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ABSTRACT

Recently there has been significant interest in using machine learn-
ing to improve the accuracy of cardinality estimation. This work
has focused on improving average estimation error, but not all esti-
mates matter equally for downstream tasks like query optimization.
Since learned models inevitably make mistakes, the goal should
be to improve the estimates that make the biggest difference to
an optimizer. We introduce a new loss function, Flow-Loss, for
learning cardinality estimation models. Flow-Loss approximates
the optimizer’s cost model and search algorithm with analytical
functions, which it uses to optimize explicitly for better query
plans. At the heart of Flow-Loss is a reduction of query optimiza-
tion to a flow routing problem on a certain “plan graph”, in which
different paths correspond to different query plans. To evaluate
our approach, we introduce the Cardinality Estimation Benchmark
(CEB) which contains the ground truth cardinalities for sub-plans
of over 16K queries from 21 templates with up to 15 joins. We show
that across different architectures and databases, a model trained
with Flow-Loss improves the plan costs and query runtimes despite
having worse estimation accuracy than a model trained with Q-
Error. When the test set queries closely match the training queries,
models trained with both loss functions perform well. However, the
Q-Error-trained model degrades significantly when evaluated on
slightly different queries (e.g., similar but unseen query templates),
while the Flow-Loss-trained model generalizes better to such situa-
tions, achieving 4 — 8X better 99th percentile runtimes on unseen
templates with the same model architecture and training data.
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1 INTRODUCTION

Cardinality estimation is a core task in query optimization for pre-
dicting the sizes of sub-plans, which are intermediate operator trees
needed during query optimization. Query optimizers use these
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Figure 1: For this example, we use the sum of the cardinali-
ties as the cost of a plan. With true cardinality values, Plan1
is cheaper than Plan2. This is also the case with Estima-
tor1. Interestingly, however, although Estimator2’s cardinal-
ity values have smaller error than those of Estimator1, they
will mislead the optimizer to choose Plan2.

estimates to compare alternative query plans according to a cost
model and find the cheapest plan. Recently, machine learning ap-
proaches have been successful in improving cardinality estimation
accuracy [9, 14, 18, 54, 57], but they largely neglect the impact of
improved estimates on the generated query plans. This is the first
work (known to us) that learns cardinality estimates by directly
optimizing for the cost of query plans generated by an optimizer.

All learned models will have non-trivial estimation errors due to
limitations in model capacity, featurization, training data, and dif-
ferences between training and testing conditions (e.g., due to chang-
ing workloads). We argue that it is therefore crucial to understand
which errors are more acceptable for the optimizer. Unsupervised
methods learn a model of the data independent of any particular
query workload, thereby using model capacity for sub-plans that
will never occur. Supervised methods use a representative workload
to focus model capacity on likely sub-plans. However, all estimates
are not equally important. While an optimizer’s decisions may be
very sensitive to estimates for some sub-plans (e.g. join of two large
tables), other estimates may have no impact on its decisions.

We propose Flow-Loss, a loss function for supervised cardinal-
ity estimation learning that explicitly emphasizes estimates that
matter to query performance for a given workload. Flow-Loss is
a drop-in replacement for loss functions like Q-Error [34] that are
commonly used to train cardinality estimation models. Flow-Loss
takes the idea of focusing model capacity to its logical extreme —
encouraging better estimates only if they improve the resulting
query plans. For instance, consider Figure 1: Estimator2 corrects
Estimator1’s estimate of A > C, but it actually leads to a worse plan
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(Plan 2), because the relative cardinalities (A > B vs. A  C) are
wrong. Flow-Loss will show no error for Estimator1, while nudging
Estimator2 to correct the relative cardinalities of these two joins.

At its core, Flow-Loss computes the cost of a query plan as a
function of the cardinality estimates used to generate the plan. To
do this, it approximates the optimizer’s cost model and dynamic
programming (DP) search algorithm with smooth and differentiable
analytical functions. This lets us use standard gradient descent tech-
niques to improve the estimates that are most relevant to improving
the query plans. We show that improving cardinality estimates w.r.t.
this objective also improves the quality of plans generated by real
optimizers like PostgreSQL. A key technical ingredient underlying
Flow-Loss is a connection between the optimizer’s DP search al-
gorithm and a flow routing problem on a certain “plan graph”, in
which different paths correspond to different query plans. By ex-
ploiting this connection, we derive closed-form expressions relating
cardinality estimates to the resulting query plan costs.

There are two main benefits of training models to minimize
Flow-Loss. First, Flow-Loss highlights which sub-plans are most
relevant to the query optimizer. This helps a model focus its limited
capacity on robustly estimating the sizes of such sub-plans. Across
various scenarios, we show that Flow-Loss-trained model have
worse average estimation accuracy than Q-Error-trained models,
but improve the cost of generated plans. For instance, we show
that models trained with Flow-Loss can adapt to being provided
fewer input features or noisy data collected via approximate query
processing (AQP) [24, 25]. It is attractive to use AQP training data
because it can be generated significantly faster than the true car-
dinalities. But, at the 99th percentile, Q-Error trained models get
significantly worse when using AQP estimates: Q-Error gets 10X
worse, PostgreSQL costs get 2X worse, and query runtime gets 30%
slower. Meanwhile, Flow-Loss models show no such degradation
when switching training data to use AQP estimates.

Second, by having a larger tolerance for errors on less critical
sub-plans, training with Flow-Loss can avoid overfitting the model
to cardinalities for which precise estimates are not needed, thereby
leading to simpler models without sacrificing query performance.
Such simpler models typically generalize better. We show that mod-
els trained using Q-Error can be brittle, and can lead to significant
regressions when the query workload diverges slightly from the
training queries; for instance, in the worst cases, models trained
with Q-Error are up to 4—8x slower than models trained with Flow-
Loss at the 99th percentile. These correspond to 1.5-3X better query
runtimes at the mean depending on the PostgreSQL configuration.

Our key contributions are:

o DBMS-based Plan Cost. Based on Moerkotte et al’s [34] plan
cost, defined using arbitrary cost models, we introduce a cost
model-based proxy for the runtime of a query plan in a partic-
ular DBMS. We show that it corresponds closely to runtimes,
and thus is a useful metric to evaluate the goodness of cardi-
nality estimates in terms of their impact on query optimization.
Further, we provide an implementation to easily evaluate the
performance of cardinality estimation models on Plan Cost
using PostgreSQL or MySQL.
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o Flow-Loss. We introduce Flow-Loss, a smooth and differen-
tiable approximation of Plan-Cost, which can be optimized by
any supervised learning model with gradient descent.

e Cardinality Estimation Benchmark (CEB). We create a new
tool to generate challenging queries based on templates in a
semi-automated way. We use this to create the Cardinality Es-
timation Benchmark, which is over 100x larger than the Join
Order Benchmark (JOB) [23], and has more complex queries.

2 RELATED WORK

For cardinality estimation, traditional approaches have used his-
tograms [3], sampling [24], wavelets [32], kernel density estima-
tion [16],, or singular value decomposition [42]. Recently, machine
learning approaches have shown high estimation accuracy. Many
works focus on single-table selectivity estimates [9, 12, 40, 57],
but while this is useful in other contexts, such as approximate
query processing, it is non-trivial to extend such models to joins
using join sampling [59]. Learned cardinality estimation for joins
can be categorized into unsupervised (data-driven, independent of
query workload) and supervised (query-driven) approaches. Unsu-
pervised approaches for cardinality estimation include Probabilistic
Graphical Models [11, 48], Sum-Product Networks [14], or deep
autoregressive models [56]. NeuroCard [56] is the most advanced
of these approaches, but it still does not support the complex ana-
lytical workloads studied in this work (e.g., queries with self joins).
That being said, any unsupervised model can be integrated into our
approach by providing their estimates as features.

Supervised approaches use queries with their true cardinalities
as training data to build a regression model. Our work builds on
the approach pioneered by Kipf et al. [18]. While several such
works report improved estimation accuracy [8, 9, 18, 38, 54, 55],
only a few actually demonstrate improved query performance [15,
37, 39]. Our approach seeks to learn the cardinalities used by a
traditional DBMS optimizer, while using the optimizer’s search and
cost algorithms for query optimization. Recently, there have been
several other learning approaches to improve query performance
which are complementary to our methods: learning the complete
optimizer [20, 30, 31], learning to use the optimizer’s hints [29],
learning the cost model [45], re-optimization [41, 47], pessimistic
cardinality estimation [4, 5, 13].

3 OVERVIEW

In this section, we will provide the high-level intuition behind our
approach, which will be formalized in the next sections. We target
supervised learning methods that use a parametric model, such as
a neural network, to estimate cardinalities for sub-plans required
to optimize a given query. Today, such models are trained using
loss functions that compare true and estimated cardinalities for a
given sub-plan, such as Q-Error:

Definition 3.1.
Q-Error(y, §) = max(y/9, §/y). 1)

where y and ¢ are the true and estimated cardinalities for one
sub-plan.

Such a loss function treats every estimate as equally important.
Instead, we want a loss function that will focus model capacity on
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Figure 2: The query optimization process has two non-
differentiable components: the cost model and the plan
search algorithm. We develop differentiable approxima-
tions for these so we can understand how sensitive query
plans are to changes in cardinality estimates.

improving accuracy of estimates that matter most to the quality of
the plans produced by the optimizer, while tolerating larger errors
for other estimates. This loss function will need to be differentiable
so we can optimize it using standard gradient descent methods.

To understand how cardinality estimates impact the resulting
query plan, let us consider the basic structure of a query optimizer.
There are two independent components, as highlighted in Figure
2: (i) a cost model, which outputs a cost for every join given the
cardinality estimates for all sub-plans. (ii) a DP search algorithm,
which finds the cheapest query plan. Our goal is to approximate
both components using analytical functions that can be combined
into a single, differentiable loss function:

5 C) o S()
Y — Join-Cost — Plan. (2)

Here C(-) maps the cardinality estimates, )7, to the cost of each join,
and S(-) maps the join costs to the optimal plan. Approximating
the cost model as an analytical function is conceptually straightfor-
ward since it is already represented using analytical expressions. In
principle, we can make this function as precise as we want, but we
found that a simple approximation with terms to cost joins with or
without indexes works well in our workloads (Definition 4.5).
However, the DP search algorithm is non-trivial to model an-
alytically. Our key contribution is in developing a differentiable
analytical function to approximate left-deep plan search. Left-deep
plans join a single table to a sub-plan at each step. Our construc-
tion exploits a connection between left-deep plan search and the
shortest path problem on a certain “plan graph”. While we focus on
left-deep search for tractability, the resulting loss function improves
the performance for all query plans, as the sub-plans required for
costing left-deep plans are the same as required for all plans.
Figure 2 shows the plan graph corresponding to a simple query
that joins three tables A, B, and C. Every edge in the plan graph
represents a join and has a cost, and every path between S and D
represents a left-deep plan. The DP search algorithm outputs the
cheapest plan, i.e. the shortest path. When cardinality estimates
change, they change the cost of the edges in the plan graph, possibly
changing the shortest path. Therefore, to capture the influence of
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SELECT COUNT(*)
FROM title AS t, kind_type AS kt, cast_info AS ci,
role_type AS rt, name AS n
WHERE t.id = ci.movie_id AND t.kind_id = kt.id
AND ci.person_id = n.id AND ci.role_id = rt.id
AND kt.kind IN (‘movie’) AND rt.role IN (‘actor’, ‘director’)
AND n.gender IN (‘f’) AND t.production_year <= 2015

Join Graph Optimal Plan

() M\

Figure 3: Join graph and optimal plan for sample query Q
on the IMDb database.

cardinality estimates on the plan analytically, we need an expression
to relate edge costs to the shortest path in the plan graph.

But this alone is not enough. The shortest path is insensitive
to small changes to most edge costs (and hence, small changes to
most cardinality estimates). For instance, consider any edge not on
the shortest path; slightly increasing or decreasing the cost of that
edge would not change the shortest path. Therefore an analytical
function based on the shortest path would not have a gradient with
respect to the cost of such edges. This would make it impossible
for gradient-descent-based learning approaches to improve.

We tackle these challenges by using a soft approximation to the
shortest path problem. In this formulation, the plan graph is viewed
as an electrical circuit, with each edge having a resistance equal to
its cost. One unit of current is sent from S to D, split across paths in
a way that minimizes the total energy consumed.! This formulation
has two advantages over shortest path. First, it provides an explicit,
closed-form expression relating the edge resistances (costs) to the
amount of current on every path. Second, it does not suffer from
the non-existent gradient problem described above. In an electrical
circuit, the current is not exclusively sent on the path with the
least resistance (i.e., the path corresponding to the cheapest plan).
Instead, all low-resistance paths carry a non-negligible amount of
current. Therefore, changing the resistance (cost) of an edge on any
of these paths will affect the distribution of current across the entire
circuit. The implication in our context is that all joins involved in
low-cost query plans matter (even if they do not appear in the
cheapest plan). This aligns with the intuition that the optimizer is
sensitive to precisely these joins: changing their cost could easily
change the plan it picks.

4 DEFINITIONS

This section formally defines the plan graph and the concepts we
use to develop our new loss function, Flow-Loss. As a running

!Electrical flows have been used for graph algorithms in various fields: modeling
random walks [7], developing more efficient algorithms for approximating the maxi-
mum flow problem [6, 22, 28], modeling landscape connectivity in ecology [33], and
inferring relatedness in evolutionary graphs in biology [27].
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Figure 4: Plan graph (Definition 4.2) for query Q;. The cheap-
est path, P*(Y), is highlighted. The edges are colored accord-
ing to C(e, Y). The relative thickness of the edges represent
the flows computed by Equation 6, F*(Y).

example, we will consider the query Q; (Figure 3) on the Internet
Movie Database (IMDb). Throughout this work, joins refer to inner
joins, and we ignore cross-joins. For simplicity, we assume all joined
columns have an index.

Definition 4.1. Sub-plan. Given query Q, a sub-plan is a subset
of tables in Q that can be joined using inner joins. In query Q; (cf.
Figure 3), kt > t is a sub-plan but kt > ci is not.

Definition 4.2. Plan graph. Given query Q, the plan graph is a
directed acyclic graph (V,E) where V is the set of all sub-plans, and
there is an edge corresponding to every join in Q between a sub-
plan and a base table, i.e. (u,0) € E if and only if v = u > b for a
base table b. For convenience, we add a node S for the empty set,
which has an edge to all nodes containing exactly one table. We
use D to denote the node consisting of all tables. Figure 4 shows
the plan graph for query Q;.

Definition 4.3. Path / Plan, P. A path (sequence of edges) from S
to D in the plan graph. Any left-deep plan corresponds to a path
from S to D. For instance, the plan (((¢ > kt) > ci) > n) > rt for
query Qp corresponds to: S — t — t M kt — t >kt X ci — t
kt > ci x n — D in Figure 4.

Definition 4.4. Cardinality vector Y. The cardinalities for each
node (sub-plan) in the plan graph. We use Y and Y to refer to true
and estimated cardinalities.

Definition 4.5. C(e, Y). A cost model which takes as input an edge
(join) e in the plan graph and assigns it a cost given the cardinality
vector Y. The cost model can take any functional form. In this
paper, to approximate PostgreSQL, we use the following simple
cost model:

C((w,0),Y) = min(u| + A[b], |u] - |b]) ®3)

where b is a base table s.t. u = b = v and |u|, |b| are cardinalities
of u and b given by Y. The term |u| - |b| models nested loop joins
without an index, and A = 0.001 is used to model an index on b.
Figure 4 shows the cost of each edge in query Q1. Flow-Loss can use
a more precise cost model (e.g., with terms for other join operators
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such as hash join), but we found this simple model suffices for our
workloads on PostgreSQL. We analyze how well it approximates the
PostgreSQL cost model in §6.1 and discuss another model tailored
to MySQL in an online appendix [35].

Definition 4.6. P* (Y). The cheapest path (plan) in the plan graph
with edge costs given by C(e, Y):

P*(Y) = argmin Z Cle,Y). @)
p ecP
For example, given Y, the cheapest path P*(Y) is highlighted in
Figure 4. We will use the terms “cheapest” and “shortest” path
interchangeably.

Definition 4.7. Plan Cost (P-Cost), PC(Y,Y). The true cost of the
optimal path (plan) chosen based on cardinality vector Y:

PC(Y,Y) = Z C(e,Y). (5)

ecP*(Y)
P-Cost can be viewed as an alternative to loss functions like Q-Error
to compare estimated and true cardinalities Y and Y. It finds the

cheapest path using Y, i.e. P* (Y), and then sums the true costs of
the edges in this path using Y.

Remark. As defined, P-Cost is not a distance metric [52] (e.g., it
does not satisfy the symmetry property). However, this does not
affect its use in our loss function. In the online appendix [35], we
use P-Cost to construct a pseudometric [53].

5 FLOW-LOSS

While P-Cost captures the impact of cardinalities on query plans, it
has an important drawback as a loss function: It cannot be mini-
mized using gradient-based methods. In fact, the gradient of P-Cost
with respect to Y is zero at almost all values of Y. To see why, notice
that a small perturbation to ¥ is unlikely to change the path chosen
by P* (Y); the path would only change if there were multiple cheap-
est paths. Therefore P-Cost will also not change. In this section we
define an alternative to P* that has a gradient w.r.t. any cardinality
in the plan graph, and use it to construct Flow-Loss.

5.1 From Shortest Path to Electrical Flows

The problem with P* is that it strictly selects the shortest (cheapest)
path in the plan graph. Consider, instead, the following alternative
that can be thought of as a “soft” variant of shortest path. Assume
the plan graph is an electrical circuit, with edge e containing a
resistor with resistance C(e, Y). Now suppose we send one unit
of current from S to D. How will the current be split between the
different paths from S and D?

In an electric circuit, paths with lower resistance? (shorter paths)
carry more current, but the current does not flow exclusively on
the path with least resistance: assuming all paths have a non-zero
resistance, they will all carry some current. Importantly, every
edge’s resistance affects how current is split across paths. The

For the purpose of this discussion, we view the resistance of a path as the sum of the
resistances along its edges, which corresponds to the path’s length when the resistance
is viewed as a distance, or the path’s cost when the resistance is viewed as the cost of
an edge.



precise way in which current flows in the circuit can be obtained
by solving the following energy minimization® problem:

F*(Y) =argminZC(e, Y) -Fg 6)
e€E
s.t F. = Fe=1 (7)
e€Out(S) e€ln(D)
Fe = Fe (8)
ecOut (V) ecln(V)

Here the optimization variable F assigns a flow of current to each
edge. Equation (7) enforces that one unit of flow is sent from S to
D. Equation (8) is the conservation constraint for all nodes except
S and D — it enforces that the amount of flow going in and out of a
node should be the same. The thickness of edges in Figure 4 show
the flows assigned to each edge by F* (Y).

Computing F* is a basic problem in circuit design [1, 6], and
it has a simple closed form expression as a function of the resis-
tances C(e, Y). For a plan graph with M edges and N nodes, we can

compute the flows by:
F*(Y) = AB71j, )

where i € RN is the constant vector of [1,0,..,—1];A € RMN g a
weighted adjacency matrix. Each entry is defined by:

1 =
m fu=w
A(u,v),w = __C(;,Y) ifo=w
0 otherwise.
and entries for B € RN-N are given by:
1 .
ifu=w
e€ln(u)UOut (u) cley)
Buw = _W if (u, w) is an edge
0 otherwise.

F* just multiplies two matrices, thus is clearly differentiable. We
also provide an explicit closed form expression for the gradient of
F* online [35]. We are now ready to define our final loss function.

Definition 5.1. Flow-Loss.

Flow-Loss(Y,Y) = Z C(e,Y) F*(?)g
ecE

(10)

Notice the similarity to P-Cost (Equation 5). P-Cost computed the
sum of the true edge costs of the path chosen by P*(Y), whereas
Flow-Loss is a weighted sum of the true edge costs, where the
weight of an edge is the square of the flow assigned to that edge,
ie., F*(Y)Z. An intuitive interpretation of Flow-Loss is the energy
dissipated in a circuit with currents F*(¥) passing resistances C(e,
Y). Since F* (-) and C(-) (Definition 4.5) are both differentiable, so
is Flow-Loss, and we can use the chain rule to get the gradients of
Flow-Loss wrt Y.

COROLLARY 5.1. Flow-Loss is minimized when ¥ = Y.

3Recall that the energy dissipated when current I flows through a resistor with resis-
tance R is RI? [1].
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Proof. Note that F* (Y) assigns each edge, Fe s.t. >, .cg C(e,Y) -
F? is minimized (Equation 6). This is precisely the equation for
Flow-Loss (Equation 10), since the costs in Flow-Loss, C(e, Y), are
computed using true cardinalities as well. Thus, setting ¥ = Y, is a
(not unique) minimizer of Flow-Loss.

Moerkotte et al. [34] showed PC(Y,Y) < q*PC(Y,Y), where g
is the largest Q-Error over all sub-plans. This loosely bounds how
much worse can the plan using ¥ be than the plan using Y in terms
of Q-Error. We prove a similar result for Flow-Loss.

THEOREM 5.2.
PC(Y,Y) < k*Flow-Loss(Y, Y)

o Flow-Loss( V.Y
Flow-Loss(Y, Y)

(11)

PC(Y,Y) (12)

S T
mingep*(f,) F*(Y),
on the path P*(Y).

Proof. Flow-Loss (Equation 10) sums over all edges; Consider

where k = , 1.e., inverse of the minimum flow

only the terms summing over P*(f/), ie.,

Z C(e,Y) - F*(V)2.

ecP*(Y)

(13)

This is a weighted version of PC(lA/, Y). We defined k, such that the
smallest weight is é Thus multiplying Equation 13 by k? ensures
that the coefficients of C(e, Y) would be greater than 1, and Equation
11 follows. Equation 12 follows because we multiplied Equation 11
with a term greater than 1, since Flow-Loss(Y,Y) < PC(Y,Y) (to
see this, notice that a potential solution for F*(Y) sets the flow of
each edge in P*(Y) to 1, and rest to 0. This would make Flow-Loss
(Y,Y) = PC(Y,Y). But, F*(Y) chooses the flow values to minimize

Flow-Loss (Y, Y), thus it will be at least as small as PC(Y,Y)) O
Flow-Loss(Y,Y)
Flow-Loss(Y,Y)

bound — and gets larger as the set of interesting paths increase.

Empirically this seems to be at least as good as the Q-Error bound.
But mostly, both these bounds provide intuition for why these are
sensible loss functions, since other loss functions, such as mean
squared error, provide no worst case guarantees whatsoever.

is typically much smaller than k. But k is hard to

5.2 Discussion

Beyond left-deep plans. P-Cost, and therefore Flow-Loss, are de-
fined over left-deep plans. Extending Flow-Loss to bushy plans is
more challenging: we will need a graph similar to the plan graph,
where every valid bushy plan is a path, but this will lead to an
exponential increase in the number of paths. But it does not seem
required to consider bushy plans explicitly when optimizing for
cardinality estimates. First, the best left-deep plan often has reason-
able performance compared to the best overall plan [23]. Second,
every sub-plan in the query is required to find the best left-deep
plan, therefore, the the same set of cardinality estimates are re-
quired to optimize both bushy plans and left-deep plans. Moreover,
when indices are used, left-deep sub-plans are a prominent part
of bushy plans. Hence, estimates that are important for choosing
good left-deep plans are also important for bushy plans.

Anchoring. An unusual property of Flow-Loss compared to loss
functions such as Q-Error is that it is not very sensitive to the
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Figure 5: P-Cost versus PPC given true cardinalities for the
two workloads we used.

absolute value of the cardinality estimates. Like an optimizer, Flow-
Loss is affected more by the relative value of estimates for competing
sub-plans. In particular, multiplying the cardinality estimates of
all sub-plans of a query by a constant will often not change the
cheapest path in the plan graph, because the costs computed using C
(Definition 4.5) are linear in the cardinality estimates for most edges.
The implication is that training a cardinality estimation model using
Flow-Loss does not “anchor” the learned model’s outputs to the
true values (e.g., it may learn to estimate cardinalities that are all
roughly 5% larger than the true values). It is possible to add explicit
terms to the loss function that penalize large deviations from true
values, or use a more precise cost model that is sensitive to absolute
cardinalities.* Flow-Loss will optimize for whichever cost model
we use. In our workloads we found that Flow-Loss performed well
enough without explicit anchoring.

6 FLOW-LOSS ANALYSIS

In this section, we analyze the behavior of Flow-Loss using an
example query on PostgreSQL to understand its potential benefits.

6.1 Cost Model

P-Cost and Flow-Loss were defined using the simple cost model
C (Definition 4.5). However, our ultimate goal is to improve query
performance of a DBMS.

Definition 6.1. Postgres Plan Cost (PPC). PPC is the same as
P-Cost (Definition 4.7), but uses the PostgreSQL cost model and
dynamic programming based exhaustive search over all plans — not
only left-deep plans. To compute PPC, we inject ¥ into the Post-
greSQL optimizer to get the cheapest plan (join order and physical
operators) for Y. Then we cost this plan using Y. We implement it
using a modified version of the plugin pg_hint_plan® [46].

Flow-Loss is an approximation to P-Cost, which in turn is an
approximation to PPC. For Flow-Loss to be useful, its cost model
C must broadly reflect the behavior of the PostgreSQL cost model.
Figure 5 shows a scatter plot of P-Cost versus PPC given true cardi-
nalities for two workloads described in Section 8. The PostgreSQL
cost model includes many terms that we do not model, thus we
would not expect the scale of P-Cost and PPC to match precisely.
Nonetheless, we observe that PPC and P-Cost mostly follow the
same trends. It matters less that P-Cost is not very precise, since

*For example, a cost model that accounts for spilling.
Shttps://github.com/parimarjan/pg_hint_plan
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Figure 6: Comparing Q-Error (left) or Flow-Loss (right) as
we vary the cardinality estimates of different sub-plans. For
each data point we multiply or divide the true value (center)
by 2.
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Figure 7: Comparing the shapes of Q-Error, PPC, and Flow-
Loss as we vary estimate of one sub-plan, while keeping oth-
ers fixed at their true values. Each loss curve is plotted with
its own scale (not shown). For each data point we multiply
or divide the true value (center) by 2.

we are merely using it as a signal to improve the cardinality esti-
mates that lead to high costs. To optimize queries, these cardinality
estimates will be provided to the PostgreSQL optimizer.

6.2 Shape of Loss Functions

Q-Error Postgres Plan Cost  1e6 Flow-Loss 1e6
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i ) kt I

1/200x 1/200x 1Ix 200x 1/200x 1x 200x
|kt Dt |kt ]
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Figure 8: Comparing Q-Error, PPC, and Flow-Loss when we
vary estimates of two sub-plans at the same time. The colors
go from dark (low errors) to light (high errors).

Next, we will compare the behavior of Q-Error (Equation 1), PPC
(Definition 6.1), and Flow-Loss using our running example, query
Q1 (Figure 3). Recall that Figure 4 shows the true cost of each edge,
C(e, Y). As we change the cardinality of one node (sub-plan), u, the
estimated costs of outgoing edges from u will change, affecting the
overall cost of any path (plan) that passes through u.

Flow-Loss is sensitive to underestimates of nodes on bad
paths, and overestimates of nodes on good paths. Figure 6
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shows three representative examples of how Q-Error and Flow-
Loss change as we multiply or divide the cardinality of one node
by increasing amounts while keeping the others fixed at their true
values. Q-Error changes identically for all nodes (the lines overlap),
but the behavior of Flow-Loss differs depending on the node. Node
ci >4 t has multiple expensive paths that go through it (note the red
edges in Figure 4). As we underestimate its cardinality, Flow-Loss
shoots up (blue line). This aligns with the intuition that underesti-
mating this node makes bad paths appear cheaper, which may cause
the optimizer to choose one of them instead of the actual cheapest
path. Overestimating its cardinality, on the other hand, make bad
paths appear even more expensive, which is good as we want the
optimizer to avoid these paths. Thus, it is sensible that Flow-Loss
stays near its minimum in this case. The node ci > n > rt > t is on
the cheapest path, while the node kt > ¢ has two relatively good
paths passing through it (c.f. Figure 4). For these nodes, Flow-Loss
remains at its minimum for underestimates (since it makes good
paths appear cheaper), and shoots up for overestimates (since it
makes good paths appear more expensive). Recall that Flow-Loss
uses all relatively good paths, not just the cheapest, and therefore,
it is impacted by both nodes.

Flow-Loss roughly tracks PPC decision boundaries. Figure 7
compares the shapes of Q-Error, PPC, and Flow-Loss as we vary
the cardinality of a single node. Each curve is plotted on its own
scale as we only want to compare their trends. Node ci > n > rt
is already on the cheapest path (cf. Figure 4), so Flow-Loss is only
sensitive to overestimating its cardinality, like PPC. Node ci > rt
is not on the cheapest path, and like PPC, Flow-Loss is a lot more
sensitive to underestimates as it causes flow to be diverted to the
paths containing this node from potentially cheaper paths. Node
ci > kt pa rt > t is an example of a case where Flow-Loss leads
to a different behavior from PPC. For overestimates, PPC is flat at
its minimum while Flow-Loss blows up. ci > kt b¢ rt b4 ¢ is not
on the cheapest path, but there are multiple nearly optimal paths
using this node (cf. Figure 4). Since Flow-Loss routes a non-trivial
amount of flow on such paths, it is sensitive to making them more
expensive, even though the optimizer does not switch from the
cheapest path (thus, PPC remains flat). This is a desirable property
from the standpoint of robustness. It reflects the fact that any of
the nearly optimal paths could become the cheapest path and get
chosen by the optimizer if the cardinalities change slightly. For
instance, although node ci pa kt b« rt > t is not on the cheapest
path when all edges are costed using true cardinalities, it would
be on the cheapest path if we underestimate the cost of the ci >
kt >t — ci > kt > rt 1 t edge (or overestimate the cost of the
actual cheapest path). In that case, PPC would have been sensitive
to increasing the cardinality of this node. By considering all good
paths simultaneously, Flow-Loss robustly captures the behavior of
the optimizer in response to such variations in cardinalities. As a
further example, in Figure 8, we vary cardinalities of two sub-plans
simultaneously. Once again we observe that Flow-Loss roughly
reflects the behavior of PPC — it is highest when cardinalities for
both the nodes are underestimated (lower left quadrant).
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6.3 Benefits of Flow-Loss

In practice, cardinality estimation models face several challenges:
limited model capacity (making it impossible to learn all the intrica-
cies of the data distribution), limited training data (since collecting
ground truth data is expensive), insufficient features (e.g., it may
be hard to represent predicates on columns with a large number of
categorical values), noisy training data, changing data (e.g., Wang
et al. [50] show that learned models can have a steep drop in per-
formance after data is updated), and changing query workloads.
Thus, it is inevitable that such models will make mistakes. As the
examples in §6.2 suggest, Flow-Loss guides the learning to focus
on estimates that matter, and to improve their accuracy only to
the extent necessary for improving query performance. This has
several positive consequences as we highlight below.

Model capacity. Lower capacity models, or less expressive fea-
tures, make it harder for learned models to achieve high accuracy.
Flow-Loss helps use the limited model capacity in a way that maxi-
mizes the model’s impact on query performance.

Domain-specific regularization. A model trying to minimize
Q-Error treats each estimate as equally important, which makes
it easy to overfit to the training data. Regularization is a general
approach to mitigate overfitting and improve generalization, but
generic regularization techniques such as weight decay [2] simply
bias towards learning simpler models (e.g., smoother functions)
without taking advantage of the problem structure. Flow-Loss pro-
vides a stronger, guided regularization by utilizing domain-specific
knowledge about query optimization.® The key information is to
know which details of the training data can be ignored without
impacting query performance. If estimation errors on a subset of
sub-plans do not typically cause worse plans, then there is no need
to learn a more complex model to correct them. This is precisely
what Flow-Loss does by allowing a high tolerance to cardinality
estimation errors for noncritical sub-plans.

Tolerance to noisy training data. As a direct consequence of the
previous point, by ignoring accuracy on less important subsets of
the data, Flow-Loss can better handle noisy, or missing training
data, which can let us avoid the expensive process of executing all
sub-plans to generate the true cardinalities. Instead, we can train
models using approximate cardinalities obtained via sampling [25].

7 FEATURIZATION AND MODELS

This section introduces the model architectures and featurization
that we use to evaluate Flow-Loss.

Featurization. As described by Kipf et al. [18], a sub-plan q is
mapped to three sets of input vectors: Tq, Jgs and Pyq for the tables,
joins, and predicates in the sub-plan. We augment these with a
vector Gy that captures the properties of the sub-plan in the con-
text of the plan graph. A one-hot vector encodes each table in the
sub-plan (Ty), and a second one-hot vector encodes each join (Jg).
For RANGE predicates, we use min-max normalization [18, 39]. For
IN predicates we use feature hashing [43], in which categorical
features with large alphabet sizes are hashed to N bins. Even if

®There are similar examples in other ML applications, e.g., Li et al. show domain-
specific loss functions for physics applications lead to improved generalization via
implicit regularization [26].



N is much smaller than the alphabet size, it still provides a sig-
nal for the learned models. For LIKE predicates feature hashing
with character n-grams [51], and use additional features such as
the number of characters and the presence of a digit. We find that
N = 10 bins each for every column-operator pair works well on
our workloads. As proposed by Dutt et al. [9], we add the cardi-
nality estimate for each table (after applying its predicates) from
PostgreSQL to that table’s vector in Ty, which we found to be suffi-
cient for our workload. For a stronger runtime signal, we could add
sample bitmaps [18, 19] (i.e., bitmaps indicating qualifying sample
tuples), however, as this would significantly increase the model’s
parameters, we omit this optimization. Similarly, we do not ex-
plicitly encode GrouP BY columns like earlier work does [17] and
rely on PostgreSQL’s estimates instead. Gg is a vector for the plan
graph-based properties of a sub-plan. This includes information
about the immediate children of the sub-plan node in the plan graph
(i-e., the nodes obtained by joining the sub-plan with a base table).
Specifically: the number of children, the cost using PostgreSQL’s
estimated cardinalities of the join producing that child, and the rel-
ative estimated cardinality of that child compared to the sub-plan.
Intuitively, such information about neighboring plan graph nodes
could be useful to generalize to new queries. For all cardinalities,
we apply log transformation for training the models [9].

Models. To compare Q-Error and Flow-Loss, we train two repre-
sentative neural network architectures with both loss functions.
Fully-Connected Neural Network (FCNN) was used by Ortiz et
al. [39] and Dutt et al. [9]. It takes as input a 1-D feature vector
that concatenates the vectors in Ty, Jg» Pqs and Gg. Multi-Set Con-
volutional Network (MSCN) was proposed by Kipf et al. [18] based
on the DeepSets architecture [58], and we extend it to include the
Ggq features as well. These are very different architectures, and rep-
resent important trade-offs — FCNN is a lightweight model that
trains efficiently, but does not scale to increasing database sizes
(number of parameters grow with the number of columns), while
MSCN'’s set-based formulation is scalable but less efficient to train.

8 CARDINALITY ESTIMATION BENCHMARK
(CEB)

Table 1: Comparing CEB with JOB.

Dataset JOB CEB CEB
(IMDb) _ (IMDb) _ (SE)

# Queries 113 13,644 3435

# Sub-plans 70K 3.5M 500K

# Templates 31 15 6

# Joins 5-16 5-15 5-8

# Optimal plans 88 2200 113

Benchmark. We create a tool to generate a large number of chal-
lenging queries based on predefined templates and rules. Using this
tool, we generate the Cardinality Estimation Benchmark (CEB) [36],
a workload on two different databases (IMDb [23] and StackEx-
change (SE) [44]) containing over 16K unique queries and true
cardinalities for over 4M sub-plans including counT and GrRoUP

Example Template
[base sql]

SELECT COUNT(*)
FROM title AS t, kind_type AS kt, cast_info AS «i,
role_type AS it, name AS n

WHERE t.id = ci.movie_id AND tkind_id = kt.id
AND ci.person_id = n.id AND ci.role_id = rt.id
AND t.production_year <= <YEAR>
AND ktkind IN <KIND>
AND rt.role IN <ROLE>
AND n.gender IN <GENDER>

[predicates]

name = year

dependencies =[]

keys = [YEAR]

columns = [t.production_year]

pred_type = <=

sampling_method = uniform

type = list

options = [1920, 1946, 1975, 2000, 2015]

predicates]

name = kind_role_gender
dependencies = [year]

keys = [KIND, ROLE, GENDER]
columns = [ktkind, rt.role, n.gender]
pred_type = IN

sampling_method = quantile
min_samples = 2

max_samples = 7

type = sql

SELECT

kt.kind, rt.role, n.gender, COUNT(*)

FROM title AS t, kind_type AS kt, cast_info AS ci,

role_type AS rt, name AS n

WHERE t.id = ci.movie_id AND t.kind_id = kt.id
AND ci.person_id = n.id AND ci.role_id = rt.id
AND t.production_year <= <YEAR>
GROUP BY kt.kind, rt.role, n.gender
ORDER BY COUNT(*)

Figure 9: TOML configuration file for generating queries
based on a predefined template and rules.

BY aggregates, and RANGE, IN, and LIKE predicates. Table 1 summa-
rizes the key properties of CEB, and contrasts them with Join Order
Benchmark (JOB) [23]. Notice that for the 13K IMDDb queries in CEB,
there are over 2K unique plans generated by PostgreSQL with true
cardinalities — showing that different predicates lead to a diverse
collection of optimal query plans. CEB addresses the two major
limitations of queries used in previous works [8, 18, 39]: First, past
work on supervised cardinality estimation [8, 18, 39] evaluate on
workloads with only up to six joins per query. CEB has much more
complex queries ranging from five to sixteen joins. Second, while
JOB [23] contains challenging queries with up to 16 joins, they only
have two to five queries per template. This is insufficient training
data for supervised learning methods. CEB contains hundreds of
queries per hand-crafted template with real-world interpretations.

Query generator. Generating predicate values for query templates
is challenging because predicates interact in complex ways, and
sampling them independently would often lead to queries with
zero or very few results. Our key insight is to generate interesting
predicate values for multiple columns together, using predefined
SQL queries that take into account correlations and other user
specified conditions. Figure 9 shows a complete template which
generates queries with the same structure as our running example,
Q1. We will walk through the process of generating a sample query
following the rules specified in this template. [base sql] is the SQL
query to be generated, with a few unspecified predicates to be
filled in. [predicates] are rules to choose the predicates for groups
columns. For the predicate YEAR we choose a value uniformly from
the given list. We sample predicate values for the remaining three
IN predicates together because KIND, ROLE, and GENDER are highly
correlated columns. For these, we also add YEAR as a dependency
— as the year chosen would influence predicate selectivities for all
these columns. We generate a list of candidate triples using a GROUP
BY query, and sample 2 to 7 values for each 1N predicate.

Timeouts. Some sub-plans in the StackExchange queries time out
when collecting the true values. This is due to unusual join graphs
which make certain sub-plans behave like cross-joins (see online
appendix [35]). In such cases, we use a large constant value in
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place of the true cardinalities as the label for the timed out sub-
plans in the training data. We verified that the plans generated
by injecting all known true cardinalities and this constant value
into PostgreSQL leads to almost 10X faster runtimes than using the
default PostgreSQL estimates.

Approximate training data. Intuitively, we may not need precise
cardinality estimates to get the best plans — thus, approximate
query processing (AQP) techniques, such as wander join [25] or
IBJS [24], should provide sufficient accuracy. However, we cannot
use these techniques for query optimization because they are too
slow to provide estimates for all sub-plans at runtime. But these
techniques are much faster than generating the ground truth cardi-
nality estimates for all sub-plans, which is the most expensive step
in building a cardinality estimation model. We modify the wander
join algorithm to efficiently generate all the cardinality estimates
in a given workload (excluding LIKE / regex queries), with precise
implementation details given in the online appendix [35]. We use
this only as a proof of concept; our implementation is not optimized,
and uses a mix of Python and SQL calls. Despite this, we generate
the wander join estimates with speedups over generating ground
truth data that range from 10X to 100x for different templates.
For instance, for the largest template with around 3K sub-plans,
generating all the ground truth data on a single core takes about
5 hours, while wander join estimates take less than 5 minutes. In
Section 9.5, we explore if the wander join estimates are as good as
true cardinalities to train learned models.

9 EXPERIMENTS

Setup. We use PostgreSQL 12 and MySQL 8 (with the MyISAM
storage backend). We tune the configurations to reasonable settings,
while disabling some optimizations like parallelism and material-
ization in both the DBMSs. The precise configurations, and code
to reproduce the execution environment is provided online [36].
For the runtime experiments, we use Amazon EC2 instances with a
NVMe SSD device, and 8GB RAM.

Loss functions. Our main focus is to compare the Q-Error and
Flow-Loss loss functions to train the neural network models. We use
the true cardinalities and estimates from PostgreSQL as baselines
to compare against the learned models.

Training and test sets. We consider two scenarios:

(1) Testing on seen templates. The model is evaluated on new
queries from the same templates that it was trained on. We put
20% of the queries of each template into the validation set (used
to tune hyperparameters), and 40% each into the training and
test sets. We report results from the test set.

(2) Testing on unseen templates. The model is evaluated on
different templates than the ones it was trained on. We split
the templates equally into training and test templates. Since
the number of templates is much smaller than the number of
queries, we use ten-fold cross-validation for these experiments:
the training / test set splits are done randomly using ten differ-
ent seeds (seeds = 1 — 10). We use the same hyperparameters
as determined in the seen templates scenario. Even though the
templates are different in the second scenario, there is signifi-
cant overlap with the training set on query sub-plans. This tests
the robustness of these models to slight shifts in the workload.
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Key result. Figure 10a shows the results of all approaches w.r.t.
PPC on IMDb. All models outperform PostgreSQL’s estimator sig-
nificantly on seen templates. However, only the Flow-Loss trained
models do so consistently on unseen templates as well. For seen
templates, the models trained using Flow-Loss do better than the
models trained using Q-Error on PPC. All models get worse when
evaluated on unseen templates - but the Flow-Loss models degrade
more gracefully. When the queries are from seen templates, the
difference in PPC does not translate into runtime improvements (cf.
Figure 10b). However, on unseen templates, we see clear improve-
ments in runtime as well.

9.1 Testing on seen templates

Worse Q-Error, better PPC, similar runtimes. We give detailed
evaluations on the seen templates in the online appendix [35], but
the key takeaway is that all learned cardinality estimation models do
equally well and improve significantly over PostgreSQL estimates.
The median Q-Error of the models trained using Flow-Loss was
typically 2x worse than models trained using Q-Error, while being
up to 10X worse at the 99th percentile. But, this is to be expected
— our goal was to improve cardinality estimates only when it is
important for query optimization. As seen in Figure 10, the Flow-
Loss trained models improve mean PPC over the Q-Error models,
getting close to the PPC with true cardinalities. This suggests that
Flow-Loss models better utilize their model capacity to focus on
sub-plans that are more crucial for PPC. It also shows that better
Q-Error estimates do not directly translate into improved plans.
However, in terms of runtimes, all models do equally well, and are
very close to the performance of using true cardinalities.

9.2 Testing on unseen templates

When we split the training set and test set by templates, each
partition leads to very different information available to the models
— therefore we will analyze the partitions individually.

Flow-Loss generalizes better. In Figure 11a, we look at the perfor-
mance of a model trained with Flow-Loss compared to one trained
with Q-Error w.r.t. query runtime. A single bar represents the same
model architecture (FCNN or MSCN) trained and evaluated on
one of the ten partitions in the unseen templates scenario. This
figure highlights the overall trends across all unseen partition ex-
periments: we see significant improvements on some partitions,
relatively smaller regressions on some partitions, and similar per-
formance on many partitions. This behavior is also reflected in the
PPC trends.

Zooming in on partitions. For the FCNN and MSCN models,
we sort all the partitions by the difference in the mean runtimes
between the Flow-Loss and the Q-Error models. We select the best,
median, and worst partition for Flow-Loss and show the 50p, 90p,
and 99p for runtimes in Figure 12. For both architectures, the model
trained with Flow-Loss significantly improves on the best partition
, particularly at the tail — being up to 8%, and hundreds of seconds
faster than the Q-Error model at the 99th percentile. On the worst
partition, it is about 20 seconds slower than the Q-Error model at the
99th percentile. There are an additional six cases where the Flow-
Loss models improve over the Q-Error models, with improvements
in tens of seconds, which is comparable to the best improvement
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Figure 12: Best, median, and worst partition for Flow-Loss
models by runtime difference from its corresponding Q-
Error model on unseen template partitions for the FCNN ar-
chitecture (left) and MSCN architecture (right) on the IMDDb
workload on PostgreSQL.

of the Q-Error model. As we highlight next, even these smaller
improvements suggest more robust and better quality plans.

Restricting RAM. We re-execute the query plans from the unseen
templates partitions after restricting PostgreSQL to a docker con-
tainer with only 256 MB RAM. The goal is to simulate a database
significantly larger than available RAM, as is common in the real
world. (The size of all tables in the IMDb database comes to about
5 GB). This scenario emphasizes the robustness of query plans in
more challenging execution environments; bad plans that process a
lot of unnecessary intermediate rows may cause more spills to disk,
leading to disastrous performance. To reduce overhead due to the
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slower execution speeds, we re-execute a representative sample of
25% of the queries. Figure 11b plots the difference of the mean query
runtime between the Q-Error and Flow-Loss models. Across multi-
ple partitions, the Q-Error model leads to significant degradation of
performance, having mean query runtime up to 3x slower in two
cases. In one case, the mean query runtime difference between the
Q-Error model and the Flow-Loss model goes from 3 seconds (w/o
restrictions), to over 70 seconds after restricting RAM to 256 MB. In
the cases where the Q-Error model had done better, restricting to
256MB RAM, increases its relative improvement over the Flow-Loss
model, but it only goes up to being 1.5%, and 20 seconds faster in
the best case. Moreover, the Q-Error trained models also lead to a
significantly larger number of timeouts. We use a 15 minute query
time out (in the experiments using the full, 8GB RAM, no query
times out). But in these restricted setting, in the worst case (for
Q-Error), the Q-Error model has 59 timeouts vs. 6 for the Flow-Loss
model; while in the best case (for Q-Error), it has 4 timeouts vs. 11
for the Flow-Loss model.

Join Order Benchmark. JOB is not suitable for training a super-
vised learning model as it has too few queries. But, we use it as an
evaluation set for a model trained on CEB. This is similar to the
unseen templates scenario: The JOB queries are less challenging in
terms of PPC (for instance, PostgreSQL estimates have 20x lower
mean PPC on JOB than CEB). However, they are more diverse:
JOB has 31 templates, and includes predicates on columns not seen
in CEB. Figure 13 summarizes the results of the Flow-Loss and
Q-Error models for both architectures over three repeated runs.
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Figure 13: Mean PPC and runtimes for all models trained
with Q-Error or Flow-Loss on CEB, and evaluated on JOB.

Both Flow-Loss models improve slightly on PPC over PostgreSQL
while achieving similar runtimes. The FCNN model trained with Q-
Error performs similarly, but the MSCN model trained with Q-Error
shows much higher variance and does significantly worse. This
experiment shows that even when the queries are very different,
Flow-Loss-trained models avoid disastrously bad estimates.

9.3 MySQL DBMS

We conduct the same set of experiments seen so far using the
MySQL DBMS instead of PostgreSQL to ensure our modeling as-
sumptions, and Flow-Loss is not restricted to PostgreSQL.

New cost model to retrain Flow-Loss models. Flow-Loss relies
on a differentiable approximation to the underlying cost model of
the DBMS. For approximating Postgres Plan Cost, we had used the
cost model in Definition 4.5. As it turns out, using the same cost
model was not as good an approximation for MySQL Plan Cost.
So instead, for the MySQL evaluations, we developed a cost model
approximation tailored to MySQL to use for Flow-Loss.

Similar trends to PostgreSQL experiments. On the seen tem-
plates, both the loss functions perform equally well, and signif-
icantly improve on heuristic DBMS estimates. In Figure 11c, we
show the results on the unseen templates using the MySQL DBMS.
In general, the trends of the runtime improvements are comparable
to the results from PostgreSQL, which we discussed in the previous
section. These results show that using Flow-Loss is valuable across
different DBMS’, and that it can adapt to different cost models. At
the same time, the dependence of Flow-Loss on the quality of the
differentiable cost model approximation is a drawback — it requires
additional work when using it in a new evaluation scenario.

9.4 StackExchange workload

Finally, we study the performance of the MSCN model on the Stack-
Exchange (SE) database using a smaller workload.

Similarities to IMDD results. On seen templates, learned models
using both loss functions improve significantly over the PostgreSQL
estimates — having query runtime that is over 100 seconds faster
at the mean. On unseen templates, the Flow-Loss models improve
significantly over the Q-Error models (cf. Figure 11d), with improve-
ments of over 20 seconds at the mean on three of the partitions.

9.5 Analysis

Next, we show experiments on the IMDb workload to better under-
stand when, and why the Flow-Loss models may improve perfor-
mance. These experiments are guided by the intuition from §6.3.
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Learning curves. Figure 14 shows the MSCN model’s learning
curves for (normalized) Q-Error, Flow-Loss, and PPC on one parti-
tion (seed = 7) trained using Q-Error or Flow-Loss. We see that the
Q-Error model has smooth training set curves for all metrics, but
behaves erratically on the test set. This is because it is trying to min-
imize estimation accuracy, but for queries from unseen templates,
it is much more challenging. Note that the Flow-Loss curves closely
resemble the PPC curves (e.g., the Q-Error model on the test set).
In §6.2, we showed simple examples where the Flow-Loss metric
closely tracked the PPC. This shows that Flow-Loss can track the
PPC well even in more complex scenarios. Notice that on the test
set, in terms of Q-Error, the Flow-Loss model is consistently worse
than the Q-Error model, while it is much better on the Flow-Loss
and PPC metrics. This suggests the Flow-Loss model is using its
capacity better to focus on PPC.

Domain specific regularization effect. Figure 15 shows the me-
dian, 90p, and 99p Q-Errors for the three scenarios we have looked
at. We show results for the FCNN architecture and omit MSCN
here, which shows similar trends. Our hypothesis has been that
estimation accuracy on certain sub-plans are more important than
others for query optimization. In the seen templates scenario, the
Q-Error model has such high estimation accuracy everywhere (a
Q-Error of only 100 at the 99p over millions of sub-plans), that
it does reasonably well in terms of query optimization without
explicitly caring about the important sub-plans. To achieve such
low estimation errors, the model needs to get quite complex, and
overfit to noisy patterns, like precise estimates for ILIKE predicates
or for sub-plans with 10 tables that may anyway get pruned during
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the dynamic programming optimizer search. This can lead to more
complex models, which may be brittle to workload changes. Often,
we do not need such precise estimates everywhere. As we have
seen from the results presented earlier, (e.g., Figure 10a), models
trained with Flow-Loss achieve lower PPC despite higher Q-Error,
which suggests that it learns a simpler model that does not try to
improve cardinality estimates when they do not matter for query
optimization. More strikingly, as we consider the unseen templates
scenario — the models trained with Q-Error get almost 10X worse
at the 90p and 99p, compared to the seen templates scenario. With
larger errors, the effect of an estimate on query performance can
be more important. As we saw in the results in §9.2, this drastic
drop sometimes causes much worse query plans being generated.
The estimation accuracy of models trained with Flow-Loss only get
about 1.5X worse on unseen templates compared to their perfor-
mance on the seen templates. This suggests that its estimates are
less brittle to slight changes in the workload. This pattern continues
on to the JOB templates — where the Flow-Loss models even have
better estimation accuracy than the Q-Error models. This supports
our regularization hypothesis (cf. §6.3), and shows that the Flow-
Loss models can avoid overfitting in a way that does not harm its
performance on PPC, but the simpler models help it generalize.

Ablation study. Next, we seek to understand the impact of the
various components of the featurization (cf. §7) by an ablation
study in which we remove key elements of the featurization, and
evaluate the PPC on the seen templates, unseen templates, and
JOB. We again focus on FCNN and omit MSCN, which follows
similar trends. Figure 16 summarizes the results. There are two
main highlights. First, on the seen templates, Flow-Loss models
can adapt to removing various featurization components, and do as
well as with the default features, meanwhile, the Q-Error models
suffer significantly with worse featurization. This shows that when
constrained with fewer resources, the Flow-Loss model can better
use its capacity to minimize PPC. Second, PostgreSQL features are
crucial for generalization. These include various cardinality and
cost estimates (cf. §7). Both the models get significantly worse on
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Figure 17: Mean PPC and runtimes, along with 90p to 99p
error bars for a FCNN model trained with true or wander
join cardinalities.

unseen templates without these features. This explains how the
models do relatively well on different templates — these heuristic
features have similar semantics across different kinds of queries.

Training with AQP estimates. Figure 17 shows the PPC and
runtimes for models trained with true cardinalities and with wander
join estimates for a subset of nine templates (that do not include LIKE
predicates) from the CEB workload. The Flow-Loss model is robust
when trained using the noisy wander join estimates — meanwhile,
the Q-Error model trained using wander join estimates has a clear
drop in performance at the tail for both PPC and runtimes. The
same trend is observed for Q-Errors as well , which suggests that
the model trained with Q-Error is overfitting to the noisy estimates
and supports our hypothesis that the models trained using Flow-
Loss are able to avoid overfitting to noisy data that may not be as
relevant for query optimization (cf. §6.3).

Training Overhead. In terms of size and inference time, both Q-
Error and Flow-Loss trained models have the same performance
since they share exactly the same architecture. Compared to Q-
Error, there is a 3 — 5x overhead for training either architecture
with Flow-Loss due to the additional calculations needed for Flow-
Loss— the bottleneck is computing B~! in Equation 9.7 On the CPU,
when using Q-Error, the FCNN architecture trains for 10 epochs on
the IMDDb workload in under 1000 seconds, and the MSCN model
takes up to 2500 seconds.

10 CONCLUSIONS

We showed a DBMS-based plan cost is a useful proxy to runtimes,
and is an important alternative to Q-Error when evaluating a car-
dinality estimator. This lets us view cardinality estimation from a
new lens — and we developed Flow-Loss as a smooth, differentiable
approximation to plan cost that can be used to train models via
gradient descent based learning techniques. Using a new Cardi-
nality Estimation Benchmark, we provide evidence that Flow-Loss
can guide learned models to better utilize their capacity to learn
cardinalities that have the most impact on query performance. Even
more importantly, it can help models avoid overfitting to cardinality
estimates that are unlikely to improve query performance — lead-
ing to more robust generalization when evaluated on queries from
templates not seen in the training data, and helping models learn
more robustly from training data generated using AQP techniques.

7 A long series of works [6, 21, 49] develop ways to approximate B~ in linear time,
utilizing the structure of the electric flows formulation. We also expect it to be faster
on GPUs with fast matrix inverse operations [10].
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