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ABSTRACT

Electric power systems provide the backbone of modern industrial societies. Enabling scalable grid analytics is the keystone
to successfully operating large transmission and distribution systems. However, today’s power systems are suffering from ever-
increasing computational burdens in sustaining the expanding communities and deep integration of renewables, as well as managing
huge volumes of data accordingly. These unprecedented challenges call for transformative analytics to support the resilient operations
of power systems. Recently, the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power
system computations. Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems,
which may lead to ultra-scalable and efficient power grid analytics. This paper reviews the newly emerging quantum computing
techniques in power systems. We present a comprehensive overview of existing quantum-engineered power analytics from different
operations perspectives, including static analysis, transient analysis, stochastic analysis, optimization, stability, and control. We
thoroughly discuss the related quantum algorithms, their benefits and limitations, hardware implementations, and recommended
practices. We also review the quantum networking techniques indispensable for ensuring the cybersecurity of power systems in the
quantum era. Finally, we discuss challenges and future research directions. This paper will hopefully stimulate increasing attention

to the development of quantum-engineered smart grids.
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to increase the use of renewable resources so as to

fulfill their countries’ ever-increasing energy demands.
For instance, the U.S. federal government has recently been
committed to reducing greenhouse gas emissions 50-52 percent
below 2005 levels in 2030, reaching a 100% carbon pollution-
free power sector by 2035, and achieving a net-zero economy
by no later than 2050™. As an example of climate laws
at the state level, New York State’s Climate Leadership and
Community Protection Act (Climate Act) 2] has set a series of
nation-leading climate targets, including the grid integration of
9 Gigawatts of offshore wind power Carbon neutral economy by
2035, 6 Gigawatts of distributed solar by 2025, and 3 Gigawatts
of energy storage by 2030. Despite the tremendous benefits
of decarbonization and emission reduction, interconnecting
hundreds of gigawatts of renewables causes severe impacts
on the power grids, such as congested transmission and
distribution corridors, and weakened power grids due to reduc-
ing system inertia, widespread intermittency and uncertainty,
compromised situational awareness, and destabilized electricity

Governments across the world are reaching a consensus

markets. Two major challenges have contributed to this
worsening situation: 1) The state-of-the-practice computing
capabilities of power grids are unable to handle the gigantic
volumes of data generated from, and commands needed by the
real-time operation of the large interconnected grids BH; and 2)
The unprecedentedly ultra-scale computational requirements
make existing analysis algorithms, from probabilistic power
flow to electromagnetic transients program (EMTP), unscalable
and unable to offer real-time, high-fidelity results needed for
managing massive Distributed Energy Resources (DERs) and
ensuring resilient operations 5. Those challenges are further
escalating as today’s power grids are subject to more frequent
weather events and targeted by malicious, well-equipped and
motivated adversaries.

Recently, the successes in exploiting the potential of quantum
supremacy shed light on a ‘quantum leap’ of the computa-
tional capabilities, which could empower an unprecedentedly
resilient power system. In general, the representation of
complex power systems’ states on a classical computer scale

exponentially with the size of the problem, while on a quantum
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computer they scale polynomially in theory. Furthermore,
highly entangled states, which are prohibitively difficult for
classical computers to model, can be readily represented on
a quantum computer ™ This implies that those intractable
power system problems, which remain formidable problems
even solved on powerful and expensive real-time simulators
or high-performance computers, if formulated properly, can
be executed much more efficiently on quantum computers.
Quantum computing, however, is a double-edged sword. An
immediate concern, for instance, is that the advent of quantum
computers will invalidate computational-hardness assumptions
that underpin the data security schemes being used in today’s
power systems i,

Inspired by the aforementioned challenges and opportuni-
ties, since 2018, the Power Systems Laboratory at Stony Brook
University has pioneered the research in Quantum-Engineered
Smart Grids (Quantum Grids, or QGrids, see Fig. . The
Quantum Grids group at Stony Brook, including power engi-
neers, computer scientists, and quantum physicists, has been
integrating quantum computing and quantum networking into
aquantum-engineered grid infrastructure to form scalable, self-
protecting, autonomic and sustainable power grids capable of
coordinating gigantic distributed energy systems and fostering
future resilient communities and smart cities.

The main purpose of this paper is to review Stony Brook’s
new contributions to Quantum-Engineered Smart Grids 1333,
partially supported by the U.S. Department of Energy’s Office
of Electricity ® and Stony Brook University’s Quantum Infor-
mation Science and Technology seed grant. We will introduce
a series of quantum analytics for power systems that are
feasible to pursue on noisy-intermediate-scale quantum (NISQ)
computers. Meanwhile, we will also describe a few quantum
grid analytics designed for noise-free quantum computers
that may emerge in the next decade. We further discuss
quantum networking, which provides a level of security for key
distribution that is unattainable through classical cyber systems.
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Fig. 1 A schematic of quantum computing for power systems

1 A Brief Introduction of Quantum Computing

1.1  Quantum Computing: From Bits to Qubits

This subsection introduces the basic knowledge of quantum
computing. We refer readers to the textbook by Nielsen and
Chuang for a pedagogical introduction ®. To understand what
quantum computing is and how quantum computing can be
implemented, we first discuss classical computing in terms of
gates. The basic classical information carrier is a collection
of bits, each of which can be in two binary states: 0 or 1. A
‘0’ can be implemented by a voltage of 0 volt and a ‘1’ can be
implemented by a voltage of 5 volts in electronics. To flip a bit
one has a NOT gate, i.e. NOT : 0 <+ 1. There are other gates
that act on two bits at once, such as the AND gate, which is the
binary addition, e.g. 0AND1 = 1AND = 0ANDO = 0, and
1AND 1 = 1. The OR gate has the actions: 0OR1 = 10OR0 =
10R1 = 1, but 0OR0 = 0. Any logical expression can be
constructed by a circuit using these three gates, and hence, they
form a set of universal gates. In fact, only one kind of gate is
needed, i.e. the so-called NAND gate, which takes two inputs
as AND and OR gates and acts as an AND gate followed by a
NOT gate on the output of the AND gate.

Quantum computing, in some sense, is a generalization of 1)
classical bits to quantum bits (qubits), and 2) classical logical
gates to reversible and general unitary gates.

Additionally, states can be ‘added’ or ‘superposed. For
example, a quantum bit has two basis states corresponding to
the logical 0 and 1, but written inside brackets: |0) and |1).
Unlike classical bits, a quantum bit can be in any superposition:
[¥) = a|0) + B|1), where « and §8 are two generally complex
coefficients such that |2 +| 8|2 = 1, which is the normalization
of a quantum state, i.e. |[|))]|> = (1)|¢) = 1. Here, one can
regard a qubit as a two-component normalized complex vector.
Given that the overall phase factor of a qubit does not have a
physical meaning, we can choose to parameterize o = cos(6/2)
(ie. real) and B = sin(0/2)ei¢, then the so-called density
matrix [¢)(¢| (or the outer product of a column and a row
vector of the complex vector ¢) is written as (I + 7z X +ryY +
r2Z)/2, where I is the 2 x 2 identity matrix X, Y, and Z are
the so-called Pauli matrices, and moreover v, = sin6 cos ¢,
ry = sinfsin ¢, and r, = cos 6 give the spherical coordinate
of a unit sphere. This is the so-called Bloch sphere, where any
qubit can point to any direction on or inside the sphere.

A quantum gate, as explained, generalizes classical gates
and acts on one or possibly multiple qubits. We have seen
the classical NOT gate, and its quantum version is the Pauli
X matrix/operator, which flips between the basis states, X :
|0) <> |1). By using this rule, it is easy to see that X|¢) =
a|l) + B|0). The quantum version of the NOT gate can act
on any superposition of logical 0 and 1 states. Other one-qubit
gates can be regarded as the rotation of the Bloch vector and are
generally written as exp(—i0d - 7/2), where & = (X,Y, Z) is
a vector whose three components are simply the Pauli matrices
and 7 is a unit vector representing a direction. The meaning of
this gate is to rotate a Bloch vector by an angle 6 with respect to
the axis defined by 7.

Beyond one qubit and one-qubit gates, for two qubits, there
are four basis states, which are simply a juxtaposition of two
single-qubit basis states: |0) ® |0) = |00), |01), |10), and |11),
where ® is the so-called tensor product notation but is usually
ignored if there is no ambiguity. One can easily generalize to n
qubits, where there are 2" such basis states, and thus there are
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2™ complex coeflicients for a general n-qubit state. A general n-
qubit gate is a 2™ x 2™ unitary matrix that takes an n-qubit state
to another n-qubit state, which is in general quite complicated.
However, according to the matrix theorem that any such n-
qubit unitary can always be decomposed into a sequence of one-
qubit gates and two-qubit gates acting on appropriate qubits.
In such a decomposition, one-qubit gates are the general Bloch
vector rotations, and we only need one kind of two-qubit gates,
such as the Controlled-NOT gate (CNOT or CX).

Given the CNOT gate acts on two qubits, it can be defined
by the action on the four basis states; specifically, under CNOT:
|00) — |00), |01) — |01), |10) — |11), and |11) — |10), where
we assume the first qubit is the controlled bit and the second
qubit is the target bit. The CNOT gate can generate the so-
called quantum entanglement from a product state, for example,
(|0Y+]1))/v2®|0) — (]00)+|11))/+/2, which is an entangled
state that enables quantum teleportation, a scheme to transfer
quantum states without physically sending them. For a review
of quantum circuits and implementations of recent quantum
devices, please see the review paper [35].

A quantum computer usually begins with the initialization
that all qubits are in the |0) state. Then a sequence of single-
and two-qubit gates act on these qubits to achieve a certain n-
qubit unitary operation. A famous such action is the Quantum
Fourier Transform (QFT), which is used in Shor’s factoring
quantum algorithm. Another example which is quite popular
for NISQ devices B9 is the variational quantum circuit (VQC).
In the VQC, one has some pre-determined circuit structure,
e.g. composed of fixed CNOTs and some single-qubit rotation
gates, whose rotation angles are variational parameters. The
VQC’s are used in the variational quantum eigensolver (VQE)
algorithm, in which the goal is to optimize some cost function
or the expectation of a certain energy operator by using VQCs
and measurement to yield some classical values, which in turn
are used to infer how to change the variational parameters. This
hybrid quantum-classical process is iterated until the cost is
converged. For a recent review of the VQE algorithms and their
applications, we refer the readers to a recent Nature Reviews
article [37]. Variational quantum circuits are also used in many
quantum machine learning designs; for the latter, see a recent
review [38].

So the one final piece that we have not explicitly explained
is the measurement. Given the final readout of a quantum
computer is to measure all or some of the qubits in the |0/1)
basis, we explain the effect of such measurement applied to
a single qubit: |¢)) = «|0) + B|1). Given |0) and |1) are
eigenstates of the Pauli Z operator (with eigenvalues +1 and —1,
respectively), the measurement is also called Z measurement.
The outcome is probabilistic, i.e. with a probability || one
obtains |0) outcome, and with a probability | 3|? one obtains |1)
outcome. This also explains why we have chosen to normalize
the coefficients of 1) such that || + |3|? = 1. This completes
the circle of the brief introduction to quantum computation !,

So what are quantum computers good for? It is worth men-
tioning that a quantum speedup occurs if the corresponding
quantum task requires the depth of the quantum circuit to scale
much less than the number of steps in any classical approach.
If quantum computers can perform tasks that classical com-
puters cannot efficiently simulate, then this is called quantum
supremacy or quantum advantage®#  One of the earliest
suggestions made by Feynman is to use them to simulate other
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quantum systems, which would be more efficient than classical
computers !, Given the need for an exponential number
of parameters on classical computers to describe a quantum
system, simulating a quantum system is generally hard for
classical computers. Lloyd showed that Feynman’s conjecture
that ‘quantum computers can be programmed to simulate
any local quantum systems is correct®?. Hence, quantum
computers may assist to solve fundamental science problems,
such as the mass gap problem in the Yang-Mills theory (one
of the Clay Mathematics Institution Millennium problems)
and high-temperature superconductivity problem. Perhaps the
most well-known application of quantum computers is to factor
a lar%integer number by a quantum algorithm invented by
Shor*#, which is superpolynomially faster than the current
best classical approach. Other potential superpolynomial
speedups by quantum computers include computing topolog-
ical invariants of a topological field theory, such as the Jones
Polynomial ™, solving a system of linear equations with a large
matrix®, and computing the permanent of a matrix using
boson sampling. Recent experimental progress towards
quantum advantage includes random quantum circuits ' and
the Boson sampling problems 7.

1.2 Current Status of Quantum Computers

Working on real quantum computers is not far from real life.
As reported by IBM, one of the world’s pioneering companies in
providing quantum computing services, they already have over
400,000 userbases running 1 trillion circuits so far **'.

Two mainstream paths for developing quantum computer
hardware are gate-based and annealing-based approaches.
Table (1| lists some of the major industry players in providing
real quantum computers and cloud-based services:

o IBM is the first company to provide cloud access to quantum
computers in 2016, i.e., through the IBM Q graphical user
interface (GUI) and Qiskit software development kit
(SDK) BY, So far, IBM offers commercial access to quantum
devices up to 127 qubits and public access to quantum devices
up to 32 qubits. Their roadmap is to launch the 1121-qubit
Condor processor by 2023, which is capable of solving a range
of complex scientific problems ™!, and to achieve hundreds

of thousands of qubsits from 2026 and forward 48!,

o Google is another major quantum computing company,
especially in the quantum artificial intelligence (AI) area ™.
It provides several open-source packages, such as Cirg B,
OpenFermion ™, and TensorFlow Quantum®, for cus-
tomers to develop near-term applications compatible with
noisy quantum machines. An impressive milestone is that
Google claimed in 2019 that they had achieved quan-
tum supremacy?, which was a world-first experiment
to demonstrate the quantum speedup. On a 54-qubit
quantum processor “Sycamore”, Google showed that the
quantum computation for their benchmark testing could
be accomplished in 200 seconds, while the world’s fastest
supercomputer may take 10,000 years to obtain a comparable
result?.  However, since then new classical algorithms
were developed that improved the classical simulations for
sampling random circuit outcomes #5581

 Xanadu is a Canadian company offering the first photonics-
based quantum computing platform ™. Rather than using
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superconductors like IBM or Google, Xanadu’s system is
based on light and can be operated at normal temperature, a
non-negligible advantage. Xanadu also provides cloud-based
service through Xanadu Quantum Cloud and application
libraries such as Strawberry Fields ! and Pennylane 11,

o While most quantum devices are gate-based (e.g., IBM,
Google, Xanadu), D-Wave pursues another path using
specialized quantum annealing techniques®. A quantum
annealer does not rely on quantum circuits for computing.
Instead, it reformulates the problem into ground state
searching problems, an excellent match to various optimizing
issues. Annealing-based quantum computers appear to be
more scalable than gate-based ones in terms of the number
of qubits manufactured in a single processor. While most
gate-based quantum computers possess no more than 200

qubits, D-Wave already achieves the level of thousands of
qubits. With more than 5,000 qubits and over 15 couplers per
qubit, D-wave systems are capable of calculating problems
with more than 10,000 variables 63,

« Quantum computing in China is also under swift develop-
ment. In 2017, Alibaba and the Chinese Academy of Science
jointly debuted an 11-qubit quantum computer ™, which
was the first public-accessible quantum computing service
in China. Origin Quantum, another superconducting-
based quantum computing startup in China, has raised
an ambitious roadmap to achieve 144 qubits by 2022 and
1024 by 2025. Besides, the University of Science and
Technology of China has developed Jiuzhang, which is
the first photonic quantum computer to have announced
quantum supremacy 3,

Table 1 Major providers for commercially accessible quantum computers and platforms

Provider Type Realization Maximum qubits Country
IBM Gate-Based Superconducting 127 UsS
Google Gate-Based Superconducting 72 Us
Rigetti Gate-Based Superconducting 32 UsS
Honeywell Gate-Based Trapped Ion 10 Us
IonQ Gate-Based Trapped Ion 32 Us
QuEra Gate-Based Neutral Atoms 256 (0N
Xanadu Gate-Based Photonic 24 Canada
D-Wave Analog-Based Annealing 5000+ Canada
Alibaba Gate-Based Superconducting 11 China
Origin Quantum Gate-Based Superconducting 64 China
OpenSuperQ Gate-Based Superconducting 20 Europe
QuTech Gate-Based Spin Qubit 29 Europe
AQT Gate-Based Trapped Ion 20 Europe

Other large companies include Microsoft, Intel, Amazon, Hitachi, Hewlett-Packard (HP), etc. There is an online article describing quantum hardware outlook [66].

Today we are still in the NISQ era, meaning that state-of-
the-art quantum computers are sensitive to noisy environments,
and there are not enough qubits and the gate error rates are
still too high for error correction. Fault-tolerant quantum
computers towards millions of qubits may still be decades away.
Therefore, the executable scale of quantum circuits on today’s
quantum computers is significantly restricted by the quantum
gate errors, insufficient number of qubits, low connectivity
between qubits, etc *7.

2 Quantum Computing for Fundamental Power
Analytics

Massive integration of renewable energies has significantly
reshaped modern power systems by introducing highly un-
certain and low-inertia inverters. Under such circumstances,
developing ultra-efficient analytics for accurate static and
transient simulation of power systems becomes prohibitively
critical, especially in uncertain scenarios. The power of
quantum computing is derived from the possibility of preparing
and maintaining complex superpositions of quantum states
across many quantum degrees of freedom as well as providing
entanglement between the states of the system. Thus, most
theoretical quantum computing models achieve exponential
speedups over classical models. This section reviews quantum

4

algorithms for fundamental power analytics, including both
static and transient analyses, as well as their probabilistic
versions, such as Monte Carlo-based power system tools.
Such fundamental quantum-power analytics opens the door to
opportunities to solve many traditionally complex problems for
power systems.

2.1 Quantum-Enabled Static Analysis

Power system static analysis, represented by power flow
and state estimation, is the keystone of various power system
analytics. Under the unprecedented integration of renewables,
a tremendous amount of repetitive static analysis is required to
analyze the impact of uncertainties. However, if solved by the
conventional iterative algorithms, the computation complexi-
ties of power flow and state estimation scale polynomially with
the problem scale. Such circumstances significantly restrict
their applications for tractable real-time operation demands.
This subsection reviews the quantum-inspired power flow and
state estimation methods, which offer a potential path toward
more scalable power grid static analytics.

2.1.1 Quantum Power Flow

Power flow analysis aims at solving the nodal power
balance equations formulated by power generation, load, and
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grid topology. Prominent AC power flow algorithms
include the Newton-Raphson algorithm 7, the Gauss-Seidel
algorithmﬂ7—TI and fast-decoupled methods 7. An indispens-
able step of the aforementioned algorithms (i.e., the iterative
nonlinear algorithms) is to solve a set of linear algebraic
equations. Therefore, the critical bottleneck of power flow
analysis lies in the inefficiency of the linear solvers.

In the quantum computing area, the Harrow-Hassidim-
Lloyd (HHL) algorithm is a significant landmark for solving
linear equations in the quantum space ®. The HHL employs
a quantum circuit to realize a unitary transformation for
the quantum superposition of the linear solution. A salient
advantage of the HHL (or any of its variants) is that it enables
an exponential speedup over classical methods for analyzing
sparse systems, which exactly matches the characteristics of
power systems. One requirement of the HHL algorithm is
that the input matrix should be Hermitian (otherwise, the
matrix A should be reformulated as H = [0, 4; AT,O] SO
it becomes Hermitian). In Ref. [I3], a quantum power flow
(QPF) method is proposed (see Fig. , which is the first
quantum-inspired algorithm to underpin the AC power flow
issue. QPF innovatively integrates the fast-decoupled power
flow philosophy with the HHL algorithm, which makes full
use of the Hermitian and sparse jacobian matrix of power
grids to enable a realizable implementation of the HHL. As
shown in Fig. 2} the quantum circuit of the HHL-based fast-
decoupled QPF consists of four components, i.e., a quantum
phase estimation (QPE) for determining the eigenvalues of
Jacobian matrices, a controlled rotation for generating the
reciprocal of the eigenvalues, an inverse QPE for disentangling
the qubits and a measurement for the final states. The proof-of-
concept of QPF on a small test system is provided in [13].

< Data

Control center CPU
[ Electrical states (e.g., voltage, angle) ]

( 1) Power flow; 2) State estimation ) s

A Tterate until convergence W

Fig. 2 Quantum circuit architecture for quantum-inspired power
grid static analytics

2.1.2 Quantum State Estimation

Power system state estimation (SE) produces the best possible
estimation of the true system states based on the data from
Supervisory Control and Data Acquisition (SCADA) systems
and phasor measurement units (PMUs), which are extremely
valuable for online system operations 7% The most widely-
used algorithm for SE is the weighted least square (WLS)
algorithm, which minimizes the sum of weighted squared errors
between measurements and estimations.

The major computation burden of WLS lies in an iterative
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calculation of a series of linear equation systems characterized
by the SE gain matrix. To tackle the challenge, [14] establishes
HHL-enabled quantum state estimation (QSE) algorithms. The
complexity of HHL, i.e., O(log(N)n?k2) 73, is closely related to
three factors, i.e., the system dimension NV, the matrix sparsity
n and the condition number . While the sparsity of the SE
problem can always be guaranteed because of the naturally
sparse feature of power grids, the condition number may vary
from case to case. For the well-conditioned scenario, the HHL
can be straightforwardly implemented. However, for the ill-
conditioned scenario, the HHL may lose the quantum speedup
or even fail to provide reasonable results. Therefore, [14]
proposes a preconditioned-HHL for the QSE implementation.
The overall idea is to use a preconditioned iterative optimization
to obtain the power system states instead of directly calculating
them through the HHL algorithm. The performance of QSE
under both well-conditioned and ill-conditioned scenarios has
been validated on a microgrid system.

In sum, the HHL-based quantum linear solver provides a
promising tool for power system static analysis, which allows
for exponential improvement of the computational complexity
for linear equation solving. However, the HHL suffers from an
excessively large depth of quantum circuits that are sensitive to
the noises and short coherence time, and its implementation
requires fault-tolerant quantum computers. Therefore, a
noteworthy future direction could be exploiting variational
quantum linear solvers (VQLSs) ' to accelerate power system
static analysis in the NISQ era.

2.2 Quantum-Enabled Transient Analysis

Transient analysis is another cornerstone for power system
analytics. Today’s power systems are facing a risk of diminishing
inertia due to the deep integration of inverter-based resources
and the retirement of synchronous generators powered by
fissile fuel or nuclear reactors . To capture the wide-band
electromagnetic transients of power electronic devices, EMTP
becomes indispensable F152, Although EMTP is capable of
precisely tracing the electromagnetic waveforms, its daunting
computational complexity, which scales polynomially with
the system size, formidably hinders its application in very
large power systems. This subsection reviews quantum-
enabled EMTP (QEMTP) algorithms, which tackle the EMT
computation problem through quantum computing. Such
analytics lays the foundations for power grid transient analysis
on both current NISQ computers and noise-free quantum
computers of a distant future.

2.2.1 Quantum-Encoded EMTP Formulation

Classically, EMTP applies the trapezoidal discretization at
each time step to transform the dynamic equations of a power
network into numerical equations of an equivalent resistance
network, which can be formulated as:

Gov(t) = i(t), (1)
where v and ¢ respectively denote the vectors of nodal voltages

and equivalent nodal current injections; Gy is the equivalent
conductance matrix. The mathematical essence of (1) is a Linear
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System Problem (LSP). Therefore, for a power system with N
dimension, classical EMTP performs the computation in an
N-dimensional Euclidean space. The inverse operation of the
matrix G is at the computational complexity of O(IV).
Quantum computing holds the promise for a
logarithmically-growing computational complexity for LSP #3,
which sheds light on unprecedentedly scalable EMTP tools
for power systems. The very first step towards developing
a QEMTP algorithm is to encode the EMTP formulation
in into a quantized version. To this end, quantum
EMTP models have been developed in [I5 [16]. Denote
the normalised quantum representations of v(t) and %(¢)

— Vg y — 1k
as [v) = Y, NSRT |k) and |3) = >, SR |k). An
attractive fact is that such a quantum formulation only requires
[log, N'| qubits, which can be ultra-scalable compared with the
classical EMT formulation.
Correspondingly, (1)) can be embedded into the Hilbert space
as:

Glv) =1i), 2

where G is the padded and normalized counterpart of Gy.
Equation (2) therefore establishes the quantum counterpart of
the classical EMTP. A salient feature of the QEMTP formulation
is that any operators on (2) will be performed in the Hilbert
space with exponential scalability.

Mathematically, is a quantum linear system problem
(QLSP). There exist two main types of approaches to solving
QLSP: while noise-free methods usually rely on ideal quantum
machines which may not be available in the near future, noisy
intermediate-scale methods provide a practical solution for
quantum computing on near-term quantum computers. In the
following, we explain how QEMTP can be achieved by both a
noise-free approach and a noisy intermediate-scale approach.

2.2.2 HHL-Enabled QEMTP: A Noise-Free Approach

Ref. [15] is the first attempt to resolve the QEMTP
issue through the noise-free HHL algorithm. As introduced
in subsection the HHL algorithm is well-known for
its capability to estimate the solution of an LSP with a
computational complexity of O(log(/N)), which realizes an
exponential speedup compared with its classical counterpart.

The mathematical basis of the HHL-enabled QEMTP is
to decompose into the eigenbasis of the power system’s
equivalent conductance matrix G:

o) =G i) =3 AT b ), 3)

where (A, u;) are the j' eigenpair of G and b; is the
corresponding decomposition coefficient of |2).

To achieve the eigendecomposition logic, the HHL QEMTP
adopts three quantum registers for calculation. As illustrated
in Fig. |3} register io stores the input (e.g., nodal current
injections) and output (e.g., nodal voltages) of QEMTP; register
w performs the computation of QEMTP; and register a stores
ancilla qubits for the HHL algorithm. Consequently, at each
timestep, the HHL-enabled QEMTP updates the equivalent
current injections based on the quantities at the previous
timestep and performs the QPE calculation of G as well as other
necessary quantum computations (e.g., controlled rotation,
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inverse QPE). Finally, the nodal voltages v are output on the
io register. More details are explained in [15].

HHL-Enabled QEMTP

o QPE ______. Rotation ___Inverse QPE ___
io: 1) —Q @ »
WO“‘:‘”)E @’_L‘@I_I_ID'_ 1)
e e Hr@ e = m
Qstate: [yg) ~ ———— |1y P p— [ig) —> [t}

A Noise-Free Path f
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Gu(t) = i(t) 0
Y I Qubit ‘
Bit
o1 1

A NISQ Path ‘

vQLs-Enabled QEMTP

Classical Computer
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¥ r ! pu+ Update Quantum Gradient
GG Descent
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|0)'.'| ST H p—HVC, > p
Update p

EMTP Information
== G = Ycsos

li) = U;]0)

Fig. 3 Schematic of quantum-enabled power system electromag-
netic transient analysis

Although the HHL algorithm theoretically provides an
ultra-scalable path towards QEMTP, its practicability is still
hindered. The major challenge is that the HHL usually adopts
extremely complicated quantum circuits ¥/, For example, [15]
demonstrates that even for a simple RLC circuit, the HHL
quantum circuit reaches 102-depth and involves 54 CNOT
gates.  Such quantum circuits, unfortunately, may to be
executed correctly by today’s NISQ computers because of the
non-negligible quantum errors, insufficient qubits for EMT
correction, limited connectivity between qubits, etc 78,

2.2.3 VQLS-Enabled QEMTP: A Noisy Intermediate-Scale Ap-
proach

Motivated by the aforementioned challenges of the HHL-
enabled QEMTP, [16] further develops a VQLS-enabled
QEMTP algorithm to unlock a practical and noise-resilient
approach for EMTP analysis on today’s NISQ devices.

The VQLS-enabled QEMTP employs a hybrid quantum-
classical framework. A VQC is constructed for solving (2),
which does not involve the complicated eigendecomposition
quantum circuits required by QPE:

|v) = Ugmrp(p)|0). (4)

Here, Ugprp denotes a VQC whose parameters p are
undetermined. The key concept of VQLS is to optimize p
so that the output of Ugy/rp(p) conforms with the desired
solution of (2). To this end, a cost function C can be constructed
to indicate the similarity between the current injection state
|¢) and the quantum state |¢) = G |v). Here, the word
“variational” or “hybrid” means that the quantum circuit is
executed on quantum devices to obtain the output quantum
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state, and the circuit optimization procedure is performed on
classical computers (see Fig.[3). The two routines interact until
is achieved, which provides a qualified VQC for EMTP
analysis. Various algorithms can be emp@;&cﬁl for optimizing a
VQC, such as quantum gradient descent and its variants.

Besides the parameters to be optimized, another configurable
setting of the VQC Ugpsrp(p) is its structure, which can
significantly impact the performance of the algorithm. Ref. [16]
designs a layered quantum circuit with the RZ-SX-RZ sequence,
which has been demonstrated as an effective structure for the
QEMTP calculation. However, because of the limitations of the
state-of-the-art quantum devices, it is non-trivial to design a
quantum circuit that not only realizes the EMTP functionality
but also is executable on the NISQ devices. In subsection 3.2}
we will provide more discussions on the design of VQCs.

Although VQLS is much more NISQ-friendly compared
with HHL, it still faces several challenges for real-world
implementation, such as quantum circuit depth, quantum
state measurement, and small discretization steps. To this
end, [16] has also established practical variants of the VQLS-
enabled QEMTP by making full use of the characteristics of
both power grids and quantum computing, such as analyzing
the diagonally dominant feature of power grid conductance
matrix to decompose the QEMTP formulation to enable
measurable quantum states, and exploring the superposition
of quantum computing to simultaneously solve different basis
nodal voltages of EMTP. In addition, we have also employed the
philosophy of shifted frequency analysis (SFA) in QEMTP
to develop a quantum shifted frequency analysis (QSFA) to
enable QEMTP computation with larger timestep.

The most attractive superiority of the VQLS-enabled
QEMTP is that, it not only achieves exponential scalability
of EMTP computation, but can also be executed on today’s
noisy quantum machines. Ref. [16] has demonstrated the
implementation of the VQLS-enabled QEMTP on real IBM
quantum computers (i.e, a 27-qubit quantum computer
ibmq_sydney). The real-hardware experiments show that
the VQLS-enabled QEMTP can achieve satisfactory precision
under noisy quantum environments with shallow quantum
circuits. Meanwhile, even for the large-scale 906-bus feeder,
QEMTP only requires 10 qubits, which is promisingly scalable.
More importantly, the noise impact analysis shows that QEMTP
remains high performance under the general noise level of
today’s quantum computers, which ensures the universal
practicality of QEMTP on arbitrary near-term hardware.

However, it should be noted that quantum linear solvers
(either noise-free or noisy approaches) can only approximately
estimate the solution of LSP, which is different from the classical
solvers which can return the full solution. Therefore, error cor-
rection is still indispensable for the QEMTP algorithms (5[l

2.3 Quantum-Enabled Stochastic Analysis

With the increasing deployment of renewables, static, dy-
namic, or transient analysis under a single scenario becomes
insufficient for ensuring the high reliability of power system
operations.  Therefore, it is critical to verify the system
performance under numerous stochastic scenarios initiated by
heterogeneous uncertainties and unforeseen faults.

In large-scale power systems integrating transmission grids,
distribution grids, and even microgrids, the number of system
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states grows swiftly, which potentially leads to complex CO%-
tational problems and NP-hardness in stochastic analysis .
Monte Carlo Simulation (MCS) is a representative simulation-
based stochastic method. The sampling size of MCS is a de-
ciding factor in generating the desired probability distribution
function, which results in heavy computational burdens and
slow convergence .

The quantum estimation algorithm aims at mitigating the
number of usages of a randomized algorithm in classical
MCS technique ™. A correct design of a quantum algorithm
containing various gates and unitary operators can achieve
an acceptable approximation of the distribution function with
quantum speedup. It is proven that the convergence rate of the

classical MCS method with S’ sampling size is O(%) B3l On

the other hand, quantum compucan achieve a quadratic
speedup with convergence O(%) P49 The Quantum Ampli-
tude Estimation (QAE) algorithm, which takes advantages
of the Grover’s search algorithm 7, has already demonstrated
the quadratic speedup and convergence over the classical MCS
technique in estimating an uncertain variable.

Refs. tackle the power system reliability assessment
using the QAE algorithm. With a small number of qubits
and sampling size, realize the quantum speed-up
and better convergence over the classical MCS-based power
system reliability analysis. Classical MCS mainly includes three
steps: first, the uncertain parameters should be modeled as
random variables X = {Xi,Xo,---,Xgr}, where R is the
total number of random variables. Second, S samples should
be generated for each random variable using the probability
distribution function of each variable as {z1,z2, - - ,zg},
where x is a random sample of a variable. Finally, the expected
value of a real-valued function f(z) for each random variable is
calculated as follows:

S
B =Y 5/(Xay), Vi € (1,2, R} (9)
=1

To solve such a problem using the quantum-amenable MCS
method, the aforementioned steps of the classical method
should be translated into the quantum blocks. In Fig. [4 a
schematic circuit of the quantum estimation method is depicted
on running the MCS steps.

9 L

L(zo) L(zS-l)

®
s
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Fig. 4 Schematic of quantum circuits of the quantum estimation
algorithm

In the quantum circuit of QAE, the first quantum block P
aims at generating the n-bit string result = with probability p(z).
This quantum block outputs:

2" —1
=0
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where, n is the number of input qubits.

In the second block of the quantum circuit, the unitary
operator H is applied to (n + 1) qubits. In this step, a rotation
is executed onto an ancilla qubit. The operator H outputs:

Hla), |0) = ), (VI@) - 1) +V1= 1@ 10). @)

where, f(z) is a function f(z) : {0,1}"* — R which is mapped
to real numbers from n-bit strings.

The output state ¢ is resulted after applying quantum blocks
(P ® I) and H to the states |0),, |0):

|w> :H(P®1) -10),, 10)
-y Vo)

=0

) Jei) (VE@) - 1)+ V= F@) - 0)]
®)

where, I is the identity operator.

According to Fig. |4} there exists a block L with s sampling
qubits and S = 2° application of operator L. To achieve an
efficient estimation of a function, operator L is employed. The
purpose of QAE is to estimate the probability of measurement
|1) in (8). At the end of the quantum circuit, the measuring
units are used to measure the amplitude of |1).

3 Quantum Computing for Power System Oper-
ations

As one of the earths most extensive and complicated
dynamical systems, the power system requires efficacious mod-
eling, monitoring, planning, and controlling methodologies
to support its efficient, reliable, and resilient operations. In
addition to promoting fundamental power system analytics,
quantum computing can also benefit various aspects of power
system operations. This section reviews the recent progress
in leveraging cutting-edge quantum computing techniques,
including quantum optimization, quantum machine learning
and quantum control, to tackle vital power system operation
issues.

3.1 Power System Operation via Quantum Optimization

Optimization plays an essential role in power system op-
erations. Various power system tasks, such as umt com-
mitment &8, energy management-, energy tradlng , and
emergence control ™!, can be formulated as optimization
problems, among which large-scale combinatorial optimization
is one of the most intractable optimization problems. While the
traditional combinatorial optimization is an NP-hard problem,
quantum optimization leveraging quantum mechanisms is
expected to achieve a super-polynomial advantage for compli-
cated combinatorial optimization problems.

Quantum Approximation Optimization Algorithm (QAOA)
is one of the most prominent quantum optimization algo-
rithms ™% Ag established in Ref. [103], the solution to a
quadratic unconstrained binary optimization (QUBO) problem
is equivalent to the ground state of a corresponding Ising
Hamiltonian. Several methods have been developed to establish
the Hamiltonian of the Ising model ™. QAOA aims to find
feasible solutions to the QUBO problems by minimizing the

8

expected value of the Hamiltonian. The expectation is taken
with respect to quantum states, which, in turn, are obtained
by rotating the initial state that entangles all possible states
with equal probabilities. The minimum expected value of the
Hamiltonian can therefore be obtained by obtaining feasible
rotation angles by using a classical optimizer. Due to the limited
number of qubits, the scalability of quantum optimization in
the centralized mode might be restricted. To resolve this issue,
the quantum distributed optimization idea is proposed, where
QAOA can serve as an essential sub-routine for calculating sub-
problems 7.

Refs. [19, 20] explore the efficacy of quantum optimization
and its distributed variants in power system unit commitment
(UC). Originally, the UC problem consists of continuous
variables for the active power output of generators and binary
variables for the commitment status of generators. To fit the
requirement of QAOA, [I9} 20] translate the UC model into
sub-problems, where the binary variables are formulated by
QUBO sub-problems. Then, a multi-block decomposition
of the alternating direction method of multipliers (ADMM)
is used for coordinating different sub-problems. The overall
procedure of the Quantum ADMM (Q-ADMM)-enabled UC
is as follows. First, initialize the iteration index s, decision
variables, penalty factor, and stopping criteria.  Second,
solve the QUBO sub-problem to update the binary decision
variables. Then, solve the continuous sub-problem to update
the continuous decision variables. Followingly, update the
dual variables of Q-ADMM based on the obtained decision
variables. The above sub-routines interact until convergence,
which returns the optimized solution. Fig. depicts the
schematic diagram of the quantum distributed UC for power
systems. More details are presented in [19}20].

H Updates the multiplier (A) ‘
Sub-problem w e

Classwal bits Classical bits [y

Optimized decision Optimized decision
variables of Sub-problem w < variables of Sub-problem y

QAOA Optimization ;! QAOA Optimization ‘

[ Shared variables between subproblems w-y |
=T N qi ] Quantum unit to provide the |
| g Control center Hamiltonian Ising model i
\

I . . .
i Measuring unit to measure the quantum states !

e e e o e T T e e ¢ o o # o ¢ o o ¢ o+ o ¢ o o ¢ o o @ e 4

Updates the multiplier () |
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Fig. 5 Schematic of distributed optimization of power systems

Ref. [21I] proposes another path towards the quantum
optimization-enabled UC. It incorporates the QAOA approach
into the surrogate Lagrangian relaxation (SLR) method 21,
Specifically, the UC problem is decomposed into the time-unit-
split binary sub-problems and continuous sub-problems, which
are respectively solved through quantum and classical comput-
ing. Meanwhile, sub-problems are effectively coordinated by
updating the Lagrangian multipliers. Because of the adoption
of the SLR philosophy, QSLR achieves improved convergence
performance with the integration of the contraction-mapping
stepsize
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3.2 Power System Stability Assessment via Quantum Ma-
chine Learning

Transient stability assessment (TSA) is a long-standing
obstacle for power system operations. It evaluates whether a
power system can reach a steady-state operating point after
large disturbances™. In modern power systems, the high
penetration of renewable energies and electronic devices may
potentially induce unprecedented stability risks, bringing ever-
strict requirements for scalable and efficient TSA. Classical TSA
methods mainly rely on numerical integration to perform time-
domain simulations of power systems, which can be extremely
time-consuming for complicated power systems. Data-driven
methods provide an alternative path. By employing offline-
trained neural networks to establish stability rules, data-driven
TSA can be potentially scalable to realize online stability
verification. A plethora of classical data-driven algorithms have
been applied to power systems stability analysis, such as kernel

learning 108!,

Quantum machine learning (QML) is a confluence of
quantum computing and machine learning ™" 1 recent
years,there has been an explosive growth of QML algorithms
in supervised learning, unsupervised learning and even re-
inforcement learning. Targeting different learning purposes,
quantum versions of various machine learning techniques
have been iroposed , such as quantum principal component
analysis 1213 quantum kernel estimation 413 quantum
classifier 18118 quantum clustering™?, quantum generative
adversarial network "8 quantum Boltzmann machine ™2,
quantum Q-learning™!, etc. Classically, machine learning
involves significant computational burden for inner production
and its performance heavily depends on the choice of learning
models. Since quantum states can be efficiently operated in
the Hilbert space and are capable of representing entangled
correlations, QML is promisingly powerful for data processing
and model training in ultra-high dimensional space that are

machines %, deep neural networks ™, and reinforcement intractable for classical algorithms 1121151221231
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Fig. 6 Schematic of quantum machine learning-enabled power system stability assessment

Tackling the power system stability issues, [22] establishes
a QML-enabled TSA approach. For an arbitrary power
system, its transients model can be functionally formulated
as a set of nonlinear differential algebraic equations (DAE)
F(Z,Z) = 0, where Z denotes the system states including
both the differential variables and algebraic variables. For
most DAE systems, the orbit is uniquely determined by the
initial point. According to the stability region theory, if the
post-disturbance state is within the stability region of a stable
equilibrium point (SEP), the system will finally reach a steady-
state, i.e., the SEP. Therefore, it inspires various data-driven
TSA methods to establish a classification-based mapping
between the post-disturbance states and the stability judgment.
QTSA inherits such a learning-based idea and novelly exploits
the expressibility and scalability of QML techniques for power
system TSA.

The following briefly introduces the basic idea of QTSA (221,
A unique feature of QTSA is that it embeds the transient
stability features (i.e., the post-disturbance states such as
frequency, active and reactive power, voltages) into quantum
states through a VQC (see Fig.[6):

|¢p) =Ursa(p, Z)|0). )

Here, Urga denotes the VQC; p denotes the parameters to
be optimized; Z denotes the power system stability features,
which are inputs of the QML algorithm. Therefore, the transient
stability assessment is performed based on the measurements in
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the Hilbert space. Consequently, a cost function is constructed
as the conformance between the true stability judgment and the
prediction from QTSA:

minC(p) = Y c(vi(p, Zi)). (10)

i=1

Here, Z; and y; respectively denote the stability features and
quantum stability judgment of the ¢-th sample. As a variational
quantum algorithm, QTSA also employs a hybrid mgﬁamum—
classical framework for the quantum circuit training'“~.

While the parameters of QTSA-VQC can be optimized by
(10D, the structure of the VQC should be pre-determined.
Designing an effective yet noise-resilient VQC is crucial for
the success of QTSA. On the one hand, QTSA requires high-
expressibility quantum circuits because of the strong nonlin-
earity of power system stability issues. On the other hand,
only low-depth quantum circuits can be executed considering
the restrictions of current NISQ devices. However, even in
the quantum area, it is still an open problem to design an
expressive VQC that can well represent the solution space of a
specific problem. Regarding VQC design, [126] quantitatively
analyzes the expressibility of different types of ansatzs by
assessing their capability to explore the Hilbert space. Ref.
[127] demonstrates that certain single-qubit rotations can be
reduced without significantly deteriorating the performance of
quantum circuits. Ref. shows that while increasing the

9
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circuit depth may enhance the expressibility, it unavoidably
hurts the noise-resilience of the algorithm. Specifically for
the QTSA issue, [22] designs a high expressibility, low-depth
circuit (HELD) by integrating both the quantum operators and
the classical activation functions (see Fig. [§). The authors
also demonstrate that generic expressibility indices, such as
the Kullback-Leibler (KL) divergence-based ones, may not
provide a reasonable assessment of quantum circuits under
specific objectives because they mainly focus on the uniform
exploration of the solution space without considering the
probability distribution.

Real-hardware testing is an indispensable step in ensuring
the efficacy of quantum computing techniques in noisy quan-
tum environments. To this end, Ref.[22]] has established a
systematical scheme for evaluating QTSA’s performance on real
quantum machines. Four different angles are recommended,
including accuracy, expressibility, fidelity, and noise-resilience,
to comprehensively study whether the quantum circuit can
accurately and effectively express the transient stability region
and whether the QTSA judgments are trustworthy, especially
in noisy quantum environments. Such indices can also be
expanded to evaluate other quantum-inspired power system
analytics. Experiments show that QTSA achieves an accuracy
over 98% even for large-scale systems such as a 300-bus power
grid and remains satisfactory noise-resilience, which indicates
its potential for the NISQ applications. Some research has also
demonstrated that QML can be potentially more expressible
for complicated data relationships, e.g., achieving a comparable
accuracy against classical machine learning while saving more
parameters for the neural network 122,

¢L = sin (knzPL - (;51) + Zai,j sin ((z)] - ¢L)

Jj=1

3.3 Resilient Control for Power Systems via Quantum
Distributed Control

The increasing integration of DERs is challengin% the control
and synchronization of modern power systems , not
only because they are highly uncertain and inverter-interfaced,
but also because of their distributed natures and the privacy
requirements.  Distributed control has become the most
promising solution for resilient operations of power systems
with high penetration of DERs as it offers flexible plug-and-play
architecture 1234 Distributed control of power systems can
be functionally described as a network of differential equations
over a simple, connected graph G = (V, E) where the node-set
V represents n DERs, and the edge-set E depicts the allowed
communication among DERs.

Although distributed control strategies can significantly im-
prove power system resilience, the vulnerability of communica-
tion networks to cyberattacks induces potential risks for third-
party agents to drive the system toward inconsistent perfor-
mance and instability. Addressing cybersecurity challenges in
distributed control is an active area">>'. However, the existing
solutions may become obsolete due to the development of
supercomputers and the emergence of quantum computers (126,

Inspired by quantum mechanisms, the next generation
of communication technologies is aiming to leverage the
quantum nature of light, which gives rise to novel cai abilities
unattainable with classical transmission media ! a6l
In these schemes, information is encoded in the particle’s
quantum state, which cannot be copied, and any attempt
to do so can be detected. Therefore, the critical aspect is
unconditional information secuﬂr%zyn which is impossible with
classical information processing **~'. The most exciting benefit
of using quantum-secured information is that the lifetime of
the security is “infinite’, i.e., it will be secure against any future
advance in computation capability 7
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iEnergy | VOL 1| June 2022| 1-8



Quantum Computing in Power Systems ARTICLE

Refs. [24H26] are a confluence of power system distributed
control and quantum communication. Leveraging the potential
to establish synchronization throughout a network of quantum
nodes via exchanging qubits, a novel quantum distributed
controller (QDC) has been proposed. The overarching goal
of QDC is to construct a network of differential equations
to control a network of DERs. In contrast to classical
synchronization, QDC encodes the information into quantum
states and exchanges them among the nodes over quantum
channels (see Fig.[7). In this way, the control process, such
as power/current sharing and frequency/voltage regulation, is
provably guaranteed and secured.

In the QDC design, each DER is equipped with a quantum
computing device, which prepares a quantum state and seeks
a consensus among all the quantum devices in a distributed
manner. The following briefly introduces the mathematical
formulation of QDC. The state of each quantum device
can be described by a positive Hermitian density matrix p.
Since synchronization requires interaction among all quantum
devices, it is assumed that each device has access to its
neighbors’ (quantum) information. Let |¢0) = |q1g2---qn)
be the state of the whole quantum network and p = [¢) (¢].
The following quantum master equation has been introduced
to construct the network of differential equations:

p() =3 (ConCl — 5(C1C 0}
i=1 ! (11)
+ Y (Ci,ijf,j - §{Cg,jci7j’p})’

{i,j}EE

where C; and C; ; are unitary jump operators described by
rotation-Z, R (¢), and swapping operators, respectively. R (¢)
is the single-qubit rotation-Z operator by an angle ¢ radians
around the Z-axis. The swapping operator specifies the external
interaction between quantum computing devices ¢ and j,
forming a connected communication graph.

In an abstract sense, the goal is to encode the classical
information into the ¢ angle of the qubits, teleport information
throughout the network, evolve the state of each node’s qubit for
one time step utilizing its received information (i.e., according
to the synchronization protocol (I1)), and finally retrieve the
classical information from the ¢ angle of the qubit. Such
classical information will be used as the control signal later.

Since the dynamic of the ¢ angle is the dynamic of interest,
at each time step, qubits are (re)-initialized on the equator of
the Bloch sphere. Hence, as the first step, qubits are initialized
as points on the first quarter of the equator of the Bloch
Sphere. Next, quantum information is transmitted throughout
the network such that each quantum node receives the quantum
information from its adjacent nodes. After each node i receives
the quantum information of the adjacent nodes, the target
state for node i (¢ ;) is integrated into the synchronization
protocol through the rotation-Z operator such that it acts
as a pinning term for the synchronization protocol. Then, the
quantum state of node 7 is evolved according to the master
equation for one time step ¢ using the swapping and
rotation-Z operators.

After the master equation evolution, the processed informa-
tion needs to be retrieved from the qubit by measuring the ¢
angle. Generally, the master equation results in states becoming

iEnergy | VOL 1| June 2022| 1-8

more mixed; however, the system is allowed to evolve in a short
time and is re-initialized in a product of pure qubit states. Thus,
the projection of the state vector (qubit ¢) on X and Y axes of the
Bloch sphere, given by the expectations of Pauli-X and Pauli-
Y, can be obtained as tr(pox) = cos¢; and tr(poy) = sin¢;,
respectively.

If the procedure of the master equation evolution is repeated
in a short duration, the approximated equations for ¢;’s in the
limit dt — 0 can be obtained. Note that for an observable A,
% (A) = tr(pA) = tr(pA). Hence, utilizing tr(pox), tr(poy)
and Eq. , the dynamic of the phase angles ¢; can be obtained
as follows:

bi = sin (¢r; — b;) + Zai,j sin (5 — ¢3),  (12)

=1

where a; ; are the entries of the n x n adjacency matrix of
graph G, denoted as A. a;; = 1ifC;; # Oanda;; = 0
otherwise. In , the pinning term, sin (¢ ; — ¢;), forces the
phase ¢; to stick at the value ¢; ; and the coupling mechanism,
Z?:l a; j sin (¢; — ¢;), synchronizes the entire system.

Eq. offers a universal form for quantum distributed
control of dynamical systems. It can be applied to various power
system control problems. Ref. shows how can be
utilized as a secondary control for distributed frequency control
of AC microgrids, which allows microgrids to be profited
from quantum communication advantages. Classically, the
distributed frequency control in AC microgrids regulates the
system frequency to a rated value and guarantees active power
sharing among the DERs, whose dynamics can be described by:

%
UA)z w n; P + @, (13)

®i = f(®i, Py, @5, j € Ni),
where w; and P; respectively represent the frequency and active
power injection of DER;; w™ is a nominal frequency; n; is
the droop gain. ®; is the secondary control variable, whose
dynamics is a function of its current value, P;, and its neighbors’
®;. Therefore, ®; will eventually evolve toward an (weighted)
average of its neighbours’ ®; such that all control variables
®; converge to the common value ®; = ®; = n;P;. As
can be seen, is a synchronization rule consisting pinning
terms and coupling mechanism. Therefore, in order to apply
the QDC, we need to define the target which is done through
scaling n; P;. Hence, the developed QDC for AC microgrids is
formulated as follows :

wi =w" —niP; + %,
. n (14)
bi = sin (kn; P — ¢i) + Y _ a; jsin (¢; — ¢4),
j=1
where ¢;/k is the secondary control variable. Refs.

and [26] further discuss more applications of QDC. For
example, [24] exploits the efficacy of QDC in regulating DC
microgrids’ voltage and guaranteeing power/current sharing.
Ref. [26] demonstrates the cyber-security for QDC, where the
distributed control of AC and DC microgrids can be provably
secured by encoding the control signals into quantum qubits
and exchanging information via quantum channels among
participating DERs.
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In summary, due to the superposition feature of qubits,
QDC provides a foundation for allowing more enhanced
quantum-secure distributed control for power systems through
randomizing the 6 angle of qubits in the initialization step. Such
a control scheme is unprecedentedly secured such that even
if a third-party agent can measure the exchanged qubits, the
measurement outcomes would be some random values that do
not reveal information to the eavesdropper.

3.4 Power System Scenario Generation via Quantum
Generative Learning

With the increasingly high penetration of renewable energy
in power grids nowadays, renewable scenario generation that
captures renewable uncertainties has been indispensable in
power system planning, scheduling, and operations 48141
Traditional methods are model-based. That is, a specific
statistical model is utilized to find the probabilistic distribution
of renewable scenarios, and samples are extracted from the
distribution to generate new scenarios. Model-based methods
are easy to comprehend and operate. However, they are difficult
to adapt to the time-varying weather and are inflexible in
scaling due to the complexity and non-linearity of renewable
scenarios

Machine learning methods provide a model-free
path T3253 They use historical data to generate new scenarios
without specifying a model or a distribution. An example is
the generative adversarial network (GAN). Two neural
networks are involved in a GAN, i.e., a generator and a
discriminator. The generator generates fake scenarios to fool
the discriminator, and the discriminator tries to distinguish
between actual samples and fake ones. The two neural networks
contest with each other in a game until a Nash equilibrium is
reached. However, while GAN provides a flexible and scalable
solution, training GAN models may require an unexpectedly
long time, especially when a large dataset is used.

A quantum version of GAN is the quantum generative
adversarial network (QGAN). It uses two quantum components
to represent the generator and the discriminator, respectively.
Through the quantum-mechanical phenomenon, it promises
to reduce computational complexity. However, many existing
works on QGAN only focus on simple cases where limited input
data points are involved. They use amplitude or angle encoding
to represent classical data in a quantum circuit ™, Amplitude
encoding encodes data into amplitudes of a quantum state.
Therefore, n qubits can store 2" data points. However, the
disadvantage is that the circuit depth will be significant with
a giant n, and the circuit will be challenging to construct.
Angle encoding encodes each data point into a rotation angle.
However, when n is large, the circuit also becomes complicated.
Using a single QGAN to cover all the input features for
renewable scenario generation with a large dataset is difficult
and impractical.

To bridge the gaps, Ref. [23] presents a Multi-QGAN
framework. Instead of relying on a single QGAN, it uses
multiple QGANSs to generate scenarios, thus avoiding using
a complicated QGAN. Specifically, n QGANSs are constructed
for n classical data points in the dataset. The value of each
classical data point is first normalized and is then represented
by a rotation angle. In Multi-QGAN, QGAN:Ss are trained one
by one following the sequence of the data point. Compared with

12

the single QGAN, Multi-QGAN has a simpler circuit topology
for each QGAN, is easier to construct, and is more scalable and
flexible.

While Multi-QGAN provides a promising way to generate
scenarios, it neglects the correlation between neighboring
data points, which is considerable in many cases, e.g., in a
time-series dataset. To address this issue, Ref. further
presents a correlation-based Multi-QGAN (CMulti-QGAN)
method. Unlike Multi-QGAN, which associates each QGAN
with one input data point, CMulti-QGAN generates each
scenario using the corresponding true value and its neighbors.
Specifically, when the i* quantum discriminator is trained, its
cost function is not only determined by the ' real quantum
data source’s output and the i'" quantum generator’s output,
but also is associated with the outputs of the i*" generator’s
neighbors. Data from real photovoltaic systems in the State
of Connecticut are collected for studies. Results demonstrate
the effectiveness and robustness of Multi-QGAN and CMulti-
QGAN and validate the superiority of CMulti-QGAN over
Multi-QGAN.

It is worth noting that Ref. only presents a preliminary
study of using QGAN for renewable scenario generation. While
it provides a quantum way to generate renewable scenarios
effectively, it is still under investigation that the computational
speed can be improved. More research needs to be conducted
to further enhance the performances of Multi-QGAN and
CMulti-QGAN, especially with a larger dataset.

4 Quantum Communication for
Secured Power Systems

Provably-

While quantum computing promises to address power
system problems, it poses security threats to power system
communications. The security of public-key cryptographic
systems such as the Diffie-Hellman key exchange (DH) 19!
and Rivest-Shamir-Adleman (RSA) heavily relies on the
computational difficulty of specific mathematical problems
such as discrete logarithm and factoring problems ™. These
problems are at high risk of being addressed by quantum
computers. For instance, it has been shown that Shor’s quantum
factoring algorithm can eﬁective%ﬁgll?reak RSA cryptosystems
with the help of enough qubits Developing provably-
secured power systems in the quantum era has become essential
and urgent. We refer the readers to the book by Nielsen and
Chuang ™ for a pedagogical introduction to this subject.

A powerful solution to securely transfer information between
two remote parties in the quantum era is quantum commu-
nication. It uses the fundamental laws of quantum physics,
which provide a more solid foundation in the quantum era
than mathematical assumptions. According to the quantum-
mechanical property, measuring an unknown quantum state
will, in general, change that state. Therefore, the two parties
can detect when an adversary is trying to gain knowledge of the
qubits. After proper post-processing procedures, including er-
ror correction and privacy amplification, the final information
shared between two parties will be information-theoretically
secure ', This section reviews quantum communication-
related research in power systems, including quantum key
distribution (QKD) and quantum networks.
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4.1 Quantum Key Distribution

QKD is a key-growing approach that generates and dis-
tributes keys for two communicating parties™. A QKD
system typically consists of a quantum channel and a classical
one. The quantum channel transmits qubits between two
communicating parties for generating raw keys. The classical
channel is used to conduct post-processing procedures for
distilling final secret keys. The final keys are utilized to encrypt
and decrypt data messages transmitted through the classical
channel. Note that QKD only generates private keys; encryption
methods are still classical, and the encrypted data messages are
sent over the classical channel. In reality, QKD can be combined
with symmetric-key encryption methods like the One-Time
Pad or the Advanced Encryption Standard 62, A few
research efforts have recently been conducted to integrate QKD
systems into power grids.

Ref. [27] is the first work that develops a QKD-enabled
quantum-secured microgrid. It devises a QKD simulator in
Python to simulate QKD protocols with great flexibility to
update QKD parameters. The formulations of the decoy-
state BB84 QKD protocol, i.e., a practical, mature, and widely
used scheme to implement QKD, are presented in detail.
This simulator simulates the probabilities of various events
occurring and outputs the number of final keys generated in
real-time. Then, the simulator is integrated with the Real-
Time Digital Simulator (RTDS), i.e., a real-time power system
simulator. Specifically, a medium-voltage microgrid system
is used as the test system. It comprises a 5.5 MVA diesel
generator, a 1.74 MW PV system, a2 MW doubly-fed induction
generator wind turbine system, a lithium-ion battery storage,
seven loads, and a control center. The control center receives
load information from loads and sends control signals (i.e., the
real and reactive power references of the P-Q control) to the
local controller of the battery storage, which employs the P-
Q control to regulate its output power. The QKD simulator
is implemented in the control center running on a remote
server. It continuously generates key bits and stores them in
a key pool. When a control signal needs to be sent out, a
specific number of key bits (e.g., 64 bits) are consumed from the
key pool to simulate the encryption process. In this way, the
quantum key generation and key consumption are integrated
successfully. The QKD simulator determines the key generation
speed, and the key consumption speed is affected by the actual
data transmission between the control center and the battery
storage.

The QKD-enabled quantum-secured microgrid is extended
to quantum-secured networked microgrids in Ref. [28]. Three
microgrids are established. Each microgrid has a control center,
which communicates with one of the local controllers in the
same microgrid, and communicates with the neighboring two
control centers. The User Datagram Protocol is utilized for data
transmission. The three control centers run on the same server
with a specific IP address. Three port numbers are assigned to
each control center. One is used to receive data (i.e., the load
information) from the RTDS hardware, and the other two are
used to obtain data (i.e., control signals) from the neighboring
control centers. Six QKD systems are installed, three of which
are for the communications between control centers and their
local controllers, and three are for the communications between
neighboring microgrids. This design successfully combines
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multiple QKD systems, making the system more complicated.
Therefore, more research work can be conducted with this
system. For instance, researchers can investigate the impact
of attacks on multiple QKD systems and the corresponding
defending strategies.

While QKD offers a promising solution to securely distribute
keys between two distant parties, itself is vulnerable to denial of
service (DoS) attacks. To address this issue in QKD-enabled
networked microgrids, Ref. [29] presents a programmable
quantum networked microgrids architecture, where software-
defined networking (SDN) is utilized to manage the communi-
cation network. SDN is a practical and promising technigue to
achieve a fast and flexible communication environment
The decoupling of control and data planes and the centralization
of the control logic in the SDN controller make each SDN switch
asimple forwarding device. The SDN controller obtains a global
knowledge of network states, and enables a rapid development
of sophisticated applications. In Ref. [29], a software-defined
adaptive post processing approach, a two-level key pool sharing
stategy, and an SDN-enabled event-triggered communication
scheme are developed to mitigate the impact of DoS attacks
through programmable post processing and secure key sharing
among QKD systems.

A brief review of the research work on QKD-enabled
microgrids is presented in Ref. [30]. The current status
of developing quantum-secured microgrids and some future
perspectives are discussed. The work of developing quantum-
secured power grids has just started. More work needs to be
conducted from both quantum cryptography and power grid
sides. For instance, it is crucial to enhance QKD’s resilience
against disturbances and attacks, e.g., side-channel and DoS
attacks. The experimental demonstration of QKD in power
grids is essential but has not yet been carried out. Proper
strategies are desired to make QKD more practical in power
grids. The field is still in its infancy with substantial growth
potential.

4.2 Quantum Networks

There are two significant technical challenges impeding the
broad adoption of QKD in power grids. One is the distance
limitation issue, meaning that the QKD’s key generation rate
is reduced largely when the communication distance increases.
This is particularly unacceptable in a power grid with a
considerable distance between two communicating parties and
a high data transmission rate. The other critical issue is that a
QKD system is typically point-to-point. Therefore, using QKD
systems becomes impractical in a power grid with intensive
communicating devices.

A promising way to overcome these limitations is establish-
ing a quantum network. When a number of quantum devices
are interconnected, the quantum network greatly extends the
communication distance, and maximally utilizes quantum
resources to offer a more flexible environment for plug-and-play
communicating devices. The realization of quantum networks
requires quantum communication equipped with quantum
cryptographic protocols, where two techniques stand out above
all others: QKD and quantum direct communication 149,

A QKD-based quantum network architecture designed for
power grids is presented in Ref. [31I]. It is also shown in
Fig. Quantum repeaters are used to extend the distance

13



ARTICLE Quantum Computing in Power Systems

between two communicating parties. A quantum repeater
comprises two quantum sources and a Bell State Measurement
(BSM) device. Each quantum source independently generates
two entangled qubits; one qubit is sent to one communicating
party, and the other is sent to the BSM device. The BSM
device publicly announces the measurement result of the two
received qubits. If the measurement succeeds, the two qubits
sent from the two quantum sources to the BSM device will
be entangled. As a result, the two qubits forwarded to the
two communicating parties will also be entangled. If multiple
repeaters are connected, forming a chain of repeaters, the
communication distance will be further extended.

After the two communicating parties share a series of pairs
of entangled qubits, they can use a specific QKD protocol
(such as the E91 QKD protocol 1) to generate secret keys.
With this quantum network architecture, Ref. [31] develops a
quantum network simulator, namely, QNSim, to simulate the
performance of the network. Unlike other quantum network
simulators, QNSim is easy to implement, allows for real-time
simulation, and is flexible in altering network parameters and
topologies. A routing strategy is also integrated into QNSim to
simulate the quantum routing process. A quantum network-
based power grid (QNetGrid) testbed is further designed to
contain quantum communication, quantum routing, real SDN
switches, and real-time networked microgrids operations.

In addition to QKD, quantum direct communication is
another form of quantum communication. Unlike QKD, which
generates secret keys and uses keys to encrypt data messages,
quantum direct communication directly transmits confidential
information over the quantum channel. Ref. [33] is the first
work that develops a quantum direct communication-based
quantum network for electric grids. The devised architecture
has four layers: a quantum direct communication network layer
for conducting quantum communication, a physical layer of the
electric power system, a classical network layer operating in
parallel with the quantum direct communication network for
exchanging information, and an application layer for various
power grid and quantum applications. The designed network,
which supports teleportation and superdense coding protocols,
comprises the following components: a) quantum nodes to
conduct communication, b) entanglement generators to create
EPR pairs, ¢) quantum memories to store qubits, d) quantum
channels to distribute EPR pairs, and e) quantum measurement
devices to measure entangled states.

A quantum direct communication-enabled power grid
testbed is established in Ref. [33]. The network simulator
is developed based on SQUANCH and runs on a server,
which functions as the grid control center. The control
center receives data from and sends control signals to elec-
tric grids. The network simulator simulates the quantum
data transmission process between the physical grid and the
control center. A typical microgrid system is developed
in MATLAB/Simulink running on a virtual machine. The
microgrid system communicates with the control center using
the User Datagram Protocol. With this testbed, the network
performance under different power grid scenarios can be
evaluated.

5 Conclusion and Outlook

Quantum computing has been recognized by the National
Science Foundation as part of the ten strategic research areas
in the U.S. 168 The pioneering work in quantum computing
in the past decades, especially our breakthroughs in quantum-
engineered smart grids, has helped ignite strong interests from
the electricity sector and federal agencies such as the U.S.
Department of Energy. This paper summarizes the existing
research in developing quantum computing algorithms which
will open the door for developing various power system
solutions. By exploiting the inherent characteristics in power
grid problems such as power flow, eigenanalysis, and real-
time electromagnetic transient analysis, new and customized
linear and non-linear quantum circuits and quantum solvers
can be devised for both NISQ and fault-free quantum computer
environments. Regarding the stringent cybersecurity and
stability requirements from micro- and macro- grids and their
controls, novel hybrid quantum and classical cyber-physical
architectures will be established, and the quantum networking
testbed, which has been successfully synchronized with the
real-time digital power system simulators, can be used to
optimize quantum device performances against various cyber
attacks. Further, through the deep understanding of the grid
operation and control mechanisms, novel quantum protocols
requiring minimum quantum hardware (leading to low capital
expenditure) will be developed, which are expected to be
robust and self-adaptive to the frequency changes and recon-
figurations in today’s cyber-physical power grids. Enabled by
quantum networking and quantum memory-assisted quantum
nodes, various quantum controls will be devised to tackle
the long-standing challenges in distributed algorithms such as
cyber-vulnerability and slow convergence, leading to quantum
(and hybrid) information fusion schemes and fast distributed
approaches resilient against unstable communication, asyn-
chronous clocks, and adversary attacks.

On the other hand, despite the experimental breakthroughs
toward quantum technologies”#2, the jury is still deciding
whether quantum supremacy has been achieved in real-world
applications. To demonstrate quantum supremacy, progress
has been made continuously from different aspects. For in-
stance, for NISQ devices, hybrid quantum-classical variational
approaches provide promising solutions in specific applica-
tions ®”, including engineering and optimization problems.
The quality of qubits and quantum gates has been continuously
improved. In addition, quantum error correction, a promising
technique that leads to fault-tolerant quantum computing,
will likely bring fundamental breakthroughs to demonstrate
quantum supremacy. Further, our previous experience has
shown that leveraging power system characteristics in quantum
algorithm design can, in turn, enhance the algorithm’s perfor-
mance 191,

The recent progress in quantum computing has also attracted
forward-thinking power utilities *** to explore potential quan-
tum applications in situational awareness, secured quantum
networks, emergency preparedness, volatile renewable forecast,
security-constrained unit commitment, service restoration, etc.
Meanwhile, there exist several challenges in demonstrating
practical quantum computing use cases in the field: 1) there
is a lack of talents that have cross-domain knowledge needed
for connecting quantum computing to power systems; 2) no
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Fig. 8 A QKD-based quantum network using quantum repeaters 2, (a) Illustration of a quantum repeater. (b) A chain of quantum repeaters.
(c) The quantum network. BSM: Bell State Measurement. Quantum node: A quantum repeater (including a node with only the measurement
capability) or a communicating party. d: The distance between two quantum nodes.

standardized quantum programming environment has been
established, which increases the opportunity cost for imple-
menting a viable quantum computing application; 3) power
and energy industry still needs demonstrations of quantum
supremacy with a few practical applications. Therefore, the
collaborations between universities, national labs, vendors and
utilities are key to finding practical use cases for quantum
computing algorithms and to address the aforementioned
challenges. The ecosystem of Quantum-Engineered Smart
Grids initiated by Stony Brook University is swiftly growing,
and this will strongly support the multi-sector efforts in
increasing participation of K-12 and university students as well
as the general public in quantum computing workforce training.

In general, creating practical and replicable quantum algo-
rithms to resolve the traditionally intractable computational
problems and to support fast and resilient power system
operations will be the central theme for quantum computing in
power systems. Quantum Grids analytics toolboxes allowing
the power industry to exploit quantum supremacy in large
power systems operations are in demand. With the swift growth
of quantum computer capabilities, we are confident that the
theoretical potentials of the NISQ algorithms will be unlocked
in this decade, which will be able to ensure ultra-fast real-
time decisions of large power systems, minimize customer
outages and drastically increase the flexibility, responsiveness,
and resilience of critical power infrastructures under small and
large disturbances, as well as extreme events.
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