky, D. A., 1987, The role of migrating oil field brines in the formation of sediment-hosted Cu-
1041 rich deposits: *Economic Geology*, v. 82, no. 5, p. 1130-1141.

1042 Thackston J. W., McCulley B. L., and Preslo, L. M., 1981, Ground-water circulation in the western
1043 Paradox Basin, Utah: *in* Wiegand, D. L., ed., *Geology of the Paradox basin: Rocky Mountain*
1044 *Association of Geologists Field Conference*, p. 201-225

1045 Thamm, J. K., 1981, Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash
1046 Type, Colorado Plateau Province: U.S. Department of Energy Open-File Report, no. GJBX-
1047 6(81).

1048 Thorson J. P., 2018, Paradox Basin fluids and Colorado Plateau copper, uranium, and vanadium deposits:
1049 Overview: *Society of Economic Geologists, Guidebook Series*, v. 59, p. 13-46.

1050 Thorson, J. P., and MacIntyre, T. J., 2005, Geology of the Cashin Mine sandstone-hosted disseminated
1051 copper deposit, Montrose County, Colorado: *Society of Economic Geologists, Guidebook series*,
1052 v. 37, p. 43-49.

1053 Trudgill, B. D., 2011, Evolution of salt structures in the northern Paradox Basin: Controls on evaporite
1054 deposition, salt wall growth and supra-salt stratigraphic architecture: Basin Research, v. 23, no. 2,
1055 p. 208-238.

1056 Turner-Peterson C. E., Santos E. S., and Fishman N. S., 1986, A basin analysis case study: The Morrison
1057 Formation Grants Uranium Region, New Mexico: American Association of Petroleum Geologists
1058 Studies in Geology, v. 22, p. 47-72.

1059 Tuttle, M. L., Klett, T. R., Richardson, M., and Breit, G. N., 1996, Geochemistry of two interbeds in the
1060 Pennsylvanian Paradox Formation, Utah and Colorado: a record of deposition and diagenesis of
1061 repetitive cycles in a marine basin: U.S. Geological Survey Bulletin, no. 2000-N, 86 p.

1062 Villegas M. E., Bachu S., Ramon J. C., and Underschultz J. R., 1994, Flow of Formation Waters in the
1063 Cretaceous—Miocene Succession of the Llanos Basin, Colombia: American Association of
1064 Petroleum Geologists Bulletin, v. 78, no. 12, p. 1843-1862.

1065 Walker T. R., 1989, Application of diagenetic alterations in redbeds to the origin of copper in stratiform
1066 copper deposits, in Boyle, R.W., Brown, A.C., Jefferson, C.W., Jowett, E.C. and Kirkham, R.V.
1067 eds., Sediment-hosted stratiform copper deposits: Geological Association of Canada, Special
1068 Paper, v. 36, p. 85-96.

1069 Waters, A. C., Wiesner, D. R., Fleischer, M., Brant, R. A., Mapel, W. J., Granger, H. C., ... and Jones, B.
1070 E., 1949, Volcanic debris in uraniferous sandstones and its possible bearing on the origin and
1071 precipitation of uranium: US Department of the Interior, Geological Survey, no. 224-
1072 228. Whidden K. J., Lillis P. G., Anna L. O., Pearson K. M., and Dubiel R. F., 2014, Geology and
1073 total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona: The
1074 Mountain Geologist, v. 51, no. 2, p.119-138.

1075 Wigley M., Kampman N., Dubacq B., and Bickle, M., 2012, Fluid-mineral reactions and trace metal
1076 mobilization in an exhumed natural CO₂ reservoir, Green River, Utah: Geology, v. 40, no. 6, p.
1077 555-558.

1078 Williams-Stroud S., 1994, The evolution of an inland sea of marine origin to a non-marine saline lake -
1079 The Pennsylvanian Paradox salt, in Sedimentology and Geochemistry of Modern and Ancient
1080 Saline Lakes: Society of Sedimentary Geology [SEPM] Special Publication, 50, p. 293-306.

1081 Wilson, T. P., and Long, D. T., 1993a, Geochemistry and isotope chemistry of CaNaCl brines in Silurian
1082 strata, Michigan Basin, USA: Applied Geochemistry, v. 8, no. 5, p. 507-524.

1083 Wilson, T. P., and Long, D. T., 1993b, Geochemistry and isotope chemistry of Michigan Basin brines:
1084 Devonian formations: Applied Geochemistry, v. 8, no. 1, p. 81-100.

1085 Woodward-Clyde Consultants, 1982, Geologic characterization report for the Paradox basin study region,
1086 Utah study areas: volume II, Gibson Dome: Battelle Memorial Institute, Office of Nuclear Waste
1087 Isolation, 290 p.

1088 Woodward-Clyde Consultants, 1983, Overview of the regional geology of the Paradox Basin study
1089 region: Columbus, Ohio, Office of Nuclear Waste Isolation Technical Report ONWI-92, 433 p.

1090 Zhu, C., Winterle, J. R., and Love, E. I., 2003, Late Pleistocene and Holocene groundwater recharge from
1091 the chloride mass balance method and chlorine-36 data: Water Resources Research, v. 39, no. 7.

1092 Zielinski R. A., Bloch S., and Walker T. R., 1983, The mobility and distribution of heavy metals during
1093 the formation of first cycle red beds: Economic Geology, v. 78, no. 8, p. 1574-15.

1094 Figure 1. (a) Location and geological features of the Paradox Basin, modified from Barton et al. (2018).
1095 Dashed line represents the basin extent. Location of water sampling points are showing in the
1096 blue star symbol. Iconic manifestations of paleofluid flow in the Paradox Basin are represented in
1097 color areas on the map. (b) Schematic cross section of A - A' in (a) across the Paradox Basin at
1098 late Middle Pennsylvanian time, modified from Whidden et al. (2014); Stevenson and Baars
1099 (1986). Extensive evaporite and interbedded black shales comprised the Pennsylvanian Paradox
1100 Formation in the northeastern part of basin. Algal bioherm mounds and shelf carbonates formed
1101 the southwestern part of the basin at late Middle Pennsylvanian time. (c) Schematic cross section
1102 of the northeastern part of the basin (B - B' in (a)) at present, modified from Baars (1966),
1103 Stevenson and Baars (1986), and King et al. (2014). Salt anticline structures and related fault
1104 systems are represented. Present hydrostratigraphy is divided into three (upper, middle, and
1105 lower) units.

1106 Figure 2. Stratigraphic column of Devonian through Cretaceous formations with lithology,
1107 mineralization, and bleaching information in the Paradox Basin. Formations where water samples
1108 were collected from are identified in the black star symbol. Abbreviations used: Gp – Group; Ss –
1109 Sandstone; Fm – Formation; Mb – Member; Ls - Limestone.

1110 Figure 3. Major cations (Na, Ca, Mg and K) versus Br concentrations of Paradox Basin formation waters,
1111 compared to the evaporated modern seawater line (McCaffrey et al., 1987). Major cations of salt
1112 anticline brine and Leadville Ls brines are enriched by dissolution of evaporites (e.g., halite,
1113 calcite, gypsum, and K-bearing evaporites). Honaker Trail Fm brines and Desert Creek brines
1114 show depleted K and Mg by formation of potassium aluminosilicates and dolomitization, and
1115 enriched Ca by albitization of plagioclase. Asterisk symbols represent data from previous
1116 literature: Salt anticline brine – Kharaka et al. (1997) and Rosenbauer et al. (1992); Groundwater
1117 in the Cutler Fm – Spangler et al. (1996); Paradox Fm brines and Leadville Ls brines – Blondes et
1118 al. (2018). Abbreviations used: Fm – Formation; Ls – Limestone; Ss – Sandstone.

1119 Figure 4. (a) Na/Br versus Cl/Br ratios of formation waters to separate water types and origin of salinity.
1120 Based on modern seawater (Riley and Chester, 1971), the Salt Creek, Dolores River, salt anticline
1121 brine, and Leadville Ls brines show high Na/Br and Cl/Br ratios, while Honaker Trail Fm brines,
1122 Desert Creek brines, and Cane Creek brine exhibit low ratios. (b) Br versus Cl concentrations of
1123 formation waters. The salt anticline brine and Leadville Ls brines plot in the halite saturation
1124 zone. The Cane Creek brine shows the highest Br and Cl concentrations in this study and
1125 represents evaporated paleo-seawater. Asterisk symbols represent data from previous literature, as
1126 described in Fig. 2. Abbreviations used: Fm – Formation; Ls – Limestone; Ss – Sandstone.

1127 Figure 5. Water stable isotopes of Paradox Basin formation waters compared to the global meteoric water
1128 line (GMWL; Craig, 1961) and local meteoric water line (LMWL) of Utah (Kendall and Coplen,
1129 2001). Shallow groundwaters in the Burro Canyon Fm and Navajo Ss, salt anticline brine, Salt
1130 Creek, Dolores River, and Leadville Ls brines plot along the LMWL. Deep brines (Honaker Trail
1131 Fm, Desert Creek, Cane Creek, and McCracken Ss brines) and fluid inclusions in the Paradox Fm
1132 evaporites (Petrychenko et al., 2012) plot below the LMWL. The Honaker Trail Fm and Desert
1133 Creek brines show mixing trends between evaporated paleo-seawater (EPS; endmember 1 (EM1))
1134 and meteoric water (EM2). Asterisk symbols represent data from previous literature:

1135 Groundwater in the Cutler Fm – Spangler et al. (1996); Paradox Fm brines – Spangler et al.
1136 (1996) and Naftz et al. (1997); Leadville Ls brines – Nuckolls and McCulley (1987).
1137 Abbreviations used: Fm – Formation; Ls – Limestone; Ss – Sandstone; EM – Endmember.

1138 Figure 6. (a) Sulfur and oxygen isotopes of SO_4 and (b) sulfur isotopes of SO_4 versus SO_4 concentrations
1139 of Paradox Basin formation waters to distinguish sources of SO_4 . Evaporite (anhydrite) data in
1140 the Paradox Fm are from Chen et al. (2016) and Holt et al. (2014). Sulfate in most of the basinal
1141 brine samples came from dissolution of evaporites. Honaker Trail Fm brines, groundwater in the
1142 Burro Canyon Fm, and Dolores River have another SO_4 sourced from sulfide oxidation.
1143 Enrichment factors of sulfur isotopes of sulfate and H_2S for salt anticline brine and Salt Creek
1144 indicate bacterial sulfate reduction. Abbreviations used: Fm – Formation; Ls – Limestone; Ss –
1145 Sandstone.

1146 Figure 7. Sr isotopes ratios and concentrations (mmol/L) of Paradox Basin formation waters. Leadville Ls
1147 brine and McCracken Ss brines have high Sr isotopes ratios, consistent with endogenic springs in
1148 the Grand Canyon region in the Colorado Plateau ¹ Crossey et al., 2006). Sr isotope ratios and
1149 concentrations of groundwater in Burro Canyon Fm and Navajo Ss are similar with those of
1150 hematite and calcite in the Jurassic Ss ² Chan et al., 2000). Sr isotopes of Cane Creek and Desert
1151 Creek brines are consistent with those of anhydrite in the Pennsylvanian Hermosa Fm (Paradox
1152 Fm and/or Honaker Trail Fm; ³ Breit et al., 1990). Sr isotope data of barite in the Hermosa and
1153 Morrison formations are from ³ Breit et al. (1990). Asterisk and x symbols represent data from
1154 previous literature (Spangler et al., 1996 and Naftz et al., 1997). Abbreviations used: Fm –
1155 Formation; Ls – Limestone; Ss – Sandstone. The solid and dotted black lines are mixing lines
1156 between the salt anticline brines and the Dolores River and Navajo Ss waters with the highest
1157 $^{87}\text{Sr}/^{86}\text{Sr}$.

1158 Figure 8. Concentration of Cu, U, Fe and Mn versus dissolved H_2S in various formation waters. Note that
1159 U concentration is in nmol/L and other metals are in $\mu\text{mol/L}$, while dissolved H_2S is in mmol/L.
1160 H_2S concentrations of groundwater in the Burro Canyon Fm and Navajo Ss are assumed to be
1161 negligible. Groundwater in the Burro Canyon Fm exhibits the highest U concentration in this
1162 study. The Honaker Trail Fm and Cane Creek brines show the highest Cu, Fe, and Mn
1163 concentrations in presence of high H_2S . The Desert Creek brines contain varied H_2S
1164 concentrations and low Cu and U concentration below detection limit. The salt anticline brine
1165 shows high H_2S because of bacterial sulfate reduction and moderate Cu, Fe and Mn
1166 concentrations. Metal concentrations of groundwater in the Morrison Fm came from Phoenix
1167 (1959). Abbreviations used: Fm – Formation; Ls – Limestone; Ss – Sandstone.

1168 Figure 9. Conceptual model of the types, sources, and distributions of distinct compositions of formation
1169 waters and water-rock reactions in the Paradox Basin today. Orange arrows represent local
1170 topographic recharge and meteoric influx into upper (including Burro Canyon Fm, Navajo Ss,
1171 and Honaker Trail Fm) and lower (including Leadville Ls and McCracken Ss) hydrostratigraphic
1172 units. Abbreviations used: Fm – Formation; Ls – Limestone; Ss – Sandstone; EPS – Evaporated
1173 Paleo-Seawater.

Figure 1

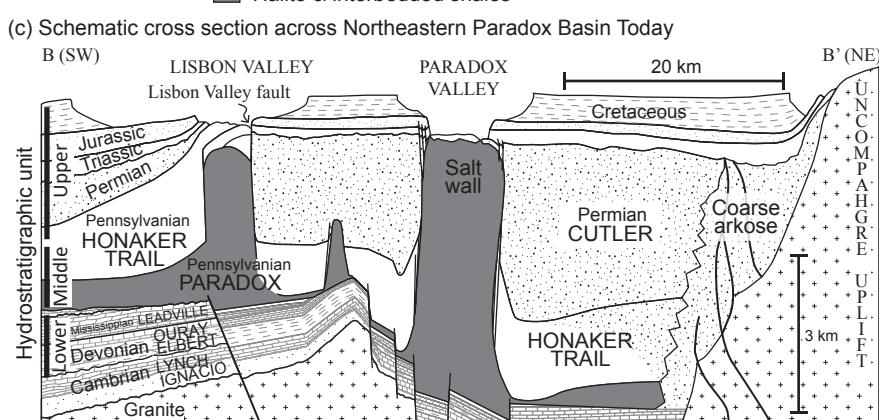
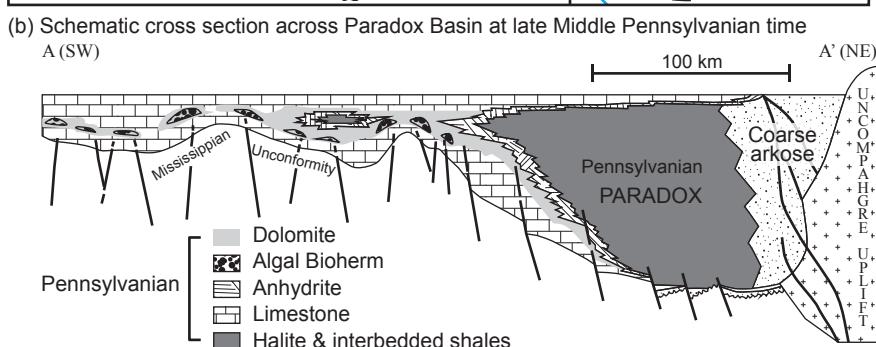
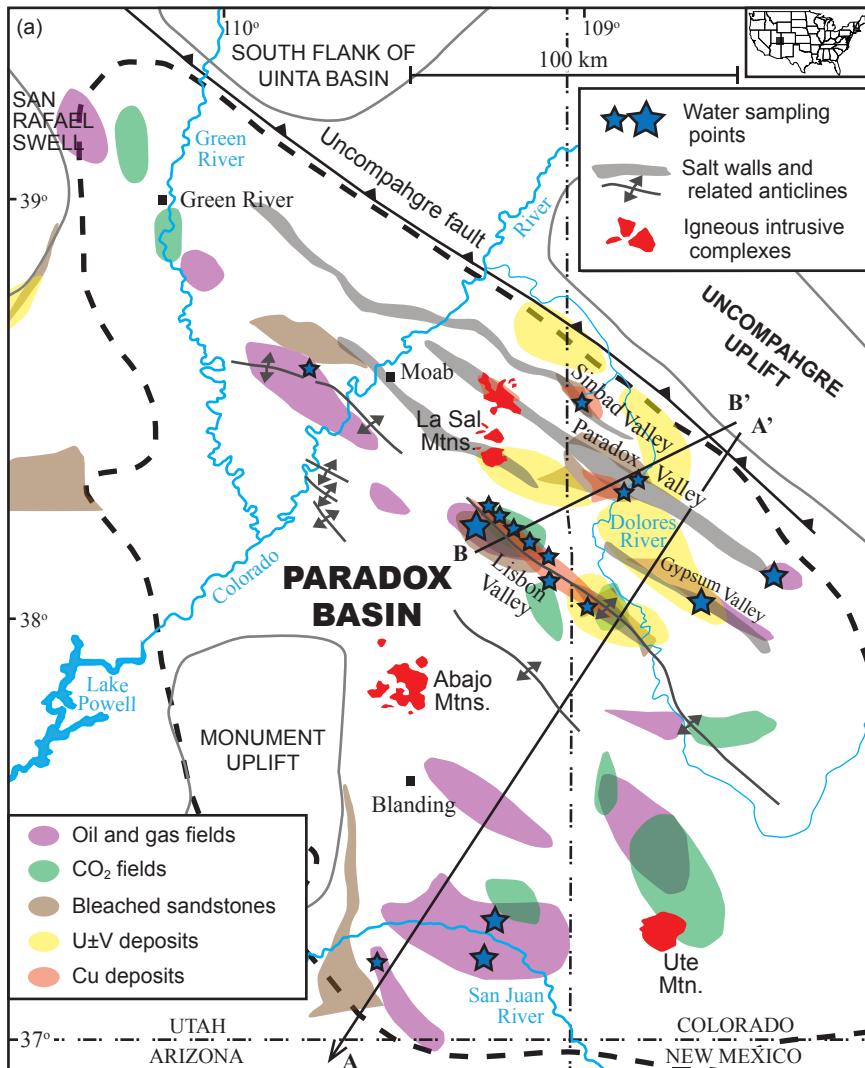




Figure 2

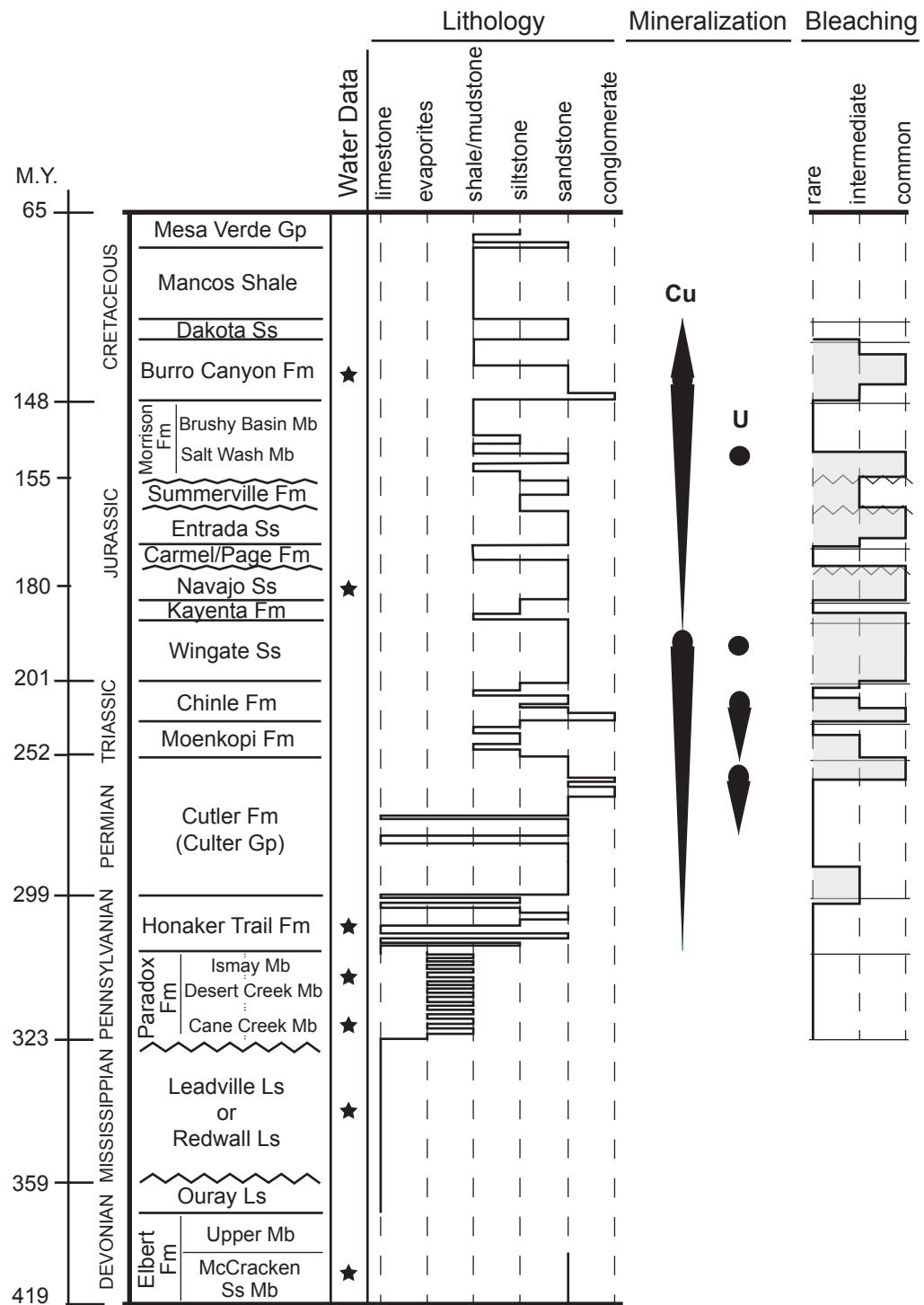


Figure 3

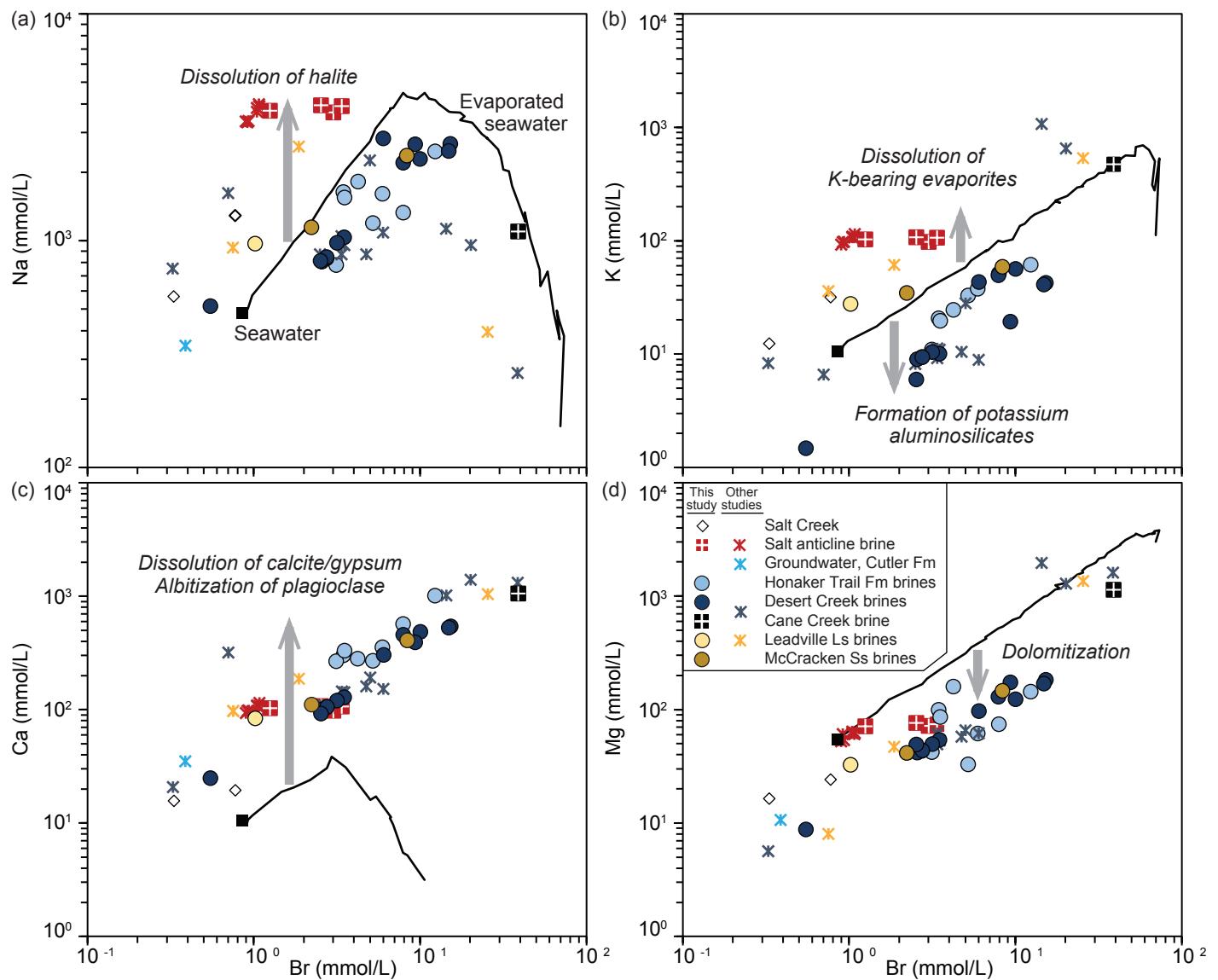


Figure 4

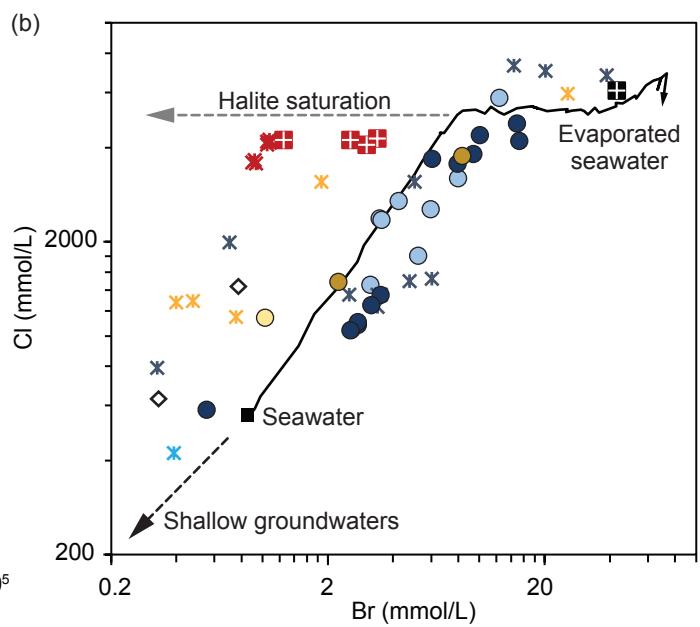
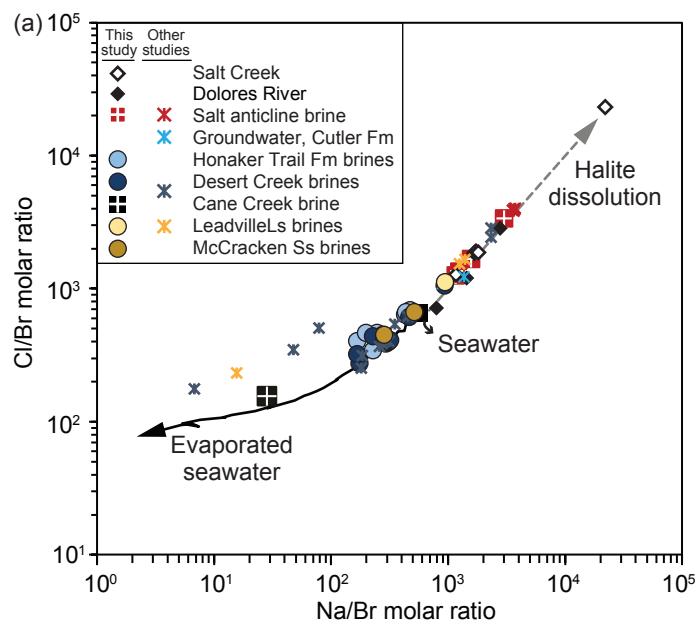



Figure 5

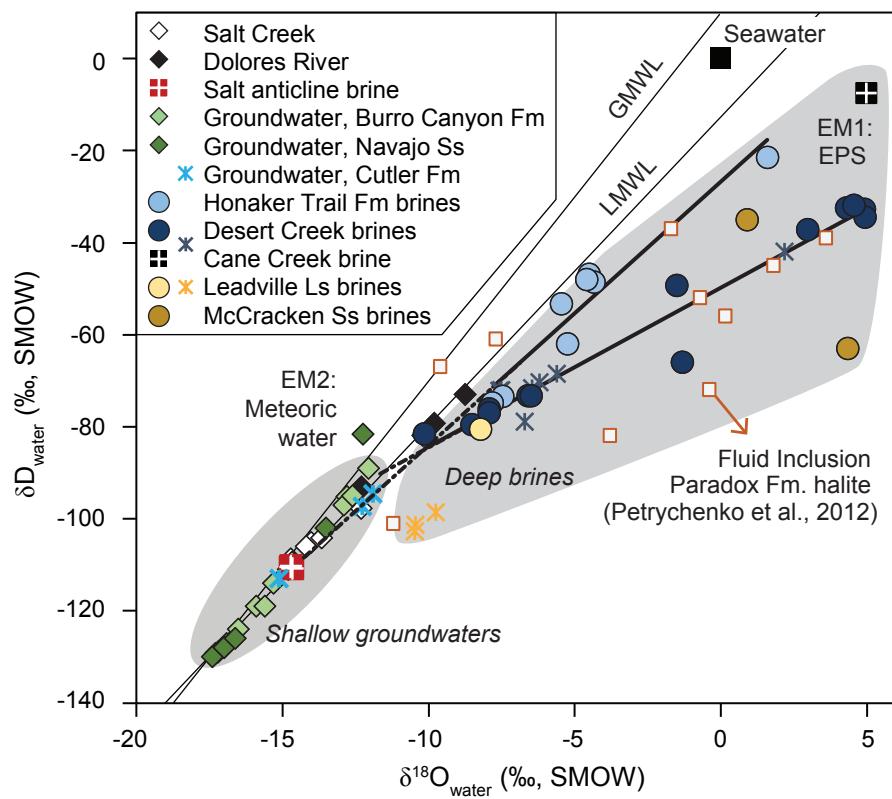


Figure 6

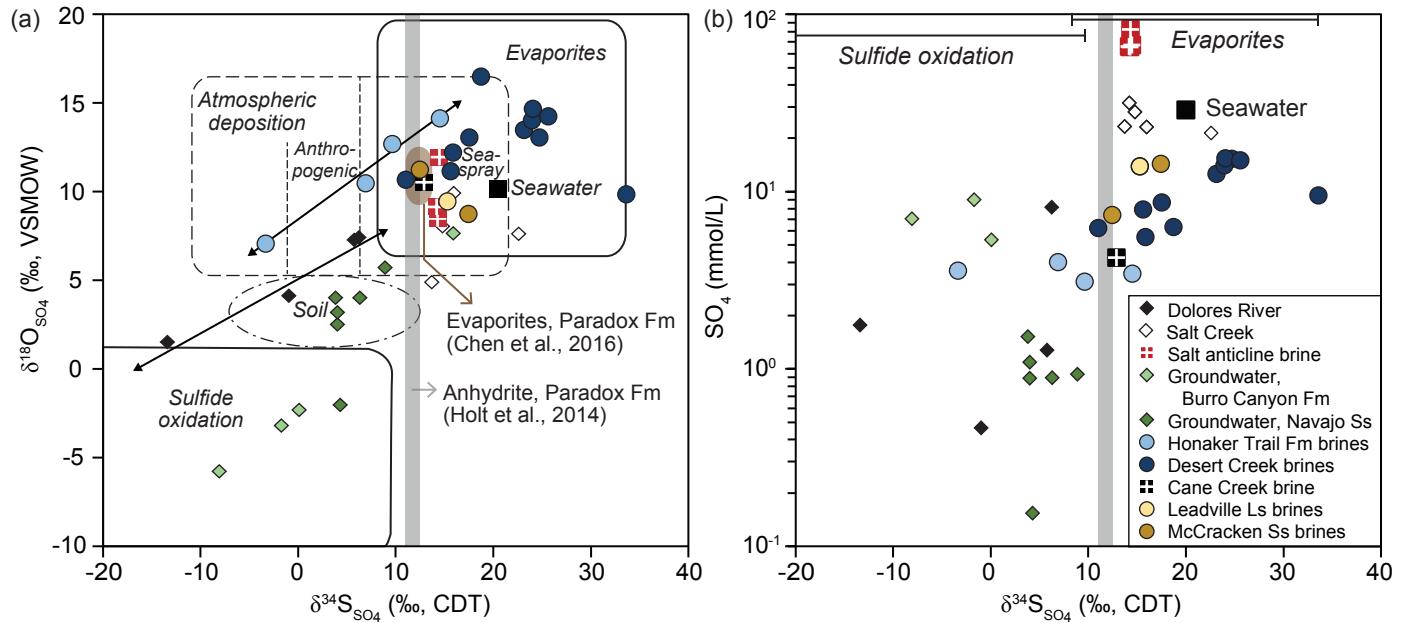


Figure 7

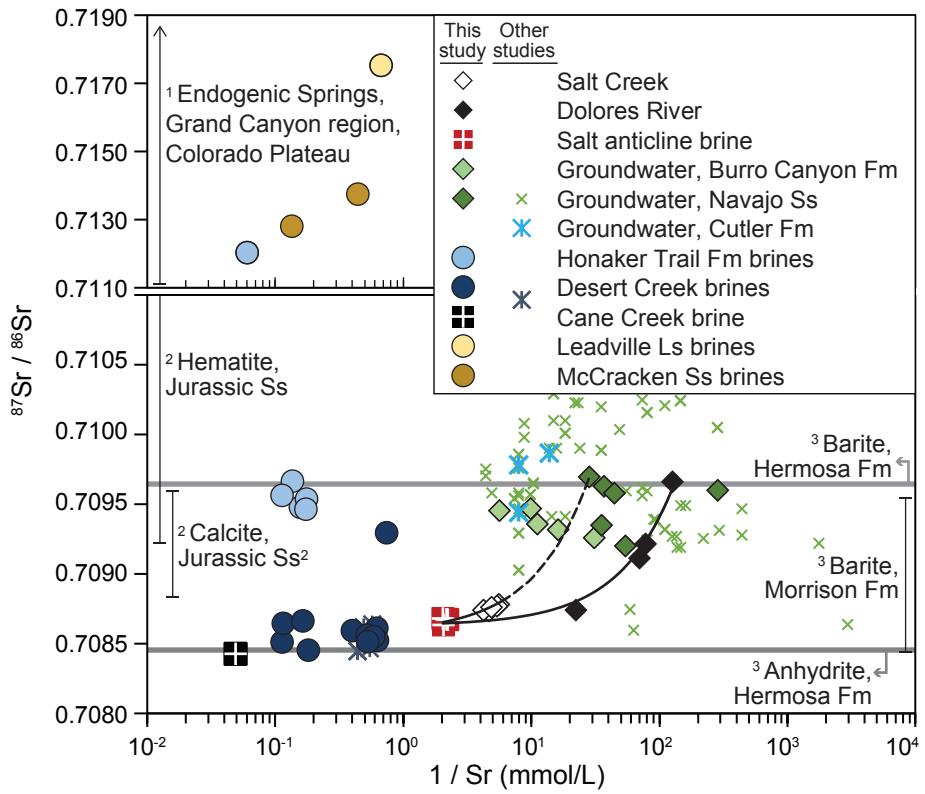


Figure 8

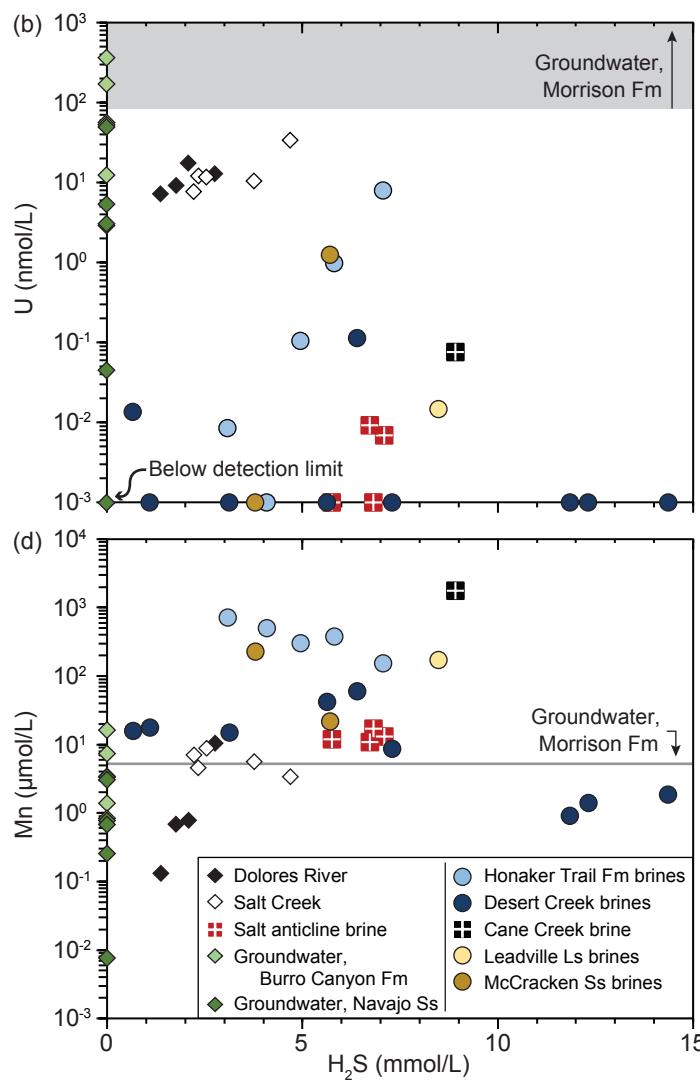
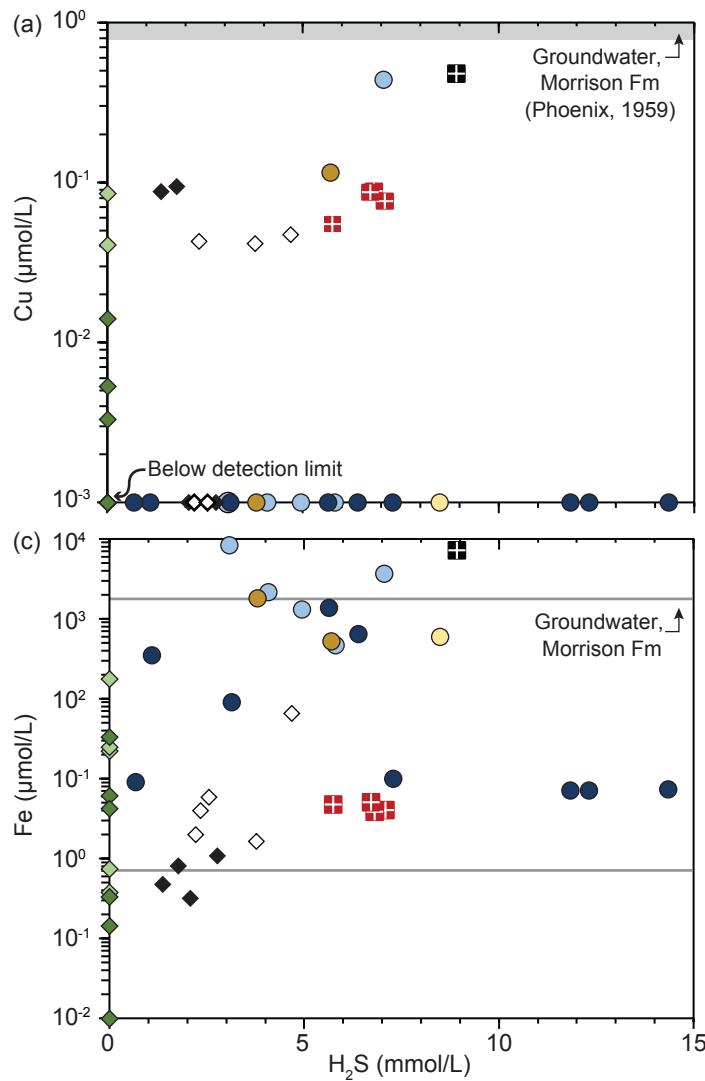
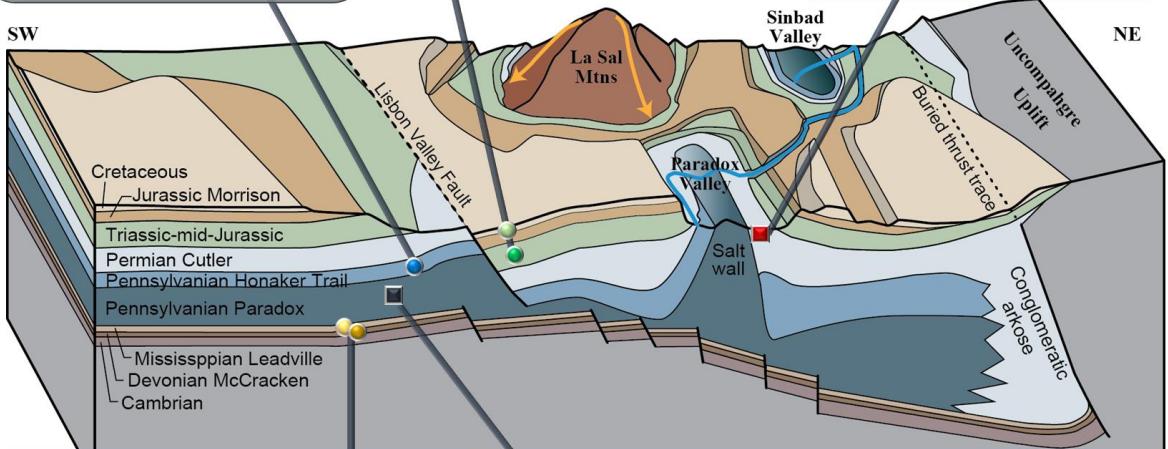



Figure 9

Honaker Trail Fm brines


- EPS-derived brine mixed with meteoric water
- Oxidation of Sulfides
- Hydrocarbon-bearing reducing fluid with high H_2S

Fresh-brackish groundwater in Burro Canyon Fm/Navajo Ss

- Sulfide oxidation by influx of meteoric water
- High U content

Salt anticline brine

- Topographically-driven meteoric dissolution of evaporites around salt anticlines (Na-Cl type brine)
- High H_2S from bacterial sulfate reduction

Leadville Ls/McCracken Ss brines

- Salt dissolution-derived brine by influx of meteoric water
- Radiogenic Sr from interaction with basement rocks or shales in basal sediments

Paradox Fm Cane Creek brine

- Highly evaporated paleo-seawater (EPS) associated with Paradox Formation (Ca-Cl type brine)
- Hydrocarbon-bearing reducing fluid with high H_2S
- One type of fluid responsible for sandstone bleaching

TABLE 1. LOCATION AND FIELD MEASUREMENT OF WATER SAMPLES

Sample/Well ID	Latitude	Longitude	Elevation m	Field	Formation	Depth m	pH	Temp. °C	E.C. mS/cm	Alkalinity meq/L	Density g/cm³
<u>Surface water and seeps</u>											
DR-BR-a	38.30997	-108.88583	1500	Paradox Valley	-	0	7.68	6.9	0.8	2.62	0.9980
DR-BR-b	38.30997	-108.88583	1500	Paradox Valley	-	0	8.23	24.3	1.6	3.57	1.0011
DR North-a	38.34943	-108.85152	1495	Paradox Valley	-	0	8.10	8.05	4.4	2.93	0.9996
DR-North-b	38.34943	-108.85152	1495	Paradox Valley	-	0	8.07	29.1	26.2	5.19	1.0123
Salt Creek 1a	38.52593	-108.98061	1629	Sinbad Valley	-	0	7.35	12.6	65.0	4.44	1.0280
Salt Creek 1b	38.52593	-108.98061	1629	Sinbad Valley	-	0	7.75	22.5	118.0	3.99	1.0635
Salt Creek 2	38.51950	-108.98237	1634	Sinbad Valley	-	0	7.05	10.9	129.8	5.07	1.0042
Salt Creek Seep1	38.52593	-108.98061	1629	Sinbad Valley	-	0	7.65	7.1	123.0	5.25	1.0604
Salt Creek Seep2	38.51991	-108.98160	-	Sinbad Valley	-	0	7.52	30.3	18.8	5.51	1.0101
<u>Groundwater monitoring wells</u>											
PW-3a	38.14729	-109.13597	1948	Lisbon Valley	K. Burro Canyon Fm	148	6.69	16	1.7	6.75	-
PW-3b	38.14729	-109.13584	1938	Lisbon Valley	K. Burro Canyon Fm	145	7.31	17	1.7	6.99	1.0014
PW-4	38.15272	-109.14219	1929	Lisbon Valley	K. Burro Canyon Fm	130	6.75	14.7	2.0	6.12	1.0018
PW-12a	38.1249	-109.12121	1969	Lisbon Valley	K. Burro Canyon Fm	305	7.1	20.7	1.5	6.28	-
PW-12b	38.12460	-109.12093	2001	Lisbon Valley	K. Burro Canyon Fm	305	7.35	20	1.5	6.32	1.0013
325	38.12001	-109.10598	1941	Lisbon Valley	K. Burro Canyon Fm	159	7.14	20.8	1.2	-	-
MW96-7A	38.14576	-109.13056	1966	Lisbon Valley	K. Burro Canyon Fm	364	8.27	13.5	2.0	6.29	-
98R7	38.15165	-109.14013	1940	Lisbon Valley	K. Burro Canyon Fm	102	7.86	11.1	0.9	-	-
98R4	38.15541	-109.14478	1938	Lisbon Valley	K. Burro Canyon Fm	139	7.72	17.1	1.1	-	-
PW-1	38.151	-109.13995	1941	Lisbon Valley	K. Burro Canyon Fm	110	7.06	15.5	1.1	-	-
PW-2	38.15148	-109.13867	1950	Lisbon Valley	K. Burro Canyon Fm	229	6.87	15.9	1.9	-	-
PW-7a	38.12497	-109.11137	1929	Lisbon Valley	J. Navajo Ss	457	7.73	24.3	0.6	4.13	1.0006
PW-7b	38.12493	-109.11143	1943	Lisbon Valley	J. Navajo Ss	463	6.8	24.1	0.6	-	-
PW-8a	38.14782	-109.13432	1954	Lisbon Valley	J. Navajo Ss	474	7.49	24.8	1.1	6.41	-
PW-8b	38.14783	-109.13448	1946	Lisbon Valley	J. Navajo Ss	472	7.99	24.5	1.2	6.40	1.0008
PW-11a	38.12608	-109.10066	1930	Lisbon Valley	J. Navajo Ss	457	7.77	24.4	0.9	4.14	-
PW-11b	38.12621	-109.10073	1926	Lisbon Valley	J. Navajo Ss	457	7.68	24.8	0.9	4.63	1.0006
LV-41-75	38.11587	-109.11999	2026	Lisbon Valley	J. Navajo Ss	176	6.93	20.3	0.4	-	-
MW97-11	38.13831	-109.13161	2014	Lisbon Valley	J. Navajo Ss	338	7.95	19.6	0.9	-	-
MW97-13	38.12695	-109.10746	1950	Lisbon Valley	J. Navajo Ss	439	6.99	18.8	0.6	-	-
MW06-15	38.15727	-109.1401	1941	Lisbon Valley	J. Navajo Ss	274	8.77	17.6	1.3	-	-
<u>Brine pumping wells</u>											
BOR well 2E	38.32630	-108.86042	1501	Paradox Valley	Salt anticline	14	6.41	16	235.4	4.79	1.1678
BOR well 3E	38.32697	-108.85925	1503	Paradox Valley	Salt anticline	14	6.46	18	235.2	4.93	1.1677
BOR well 8E	38.34356	-108.85565	1486	Paradox Valley	Salt anticline	14	6.53	15.6	234.8	4.52	1.1670
BOR well 9E	38.34318	-108.85670	1491	Paradox Valley	Salt anticline	14	6.56	15.1	232.7	4.50	1.1620

Oil/gas producing wells

MM 31-42	38.23187	-109.20990	2062	Lisbon Valley	pC. Honaker Trail Fm	1617	6.40	-	-	0.64	1.0605
MM 31-31	38.23625	-109.21529	-	Lisbon Valley	pC. Honaker Trail Fm	1522	5.66	-	168.5	4.74	1.1174
MM 5-6	38.22772	-109.20319	-	Lisbon Valley	pC. Honaker Trail Fm	1618	5.58	-	206.5	1.55	1.2076
HC 12-13	38.09464	-108.46845	2159	Lisbon Valley	pC. Honaker Trail Fm	2280	6.46	17.8	4.0	1.70	1.0746
FF-5	38.06332	-108.68227	2022	Lisbon Valley	pC. Honaker Trail Fm	2510	6.46	15.8	110.3	1.71	1.1014
Big Indian 24-31	38.16899	-109.13400	1920	Lisbon Valley	pC. Honaker Trail Fm	947	6.26	23.5	-	5.42	1.1060
BH 10-31	38.19219	-109.17191	2071	Lisbon Valley	pC. Honaker Trail Fm	1184	6.28	15.8	139.2	1.20	1.0948
BH 10-42	38.18850	-109.16347	-	Lisbon Valley	P. Culter Fm – Ps. Honaker Trail Fm	1090	6.15	22.5	64.8	2.83	1.0955
Anasazi 1	37.16669	-109.31075	1457	Greater Aneth oil field	Ps. Paradox Fm, Desert Creek member	1762	6.28	-	38.9	0.83	1.0248
Runway-10-E2	37.32613	-109.16508	1661	Greater Aneth oil field	Ps. Paradox Fm, Desert Creek member	1839	6.62	17.7	32.7	1.56	1.1481
Sahgzie 1a	37.16963	-109.30639	1446	Greater Aneth oil field	Ps. Paradox Fm, Desert Creek member	1954	6.02	25.4	-	2.54	1.1679
Sahgzie 1b	37.16963	-109.30639	1446	Greater Aneth oil field	Ps. Paradox Fm, Desert Creek member	1954	5.92	-	217.9	1.92	1.1709
Monument-8N-2a	37.31628	-109.19794	1664	Greater Aneth oil field	Ps..Paradox Fm, Desert Creek member	1895	5.78	30.5	-	5.68	1.1409
Monument-8N-2b	37.31628	-109.19794	1664	Greater Aneth oil field	Ps. Paradox Fm, Desert Creek member	1895	5.57	-	215.8	3.92	1.1589
WM 22-43	37.19517	-109.27129	-	Greater Aneth oil field*	Ps. Paradox Fm, Desert Creek member	1722	6.61	-	101.8	3.94	1.0587
WM 34-24	37.17509	-109.27126	1496	Greater Aneth oil field*	Ps. Paradox Fm, Desert Creek member	1722	6.19	-	91.7	7.97	1.0497
WM 34-31	37.18485	-109.26808	1447	Greater Aneth oil field*	Ps. Paradox Fm, Desert Creek member	1722	6.15	-	90.1	7.14	1.0499
WM 34-33	37.17855	-109.26788	1514	Greater Aneth oil field*	Ps. Paradox Fm, Desert Creek member	1722	6.22	-	87.1	7.91	1.0473
Injection water	37.18861	-109.27979	1408	Greater Aneth oil field*	Ps. Paradox Fm, Desert Creek member	1722	6.38	-	34.0	5.34	1.0555
TOHO 35-B	37.18559	-109.57544	1453	Greater Aneth oil field	Ps. Paradox Fm, Desert Creek member- Ismay member	-	6.75	28.7	209.1	1.97	1.1541
TOHO 1	37.17495	-109.57433	1445	Greater Aneth oil field	Ps. Paradox Fm, Desert Creek member- Ismay member	-	7.25	-	87.6	12.55	1.0474
McIntyre 17-21	38.07719	-108.99125	1903	Lisbon Valley	M. Leadville Ls	2586	6.78	14.2	58.5	12.28	1.0487
Lisbon 10-33	38.19150	-109.27369	1972	Lisbon Valley	D. McCracken Ss	2702	5.62	14.9	-	1.82	1.1427
Lisbon B8-10	38.19008	-109.27585	1950	Lisbon Valley	D. McCracken Ss	2610	7.05	17.8	0.0	11.36	1.0616
<u>Lithium exploratory well</u>											
Cane Creek 32	38.58033	-109.73555	1586	NW of Moab	Ps. Paradox Fm, Cane Creek member	-	5.18	34.8	168.5	0.00	1.2704

* Water injection activity

Note: In Formation column, abbreviations of geological period indicate K (Cretaceous), J (Jurassic), P (Permian), Ps (Pennsylvanian), M (Mississippian), and D (Devonian).

TABLE 2. CHEMICAL DATA FROM WATER SAMPLES COLLECTED IN THE STUDY AREA

Sample/Well ID	T.D.S. g/L	Cl mmol/L	Br mmol/L	SO ₄ mmol/L	Ca mmol/L	Mg mmol/L	Na mmol/L	K mmol/L	Sr mmol/L	Si mmol/L	H ₂ S mmol/L	Ba μmol/L	Mn μmol/L	Fe μmol/L	Cu μmol/L	U nmol/L
<u>Surface water and seeps</u>																
DR-BR-a	0.47	3.2	0.004	0.5	1.2	0.5	3.5	0.1	0.01	0.08	1.4	1.1	0.1	0.5	0.09	7
DR-BR-b	1.00	7.7	0.006	1.8	2.2	1.0	9.2	0.3	0.01	0.10	2.1	1.8	0.8	0.3	bdl*	17
DR North-a	2.24	31	0.011	1.3	1.6	1.3	30	0.7	0.01	0.09	1.8	1.0	0.7	0.8	0.09	9
DR-North-b	17	261	bdl	8.2	5.3	7.2	238	6.6	0.04	0.05	2.8	3.1	11	1.1	bdl	13
Salt Creek 1a	39	629	0.330	23.4	15.7	16.5	567	12.4	0.18	0.21	2.3	0.4	4.6	4.0	0.04	12
Salt Creek 1b	87	1411	0.061	31.7	22.5	26.3	1327	31.3	0.24	bdl	2.2	1.3	7.1	2.0	bdl	8
Salt Creek 2	7.23	70	0.055	21.5	14.4	10.9	64	1.0	0.19	0.24	4.7	0.3	3.4	66	0.05	34
Salt Creek Seep1	86	1437	0.772	28.2	19.4	24.2	1290	31.9	0.22	0.30	3.8	0.3	5.7	1.7	0.04	10
Salt Creek Seep2	12	148	0.079	23.2	18.0	14.8	142	2.5	0.21	0.25	2.6	0.5	8.9	5.9	bdl	12
<u>Groundwater monitoring wells</u>																
PW-3a	1.51	0.5	0.004	7.0	5.6	3.4	2.8	0.3	0.16	0.21	na [†]	na	na	na	na	na
PW-3b	1.49	0.5	0.006	6.7	5.6	3.2	2.7	0.3	0.18	0.17	na	0.1	3.4	22	bdl	172
PW-4	1.91	0.4	0.006	10.3	9.2	3.7	2.0	0.2	0.10	0.16	na	0.1	16	177	bdl	363
PW-12a	1.27	0.5	0.005	5.4	3.3	1.9	6.8	0.3	0.06	0.24	na	na	na	na	na	na
PW-12b	1.26	0.5	0.007	5.1	3.1	2.0	7.8	0.2	0.06	0.18	na	0.1	7.5	25	bdl	56
325	1.21	0.9	0.005	0.8	1.0	0.8	12	0.3	0.03	0.14	na	0.6	1.4	0.4	0.09	53
MW96-7A	1.73	0.6	0.004	9.0	5.7	4.0	4.9	0.3	0.09	0.16	na	0.1	0.8	0.7	0.04	12
PW-7a	0.54	1.1	0.005	0.8	1.1	0.6	4.0	0.1	0.03	0.24	na	0.3	0.7	6.1	bdl	3
PW-7b	0.60	2.1	0.005	0.9	1.0	0.7	4.4	0.2	0.03	0.23	na	na	na	na	na	na
PW-8a	0.89	3.4	0.003	1.1	0.6	0.7	9.4	0.3	0.02	0.33	na	na	na	na	na	na
PW-8b	0.88	3.3	0.006	1.1	0.6	0.7	9.2	0.2	0.02	0.17	na	0.3	0.3	bdl	bdl	0.05
PW-11a	0.67	3.4	0.005	0.9	1.1	0.8	5.3	0.2	0.03	0.28	na	na	na	na	na	na
PW-11b	0.70	3.4	0.008	0.9	1.1	0.8	5.6	0.2	0.04	0.22	na	0.3	0.8	33	bdl	bdl
LV-41-75	0.34	0.5	0.005	0.2	1.3	0.7	0.5	0.0	0.004	0.22	na	2.1	0.0	0.1	0.01	5
MW97-11	0.90	3.0	0.004	1.5	1.7	1.0	6.3	0.2	0.03	0.25	na	0.3	3.3	0.3	0.01	50
MW97-13	0.54	1.3	0.004	0.9	1.2	0.7	3.1	0.2	0.02	0.25	na	2.9	3.1	4.2	0.003	3
<u>Brine pumping wells</u>																
BOR well 2E	256	4269	3.379	66.2	36.0	74.5	3915	107	0.46	bdl	6.7	0.4	11	5.1	0.09	0.01
BOR well 3E	255	4234	2.538	65.8	36.6	76.5	3952	107	0.49	bdl	6.8	0.5	17	3.9	0.09	bdl
BOR well 8E	250	4230	1.250	67.6	35.0	71.6	3735	103	0.45	bdl	7.1	0.3	13	4.1	0.08	0.01
BOR well 9E	245	4083	3.012	82.7	37.3	71.6	3676	98	0.49	bdl	5.8	0.4	12	4.8	0.06	bdl
<u>Oil/gas producing wells</u>																
MM 31-42	83	1456	3.146	5.9	264	42	779	11	5.70	bdl	na	7.9	344	147	0.12	0.01
MM 31-31	171	3188	7.959	2.4	561	74	1327	51	na	na	na	na	na	na	na	na
MM 5-6	308	5755	12.36	1.7	1003	144	2466	61	na	na	na	na	na	na	na	na
HC 12-13	106	1798	5.222	4.0	268	33	1195	33	7.36	bdl	3.1	42	712	8277	bdl	0.01
FF-5	146	2534	5.949	3.6	353	61	1603	38	16	0.45	4.1	308	503	2150	bdl	bdl
Big Indian 24-31	155	2697	4.246	5.9	279	158	1816	25	5.72	0.47	7.1	161	153	3648	0.44	8

BH 10-31	136	2344	3.534	3.1	329	85	1549	20	8.80	bdl	5.8	1070	373	467	bdl	1
BH 10-42	138	2372	3.467	3.4	298	99	1636	21	6.37	bdl	5.0	357	299	1310	bdl	0.10
Anasazi 1	34	581	0.551	6.2	24	8.8	514	1.5	1.35	0.15	0.7	1.4	16	9.0	bdl	0.01
Runway-10-E2	213	3677	6.038	7.9	306	96	2817	43	6.06	bdl	3.1	1.9	15	90	bdl	bdl
Sahgzie 1a	240	4184	15.26	5.5	547	182	2671	42	8.83	bdl	na	4.0	18	349	bdl	bdl
Sahgzie 1b	255	4767	14.89	2.7	534	169	2475	41	na	na	na	na	na	na	na	na
Monument-8N-2a	202	3541	7.927	8.7	459	130	2198	50	8.60	bdl	5.6	5.3	42	1377	bdl	bdl
Monument-8N-2b	234	4372	10.04	5.9	489	123	2288	56	na	na	na	na	na	na	na	na
WM 22-43	80	1349	3.509	12.6	128	54	1031	10	2.49	0.19	7.3	1.1	8.7	9.9	bdl	bdl
WM 34-24	67	1106	2.755	15.0	105	43	846	9.4	1.69	0.25	14	0.9	1.9	7.3	bdl	bdl
WM 34-31	65	1082	2.745	15.3	104	43	833	9.4	1.60	0.23	12	0.5	0.9	7.1	bdl	bdl
WM 34-33	63	1043	2.569	15.4	99	42	805	9.0	1.58	0.25	12	0.6	1.4	7.1	bdl	bdl
Injection water	75	1251	3.174	14.1	120	49	978	10	1.92	0.24	na	2.8	3.4	14	bdl	bdl
TOHO 35-B	219	3812	9.361	6.3	395	173	2649	19	5.50	bdl	6.4	6.3	60	637	bdl	0.11
TOHO 1	63	1039	2.537	9.5	92	49	812	6.0	1.89	0.20	na	5.1	6.4	179	bdl	0.03
McIntyre 17-21	70	1143	1.025	13.9	83	33	968	28	1.48	0.61	8.5	2.5	169	589	bdl	0.01
Lisbon 10-33	212	3747	8.353	7.4	410	146	2363	59	7.42	bdl	3.8	27	228	1786	bdl	bdl
Lisbon B8-10	88	1485	2.231	14.4	111	41	1144	35	2.25	0.44	5.7	1.9	22	517	0.11	1
<u>Lithium exploratory well</u>																
Cane Creek 32	335	6083	38.91	4.2	1058	1136	1098	473	20.54	1.01	8.9	14	1772	7185	0.48	0.08

*bdl: below detection limit

†na: not analyzed

TABLE 3. CALCULATED SATURATION INDICES AND DIC OF WATER SAMPLES USING PHREEQC

Sample/ Well ID	Barite	Calcite	Dolomite	Gypsum	Halite	Sylvite	CuS	Chalcocite	Chalcopyrite	DIC (meq/L)
<u>Surface water and seeps</u>										
DR-BR-a	0.4	-0.5	-1.4	-2.0	-6.6	-7.1	4.9	-8.0	13.3	2.87
DR-BR-b	0.8	0.6	0.9	-1.4	-5.9	-6.7	2.0	-14.4	10.0	3.47
DR North-a	0.4	-0.2	-0.4	-1.8	-4.7	-5.5	4.9	-8.5	13.8	2.97
DR-North-b	0.8	0.7	1.6	-1.1	-3.1	-4.0	1.5	-15.3	9.7	4.66
Salt Creek 1a	0.1	0.1	0.2	-0.5	-2.3	-3.3	3.6	-10.1	12.5	5.01
Salt Creek 1b	0.5	0.6	1.4	-0.5	-1.7	-2.7	2.0	-13.7	10.7	2.93
Salt Creek 2	0.6	-0.2	-0.5	-0.1	-4.1	-5.1	3.1	-11.2	12.6	6.93
Salt Creek Seep1	0.0	0.2	0.5	-0.6	-1.6	-2.5	3.8	-10.2	12.5	5.34
Salt Creek Seep2	0.5	0.8	1.6	-0.2	-3.6	-4.7	1.0	-15.6	9.6	5.58
<u>Groundwater monitoring wells</u>										
PW-3a	nd*	-0.2	-0.5	-0.6	-7.5	-7.8	nd	nd	nd	12.59
PW-3b	0.2	0.5	0.8	-0.6	-7.6	-7.8	nd	nd	nd	8.37
PW-4	0.0	0.0	-0.4	-0.3	-7.8	-8.1	nd	nd	nd	10.74
PW-12a	nd	0.1	0.1	-0.8	-7.2	-7.8	nd	nd	nd	8.33
PW-12b	0.1	0.3	0.5	-0.9	-7.1	-7.9	nd	nd	nd	7.47
325	nd	0.0	0.0	-2.0	-6.6	-7.5	nd	nd	nd	15.99
MW96-7A	nd	1.3	2.5	-0.5	-7.2	-7.7	nd	nd	nd	5.88
PW-7a	-0.2	0.3	0.4	-1.9	-7.0	-7.8	nd	nd	nd	4.40
PW-7b	nd	-0.6	-1.4	-1.9	-6.7	-7.4	nd	nd	nd	7.12
PW-8a	nd	-0.1	0.0	-2.1	-6.2	-7.1	nd	nd	nd	7.05
PW-8b	0.0	0.4	1.0	-2.1	-6.2	-7.1	nd	nd	nd	6.54
PW-11a	nd	0.3	0.6	-1.8	-6.4	-7.1	nd	nd	nd	4.36
PW-11b	-0.1	0.3	0.5	-1.9	-6.4	-7.2	nd	nd	nd	4.98
LV-41-75	nd	-0.5	-1.2	-2.4	-8.2	-8.6	nd	nd	nd	5.34
MW97-11	nd	0.7	1.3	-1.5	-6.4	-7.2	nd	nd	nd	6.58
MW97-13	nd	-0.5	-1.2	-1.8	-7.0	-7.6	nd	nd	nd	6.12
<u>Brine pumping wells</u>										
BOR well 2E	0.1	-0.2	0.1	0.0	-0.4	-1.4	2.6	-11.3	10.5	9.28
BOR well 3E	0.2	-0.3	0.0	0.0	-0.4	-1.5	2.4	-11.6	10.2	8.93
BOR well 8E	0.2	-0.8	-1.0	0.0	-0.5	-1.5	2.5	-11.6	10.4	7.84
BOR well 9E	0.3	-0.2	0.1	0.1	-0.5	-1.5	2.6	-11.4	10.7	7.48
<u>Oil/gas producing wells</u>										
MM 31-42	0.4	0.1	-0.5	-0.3	-1.9	-3.1	nd	nd	nd	1.43
MM 31-31	nd	1.0	1.3	-0.5	-1.1	-2.1	nd	nd	nd	42.57
MM 5-6	nd	1.5	2.5	-0.4	-0.3	-1.6	nd	nd	nd	18.90
HC 12-13	1.0	nd	nd	-0.5	-1.5	-2.5	3.3	-8.6	15.0	3.69
FF-5	1.8	nd	nd	-0.5	-1.2	-2.2	2.4	-10.8	13.8	3.79
Big Indian 24-31	1.6	nd	nd	-0.4	-1.1	-2.4	3.8	-8.0	14.8	13.71
BH 10-31	2.3	nd	nd	-0.6	-1.3	-2.5	1.1	-13.7	11.2	3.29
BH 10-42	1.8	nd	nd	-0.6	-1.2	-2.6	1.2	-13.2	11.7	8.72
Anasazi 1	0.1	-1.2	-2.7	-0.9	-2.4	-4.3	2.3	-10.8	10.9	2.16
Runway-10-E2	-0.1	nd	nd	-0.1	-0.7	-2.0	1.4	-13.4	11.1	2.70
Sahgzie 1a	-0.2	0.9	1.6	-0.1	-0.6	-1.9	1.8	-11.4	11.3	9.57
Sahgzie 1b	nd	1.2	2.2	-0.3	-0.5	-1.9	nd	nd	nd	9.18
Monument-8N-2a	0.1	0.7	1.1	0.0	-0.8	-2.0	0.4	-14.3	10.4	31.26
Monument-8N-2b	nd	1.0	1.7	0.0	-0.6	-1.8	nd	nd	nd	37.06
WM 22-43	-0.1	nd	nd	-0.2	-1.8	-3.2	0.1	-16.6	8.0	6.71
WM 34-24	-0.1	0.0	-0.2	-0.2	-2.0	-3.3	-0.4	-17.3	6.8	22.60
WM 34-31	-0.3	0.0	-0.2	-0.2	-2.0	-3.3	-0.3	-16.8	7.1	21.48
WM 34-33	-0.2	0.1	0.0	-0.2	-2.0	-3.3	-0.3	-17.1	7.0	21.53
Injection water	0.4	0.6	0.9	-0.2	-1.8	-3.2	nd	nd	nd	11.63
TOHO 35-B	0.1	nd	nd	-0.2	-0.7	-2.4	0.3	-16.1	10.3	2.78
TOHO 1	0.5	1.7	3.1	-0.4	-2.0	-3.5	nd	nd	nd	14.62
McIntyre 17-21	0.5	0.7	1.0	-0.3	-1.9	-2.7	0.9	-15.2	11.0	19.18
Lisbon 10-33	1.0	nd	nd	0.0	-0.7	-1.8	2.1	-10.3	12.6	15.46
Lisbon B8-10	0.3	1.2	2.0	-0.2	-1.7	-2.5	3.0	-11.1	13.4	14.84
<u>Lithium exploratory well</u>										
Cane Creek 32	-0.4	nd	nd	-0.1	-0.4	-0.7	2.3	-9.5	12.2	0

*nd: no data

Dissolved inorganic carbon (DIC) is equal to the sum of calculated HCO_3 and H_2CO_3

TABLE 4. ISOTOPIC DATA OF WATER SAMPLES COLLECTED IN THE STUDY AREA

Sample/Well ID	$\delta^{18}\text{O}_{\text{water}}$ ‰ (VSMOW)	$\delta\text{D}_{\text{water}}$ ‰ (VSMOW)	$\delta^{34}\text{S}_{\text{SO}_4}$ ‰ (CDT)	$\delta^{18}\text{O}_{\text{SO}_4}$ ‰ (VSMOW)	$\delta^{34}\text{S}_{\text{H}_2\text{S}}$ ‰ (CDT)	$^{87}\text{Sr}/^{86}\text{Sr}$
<u>Surface water and seeps</u>						
DR-BR-a	-12.30	-93.16	-0.99	4.12	na*	0.70966
DR-BR-b	-8.75	-73.02	-13.41	1.50	na	0.70912
DR North-a	-12.40	-94.00	5.75	7.26	na	0.70922
DR-North-b	-9.81	-79.28	6.23	7.41	na	0.70874
Salt Creek 1a	-13.65	-104.15	13.70	4.88	-10.7	0.70878
Salt Creek 1b	-12.29	-97.77	14.20	8.44	na	0.70874
Salt Creek 2	-14.71	-108.81	22.58	7.61	14.9	0.70877
Salt Creek Seep1	-14.01	-105.16	14.79	8.03	-19.8	0.70874
Salt Creek Seep2	-14.17	-106.07	15.95	9.91	na	0.70876
<u>Groundwater monitoring wells</u>						
PW-7a	-16.90	-127.21	na	na	na	0.70963
PW-7b	-17.00	-128.00	6.30	4.00	na	na
PW-8a	-17.00	-128.00	3.99	3.17	na	na
PW-8b	-12.23	-81.61	na	na	na	0.70920
PW-11a	-17.00	-128.00	8.88	5.71	na	na
PW-11b	-17.28	-129.35	na	na	na	0.70970
LV-41-75	-13.50	-102.00	4.29	-2.04	na	0.70960
MW97-11	-17.20	-129.00	3.80	4.00	na	0.70935
MW97-13	-17.40	-130.00	4.00	2.50	na	0.70958
MW06-15	-16.60	-126.00	na	na	na	na
PW-3a	-12.60	-95.00	-8.10	-5.80	na	na
PW-3b	-12.78	-95.21	na	na	na	0.70946
PW-4	-12.05	-89.04	na	na	na	0.70947
PW-12a	-14.80	-111.00	0.06	-2.32	na	na
PW-12b	-14.66	-109.51	na	na	na	0.70932
325	-15.90	-119.00	na	na	na	0.70926
MW96-7A	-12.90	-97.00	-1.73	-3.20	na	0.70936
98R7	-16.50	-124.00	na	na	na	na
98R4	-15.30	-114.00	na	na	na	na
PW-1	-15.60	-119.00	na	na	na	na
PW-2	-10.20	-82.00	na	na	na	na
<u>Brine pumping wells</u>						
BOR well 2E	-14.70	-110.18	14.17	9.11	-23.5	0.70868
BOR well 3E	-14.65	-110.86	14.27	8.98	-23.8	0.70863
BOR well 8E	-14.66	-110.84	14.47	11.93	-24.6	0.70867
BOR well 9E	-14.71	-110.48	14.29	8.46	-24.4	0.70868
<u>Oil/gas producing wells</u>						
MM 31-42	-4.48	-46.99	na	na	na	0.70954
MM 31-31	-5.23	-62.11	na	na	na	na
MM 5-6	1.61	-21.54	na	na	na	na
HC 12-13	-4.32	-48.70	6.90	10.45	na	0.70966
FF-5	-5.44	-53.48	-3.32	7.03	na	0.71204
Big Indian 24-31	-4.58	-48.10	na	na	na	0.70946
BH 10-31	-7.80	-74.88	9.64	12.66	na	0.70956
BH 10-42	-7.45	-73.57	14.51	14.10	na	0.70948
Anasazi 1	-10.12	-81.72	11.04	10.65	na	0.70930
Runway-10-E2	-1.50	-49.48	15.62	11.12	na	0.70866
Sahgzie 1a	4.32	-32.55	15.88	12.18	na	0.70851
Sahgzie 1b	4.93	-32.88	na	na	na	na
Monument-8N-2a	2.99	-37.33	17.57	13.04	na	0.70865
Monument-8N-2b	4.96	-34.57	na	na	na	na
WM 22-43	-6.58	-73.30	23.14	13.44	na	0.70859
WM 34-24	-7.90	-77.03	25.62	14.23	na	0.70855
WM 34-31	-7.92	-76.19	24.71	13.04	na	0.70861
WM 34-33	-8.51	-79.60	24.05	14.66	na	0.70852
Injection water	-6.48	-73.43	23.99	14.00	na	0.70856
TOHO 35-B	4.58	-32.04	18.73	16.46	na	0.70845
TOHO 1	-1.30	-66.05	33.62	9.82	na	0.70851
McIntyre 17-21	-8.20	-80.65	15.29	9.44	na	0.71753
Lisbon 10-33	0.91	-35.12	12.49	11.21	na	0.71281
Lisbon B8-10	4.36	-63.16	17.44	8.72	na	0.71375
<u>Lithium exploratory well</u>						
Cane Creek 32	4.98	-7.57	12.88	10.51	na	0.70843

*na: not analyzed