
Steering�ery Optimizers: A Practical Take on Big Data
Workloads

Parimarjan Negi1, Matteo Interlandi2, Ryan Marcus1,3, Mohammad Alizadeh1, Tim Kraska1
Marc Friedman2, Alekh Jindal2

1MIT, 2Microsoft, 3Intel Labs
USA

ABSTRACT
In recent years, there has been tremendous interest in research
that applies machine learning to database systems. Being one of
the most complex components of a DBMS, query optimizers could
bene�t from adaptive policies that are learned systematically from
the data and the query workload. Recent research has brought
up novel ideas towards a learned query optimizer, however these
ideas have not been evaluated on a commercial query processor
or on large scale, real-world workloads. In this paper, we take the
approach used by Marcus et al. in Bao and adapt it to SCOPE, a
big data system used internally at Microsoft. Along the way, we
solve multiple new challenges: we de�ne how optimizer rules a�ect
�nal query plans by introducing the concept of a rule signature,
we devise a pipeline computing interesting rule con�gurations for
recurring jobs, and we de�ne a new learning problem allowing us to
apply such interesting rule con�gurations to previously unseen jobs.
We evaluate the e�cacy of the approach on production workloads
that include 150 daily jobs. Our results show that alternative rule
con�gurations can generate plans with lower costs, and this can
translate to runtime latency savings of 7 � 30% on average and up
to 90% for a non trivial subset of the workload.
ACM Reference Format:
ParimarjanNegi1, Matteo Interlandi2, RyanMarcus1,3, MohammadAlizadeh1,
Tim Kraska1 and Marc Friedman2, Alekh Jindal2. 2021. Steering Query Op-
timizers: A Practical Take on Big Data Workloads. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June
20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3457568

1 INTRODUCTION
Cascades-style query optimizers [7] are popular in both commercial
and open source database systems, e.g., Spark [31], Calcite [2],
Greenplum [25], Snow�ake [4], F1 [23], SQL Server [17], and SCOPE
[3]. At its core, they have a set of rules that are used to enumerate
all valid query plans. Each plan is assigned a cost, using a cost
model and estimated cardinalities for the intermediate results in the
plan. The lowest cost plan is chosen by the optimizer for execution.
There are multiple classes of errors an optimizer can make, such as
cardinality mis-estimates, inaccuracies in the cost model [13], and

Work done while Parimarjan Negi was at Microsoft.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457568

Workloads

A B C Total
Jobs 95K 15K 40K 150K
Unique Templates 48K 10.5K 22K 80.5K
Unique Inputs 29K 9K 18.5K 56.5K
Unique rule signature 13K 837 2.5K 16.337K
Table 1: Production workloads used through the paper.

other poor heuristics. These mistakes can have a large adversarial
in�uence on the low level decisions made by the optimizer, such
as the choice of operator implementation and the join orders. For
instance, severe cardinality underestimates can lead an optimizer
to pick a disastrous plan involving nested loop joins [14].

In recent years, several works have tried to solve such problems
using machine learning: e.g., learned cardinalities [11], learned cost
models [24], and even learned query planners [12, 14, 15]. The
Bao [14] approach, in particular, handles the numerous optimizer
pitfalls by limiting the search space of the query optimizer based on
a given query. This is achieved by disabling a subset of the optimizer
rules1 that control how query plans are transformed, e.g., which
operators, or algorithms, are used by the optimizer. Bao can learn,
for example, that certain kinds of queries systematically have large
underestimates, and decide to turn o� nested loop joins for other
similar queries. As a result, we can build sophisticated machine
learning models to deeply in�uence the query planswithoutmaking
deep changes in the query optimizer.

This paper �lls the gap between recent research advances in
steering a query optimizer, and the practical realities of industry
strength query optimizers. Speci�cally, we consider the SCOPE [3]
query engine used for petabyte-scale big data processing at Mi-
crosoft, analyze the current state of the SCOPE query optimizer,
and apply the ideas in Bao to production workloads in SCOPE.
While doing this, we solve multiple new challenges. We introduce
the notion of a rule signature for a query, i.e., the set of rules that im-
pact the �nal query plan output by the optimizer. The rule signature
has been central to all of our heuristics for discovering interesting
rule con�gurations. Even more importantly, it proves to be an ex-
cellent signal to cluster very di�erent queries into groups where
similar rule con�gurations lead to improvements. Intuitively, the
rule signature compactly captures the code path that the query
takes inside an optimizer. Furthermore, we devise a pipeline that
can automatically extract interesting con�gurations from historical
jobs, which can then be used online to improve future recurring jobs.
Finally, we establish a learning problem, and provide some initial
results on how machine learning can be used to improve previously
unseen jobs by utilizing the results of our o�ine pipeline.
1Several query optimizers have their rules exposed as knobs for expert users.

This work is licensed under a Creative Commons Attribution International 4.0 License.

 .Virtual Event, China ,2021 ,25ڟXQH�20-����ڥ�'02*,6
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457568

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2557

https://doi.org/10.1145/3448016.3457568
https://doi.org/10.1145/3448016.3457568
https://creativecommons.org/licenses/by/4.0/

Job
−100

−75

−50

−25

0

R
un

tim
e

(%
 C

ha
ng

e)

Figure 1: Percentage runtime change (lower is better), from the
default rule con�guration, for 65 productions jobs in Workload A.

We evaluate the e�cacy of our approach on three workloads
sampled from production clusters over a window of few weeks. For
any single day, these include 150 SCOPE jobs (Table 1), compris-
ing of 20 hours of total processing time, and spanning over 500
million containers. These jobs are also far more complex than the
workloads used when evaluating Bao or several other learned query
optimization approaches [11, 14, 15, 18], with up to hundreds of op-
erators per SCOPE job. Furthermore, there is a massive search space
of billions of valid rule con�gurations in contrast to 48 PostgreSQL
con�gurations considered in Bao.

We �nd robust evidence, across the di�erent workloads, that
steering the search space of the SCOPE optimizer by choosing
di�erent rule con�gurations can lead to signi�cant improvements
in terms of execution times. Moreover, we can reliably identify
templates for recurrent jobs running across many days, where
certain rule con�gurations can lead to consistent improvements.
To illustrate this, Figure 1 shows 65 jobs over a span of one week
in Workload A, where the same rule con�guration improves each
query’s execution time by hours, ranging from 50% to 90% faster
runtimes. Overall, our analysis on the three production workloads
suggests that there is a potential for 10�30% runtime improvements,
on average, in almost 10 � 20% of the jobs that run for more than 5
minutes, which is the critical, resource intensive component of the
workload.
Contributions. Summarizing, our key contributions are:

(1) rule signature. We analyze the usage of rules in SCOPE
query optimizer, and introduce the idea of a rule signature for
SCOPE jobs. rule signature is promising both to featurize and
to cluster jobs, as it compactly captures useful information
about the code path inside the optimizer.

(2) Discovering interesting rule con�gurations.We create
a heuristics driven pipeline that uses recompilation and se-
lective re-execution of query plans to discover interesting
rule con�gurations. We provide robust evidence, and in-
tuition, for why di�erent rule con�gurations can improve
performance in SCOPE. These techniques do not rely on our
existing knowledge about these rules, and could potentially
be scaled up to hundreds of more rules, or other con�gu-
ration �ags and settings. Moreover, we identify recurring
queries across multiple weeks in which these new rule con-
�gurations can provide runtime improvements.

(3) Learning. In the more challenging cases, the same rule con-
�gurations can also cause regressions for unseen queries. We
therefore formulate selecting rule con�gurations at compile
time as a learning problem, and present results in which we
use a learned model to choose rule con�gurations for new
queries. These results use only a small subset of the total

workload, but our results shows that it can scale over full
production workloads.

Organization. The remainder of the paper is organized as follows:
In Section 2, we describe related work, in particular the relevant
features of the Bao system our approach is based on. In Section 3 we
give background on SCOPE, in particular we describe its rule-based
optimization process. In Section 4, we describe the challenges in
adapting a Bao like system for SCOPE, and in Sections 5, 6, and 7
we describe our approach for solving these challenges. The papers
ends with conclusions and future work in Section 8.

2 RELATEDWORK

Learned query optimization. Many recent works use learned
models to improve cardinality estimation [5, 6, 11, 18, 19, 27, 29,
30], which is a core component of query optimization. Other ap-
proaches [12, 15, 16] focus on directly generating query plans by
learning from the output of the cost model or the runtimes. Our
approach is based on Bao [14], and uses existing optimizer infras-
tructure to better explore, and choose from the query plans already
being considered by the optimizer. Conceptually, this is similar to
past work exploring the space of query plans, such as Picasso [8],
or designing robust cost estimates for choosing query plans [26].

Bao.Marcus et al. [14] devised Bao as a system that leverages Post-
greSQL query hints to generate 48 hint sets (or rule con�gurations).
Each hint set essentially is like a simpler versions of the PostgreSQL
query optimizer. Each simple optimizer disables a subset of the Post-
greSQL �ags. The hints a�ect the optimizer behaviour for choosing
scan operators, join operators, and join orders. They treat each
simple optimizer as an arm in a multi armed bandit problem. Given
a new query, the model learns to choose one of the 48 arms. It is
modeled as a reinforcement learning problem in which Bao sees a
sequence of queries, and over time learns to make the correct deci-
sions. Bao was evaluated on a custom dataset with queries ranging
from a few to several hundred seconds. Bao did not rely on the
PostgreSQL cost model. Instead, a core component of their system
is a tree convolutional neural network which learns a cost model
for tree structured PostgreSQL query plans by executing the plans.

SCOPE. The overall SCOPE design is described in Chaiken et al. [3].
Jindal et al. [9] give an overview of the Peregrine infrastructure
used to introduce workload optimizations in SCOPE. There have
been several e�orts trying to introduce learned components in
SCOPE. Sen et al. [22] uses learned models to automatically choose
the number of concurrent containers a job should use. Wu et al. [28]
developed a novel way to do cardinality estimation tailored to the
SCOPE workloads. Siddiqui et al. [24] analyzed the new challenges
for cost models in a cloud-based execution framework, and pro-
posed a learning approach for SCOPE.

3 PRODUCTION QUERY PROCESSOR
In this section, we �rst describe the SCOPE query processor, and the
workloads seen by it in production. Then, we analyze the optimizer
rules in SCOPE, and �nally we discuss our key requirements when
applying ML to navigate the space of SCOPE optimizer rules.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2558

0 25000 50000 75000 100000
Runtime (Seconds)

10
1

10
3

10
5

N
um

be
r o

f j
ob

s

(a) Histogram of SCOPE job
runtimes.

Rule

10
1

10
3

10
5

N
um

be
r o

f j
ob

s
(b) Number of jobs using
each of the rules.

0 20 40 60
Number of rules used in a job

0

2000

4000

6000

8000

N
um

be
r o

f j
ob

s

(c) Histogram of number of
di�erent rules used in a job.

Rule Signature

10
2

10
3

N
um

be
r o

f j
ob

s

(d) Number of jobs for 200
most common rule signatures.

Figure 2: Distributions of runtimes and queries during one day in Workload A.

Category #Rules #Unused
Rules

Rule Examples

Required 37 9
EnforceExchange, BuildOutput
GetToRange, SelectToFilter

O�-by-default 46 36
CorrelatedJoinOnUnion1,
GroupbyOnJoin

On-by-default 141 37
NormalizeReduce,
CollapseSelect, SelectPartitions,
SequenceProjectOnUnion

Implementation 32 4 HashJoinImpl1, JoinToApplyIn-
dex1, UnionToVirtualDataset

Table 2: Rule categories with some statistics and examples.

3.1 SCOPE Overview and Workloads
SCOPE is a large scale distributed data processing system. It powers
production workloads from a range of Microsoft products process-
ing petabytes of data every day [3]. SCOPE uses a SQL-like scripting
language that is compiled into Direct Acyclic Graphs (DAGs) of op-
erators. SCOPE scripts contain a mix of relational and user de�ned
operators (in C# and Python). Since SCOPE scripts contain a data
�ow of multiple SQL statements, they are also referred to as jobs.

The SCOPE optimizer is structured very similarly to traditional
cascades-style query optimizers: it transforms a logical query plan
using multiple tasks in a top-down fashion. However, the SCOPE
optimizer also makes all the decisions about how to partition the
inputs, and selects the optimal amount of parallelism given the
number of containers available for the job. The number of concur-
rent containers used by each job is referred to as number of tokens
in SCOPE. The SCOPE optimizer estimates the cost of an operator
to capture its runtime latency using a combination of data charac-
teristics and other heuristics tuned over the years. For any query
plan (or subplan), the cost of an operator is recursively combined
with all of its children’s cost, and ultimately the optimizer picks the
plan with the cheapest total cost for execution.

3.1.1 SCOPEWorkload Characterization. A large portion of SCOPE
workloads consist of recurring jobs, i.e., periodically arriving tem-
plates with di�erent inputs and predicates, that are part of the
work�ows of internal customers. These are often used to cook large
volumes of raw data, run data mining or other analytical tasks,
and populate dashboards for interactive analysis. The input data

streams for these jobs can change daily. Recurring jobs belonging
to the same template can be identi�ed by discarding all variable
values (e.g., predicate �lters) and by computing the hash of the
remaining information in the query graph.
Short running jobs v/s long running jobs. In Figure 2a we show
the distribution of runtimes in Workload A for a single day. The
shortest jobs take just a few seconds, but there are several that run
for hours. Similar results also hold for the other workloads. Unsur-
prisingly, the shorter running jobs also consume fewer resources.
We �nd that only about 10% of the jobs last over �ve minutes, but
these consume 90% of the total containers used in the workload.
Furthermore, distributed processing often leads to variance in the
runtimes for the same query plans (unpredictability in resource
allocation, hot spots due to cluster conditions, or large chain of data
dependencies). Incidentally, short running jobs also have larger
variance: for instance on Workload B we observed a variance of
around 10%. Therefore, we focus on long running jobs in this work.

3.1.2 Metrics. Job runtime is the typical metric used to evaluate
performance. However, in SCOPE, the following other metrics are
equally important, particularly for monitoring the cost in terms of
resource usage. Typically, many parallel jobs are being executed on
the same set of resources, thus improving the utilization for any
resource can help improve performance of other jobs, and reduce
the load on the servers.

(1) Runtime. The total wall clock latency of executing the job
from start to �nish. This does not include the time a job may
spend in a queue being scheduled.

(2) CPU time. This is the total CPU time across all vertices in
a SCOPE job and indicates the computation cost of the job,
and is useful to measure the CPU utilization in our clusters.

(3) Total I/O time. This includes data read, written, or copied
to di�erent containers and indicates the time spent on I/O.

3.1.3 A/B testing Infrastructures. The SCOPE infrastructure also
provides A/B testing capabilities to evaluate the performance im-
pact of new features in the SCOPE engine, e.g., during a new SCOPE
release. This feature can also be used to execute jobs with di�er-
ent con�gurations, and compare performance. The A/B testing
infrastructure can re-execute recent production jobs using pro-
duction datasets but with outputs redirected to a dummy loca-
tion [1, 10, 22, 28]. We use this A/B testing infrastructure for all the
experiments in this paper. For all the reported execution times (or

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2559

other metrics when applicable) we re-executed the original produc-
tion query plans and the alternate query plans (with di�erent rule
con�gurations) on the production clusters, and with the same set
of available resources (50 tokens each for every job). In production,
each job executes with di�erent resources, as speci�ed by the cus-
tomer, but we typically �nd that improvements with a �xed set of
resources also translate to improvements when more resources are
used.

3.2 Analyzing SCOPE Optimizer Rules
We now analyze the query optimizer rules in SCOPE. There are
256 rules in the SCOPE optimizer that govern the algorithms and
operators used to optimize a SCOPE job. These cover a wide range
of standard optimizer rules: rewrite rules, rules for particular opera-
tors, join order and implementation rules and so on. It also involves
operators and algorithms for SCOPE speci�c operators, like �����
��� [3]. Figure 2b shows the distribution of how frequently each rule
is used in Workload A jobs, and Figure 2c shows the distribution
of how many di�erent rules are used in a single job. Interestingly,
even though 100 � 150 rules are used frequently in the workload,
typically only 10 � 20 di�erent rules are used in a single job. We
divide the kind of rules used in SCOPE into four informal categories.

(1) Required rules. These rules are necessary for correctness
in query processing, therefore we do not treat these as part
of the learnable rule con�gurations. Examples include En-
forceExchange or BuildOutput, which have no alternative
rules.

(2) O�-by-default rules. These are rules that are either experi-
mental, or unsafe due to extreme sensitivity to mis-estimates
in the cardinalities. An example would be a collection of
slightly di�erent CorrelatedJoinOnUnion rules. These rules
chooses to push ����� ��� operators under the ���� op-
erator, i.e., choose to do unions on each distributed node,
and then combine them on a single node for the join, versus
joining on each distributed node, and applying the union op-
erator on the combined results. The performance of this rule
can be extremely sensitive to the sizes of the intermediate
results.

(3) On-by-default rules.These includemost optimization rules
and algorithms. Examples include various rewrite rules, join
order rules, aggregation and sorting rules.

(4) Implementation rules. These rules are about the physical
implementation of logical operators, such as ���� or �����
���. For each operator type, one of the implementation rules
must be enabled. For simplicity, we treat these as a single
class of rules in this paper.

Table 2 summarizes some of the statistics about each category
in the 95 jobs from one day in Workload A. Interestingly dozens
of on-by-default rules are never used in this workload.

De�nition 3.1. Rule con�guration.We de�ne a bit vector spec-
ifying whether each rule is enabled or disabled when optimizing a
given job as the rule con�guration. The default rule con�guration
in SCOPE has 46 rules which are disabled (o�-by-default rules),
and the rest are enabled. Only the enabled rules can be used by the
optimizer. SCOPE exposes �ags, or “hints” that allow end users to

specify which rules should be enabled or disabled when optimizing
a job, thus modifying the rule con�gurations can be easily done in
SCOPE.

There are rules, such as some rewrite rules, which are just not
applicable to a job (e.g., because the target operator is not part of the
query). In other cases, there are rules that were not used because
an alternative rule was used (e.g., ���� operator implementation
rules). To track this, we modi�ed the SCOPE optimizer to log which
rule contributes to any component of the �nal query plan.

De�nition 3.2. Rule signature.We de�ne a bit vector specify-
ing which rules directly contribute to the �nal query plan produced
by the optimizer as the rule signature. We refer to them as on rules
if it is 1 in the bit vector, and o� otherwise. For instance, consider
a scenario with 10 total rules. A given query will be optimized
using a particular rule con�guration of the 10 rules, for instance,
1111111110 — which implies that the last rule is disabled, and the
rest are enabled. Not all the enabled rules will impact the optimiza-
tion process — for instance, some rules may just not apply for this
particular query. Suppose only the �rst and the second rule was
used during the optimization. Then, the rule signature of this query,
with the given rule con�guration, will be 1100000000. We refer
to the rule signature of a query optimized using the default rule
con�guration as the default rule signature.

Figure 2d shows the distribution of the default rule signature of
the jobs on one day in Workload A. Even though there are expo-
nentially many possible rule signatures, in practice we observe that
there is a lot of structure in the distribution of rule signatures. For
instance, there are several rule signatures with almost 1000 jobs
mapping to them every day.

3.3 Learning Requirements
Introducing any learning component in a complex and widely used
system such as SCOPE is challenging. Below we discuss some of
our requirements.

• Domain knowledge vs full control. An alternative ap-
proach to Bao, Neo [15] seeks to learn the complete opti-
mizer, or a full component of it, from scratch. It bene�ts from
having full control over the optimization decisions, but it
can’t use decades of carefully crafted and domain speci�c
optimizations used in commercial optimizers such as SCOPE.
Bao, and our adaptation in this paper, utilize all the existing
knowledge and implementation in the optimizers.

• Non-invasive. The SCOPE optimizer has an extremely ma-
ture and large code base. It is very challenging to make big
changes to the internals of the optimizer and include learn-
ing in speci�c subsystems while avoiding unwanted side
e�ects. Our approach learns to e�ectively use knobs that are
already exposed by the optimizer.

• Ease of deployment as “plan hint”. It is always hard to
deploy learning based approaches that may cause surprising
regressions. One way to deploy such a system is to suggest
the new rule con�gurations to the customers responsible
for particular workloads. In fact, while rule �ags are already

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2560

available and often used by customers, new rule con�gura-
tions can be simply surfaced as an extension of this capabil-
ity.

• Scalability. New code paths are constantly added to the
optimizer, leading to ever increasing complexity. Besides
rules, the optimizer has hundreds of other con�gurable �ags
and code paths. Our approach is designed such that it can
potentially scale up to all available �ags.

• Focus on relevant metrics. Several recent works focus on
improving the cost model and cardinality estimation compo-
nents of a query optimizer [11, 18, 19, 29, 30], including work
on SCOPE [24, 28]. These remain challenging problems, and
it can be hard to �x these errors in a way that improves
the overall query optimization process. More importantly,
improving an individual component, such as cardinality es-
timation, does not guarantee that the generated plans get
better. In contrast, our learned approach attempts to directly
optimize the metric we care about (e.g., execution time, I/O).

4 STEERING THE QUERY OPTIMIZER
In this section, we describe the problem of steering the query op-
timizer using rule hints, discuss the challenges we see in SCOPE,
and give an overview of our approach to address those challenges.

Problem Statement. Given a new SCOPE job, the SCOPE opti-
mizer always uses the default rule con�guration to generate the
query plan. Our goal is to output an alternative rule con�guration
which is better for optimizing this particular job, and for a given
metric, such as runtime latency.

While the above problem statement is the same as in Bao [14], we
discovered several novel challenges when tackling it for SCOPE.
We discuss them below.

(1) Large space of rule con�gurations. We consider rules
in SCOPE that a�ect a much wider range of optimizer be-
haviour than Bao. SCOPE has 219 non-required rules, thus
there is a 2219 theoretical limit on the number of con�gu-
rations. Many of these may not compile successfully due
to implicit dependencies, but there are still billions of valid
rule con�gurations (in contrast to 48 rule con�gurations
considered in Bao). Therefore, we need a way to come up
with a candidate set of rule con�gurations which may be
interesting to explore further. At the same time, the large
space of possibilities also make it more likely to discover
interesting behaviors.

(2) Expensive Executions. It is prohibitively expensive to col-
lect data about execution times for too many rule con�gu-
rations. Therefore, we will not have enough data to learn a
cost model, as in Bao. Instead, we need heuristics to choose
which rule con�gurations should be executed.

(3) Formulating the learning problem.Due to the number of
con�gurations, a multi-armed bandit problem does not scale
up to a system like SCOPE. SCOPE query graphs are DAGs
with up to hundreds of operator nodes, thus a graph based
featurization scheme, as in Bao, is not directly applicable.

Overview of our approach. To overcome the above challenges,
we follow four main steps:

(1) Which jobs and rule con�gurations shouldwe look at?
We select a subset of representative jobs to analyze. For each
of them, we use heuristics to generate up to 1000 candidate
rule con�gurations. (Section 5).

(2) Can rule con�gurations improve runtimes?Weuse heuris-
tics to select 10 candidate rule con�gurations to execute and
�nd con�gurations that lead to improved job runtimes. (Sec-
tion 6.1, 6.2).

(3) Extrapolate to other jobs.We take the con�gurations that
improved runtimes and extrapolate to other jobs across mul-
tiple days and templates which may bene�t from these con-
�gurations. (Section 6.4).

(4) Learn. We collect run time data for jobs across multiple
days, and train a supervised learning model to choose rule
con�gurations. (Section 7).

The pipeline described above runs o�ine by utilizing SCOPE’s
compiler, �ags, and A/B testing infrastructure to analyze past work-
loads. We can then use the learned models in an online scenario to
either automatically use di�erent rule con�gurations for new jobs,
or to recommend new con�gurations to the customer.

5 DISCOVERING RULE CONFIGURATIONS
The naive approach would be to consider the exponentially many
valid rule con�gurations for every job. Clearly, this is infeasible.
Therefore, our goal is to adaptively discover " interesting rule
con�gurations for a given job. Then, we recompile the job with
each of the" rule con�gurations and analyze the generated query
plans to �nd plans that are worth executing.

5.1 Job Span
Intuitively, we want to �nd rule con�gurations that can lead to
interesting changes in the optimized query plan, while not exploring
toomany unworthy con�gurations. That is, we only want to explore
con�gurations enabling/disabling rules that have an impact on the
�nal query plan. Disabling a rule that can not impact the query plan
will not make a di�erence (e.g., a rule that optimizes the �����
�� operator for a job that does not have a ����� �� clause). We
describe how we prune the search space over the rules by means
of a simple heuristic.

De�nition 5.1. Job span. Given a job, its span contains all non-
required rules which, if enabled or disabled, can a�ect the �nal
query plan.

Generating a job span for optimizers, such as the SCOPE opti-
mizer, where rules can have complex data-driven dependencies is
challenging. Algorithm 1 shows the heuristics we use to approx-
imate the job span. We already know that all the on rules in the
default rule signature can impact the �nal query plan. Therefore, if
we disable some of these rules, the optimizer may use some other
rules instead. This algorithm seeks to �nd such alternative rules
by iteratively disabling all rules that were used when optimizing a
job and recompiling the job each time to see which new rules start
getting used instead.
Limitation. The above algorithm does not capture all the possi-
ble rules that could impact the �nal query plan because complex
dependency structures may be present in the rules, but are not
indirectly observable using our heuristic. For instance, consider

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2561

Algorithm 1 Approximating query span

Input: & {Query}
Output: B?0=
1: B?0= {}
2: 2>=5 86 {1, 2, 3..., 220} {all rule ids w/o required rules}
3: =4F_AD;4B CAD4
4: while =4F_AD;4B do
5: B86=0CDA4 COMPILE (& , 2>=5 86) {gets the rule signature

for a query compiled with a given con�g.}
6: >=_AD;4B GET_ON_RULES (B86=0CDA4) {�nds all the rules

in the signature bit vector that are 1}
7: if >=_AD;4B == ; then
8: =4F_AD;4B 5 0;B4
9: else
10: 2>=5 86 2>=5 86 \ >=_AD;4B
11: end if
12: end while

Rule Category
0

5

10

15

N
um

be
r o

f R
ul

es

On-by-Default Implementation Off-by-Default

Figure 3: Average number of rules (±1 std.) in the span for each
job in a day of Workload A, grouped by each category.

three rules �,⌫,⇠ in which ⌫ and ⇠ are alternative rules, but both
have a dependency on �, such that they can only be used if rule �
is used. Let’s say that with all rules enabled, � and ⌫ are in the rule
signature. In its �rst iteration, the heuristic algorithm computes
the job spans by disabling both rules � and ⌫. Thus, it will fail to
discover that rule ⇠ can impact the �nal plan as well. While to
address this shortcoming, we need more detailed knowledge about
the rules, and their dependencies, we can already �nd many inter-
esting rule con�gurations using our heuristic despite missing these
complex dependencies, as we show in our analysis in Section 5.3.

5.2 Con�guration Search
Relative to the total number of rules, most queries have much fewer
rules in their span. For instance, Figure 3 shows the average, and
standard deviation of the number of rules in the span of each job
on a single day on Workload A. We group these rules by the rule
categories described earlier. On average we see that only up to 20
rules among the 219 non-required rules are used by each job. This
reduces the search space for rule con�gurations considerably.

Assuming independence of rule categories. Informally, two
rules can be considered independent if enabling or disabling one
of them does not impact the behaviour of the other rule in a query

optimizer. This may be because they apply to di�erent parts of a
job. Intuitively, there must be a lot of rules in a query optimizer
which are usually independent: for instance, particular join imple-
mentation rules are probably independent of certain rewrite rules.
Knowing subsets of rules are independent can dramatically reduce
the search space of rule con�gurations. For instance, consider 5
rules. There are 25 = 32 rule con�gurations. If we can establish that
there are two groups of rules with two and three rules such that
the groups are independent of each other. Then, we will need to
only explore 22 + 23 = 12 rule con�gurations. While it is hard to
formally establish, and discover such independent subset of rules,
in this work we make the assumption that each category of rules
are independent of the other categories. In practice, this makes
exploring the space of rules much easier.

Randomized Con�guration Search. We use randomized search
to enumerate" candidate con�gurations. For a given job, the list
of rule con�gurations are generated by:

(1) Enable all the rules that are not in the span of the given job. 2
(2) For each rule category, independently sample a subset of

rules from the job span. Disable these rules, and enable all
others. This gives us a new rule con�guration.

(3) If the rule con�guration has not been seen before, add it to
the candidate list. Repeat until" con�gurations are gener-
ated.

5.3 Recompilation Results

Selecting jobs to analyze. We run our initial analysis on jobs
on one day from Workload A, Workload B, and Workload C. We
�lter out jobs that are faster than �ve minutes and longer than
one hour. We avoid the short running jobs because the runtime
variance makes it extremely hard to discern improvements between
alternative query plans. We avoid the long running jobs because
re-executing many alternative plans can take really long. From the
remaining jobs, we select a random sample of 10�20% queries from
each workload. We generate up to 1000 unique rule con�gurations
for each job to recompile. Surprisingly, for most queries, some of
the recompiled plans with the new rule con�gurations have lower
estimated costs. Figure 4 shows examples of queries fromWorkload
A with the default cost, and the recompiled costs for each rule
con�guration. This appears paradoxical because a cascades style
optimizer like SCOPE guarantees that it �nds the lowest estimated
cost plan in the search space.

Why does the optimizer �nd lower cost plans with di�erent
con�gurations? There are a few subtle ways by which chang-
ing rule con�gurations can impact the way estimated costs are
computed. The SCOPE optimizer guarantees to �nd the lowest esti-
mated cost plan in the search space, but this only holds for a given
set of cardinality estimates and heuristics. Changing the rule con-
�gurations can impact these, thus the costs across recompilation
runs with di�erent rules are not directly comparable. A few ways
in which new con�gurations can lead to lower costs are:

2If a rule does not impact the �nal query plan, then it makes no di�erence whether it
is enabled or disabled. But there can also be rules that can impact the �nal query plan,
but were missed when computing the job span. Thus, leaving these enabled can still
be useful.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2562

105

106

Co
st

J 1
Default

106

107

108
J 2

106

107

108

J 3

107

108
J 4

105

106

107
J 5

107

109

Co
st

J 6

107

108

109
J 7

106

107

108
J 8

106

108

J 9

106

107

108 J 10

Rule Configuration

106

107

Co
st

J 11

Rule Configuration
106

107

108

J 12

Rule Configuration
106

107

108

J 13

Rule Configuration
105

106

107

J 14

Rule Configuration

107

109
J 15

Estimated cost for rule configurations tried for 15 random jobs

Figure 4: Comparing the estimated cost of the default rule con�guration versus all the candidate rule con�gurations for 15 randomly selected
queries inWorkload A. Even though SCOPE cascade-style optimizer guarantees that the plans returned are the ones with the lowest-cost, still
our approach can �nd plans with estimated costs lower than the default rule con�guration.

(1) Changing node properties. Each of the nodes in the query
graph have various logical and physical properties, such as
cardinality estimates or costs, that are estimated based on
heuristics and assumptions by SCOPE. Alternate rule con-
�gurations can change how these properties are calculated,
which naturally lead to di�erent cost estimates. For example,
changing the order of �lters can impact cardinality estima-
tion (due to correlations, skew, or other reasons) at each
node and hence the estimated costs.

(2) Degree of Parallelism. Di�erent rules can in�uence the
distributed nature of a query plan. This can range from how
the input is distributed to di�erent containers, to the degree
of parallelism used, to the number of containers launched
for a job. However, it is again not possible to explore all
the distributed options exhaustively. SCOPE’s search space
heuristically selects a few degrees of parallelism to explore.
Since the heuristics depend on the logical properties, like
cardinality estimates, it is possible that with a di�erent rule
con�guration, di�erent degrees of parallelism are chosen.

Finding lower estimated cost plans with di�erent rule con�gu-
rations in SCOPE is a key di�erence with Bao. In PostgreSQL, the
estimated costs are directly comparable under the di�erent rule
con�gurations considered in Bao. But, the plan found without dis-
abling any �ag would be the cheapest cost plan (but not the best
plan, since mis-estimates or wrong cost model assumptions may
mean that other plans can execute faster), since the current set of
hints are limited to scans and joins, and they do not impact the
node properties [14].

6 EXECUTING RULE CONFIGURATIONS
In the previous section, we saw how we can explore the large
rule con�guration space and discover interesting con�gurations
with lower estimated costs. In this section, we dig into the runtime
performance impact of these interesting rule con�gurations.

Figure 5: Comparing the costs (x-axis) v/s runtimes (y-axis). Each
point is a query executed with the default rule con�guration.

6.1 Choosing rule con�gurations to execute
One of the key components in Bao was a learned cost model which
let their system choose among the di�erent rule con�gurations
[14]. This was possible because there were few rule con�gurations,
and the execution time of the queries was much shorter. Thus, Bao
could collect exhaustive data about di�erent kinds of queries and
rule con�gurations to train their model. This is not possible with
hundreds of thousands of expensive jobs in production workloads
and limited pre-production resources for A/B testing. Therefore, we
use heuristics to choose which jobs, and which of their recompiled
SCOPE plans are executed.

Using the cost model. Even though the estimated cost of plans
recompiled with di�erent rule con�gurations are not directly com-
parable, it is still a useful signal about the plan quality. Plans which
are cheaper, or close to the cost of the default plan, indicate that
the optimizer thinks the new plan is at least not a bad plan. The
jobs are selected by the following heuristics:

(1) Cheaper plans.We sample from the jobs where the recom-
piled plans were clearly cheaper (di�erence greater than
a workload speci�c threshold in the estimated cost) than

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2563

Job
−100

−50

0

50

100

R
un

tim
e

(%
 C

ha
ng

e)

(a) Workload A
Job

−100

−50

0

50

100

(b) Workload B
Job

−100

−50

0

50

100

(c) Workload C

Figure 6: Jobs selected where we �nd cheaper plans, or jobs where the default cost is extremely low, but the runtime is not. 10 cheapest (by the
cost model) rule con�gurations executed. Percentage change in runtime of best alternative rule con�guration from default (lower is better).

−100

−50

0

50

100

R
un

tim
e

(%
 C

ha
ng

e)

−100

−50

0

50

100

C
P

U
 ti

m
e

(%
 C

ha
ng

e)

Job
−100

−50

0

50

100

I/O
 ti

m
e

(%
 C

ha
ng

e)

(a) Rule con�gurations w/ best runtimes.

−100

−50

0

50

100

−100

−50

0

50

100

Job
−100

−50

0

50

100

(b) Rule con�gurations w/ best CPU times.

−100

−50

0

50

100

−100

−50

0

50

100

Job
−100

−50

0

50

100

(c) Rule con�gurations w/ best I/O times.

Figure 7: Workload B jobs. Each bar is a di�erent query (Each plot has the same order of queries.), showing percentage change for the
SCOPE metric from the default rule con�guration to an alternative con�guration (lower is better). For each query, we try 10 alternative rule
con�gurations. In (a), we select con�gurations with best runtimes - this can lead to more regressions on other metrics, like CPU time. In (b)
and (c) we select con�gurations with best CPU times and best I/O times, respectively.

the default plans. It makes intuitive sense to execute such
plans, if only to �nd whether cheaper cost indicates faster
runtimes.

(2) Jobs with low cost, high runtimes. Figure 5 shows a scat-
terplot of the estimated cost and runtime of the default rule
con�guration for all jobs during a day in Workload A. No-
tice, the jobs in the top left corner: these were cases with
low costs, i.e., the optimizer expected them to run fast, but
actually the runtimes are signi�cantly higher. Since the cost

model prediction was wrong for these jobs, it suggests that
some cost model assumptions did not hold. We sample from
such jobs with appropriate thresholds on cost, and runtime.

For each of the jobs selected above, we select the 10 cheapest al-
ternative rule con�gurations and execute them. This lets us explore
a diverse set of reasonable plans for each job. In total, we picked
2,110 rule con�gurations, across 211 jobs, for A/B testing in the
pre-production environment.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2564

6.2 A/B Testing Results
Executing all the alternative con�gurations amount to 3960 hours
of execution time. Each workload has di�erent kind of jobs, but we
observe similar trends in all of them. Figure 6 shows the percentage
change in runtimes from the default to the best rule con�guration
for the executed jobs. Notice that the maximum possible improve-
ment in runtime can lead to a 100% change (since runtimes can not
be negative), but regressions can be larger than 100%.

Runtimes. At least one of the alternative rule con�gurations im-
prove runtimes for a majority of the jobs. We see a similar trend,
and even magnitude of improvement in Workload A and Workload
B. There are jobs that get up to 90% faster — translating to several
hours saved in absolute runtimes. Workload C jobs show the same
trend but the magnitude of improvements (and regressions) are
smaller. This is partially because we analyzed fewer jobs in Work-
load C, but also because longer run times lead to lower percentage
changes (e.g., improving a 10 minute job by 5 minutes will give a
50% improvement, while improving a 10 hour job by an hour is just
a 10% improvement).

Di�erent Metrics. In Section 3, we described multiple metrics of
interest in SCOPE. In Figure 7, we zoom in to theWorkload B results
to explore how all these metrics are impacted by changing rule
con�gurations. One natural question is: do all the metrics improve
together? We executed ten alternative con�gurations for each job.
We show how each metric varies for 100 jobs when we choose
the best con�gurations for runtime (Figure 7a), CPU times (Figure
7b), or I/O times (Figure 7c). There are many cases where we see
improvement on each metric (green bars from the top row to the
bottom row). But more often, there is an inherent tension between
all the metrics. In Figure 7a, we see regressions (red bars) in CPU
time and I/O time for many jobs with improved runtimes. In Figure
7b, these regressions seem to mostly go away for the CPU times
as for each job we pick one of the ten con�gurations that led to
the best CPU time. As before, we still see regressions on I/O time,
but now we also see more regressions in runtime. A similar pattern
plays out in Figure 7c.

This presents a complex, but interesting optimization landscape.
We could potentially have separate models that optimize for each
metric individually, and choose which one to use based on the
context. For instance, when there is high load on the servers, we
may want to minimize one of the resource (CPU time, I/O times)
while when there is less load, we may simply want the fastest
runtimes. More complex policies may take into account customer
requirements and so on. We could also imagine designing a loss
function that seeks to balance the relative importance of eachmetric,
and try to do the best across them all. Exploring these ideas is
beyond the scope of the present work.
When the cost model is completely wrong. The cost model
may be wrong, in which case, the heuristic to choose the cheapest
con�gurations might miss good plans that are considered expensive
by the cost model. To explore this scenario, we selected twenty
random jobs and executed several randomly selected candidate
con�gurations for them. We found only one example where an
alternative plan was signi�cantly better. While there is a lot of
potential in learning a cost model for SCOPE, and using it to select

Workload

A B C
Queries 36 155 45
�Runtime -1689s -663s -400s
�Percentage -30% -15% -7%

Table 3: Average runtime change if we always choose the
best known rule con�gurations, in terms of seconds and per-
centage change from the default con�guration’s runtime for
the subset of jobs we analyzed.

interesting rule con�gurations (similar to how it was done in Bao),
this experiment also shows that it is much harder to �nd such
exceptional cases. Therefore, we decided to focus our attention
on the better rule con�gurations we discovered by trying rule
con�gurations based on the cost model output.
Summary. Table 3 shows the runtime change, and percentage
change from the default runtime, for the selected jobs if we always
chose the best rule con�guration (including the default one, since
as we saw, for some jobs none of the di�erent rule con�gurations
lead to improvement). On average we see jobs get 7 � 35% faster,
including jobs that speed up by 90%. These improvements would
make an average runtime improvement of 400 to 1700 seconds, with
many jobs improving by several hours — a signi�cant improvement
for SCOPE customers.

6.3 Why do di�erent rule con�gurations
improve job runtimes?

Let us dig deeper into the performance impact of changing rule con-
�gurations. The interaction of di�erent rules in a query optimizer
can be complex, therefore it is hard to pinpoint what gives rise to
di�erent emergent behaviors. We can think of these rule con�gura-
tions as exploring slightly di�erent paths within the optimizer. One
hypothesis is that by disabling rules we just block certain paths —
which may have been chosen due to bad estimates or heuristics in
the optimizer. This may nudge the optimizer down a better path
for the given job. It may have been possible for the optimizer to
discover the best path by itself if its cardinality estimates and cost
model assumptions were all perfect - but this is unrealistic. Never-
theless, there are a few interesting patterns we observe that lead to
improved job performance.

Do lower estimated costs always result in lower runtimes?
No. As described in §5, there can be many reasons for lower esti-
mates costs, and these don’t correspond to better plans. We use the
low estimated cost as a signal of potentially interesting alternative
plans.

Which rules change in jobs with improvements?When a new
rule con�guration leads to faster runtimes than the default con�g-
uration, we may want to know which changes caused the improve-
ment. We can directly compare the enabled or disabled rules of the
two con�gurations. But not all changes in the rule con�gurations
are meaningful. For instance, it may be that disabling a rule has no
impact on the generated query plan. Or, there may be ten di�er-
ences between the two con�gurations, but only one of them leads
to a change in query plan. We de�ne RuleDi� to only look at which
rule changes actually impacted the query plans.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2565

Job
Runtime
%change

Rules only in
default plan

Rules only in
best plan

&�1&�1&�1 �90%
JoinImpl2
SelectOnProject
GroupbyBelowUnionAll
...8 more rules

CorrelatedJoinOn
-UnionAll2

&�2&�2&�2 �86%
HashJoinImpl1
SelectOnProject
SelectPredNormalized
...3 more rules

-

&�3&�3&�3 �75% UnionAllToUnionAll UnionAlltoVirtual
-Dataset

&⌫1&⌫1&⌫1 �96% TopOnRestrRemap
SelectOnTrue

CollapseSelects

&⌫2&⌫2&⌫2 �80% JoinImpl2 HashJoinImpl1

&⌫3&⌫3&⌫3 �70% ProcesOnnUnionAll
UnionAllToUnionAll

UnionAlltoVirtual
-Dataset

Table 4: RuleDi� for a few sample jobs. Runtime %change is
the percentage change from the default con�guration’s run-
time to the best con�guration.

De�nition 6.1. RuleDi�. For a given job and new rule con�gu-
ration, we compare the rule signature bit vectors we get using the
default rule con�guration, with the rule signature using the new
rule con�guration. The rules whose corresponding bits are equal
in both the bit vectors were not directly impacted by the new rule
con�guration. The rules which were 1 in the default rule signature
bit vector, but 0 in the new con�guration’s bit vector were not
used in the new query plan. This could be because these rules were
disabled. These rules are referred to as rules only in default plan.
Rules only in the new plan are de�ned similarly.

In Table 4, we show RuleDi�s for the best con�gurations found
for particular jobs in each workload. For&�1 fromWorkload A- we
see that one additional rule was seen in the best plan, and many
additional rules were used in the default plan. The additional rule
in the best plan was an o�-by-default rule, which explains why it
was not in the default plan.

Is enabling o�-by-default rules enough for&�1&�1&�1? No. We have
several con�gurations that also enable the same o�-by-default rule
for&�1&�1&�1, and disable a di�erent subset of rules. All of these result
in runtimes faster than the default, but these are 7 � 9G slower
than the best con�guration. It is not immediately obvious why this
particular rule con�guration leads to a plan with the fastest runtime
to even experts in the SCOPE optimizer team. This highlights the
fact that these rules interact in very complex ways, and it is hard
to manually con�gure these.

Disabling rules is crucial. Some of the biggest gains occur due
to disabling rules. This is clearly visible in the RuleDi�s with many
rules only appearing in the default plan, but not in the best plan. In
&�2&�2&�2, no additional rules were used in the best plan; instead six fewer
rules were used, and it led to an almost 90% improvement in runtime.

This supports our hypothesis that one way these rule con�gurations
help improve performance is by blocking optimization paths that
would have led to a bad plan for a given job.

Alternative rules. For both jobs&�3&�3&�3 and&⌫3&⌫3&⌫3, rule UnionAllToVir-
tualDataset appears in the best plan, and UnionAllToUnionAll ap-
pears in the default plan. Both of these rules are on by default. Based
on the cost model, the optimizer must have believed UnionAll-
ToUnionAll is the better choice, but some assumptions or estimates
for this job were wrong. Rather than correct these, our approach
just disabled the rule that was leading to the optimizer’s decision
— thus guiding it towards using the other rule in the �nal plan. A
similar motif is also observed for&⌫2&⌫2&⌫2.

6.4 Extrapolating to other jobs
In the previous section we discovered good rule con�gurations of-
�ine for a subset of jobs on a single day. The process of �nding these
con�gurations is expensive, particularly since it required executing
plans from many alternative rule con�gurations for each job. For
it to be useful, we need to generated these rule con�gurations for
new jobs at compile time. Therefore, we seek to understand other
scenarios where we can utilize the rule con�gurations that led to
improved runtimes. Clearly they are not useful for every job in
the workload. On the other extreme, these con�gurations seem
to usually work well on jobs from the same recurring templates,
across many days. However, as we saw in Table 1, there are tens
of thousands of such templates, often with just one or a handful
of jobs in each template every day. Discovering, and learning rule
con�gurations for every template is therefore not scalable. Further-
more, even small di�erences in a job, such as a single di�erent input
name, will lead to di�erent recurring template identi�ers — even
though the jobs may be almost identical. Therefore, we choose the
rule signature as the level of granularity across which the same set
of rule con�gurations could be useful.

De�nition 6.2. Rule signature job group. This is the set of jobs
whose default rule signature map to the same bit vector. We will
refer to it as a job group.

Are the jobs with the same rule signature similar from an
optimizer’s perspective? A job group can have many templates,
inputs, and jobs with varying runtimes. This is clearly not a homo-
geneous group, but it makes intuitive sense that these may have
similar properties from an optimizer’s perspective. The same rule
signature implies that these jobs have similar operators, and went
down similar paths within the query optimizer. At the same time,
this may not always be true — which motivates the need for learn-
ing.

We use the results from §6.1 to select base jobs where alternative
con�gurations led to improved runtimes. From the base jobs, we
derive the job groups they belong to. We extrapolate that these
con�gurations can be useful for other jobs with the same rule
signature across multiple days. The shared rule signature between
the base jobs, and the new unseen jobs also implies that the new
con�gurations are not just random changes — the rules disabled or
enabled in a new con�guration were selected such that they impact
the rules used in the base jobs.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2566

Is learning needed? As we apply the new rule con�gurations to
new unseen jobs, across multiple weeks, we observe two scenarios:

• Thenewcon�guration does not cause regressions.There
are cases where a con�guration that led to runtime improve-
ments in a base job appears to mostly work well on all the
jobs in a job group of the given workload. An example from
Workload A was shown in Section 1, Figure 1. These rule
con�gurations appear to bene�t almost all jobs sampled ran-
domly across almost four weeks in the same job group. This
is an ideal situation, and we could derive the bene�t of our
approach without much risk of a regression. Clearly, this
behaviour could change in the future as the predicates and
input streams of these jobs may evolve. This risk can be
mitigated by re-running our pipeline every week.

• New con�guration can cause a regression. A more com-
mon scenario is where a con�guration leads to improvements
for some jobs, but a regression for others in the same job
group. In such situations, we try to use a learned model
to choose between the con�gurations based on the input
features of the new job. This is explored further in §7.

What fraction of the daily jobs may be impacted?We did our
analysis above on a fraction of randomly chosen jobs from a single
day. Let us do some back of the envelope calculations for Workload
B jobs to estimate the impact these rule con�gurations may have on
the whole workload. It is not very critical to improve performance
on the short running jobs since they consume signi�cantly less
resources. There are about 10%, or 1624 jobs daily that last longer
than 5 minutes and these map to 300 di�erent job groups. We
uniformly sampled about half of these, and ran our recompilation
pipeline for 838 jobs. From these, we used heuristics to select 155
jobs (or about 20%) for execution of the 10 cheapest alternative
plans. We �nd runtime improvements in 120 jobs, with the change
ranging from �3% to �90%. These 120 jobs belong to 44 job groups.
This suggests that at least 10 � 20% of the long running daily jobs
could be improved using this pipeline. However, the improvements
described in this section relied on executing multiple plans. In a
real system, we will need to choose one rule con�guration each
time. Next, we formulate this as a learning problem and do some
very preliminary analysis to see how well can we choose the best
rule con�gurations.

7 LEARNING RULE CONFIGURATIONS
In this section, we see how to learn to choose a rule con�guration
given a new job.

7.1 Formulating the learning problem
Dataset. For training a learned model, we collect a dataset of run-
times for a given combination of a job and a rule con�guration.
We select three rule signatures from Workload B, and collect data
on queries over a few weeks whose default rule signature maps
to these (i.e., jobs that belong in the same job group). All of these
job groups have more than a dozen jobs every day, and there is
no one rule con�guration that always leads to improvements. For
each job group, we run our pipeline for one to three jobs, and �nd
con�gurations leading to improvements. We select the three fastest
(runtime) con�gurations of each job — therefore, we get up to

candidate con�gurations for each job group. Then, we sample "
jobs from all the jobs mapping to these job groups during a period
of two weeks, and execute each of the con�gurations for every
job.
Learning Problem. We treat the dataset of samples in each job
group as an independent learning problem. The objective is to
select one of the candidate con�gurations for a given query.
We use supervised learning to train a model to pick of of the
con�gurations for each job group.

7.2 Featurization
For any learning based approach, we need to featurize each job.
Since only the decisions related to join ordering were considered
in Bao, the PostgreSQL query plans were relatively small trees. In
contrast, SCOPE query plans are large DAGs, consisting of 100B to
even 1000B of operator nodes, including widespread use of customer
user de�ned operators. Furthermore, a SCOPE script is compiled
into an optimized query plan, which is converted into a DAG of
stages and is executed in a distributed fashion, and altogether the
SCOPE engine emits several pieces of disparate logs from each of
these steps that are hard to featurize, and may not be even relevant
for the purpose of a given task. Therefore, featurizing a SCOPE job
is a challenging problem.
Feature vector. We use a feature vector to capture the most im-
portant features for choosing between the rule con�gurations
for samples from a particular job group. These include: (1) Job level
features. These are global properties of the particular job which
includes estimated input size, hash of the inputs, and the hash
of the query template. (2) Rule con�guration features. For each
con�guration we use the estimated cost of a plan and a bit vec-
tor representing the RuleDi� with the default con�guration. (3)
Query graph features. We reserve a spot in the feature vector for
each possible operator type. These include operator id, and average
estimated cost and cardinality for all repetitions of the operator.
Encoding features.We encode all continuous features using min-
max normalization to scale its value in between 0 and 1. For categor-
ical features with small alphabet sizes we use one hot encoding. For
categorical features with large alphabet sizes, we use a deterministic
hashing scheme encoding each value to one of 50 bins [21].

7.3 Learning Model
Lightweight model. For each job group, we use a fully connected
neural network with one hidden layer of size 1024. These models
have a size of about 30MB each and take a minute to train.
Loss function.We treat the learning as a regression problemwhere
the objective is to estimate each of the normalized runtimes
corresponding to the possible rule con�gurations for a query. A
typical way to optimize regression tasks is to use mean squared
error. But, this tries to get a precise estimate for each candidate
con�guration. This may often not be needed because we really
only care about choosing the fastest con�guration. Instead, we use
a continuous version of the cross entropy loss, referred to as the
binary cross entropy loss in PyTorch [20].

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2567

−4000

−2000

0

2000

4000

R
un

tim
e

C
ha

ng
e

(S
ec

on
ds

)

Job
−100

−75

−50

−25

0

25

50

75

100

R
un

tim
e

(%
 C

ha
ng

e)

(a) Job Group 1

−2000

−1000

0

1000

2000

R
un

tim
e

C
ha

ng
e

(S
ec

on
ds

)

Job
−100

−75

−50

−25

0

25

50

75

100

R
un

tim
e

(%
 C

ha
ng

e)

(b) Job Group 2

−1000

−500

0

500

1000

R
un

tim
e

C
ha

ng
e

(S
ec

on
ds

)

Job
−100

−75

−50

−25

0

25

50

75

100

R
un

tim
e

(%
 C

ha
ng

e)

(c) Job Group 3

Figure 8: Performance of the learned model relative to the default rule con�guration. Change in runtimes (above), and percentage change in
runtimes (below) from the default lower is better. These are unseen queries from three job groups sampled over weeks. For each query, the
learned neural net model chooses from potential rule con�gurations (including default).

1 2 3
Mean 90P 99P Mean 90P 99P Mean 90P 99P

Best 5458 14K 14.8K 19.8K 26K 27K 2966 13.8K 15.3K
Default 6461 16.3K 18.3K 20.7K 26.9K 28.9K 3304 14.7K 16.8K
Learned 5724 14.7K 15.4K 20.2K 26.2K 27K 3252 14.6K 16.8K

Table 5: Runtimes (seconds) for job groups 1, 2 and 3 with the best
(known), default and learned con�gurations.

7.4 Learning Results

Setup. Job group 1 has 201 jobs and 10 possible rule con�gurations,
job group 2 has 75 jobs and 7 possible rule con�gurations, and
job group 3 has 157 jobs and 10 possible rule con�gurations. We
randomly split the jobs in all three job groups into 20% validation
set, and 40% training and test sets. We tune the hyperparameters of
the model on the validation set, and report results on the test set.
Results summary. The runtimes are presented in Table 5, and
the changes from the default runtime for each query are shown
in Figure 8. Overall, we see improvements in each job group, but
there are always some regressions as well.
Job group 1. There are large improvements, up to an hour faster
on runtimes, across a large fraction of the jobs. Notice that the
runtimes have di�erent scales, thus the magnitude of percentage
improvements do not alignwith the absolute runtime improvements
(shorter running jobs can have larger improvements). As can be seen
in Table 5, the learned model is close to making the best decisions.
Job group 2. These are signi�cantly longer running jobs — one
impact is that the percentage values appear to be relatively smaller
than other job groups. But we see consistent improvements of up

to 2000 seconds across multiple jobs, while the regressions appear
to be smaller.
Job group 3. This appears to be the hardest job group to optimize.
Notice, the jobs without green or red bars — these are cases where
our learned model recommends the default con�guration. But it
does �nd improvements of up to a 1000 seconds for multiple other
jobs. Meanwhile, the regressions have much lower magnitudes. But,
there is potential for more signi�cant improvements, as we can see
from the best runtimes in Table 5.

8 CONCLUSION AND FUTUREWORK
In this paper, we presented how the SCOPE optimizer — an industry-
grade cloud-enabled query optimizer — can take advantage of a
learning approach, such as the one introduced in Bao [14]. We in-
troduced the ideas of a rule signature and job span that help us
navigate the large space of rule con�gurations, e�ciently discover
interesting con�gurations, and even extrapolate them to other un-
seen jobs. Our results over three production workloads show that
we can achieve up to 90% better runtime latencies, with 7 � 35%
improvement on average, while requiring minimal changes to the
SCOPE optimizer. We believe that the directions outlined in this
paper open many doors, some of which we are currently exploring
ourselves. For instance, there are multiple ways to improve the
heuristics used for the generation of the job span and the candidate
rule con�gurations. Such improvements can discover independent
subsets of rules, which will make the space of rule con�gurations
smaller, therefore enabling exploration of better con�gurations. We
also plan to use feedback from the execution results to guide future
iterations of the con�guration search. Finally, there are also hun-
dreds of additional con�gurable options in the SCOPE optimizer,
and we may be able to generate interesting behaviours by also
including them in the candidate con�gurations.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2568

REFERENCES
[1] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Sto-

ica, and Jingren Zhou. 2012. Re-Optimizing Data-Parallel Computing. In
Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation (San Jose, CA) (NSDI’12). USENIX Association, USA, 21.

[2] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and
Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized
query processing over heterogeneous data sources. In Proceedings of the 2018
International Conference on Management of Data. 221–230.

[3] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. 2008. SCOPE: easy and e�cient parallel processing of
massive data sets. Proceedings of the VLDB Endowment 1, 2 (2008), 1265–1276.

[4] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jian-
sheng Huang, et al. 2016. The snow�ake elastic data warehouse. In Proceedings
of the 2016 International Conference on Management of Data. 215–226.

[5] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.
E�ciently Approximating Selectivity Functions using Low Overhead Regression
Models. Proc. VLDB Endow. 13, 11 (2020), 2215–2228. http://www.vldb.org/
pvldb/vol13/p2215-dutt.pdf

[6] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using
lightweight models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–
1057.

[7] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[8] Jayant R Haritsa. 2010. The Picasso database query optimizer visualizer.
Proceedings of the VLDB Endowment 3, 1-2 (2010), 1517–1520.

[9] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen,
and Subru Krishnan. 2019. Peregrine: Workload Optimization for Cloud Query
Engines. In Proceedings of the ACM Symposium on Cloud Computing. 416–427.

[10] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc
Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. Com-
putation reuse in analytics job service at microsoft. In Proceedings of the 2018
International Conference on Management of Data. 191–203.

[11] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. arXiv preprint arXiv:1809.00677 (2018).

[12] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196 (2018).

[13] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[14] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2020. Bao: Learning to Steer Query Optimizers. arXiv
preprint arXiv:2004.03814 (2020).

[15] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[16] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for
join order enumeration. In Proceedings of the First International Workshop on
Exploiting Arti�cial Intelligence Techniques for Data Management. 1–4.

[17] Corp. Microsoft. 2020. SQL Server. Retrieved November 23, 2020 from https:
//www.microsoft.com/en-us/sql-server/

[18] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and
Mohammad Alizadeh. 2020. Cost-Guided Cardinality Estimation: Focus Where
it Matters. In 2020 IEEE 36th International Conference on Data Engineering
Workshops (ICDEW). IEEE, 154–157.

[19] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. arXiv
preprint arXiv:1905.06425 (2019).

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic di�erentiation in pytorch. (2017).

[21] Dipanjan (DJ) Sarkar. 2019. Categorical Data. https://towardsdatascience.com/
understanding-feature-engineering-part-2-categorical-data-f54324193e63

[22] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. 2020. AutoToken: predicting
peak parallelism for big data analytics at Microsoft. Proceedings of the VLDB
Endowment 13, 12 (2020), 3326–3339.

[23] Je� Shute, Radek Vingralek, Bart Samwel, Ben Handy, ChadWhipkey, Eric Rollins,
Mircea Oancea, Kyle Little�eld, David Menestrina, Stephan Ellner, et al. 2013. F1:
A distributed SQL database that scales. (2013).

[24] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost models for big data query processing: Learning, retro�tting, and our �nd-
ings. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 99–113.

[25] Florian M Waas. 2008. Beyond conventional data warehousing—massively par-
allel data processing with greenplum database. In International Workshop on
Business Intelligence for the Real-Time Enterprise. Springer, 89–96.

[26] FlorianWolf, Michael Brendle, NormanMay, Paul RWillems, Kai-Uwe Sattler, and
Michael Grossniklaus. 2018. Robustness metrics for relational query execution
plans. Proceedings of the VLDB Endowment 11, 11 (2018), 1360–1372.

[27] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolf-
gang Lehner. 2019. Cardinality estimation with local deep learning models.
In Proceedings of the Second International Workshop on Exploiting Arti�cial
Intelligence Techniques for Data Management. 1–8.

[28] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a learning optimizer for shared clouds.
Proceedings of the VLDB Endowment 12, 3 (2018), 210–222.

[29] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: one cardinality estimator for all tables. arXiv
preprint arXiv:2006.08109 (2020).

[30] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
unsupervised cardinality estimation. arXiv preprint arXiv:1905.04278 (2019).

[31] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2569

http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://www.microsoft.com/en-us/sql-server/
https://www.microsoft.com/en-us/sql-server/
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63

	Abstract
	1 Introduction
	2 Related Work
	3 Production Query Processor
	3.1 SCOPE Overview and Workloads
	3.2 Analyzing SCOPE Optimizer Rules
	3.3 Learning Requirements

	4 Steering The Query Optimizer
	5 Discovering Rule Configurations
	5.1 Job Span
	5.2 Configuration Search
	5.3 Recompilation Results

	6 Executing rule configurations
	6.1 Choosing rule configurations to execute
	6.2 A/B Testing Results
	6.3 Why do different rule configurations improve job runtimes?
	6.4 Extrapolating to other jobs

	7 Learning Rule Configurations
	7.1 Formulating the learning problem
	7.2 Featurization
	7.3 Learning Model
	7.4 Learning Results

	8 Conclusion and Future Work
	References

