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Abstract

Real-time video inference on edge devices like mobile
phones and drones is challenging due to the high compu-
tation cost of Deep Neural Networks. We present Adaptive
Model Streaming (AMS), a new approach to improving the
performance of efficient lightweight models for video infer-
ence on edge devices. AMS uses a remote server to continu-
ally train and adapt a small model running on the edge de-
vice, boosting its performance on the live video using online
knowledge distillation from a large, state-of-the-art model.
We discuss the challenges of over-the-network model adap-
tation for video inference and present several techniques to
reduce communication the cost of this approach: avoiding
excessive overfitting, updating a small fraction of important
model parameters, and adaptive sampling of training frames
at edge devices. On the task of video semantic segmenta-
tion, our experimental results show 0.4—17.8 percent mean
Intersection-over-Union improvement compared to a pre-
trained model across several video datasets. Our prototype
can perform video segmentation at 30 frames-per-second
with 40 milliseconds camera-to-label latency on a Samsung
Galaxy S10+ mobile phone, using less than 300 Kbps uplink
and downlink bandwidth on the device.

1. Introduction

Real-time video inference is a core component for many
applications, such as augmented reality, drone-based sensing,
robotic vision, and autonomous driving. These applications
use Deep Neural Networks (DNNs) for inference tasks like
object detection [52], semantic segmentation [7], and pose
estimation [6]. However, state-of-the-art DNN models are
too expensive to run on low-powered edge devices (e.g., mo-
bile phones, drones, consumer robots [57, 58]), and cannot
run in real-time even on accelerators such as Coral Edge
TPU and NVIDIA Jetson [ 12, 59, 38].

A promising approach to improve inference efficiency is
to specialize a lightweight model for a specific video and task.
The basic idea is to use distillation [30] to transfer knowledge
from a large “teacher”” model to a small “student” model. For
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Figure 1: Semantic segmentation results on real-world outdoor
videos: rows from top to bottom represent No Customization,
One-Time, Remote+Tracking, Just-In-Time, and AMS. Uplink
and downlink bandwidth usage are reported below each variant.
AMS provides better accuracy with limited bandwidth and reduces
artifacts (e.g., see the car/person detected in error by the no/one-
time customized models and remote tracking in the second column).

example, Noscope [33] trains a student model to detect a few
object classes on specific videos offline. Just-In-Time [46]
extends the idea to live, dynamic videos by training the
student model online, specializing it to video frames as they
arrive. These approaches provide significant speedups for
scenarios that perform inference on powerful machines (e.g.,
server-class GPUs), but they are impractical for on-device
inference at the edge. The offline approach isn’t desirable
since videos can vary significantly from device to device
(e.g., different locations, lighting conditions, etc.), and over
time for the same device (e.g., a drone flying over different
areas). On the other hand, training the student model online
on edge devices is computationally infeasible.

In this paper we propose Adaptive Model Streaming
(AMS), a new approach to real-time video inference on
edge devices that offloads knowledge distillation to a remote
server communicating with the edge device over the network.
AMS continually adapts a small student model running on
the edge device to boost its accuracy for the specific video in
real time. The edge device periodically sends sample video
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frames to the remote server, which uses them to fine-tune (a
copy of) the edge device’s model to mimic a large teacher
model, and sends (or “streams”) the updated student model
back to the edge device.

Performing knowledge distillation over the network in-
troduces a new challenge: communication overhead. Prior
techniques such as Just-In-Time aggressively overfit the stu-
dent model to the most recent frames, and therefore must
frequently update the model to sustain high accuracy. We
show, instead, that training the student model over a suitably
chosen horizon of recent frames — not too small to over-
fit narrowly, but not too large to surpass the generalization
capacity of the model —can achieve high accuracy with
an order of magnitude fewer model updates compared to
Just-In-Time training.

Even then, a naive implementation of over-the-network
model training would require significant bandwidth. For ex-
ample, sending a (small) semantic segmentation model such
as DeeplabV3 with MobileNetV2 [54] backbone with ~2
million (float16) parameters every 10 seconds would require
over 3 Mbps of bandwidth. We present techniques to reduce
both downlink (server to edge) and uplink (edge to server)
bandwidth usage for AMS. For the downlink, we develop
a coordinate-descent [0 1, 47] algorithm to train and send a
small fraction of the model parameters in each update. Our
method identifies the subset of parameters with the most im-
pact on model accuracy, and is compatible with optimizers
like Adam [36] that maintain a state (e.g., gradient moments)
across training iterations. For the uplink, we present algo-
rithms that dynamically adjust the frame sampling rate at
the edge device based on how quickly scenes change in the
video. Taken together, these techniques reduce downlink
and uplink bandwidth to only 181-225 Kbps and 57-296
Kbps respectively (across different videos) for a challeng-
ing semantic segmentation task. To put AMS’s bandwidth
requirement in perspective, it is less than the YouTube rec-
ommended bitrate range of 300-700 Kbps to live stream
video at the lowest (240p) resolution [64].

We evaluate our approach for real-time semantic seg-
mentation using a lightweight model (DeeplabV3 with Mo-
bileNetV2 [54] backbone). This model runs at 30 frames-
per-second with 40 ms camera-to-label latency on a Sam-
sung Galaxy S10+ phone (with Adreno 640 GPU). Our ex-
periments use four datasets with long (10 minutes+) videos
spanning a variety of scenarios (e.g., city driving, outdoor
scenes, and sporting events). Our results show:

1. Compared to pretraining the same lightweight model
without video-specific customization, AMS provides a
0.4-17.8% boost (8.3% on average) in mean Intersection-
over-Union (mloU), computed relative to the labels from
a state-of-the-art DeeplabV3 with Xception65 [ 1] back-
bone model. It also improves mloU by 4.3% on average
(up to 39.1%) compared to customizing the model once

using the first 60 seconds of each video.

2. Compared to a remote inference baseline accompanied
by on-device optical flow tracking [67, 1], AMS provides
an average improvement of 5.8% (up to 24.4%) in mloU.

3. AMS requires 15.7x less downlink bandwidth on aver-
age (up to 44.5x) to achieve similar accuracy compared
to Just-In-Time [46] (with similar reductions in uplink
bandwidth).

Figure 1 shows three visual examples comparing
the accuracy of AMS with these baseline approaches.
Our code and video datasets are available online at
https://github.com/modelstreaming/ams.

2. Related Work

We described prior work on knowledge distillation for
video in §1. Here, we discuss other related work.
On-device inference. Small, mobile-friendly models have
been designed both manually [54] and using neural architec-
ture search [70, 62]. Model quantization and weight prun-
ing [28, 39, 3, 8] have further been shown to reduce the
computational footprint of such models with a small loss in
accuracy. Specific to video, some techniques amortize the
inference cost by using optical flow methods to skip infer-
ence for some frames [68, 67, 32]. Despite this progress,
there remains a large gap in the performance of lightweight
models and state-of-the-art solutions [16, 31]. AMS is com-
plementary to on-device optimization techniques and would
also benefit from them.

Remote inference. Several proposals offload all or part of
the computation to a remote machine [35, 10, 9, 49, 14, 65],
but these schemes generally require high network band-
width, incur high latency, and are susceptible to network
outages [21, 14]. Proposals like edge computing [56, 22, 5]
that place the remote machine close to the edge devices
lessen these barriers, but do not eliminate them and incur
additional infrastructure and maintenance costs. AMS re-
quires much less bandwidth than remote inference, and is
less affected by network delay or outages since it performs
inference locally on the device.

Online learning. Our work is also related to online learn-
ing [55] algorithms for minimizing dynamic or tracking re-
gret [24, 66, 45]. Dynamic regret compares the performance
of an online learner to a sequence of optimal solutions. In
our case, the goal is to track the performance of the best
lightweight model at each point in a video. Several theoreti-
cal works have studied online gradient descent algorithms in
this setting with different assumptions about the loss func-
tions [69, 25]. Other work has focused on the “experts”
setting [29, 63, 26], where the learner maintains multiple
models and uses the best of them at each time. Our approach
is based on online gradient descent because tracking multiple
models per video at a server is expensive.

Other paradigms for model adaptation include life-
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Figure 2: AMS system overview.
long/continual learning [41], meta-learning [19, 51], fed-

erated learning [43], and unsupervised domain adapta-
tion [2, 34]. As our work is only tangentially related to
these efforts, we defer their discussion to Appendix B.

3. Adaptive Model Streaming (AMS)

Figure 2 provides an overview of AMS. Each edge device
buffers sampled video frames for 7, qq:e seconds, then com-
presses and sends the buffered frames to the remote server.
The server uses these frames to train a copy of the edge
device’s model using supervised knowledge distillation [30],
and sends the model changes to the edge device. For con-
creteness, we describe our design for semantic segmentation,
but the approach is general and can be adapted to other tasks.
Server. Algorithm 1 shows the server procedure for serving
a single edge device (we discuss multiple edge devices in
Appendix E). The AMS algorithm at the server runs itera-
tively on each new batch of frames received from the edge
device. It consists of two phases: inference and training.

Inference phase: To train, the server first needs to label
the incoming video frames. It obtains these labels using a
state-of-the-art segmentation model (like DeeplabV3 [7]
with Xception65 [11] backbone), which serves as the
“teacher” for supervised knowledge distillation. The server
runs the teacher on new frames, and adds the frames, their
timestamps, and labels to a training data buffer 5.

Training phase: The server trains the student model to
minimize the loss over the sample frames in its buffer from
the last T},0,i20n seconds of video. To reduce bandwidth
usage, the server selects a small subset (e.g., 5%) of parame-
ters for each model update, and trains them for K iterations
on randomly-sampled mini-batches of frames. We discuss
how the server chooses the parameters to train in §3.1.

The server also dynamically adapts the frame sampling
rate used by the edge device based on the video characteris-
tics (how fast scenes changes) as described in §3.2.

Edge device. The edge device deploys the new models as
soon as they arrive to perform local inference. To switch
models without disrupting inference, the edge device main-
tains an inactive copy of the running model in memory and
applies the model update to that copy. Once ready, it swaps
the active and inactive models. The edge device also samples
frames at the rate specified by the server and sends them to

Algorithm 1 Adaptive Model Streaming Server

1: Initialize the student model with pre-trained parameters wo

2: Send wg and the student model architecture for the edge

3: B <« Initialize a time-stamped buffer to store (sample frame, teacher
prediction) tuples

4: forn € {1,2,...} do

5: Rn < Set of new sample frames from the edge device

6: for x € R,, do

7 y < Use the teacher model to infer the label of x

8 Add (x,y) to B with time stamp of receiving x

9

end for
10: Ty < Select a subset of model parameter indices
11: | forke {1,2,..., K} do
12: Sk < Uniformly sample a mini-batch of data points from B
over the last T3,y 20n seconds
13: Candidate updates <— Calculate Adam optimizer updates w.r.t
the empirical loss on Sg,
14: Apply candidate updates to model parameters indexed by Z,
15: end for
16: Wp, < New value of model parameters which are indexed by Z,,
17: Send (W, Z,,) for the edge device
18: Wait for Topgate seconds
19: end for

the server every T’ pdate sSeconds.

3.1. Reducing Downlink Bandwidth

The downlink (server-to-edge) bandwidth depends on (i)
how frequently we update the student model, (ii) the cost of
each model update. We discuss each in turn.

3.1.1 How Frequently to Train?

The training frequency required depends crucially on the
training horizon (Thorizon) for each model update. Prior
work, Just-In-Time [46], trains the student model whenever
it detects the accuracy has dropped below a threshold, and
it trains only on the most recent frame (until the accuracy
exceeds the threshold). This approach tends to overfit on
recent frames, and therefore requires frequent retraining
to maintain the desired accuracy. While this is possible
when training and inference occur on the same machine, it
is impractical for AMS (§4).

Although lightweight models (e.g., those customized for
mobile devices) have less capacity than large models, they
can still generalize to some extent (e.g., over video frames
captured in the same street, a specific room in a home, etc.).
Therefore, rather than overfitting narrowly to one or a few
frames, AMS uses a training horizon of several minutes.
This reduces the required model update frequency, and helps
mitigate sharp drops in accuracy when the model lags behind
during scene changes (see Figure 5).

For semantic segmentation using DeeplabV3 with Mo-
bileNetV2 [54] backbone as the student model, we find that
Thorizon = 4 minutes and T4q¢c = 10 seconds work well
across a wide variety of videos (§4). However, the optimal
values of these parameters can depend on both the model ca-
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pacity and the video. For example, a lower-capacity student
model might benefit from a shorter T},0ri20n and Typaate;
and a stationary video with little scene change could use
a longer Typqq¢c. Appendix C discusses the interplay be-
tween model capacity, Thorizon, and Typdate in more detail,
and Appendix D describes a simple technique to dynam-
ically adapt T’,p4qze to minimize bandwidth consumption
(especially for stationary videos).

3.1.2 Which Parameters to Update?

Naively sending the entire student model to the edge device
can consume significant bandwidth. For example, sending
DeeplabV3 with MobileNetV2 backbone, which has 2 mil-
lion (float16) parameters, every 10 seconds would require
3.2 Mbps of downlink bandwidth. To reduce bandwidth,
we employ coordinate descent [01, 47], in which we train a
small subset (e.g., 5%) of parameters, Z,,, in each training
phase n and send only those parameters to the edge device.

To select Z,,, we use the model gradients to identify the
parameters (coordinates) that provide the largest improve-
ment in the loss function when updated. A standard way
to do this, called the Gauss-Southwell selection rule [48],
is to update the parameters with the largest gradient magni-
tude. We could compute the gradient for the entire model but
only update the coordinates with the largest gradient values,
leaving the rest of the parameters unmodified. This method
works well for simple stateless optimizers like stochastic
gradient descent (SGD), but optimizers like Adam [36] that
maintain some internal state across training iterations require
a more nuanced approach.

Adam keeps track of moving averages of the first and
second moments of the gradient across training iterations. It
uses this state to adjust the learning rate for each parameter
dynamically based on the magnitude of “noise” observed
in the gradients [36]. Adam’s internal state updates in each
iteration depend on the point in the parameter space visited
in that iteration. Therefore, to ensure the internal state is
correct, we cannot simply compute Adam’s updates for K
iterations, and then choose to keep only the coordinates with
the largest change at the end. We must know beforehand
which coordinates we intend to update, so that we can update
Adam’s internal state consistently with the actual sequence
of points visited throughout training.

Our approach to coordinate descent for the Adam opti-
mizer computes the subset of parameters that will be updated
at the start of each training phase, based on the coordinates
that changed the most in the previous training phase. This
subset is then fixed for the K iterations of Adam in that
training phase.

The pseudo code in Algorithm 2 describes the procedure
in the nt® training phase. Each training phase includes K it-
erations with randomly-sampled mini-batches of data points

Algorithm 2 Gradient-Guided Method for Adam Optimizer

1: Z,, <+ Indices of v fraction with largest absolute values in u,—1
{Entering n*" Training Phase)}

2: by, < binary mask of model parameters; 1 iff indexed by Z,,

3: wp,0 + Wp—1 {Use the latest model parameters as the next starting

point}

4: mp 0 < m,_1 i {Initialize the first moment estimate to its latest
value}

5: vn,0 < Vp_1,k {Initialize the second moment estimate to its latest
value}

6: forke {1,2,...,K} do

7: Sy < Uniformly sample a mini-batch of data points from 5 over

the last T}, ori»0n Seconds

8 gnk — VWE(Sk; Wy, k—1) {Get the gradient of all model pa-
rameters w.r.t. loss on Sy, }

9: my, i < B1-my p_1 + (1 — B1) - g, x {Update first moment

estimate }
10 vy < B2 Vpp—1+ (1—B2)- g2, {Update second moment
estimate }
11: 1 <— % + 1 {Increment Adam’s global step count}
. V=83 my, :
12: Up g < Q- =41 TR {Calculate the Adam updates for

all model parameters }

13: Wik < Wn k—1 — Up g * by {Update the parameters indexed
by Z,, (* is elem.-wise mul.)}
14: end for

15: up < uy K
16: Wy < Wy, K

from the last T},,,4.0n Seconds of video. In iteration k, we
update the first and second moments of the optimizer (m,, j
and v,, ) using the typical Adam rules (Lines 7-10). We
then calculate the Adam updates for all model parameters
u,, i (Lines 11-12). However, we only apply the updates
for parameters determined by the binary mask b,, (Line 13).
Here, b,, is a vector of the same size as the model parame-
ters, with ones at indices that are in Z,, and zeros otherwise.
We select the Z,, to index the -y fraction of parameters with
the largest absolute value in the vector u,,_; (Line 1). We
update u,, at the end of each training phase to reflect the
latest Adam update for all parameters (Line 15). In the first
training phase, Z,, is selected uniformly at random.

At the end of each training phase, the server sends the
updated parameters w,, and their indices Z,,. For the indices,
it sends a bit-vector identifying the location of the parameters.
As the bit-vector is sparse, it can be compressed and we use
gzip [15] in our implementation to carry this out. All in
all, using gradient-guided coordinate descent to send 5%
of the parameters in each model update reduces downlink
bandwidth by 13.3x with negligible loss in performance
compared to updating the complete model (§4.2).

3.2. Reducing Uplink Bandwidth

AMS adjusts the frame sampling rate at edge devices
dynamically based on the extent and speed of scene change in
avideo. This helps reduce uplink (edge-to-server) bandwidth
and server load for stationary or slowly-changing videos.
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Figure 3: Adaptive frame sampling for a driving video. The sampling rate decreases every time the car slows down for the red traffic light

and increases as soon as the light turns green.

To obtain a robust signal for scene change, we define a
metric, ¢-score, that tracks the rate of change in the labels
associated with video frames. Compared to raw pixels, labels
typically take values in a much smaller space (e.g., a few
object classes), and therefore provide a more robust signal for
measuring change. The server computes the ¢-score using
the teacher model’s labels. Consider a sequence of frames
{I;}7_,, and denote the teacher’s output on these frames
by {7 (Ix)}}_,. For every frame I, we define ¢;, using the
same loss function that defines the task, but computed using
T (Ix) and T (I;_1) respectively to be the prediction and
ground-truth labels. In other words, we set ¢y, to be the loss
(error) of the teacher model’s prediction on [} with respect
to the label 7 (I;_1). Hence, the smaller the ¢, score, the
more alike are the labels for I and I_,, i.e., stationary
scenes tend to achieve lower scores.

The server measures the average ¢-score over recent
frames, and periodically (e.g., every dt = 10 sec) updates
the sampling rate at the edge device to try to maintain the
¢-score near a target value ¢iqrget:

Tmazx

Tt41 = |:Tt /o (qgt - ¢target)} ) (1)

Tmin

where 7, is a step size parameter, and the notation [-];me=
means the sampling rate is limited to the range [7'in, Tmaz)-
We use 7,,;, = 0.1 fps (frames-per-second) and 7,4, =
1 fps in our implementation.

Figure 3 shows an example of adaptive sampling rate for a
driving video. Notice how the sampling rate decreases when
the car stops behind a red traffic light, and then increases
once the light turns green and the car starts moving.
Compression. The edge device does not send sampled
frames immediately. Instead it buffers samples correspond-
ing to one model update interval (Ty,,q4qte, Which the server
communicates to the edge), and it runs H.264 [60] video
encoding on this buffer to compress it before transmission.
The time taken at the edge device to fill the compression
buffer and transmit a new batch of samples is hidden from

the server by overlapping it with the training phase of the pre-
vious step. Performance isn’t overly sensitive to the latency
of delivering training data. As a result, it is possible to oper-
ate H.264 in a slow mode, achieving significant compression.
Compressing the buffered samples in our experiments took
at most 1 second.

4. Evaluation
4.1. Methodology

Datasets. We evaluate AMS on the task of semantic seg-
mentation using four video datasets: Cityscapes [ 3] driving
sequence in Frankfurt (1 video, 46 mins long)', LVS [46]
(28 videos, 8 hours in total), A2D2 [23] (3 videos, 36 mins
in total), and Outdoor Scenes (7 videos, 1.5 hours in total),
which we collected from Youtube to cover a range of scene
variability, including fixed cameras and moving cameras at
walking, running, and driving speeds (see Appendix A for
details and samples from Outdoor Scenes videos).

Metric. To evaluate the accuracy of different schemes,
we compare the inferred labels on the edge device with la-
bels extracted for the same video frames using the teacher
model. For Cityscapes, A2D2, and Outdoor Scenes datasets
we use DeeplabV3 [7] model with Xception65 [! 1] back-
bone (2048 x 1024 input resolution) trained on the Cityscapes
dataset [13] as the teacher model. For LVS, we follow Mul-
lapudi et al. [46] in using Mask R-CNN [27] trained on the
MS-COCO dataset [40] as the teacher model. Labeling each
frame using the teacher models takes 200-300ms on a V100
GPU. We report the mean Intersection-over-Union (mloU)
metric relative to the labels produced by this reference model.
The metric computes the Intersection-over-Union (defined
as the number of true positives divided by the sum of true
positives, false negatives and false positives) for each class,
and takes a mean over the classes. We manually select a sub-
set of most common output classes in each of these videos

IThis video sequence is not labeled and was the only long video se-
quence available from Cityscapes (upon request).
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as summarized in Table 4 in Appendix A.

Schemes. On the edge device, we use the DeeplabV3 with

MobileNetV?2 [54] backbone at a 512 %256 input resolution,

which runs smoothly in real-time at 30 frame-per-second

(fps) on a Samsung Galaxy S10+ phone’s Adreno 640 GPU

with less than 40 ms camera-to-label latency. We use a single

NVIDIA Tesla V100 GPU at the server for all schemes.

We compare the following schemes:

* No Customization: We run a pre-trained model on the
edge device without video-specific customization. For the
LVS dataset, we use a checkpoint pre-trained on PASCAL
VOC 2012 dataset [17]. For the rest of the datasets we
used a checkpoint pre-trained for Cityscapes [13].

¢ One-Time: We fine-tune the entire model on the first
60 seconds of the video at the server and send it to the
edge. This adaptation happens only once for every video.
Comparing this scheme with AMS will show the benefit
of continuous adaptation.

* Remote+Tracking: We use the teacher model at a remote
server to infer the labels on sample frames (one frame
every second), which are then sent to the device. The
device locally interpolates the labels to 30 frames-per-
second using optical flow tracking [67, |]. For tracking,
we use the OpenCV implementation of Farneback optical
flow estimation [ 18] with 5 iterations, Gaussian filters of
size 64, 3 pyramid levels, and a polynomial degree of
5 at 1024 x512 resolution. Although it takes 700 ms to
compute the flows for each frame in our tests on a Linux
CPU machine, we assumed an optimized implementation
with edge hardware support can run in real-time [44] in
favor of this approach. We set the sampling rate to 1 fps,
which matches the the maximum sampling rate for AMS.
Note that, unlike AMS, this approach cannot apply the
“buffer compression” method (see §3.2) as the buffering
latency would make the labels stale. To avoid accuracy
loss, we send the samples at full quality with this scheme;
this requires about 2 Mbps of uplink bandwidth.”

¢ Just-In-Time: We deploy the online distillation algorithm
proposed by [46] at the sever. This scheme trains the stu-
dent model on the most recent sample frame until its train-
ing accuracy meets a threshold. Using the default parame-
ters, it increases the sampling/training frequency (up to one
model update every 266 ms) if it cannot meet the threshold
accuracy within a maximum number of training iterations.
Mullapudi et al. [46] also propose a specific lightweight
model, JITNet. However, their Just-In-Time adaptation
algorithm is general and can be used with any model. We
evaluated Just-In-Time training with both our default stu-
dent model (DeeplabV3 with MobileNetV2 backbone) and
the JITNet architecture, and found they achieve similar
performance in terms of both accuracy (less than 2% dif-

ZFor reference, sending one frame per second with a good JPEG quality
(quality index of 75) at this resolution requires ~700 Kbps of bandwidth.

ference in mIoU) and number of model updates.3 Hence,
we report the results of this approach for the same model
as AMS for a more straightforward comparison. Similar
to AMS, we use the gradient-guided strategy (§3.1.2) for
this scheme to adapt 5% of the model parameters in each
update, which actually achieves a slightly better overall
performance (e.g., 1.2% mloU increase on Outdoor Scenes
dataset) than updating the entire model. We also tried us-
ing ASR for Just-In-Time. While adding ASR reduced the
uplink bandwidth requirement by a factor of 2, it was still
7x larger than AMS’s uplink bandwidth and dropped the
mloU by 1.74% as Just-In-Time ovetfits very aggressively.
Thus we use Just-In-Time with its original sampling strat-
egy for a more fair comparison. The accuracy threshold
is a controllable hyper-parameter that determines the fre-
quency of model updates. A higher threshold achieves
better accuracy at the cost of higher downlink bandwidth
for sending model updates. We set the accuracy threshold
to achieve roughly the same accuracy as AMS on each
video, allowing us to compare their bandwidth usage at
the same accuracy. Using Just-In-Time’s default thresh-
old (75%) improves overall accuracy by 1.0% at the cost
of 3.3x higher bandwidth. Following [46], we use the
Momentum Optimizer [50] with a momentum of 0.9.

* AMS: We use Algorithm 1 at the server with Thri20n =
240 sec, and K = 20 iterations. We set the ASR param-
eters 7, and 1,4, to 0.1 and 1 frames-per-seconds re-
spectively, with §t = 10 sec. Unless otherwise stated, 5%
of the model parameters are selected using the gradient-
guided strategy. In the uplink, we compress and send the
buffer of sampled frames described in §3.2 using H.264
in the two-pass mode at medium preset speed and a target
bitrate of 200 Kbps. We used AMS with the same set of
hyper-parameters for all 39 videos across the four datasets.
For training, we use Adam optimizer [36] with a learning
rate of 0.001 (81 = 0.9, B2 = 0.999).

4.2. Results

Comparison to baselines. Table |1 summarizes the re-

sults across the four datasets. We report the mloU, uplink

and downlink bandwidth, averaged over the videos in each

dataset. We also report per-video results for the Outdoor

Scenes dataset in Table 2. The main takeaways are:

1. Adapting the edge model provides significant mloU gains.
AMS achieves 0.4—17.8% (8.3% on average) better mloU
score than No Customization.

2. One-Time is sometimes better and sometimes worse than

No Customization. Recall that One-Time specializes the
model based on the first minute of a video. When the first
minute is representative of the entire video, One-Time

30ur implementation of the JITNet model on Samsung Galaxy S10+
mobile CPU runs 2x slower at the same input resolution compared to
DeeplabV3 with MobileNetV2 backbone.
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Dataset Metric No Customization One-Time Remote+Tracking Just-In-Time AMS
Outdoor Scenes mloU (%) 63.68 69.73 69.05 73.14 74.26
Up/Down BW (Kbps) 0/0 63.1/91.4 1949/54.6 2735/3109  189/205
A2D2 [23] mloU (%) 62.05 50.78 63.25 69.23 69.31
Up/Down BW (Kbps) 0/0 56.9/100 1927/40.5 2487/2872  158/203
Cityscapes [13] mloU (%) 73.08 63.90 66.53 75.75 75.66
Up/Down BW (Kbps) 0/0 8.2/49.2 1667/50.8 2920/3294  164/226
LVS [46] mloU (%) 59.32 64.88 61.52 65.70 67.38
Up/Down BW (Kbps) 0/0 48.1/77.4 1865/21.6 2456/3264  165/207

Table 1: Comparison of mloU (in percent), Uplink and Downlink bandwidth (in Kbps) for different methods across 4 video datasets.

Description No Cust. One-Time Rem.+Trac. JIT AMS
Interview 71.91 87.40 89.98 86.47 87.75
Dance recording  72.80 84.26 86.41 84.40 83.88
Street comedian ~ 54.49 65.06 58.81 69.79 72.03
Walking in Paris  69.94 67.63 69.59 75.22 75.87
Walking in NYC  49.05 54.96 54.49 56.54 59.74
Driving in LA 66.26 66.30 66.48 70.95 71.01
Running 61.32 62.51 57.57 68.64 69.55

Table 2: Impact of the scene variations pace on mloU (in percent)
for different methods across the videos in Outdoor Scenes dataset.

can improve accuracy. However, on videos that vary sig-
nificantly over time (e.g., driving scenes in A2D2 and
Cityscapes), customizing the model for the first minute
can backfire. By contrast, AMS consistently improves
accuracy (up to 39.1% for some videos, 4.3% on average
compared to One-Time) since it continually adapts the
model to video dynamics. Continuous training may over-
fit the model when the scene does not change for a long
time, which is why One-Time marginally outperforms it
in the Dance recording video. We discuss a simple mech-
anism for adaptation of the training rate in Appendix D.
3. Remote+Tracking performs better on static videos since
optical flow tracking works better in these cases. However,
it struggles on more dynamic videos and performs worse
than AMS (up to 24.4% on certain videos, 5.8% on aver-
age). For example, note that in Table 2, Remote+Tracking
performs no better than No Customization (which does
not use the network) on the Driving in LA, Walking in
Paris, and Running videos. Remote+Tracking requires
much less bandwidth in the downlink compared to Just-In-
Time and AMS as it downloads labels rather than model
updates. However, in the uplink it requires about 2Mbps
of bandwidth since it cannot buffer and compress frames
to ensure it receives labels with low latency (unlike AMS).
4. Just-In-Time achieves the closest overall mloU score to
AMS, but it requires 4.4-44.5x more downlink band-
width (15.7x on average), and 5.2-37.1x more uplink
bandwidth (16.8x on average) across all videos. Across
all videos, AMS requires only 181-225 Kbps downlink
bandwidth and 57-296 Kbps uplink bandwidth.

Impact of AMS and Just-In-Time parameters. Both

80 1
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g Lo,
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10° 10° 10*
Average Downlink BW (Kbps)
Figure 4: mloU vs. downlink bandwidth for AMS and

Just-In-Time with different parameters. Each color represents one
dataset and each marker’s shape/tint represents the scheme.

AMS and Just-In-Time have parameters that affect their
accuracy and model-update frequency. To compare these
schemes more comprehensively, we sweep these parameters
and measure the mloU and downlink bandwidth they achieve
at each operating point. For Just-In-Time, we vary the tar-
get accuracy threshold in the interval 55-85 percent, and
for AMS, we vary Ty;,q4qte between 10 to 40 seconds. Fig-
ure 4 shows the results for 3 datasets (Cityscapes, A2D2, and
Outdoor Scenes).* Comparing the data points of the same
color (same dataset) for the two schemes, we observe that
Just-In-Time requires about 10x more bandwidth to achieve
the same accuracy as AMS. Note that we apply our gradient-
guided parameter selection to Just-In-Time; without this,
it would have required 150x more bandwidth than AMS.
AMS is less sensitive to limited bandwidth than Just-In-Time
(notice the difference in slope of mloU vs. bandwidth for
the two schemes). As discussed in §3.1.1, the reason is that
AMS trains the student model over a longer time horizon (as
opposed to a single recent frame). Thus it generalizes better
and can tolerate fewer model updates more gracefully.

Impact of the gradient-guided method. Table 3 compares
the gradient-guided method descibed in §3.1.2 with other
approaches for selecting a subset of parameters (coordinates)
in the training phase on the Outdoor Scene dataset. The First,
Last, and First&Last methods select the parameters from

4We omit the LVS dataset from these results to reduce cost of running
the experiments in the cloud.
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Fraction

Strategy 20% 10% 5% 1%
Last Layers -5.98 -6.58 -8.98 -10.99
First Layers -2.63 -5.54 -8.37 -15.45

First&Last Layers -1.0 -2.29 -3.54 -7.30
Random Selection -0.21 -0.70 -2.90 -5.29
Gradient-Guided +0.13 -0.13 -0.73 -2.87

BW (Kbps) 715 384 205 46
Full model BW (Kbps) 3302

Table 3: Average difference in mloU relative to full-model train-
ing (in percent) for different coordinate descent strategies on the
Outdoor Scenes dataset.

11 One-Time -
------- Remote+Tracking
0.8 1 _ _ Just-In-Time
m 0.6 | ——AMS e
S o4l --—- AMS (Full mode{)_ I’
W ’ »I
0.2 | !
0 f—tm

—40 —-20 0 20 40

mloU Gain over No Customization Scheme (%)

Figure 5: CDF of mloU gain relative to No Customization across
all frames for different schemes.

the initial layers, final layers, and split equally from both,
respectively. Random samples parameters uniformly from
the entire network. Gradient-guided performs best, followed
by Random. Random is notably worse than gradient-guided
when training a very small fraction (1%) of model param-
eters. The methods that update only the first or last model
layers are substantially worse than the other approaches.

Overall, Table 3 shows that AMS’s gradient-guided
method is very effective. Sending only 5% of the model
parameters results in only 0.73% loss of accuracy on average
(on the Outdoor Scenes dataset), but it reduces the down-
link bandwidth requirement from 3.3 Mbps for full-model
updates to 205 Kbps. Moreover, in a similar experiment,
gradient-guided outperforms using SGD with the Gauss-
Southwell selection rule at all fractions of model updates,
with their gap reaching 1.94% in mloU for a 5% fraction.
Robustness to scene changes. Does AMS consistently im-
prove accuracy across all frames or are the benefits limited
to certain segments of video with stationary scenes? Fig-
ure 5 plots the cumulative distribution of mIoU improvement
relative to No Customization across all frames (more than
1 million frames across the four datasets) for all schemes.
AMS consistently outperforms the other schemes. Surpris-
ingly, Just-In-Time has worse accuracy than AMS, despite
updating its model much more frequently. AMS achieves

A mloU (%)

-2 ; ; ; ; >
2 4 6 8 10

Number of clients

Figure 6: Average multiclient mloU degradation compared to
single-client performance on Outdoor Scenes dataset.

better mIoU than No Customization in 93% of frames, while
Just-In-Time and One-Time customization are only better
82% and 67% of the time. This shows that AMS’s training
strategy, which avoids overfitting to a few recent frames, is
more robust and handles scene variations better.

Multiple edge devices. Figure 6 show the accuracy degra-
dation (w.r.t. single edge device) when multiple edge device
share a single GPU at the server in round-robin manner. By
giving more GPU time to videos with more scene variation,
AMS scales to supporting up to 9 edge device on a single
V100 GPU at the server with less than 1% loss in mloU (see
Appendix D for more details).

5. Conclusion

We presented AMS, an approach for improving the per-
formance of real-time video inference on low-powered edge
devices that uses a remote server to continually train and
stream model updates to the edge device. Our design centers
on reducing communication overhead: avoiding excessive
overfitting, updating a small fraction of model parameters,
and adaptively sampling training frames at edge devices.
AMS makes over-the-network model adaptation possible
with a few 100 Kbps of uplink and downlink bandwidth,
levels easily sustainable on today’s (wireless) networks. Our
results showed that AMS improves accuracy of semantic
segmentation using a mobile-friendly model by 0.4—17.8%
compared to a pretrained (uncustomized) model across a va-
riety of videos, and requires 15.4 x less bandwidth to achieve
similar accuracy to recent online distillation methods.
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