
Flow-Loss: Learning Cardinality Estimates That Ma!er

Parimarjan Negi1, Ryan Marcus12, Andreas Kipf1, Hongzi Mao1, Nesime Tatbul12, Tim Kraska1,
Mohammad Alizadeh1
1MIT CSAIL, 2Intel Labs

{pnegi,rcmarcus,kipf,hongzi,kraska,alizadeh}@mit.edu
{tatbul}@csail.mit.edu

ABSTRACT
Recently there has been signi!cant interest in using machine learn-
ing to improve the accuracy of cardinality estimation. This work
has focused on improving average estimation error, but not all esti-
mates matter equally for downstream tasks like query optimization.
Since learned models inevitably make mistakes, the goal should
be to improve the estimates that make the biggest di"erence to
an optimizer. We introduce a new loss function, Flow-Loss, for
learning cardinality estimation models. Flow-Loss approximates
the optimizer’s cost model and search algorithm with analytical
functions, which it uses to optimize explicitly for better query
plans. At the heart of Flow-Loss is a reduction of query optimiza-
tion to a #ow routing problem on a certain “plan graph”, in which
di"erent paths correspond to di"erent query plans. To evaluate
our approach, we introduce the Cardinality Estimation Benchmark
(CEB) which contains the ground truth cardinalities for sub-plans
of over 16! queries from 21 templates with up to 15 joins. We show
that across di"erent architectures and databases, a model trained
with Flow-Loss improves the plan costs and query runtimes despite
having worse estimation accuracy than a model trained with Q-
Error. When the test set queries closely match the training queries,
models trained with both loss functions perform well. However, the
Q-Error-trained model degrades signi!cantly when evaluated on
slightly di"erent queries (e.g., similar but unseen query templates),
while the Flow-Loss-trained model generalizes better to such situa-
tions, achieving 4 − 8× better 99th percentile runtimes on unseen
templates with the same model architecture and training data.

PVLDB Reference Format:
Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, Mohammad Alizadeh. Flow-Loss: Learning Cardinality
Estimates That Matter. PVLDB, 14(11): 2019 - 2032, 2021.

doi:10.14778/3476249.3476259

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/learnedsystems/ceb.

1 INTRODUCTION
Cardinality estimation is a core task in query optimization for pre-
dicting the sizes of sub-plans, which are intermediate operator trees
needed during query optimization. Query optimizers use these

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476259

C⋈
A B

⋈Plan1
SELECT *
FROM A, B, C
WHERE A.b1 = B.b1

AND A.c1 = C.c1

Query

B⋈
A C

⋈Plan2
Cardinality True Estimator1 Estimator2

|A| 4 4 4
|B| 2 2 2
|C| 2 2 2

|A ⋈ B| 5 10 10
|A ⋈ C| 8 16 8

Cost1 13 18 18
Cost2 16 24 16

Cost1 = (|A|+|B|) + (|A ⋈ B|+|C|)
Cost2 = (|A|+|C|) + (|A ⋈ C|+|B|)

Figure 1: For this example, we use the sum of the cardinali-
ties as the cost of a plan. With true cardinality values, Plan1
is cheaper than Plan2. This is also the case with Estima-
tor1. Interestingly, however, although Estimator2’s cardinal-
ity values have smaller error than those of Estimator1, they
will mislead the optimizer to choose Plan2.

estimates to compare alternative query plans according to a cost
model and !nd the cheapest plan. Recently, machine learning ap-
proaches have been successful in improving cardinality estimation
accuracy [9, 14, 18, 54, 57], but they largely neglect the impact of
improved estimates on the generated query plans. This is the !rst
work (known to us) that learns cardinality estimates by directly
optimizing for the cost of query plans generated by an optimizer.

All learned models will have non-trivial estimation errors due to
limitations in model capacity, featurization, training data, and dif-
ferences between training and testing conditions (e.g., due to chang-
ing workloads). We argue that it is therefore crucial to understand
which errors are more acceptable for the optimizer. Unsupervised
methods learn a model of the data independent of any particular
query workload, thereby using model capacity for sub-plans that
will never occur. Supervised methods use a representative workload
to focus model capacity on likely sub-plans. However, all estimates
are not equally important. While an optimizer’s decisions may be
very sensitive to estimates for some sub-plans (e.g. join of two large
tables), other estimates may have no impact on its decisions.

We propose Flow-Loss, a loss function for supervised cardinal-
ity estimation learning that explicitly emphasizes estimates that
matter to query performance for a given workload. Flow-Loss is
a drop-in replacement for loss functions like Q-Error [34] that are
commonly used to train cardinality estimation models. Flow-Loss
takes the idea of focusing model capacity to its logical extreme —
encouraging better estimates only if they improve the resulting
query plans. For instance, consider Figure 1: Estimator2 corrects
Estimator1’s estimate of" ! # , but it actually leads to a worse plan

2019

https://doi.org/10.14778/3476249.3476259
https://github.com/learnedsystems/ceb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476259

(Plan 2), because the relative cardinalities (" ! $ vs. " ! #) are
wrong. Flow-Loss will show no error for Estimator1, while nudging
Estimator2 to correct the relative cardinalities of these two joins.

At its core, Flow-Loss computes the cost of a query plan as a
function of the cardinality estimates used to generate the plan. To
do this, it approximates the optimizer’s cost model and dynamic
programming (DP) search algorithm with smooth and di"erentiable
analytical functions. This lets us use standard gradient descent tech-
niques to improve the estimates that are most relevant to improving
the query plans. We show that improving cardinality estimates w.r.t.
this objective also improves the quality of plans generated by real
optimizers like PostgreSQL. A key technical ingredient underlying
Flow-Loss is a connection between the optimizer’s DP search al-
gorithm and a #ow routing problem on a certain “plan graph”, in
which di"erent paths correspond to di"erent query plans. By ex-
ploiting this connection, we derive closed-form expressions relating
cardinality estimates to the resulting query plan costs.

There are two main bene!ts of training models to minimize
Flow-Loss. First, Flow-Loss highlights which sub-plans are most
relevant to the query optimizer. This helps a model focus its limited
capacity on robustly estimating the sizes of such sub-plans. Across
various scenarios, we show that Flow-Loss-trained model have
worse average estimation accuracy than Q-Error-trained models,
but improve the cost of generated plans. For instance, we show
that models trained with Flow-Loss can adapt to being provided
fewer input features or noisy data collected via approximate query
processing (AQP) [24, 25]. It is attractive to use AQP training data
because it can be generated signi!cantly faster than the true car-
dinalities. But, at the 99%ℎ percentile, Q-Error trained models get
signi!cantly worse when using AQP estimates: Q-Error gets 10×
worse, PostgreSQL costs get 2× worse, and query runtime gets 30%
slower. Meanwhile, Flow-Loss models show no such degradation
when switching training data to use AQP estimates.

Second, by having a larger tolerance for errors on less critical
sub-plans, training with Flow-Loss can avoid over!tting the model
to cardinalities for which precise estimates are not needed, thereby
leading to simpler models without sacri!cing query performance.
Such simpler models typically generalize better. We show that mod-
els trained using Q-Error can be brittle, and can lead to signi!cant
regressions when the query workload diverges slightly from the
training queries; for instance, in the worst cases, models trained
with Q-Error are up to 4−8× slower than models trained with Flow-
Loss at the 99%ℎ percentile. These correspond to 1.5-3× better query
runtimes at the mean depending on the PostgreSQL con!guration.

Our key contributions are:

• DBMS-based Plan Cost. Based on Moerkotte et al.’s [34] plan
cost, de!ned using arbitrary cost models, we introduce a cost
model-based proxy for the runtime of a query plan in a partic-
ular DBMS. We show that it corresponds closely to runtimes,
and thus is a useful metric to evaluate the goodness of cardi-
nality estimates in terms of their impact on query optimization.
Further, we provide an implementation to easily evaluate the
performance of cardinality estimation models on Plan Cost
using PostgreSQL or MySQL.

• Flow-Loss. We introduce Flow-Loss, a smooth and di"eren-
tiable approximation of Plan-Cost, which can be optimized by
any supervised learning model with gradient descent.

• Cardinality EstimationBenchmark (CEB).We create a new
tool to generate challenging queries based on templates in a
semi-automated way. We use this to create the Cardinality Es-
timation Benchmark, which is over 100× larger than the Join
Order Benchmark (JOB) [23], and has more complex queries.

2 RELATEDWORK
For cardinality estimation, traditional approaches have used his-
tograms [3], sampling [24], wavelets [32], kernel density estima-
tion [16]„ or singular value decomposition [42]. Recently, machine
learning approaches have shown high estimation accuracy. Many
works focus on single-table selectivity estimates [9, 12, 40, 57],
but while this is useful in other contexts, such as approximate
query processing, it is non-trivial to extend such models to joins
using join sampling [59]. Learned cardinality estimation for joins
can be categorized into unsupervised (data-driven, independent of
query workload) and supervised (query-driven) approaches. Unsu-
pervised approaches for cardinality estimation include Probabilistic
Graphical Models [11, 48], Sum-Product Networks [14], or deep
autoregressive models [56]. NeuroCard [56] is the most advanced
of these approaches, but it still does not support the complex ana-
lytical workloads studied in this work (e.g., queries with self joins).
That being said, any unsupervised model can be integrated into our
approach by providing their estimates as features.

Supervised approaches use queries with their true cardinalities
as training data to build a regression model. Our work builds on
the approach pioneered by Kipf et al. [18]. While several such
works report improved estimation accuracy [8, 9, 18, 38, 54, 55],
only a few actually demonstrate improved query performance [15,
37, 39]. Our approach seeks to learn the cardinalities used by a
traditional DBMS optimizer, while using the optimizer’s search and
cost algorithms for query optimization. Recently, there have been
several other learning approaches to improve query performance
which are complementary to our methods: learning the complete
optimizer [20, 30, 31], learning to use the optimizer’s hints [29],
learning the cost model [45], re-optimization [41, 47], pessimistic
cardinality estimation [4, 5, 13].

3 OVERVIEW
In this section, we will provide the high-level intuition behind our
approach, which will be formalized in the next sections. We target
supervised learning methods that use a parametric model, such as
a neural network, to estimate cardinalities for sub-plans required
to optimize a given query. Today, such models are trained using
loss functions that compare true and estimated cardinalities for a
given sub-plan, such as Q-Error:

De!nition 3.1.

Q-Error(''', '̂) = max('''/'̂, '̂/'''). (1)

where ''' and '̂ are the true and estimated cardinalities for one
sub-plan.

Such a loss function treats every estimate as equally important.
Instead, we want a loss function that will focus model capacity on

2020

⋈

⋈

SELECT *
FROM A, B, C
WHERE A.b1 = B.b1
 AND A.c1 = C.c1

Query
|A| 4
|B| 2
|C| 2

|A B| 10
|A C| 8

Cardinalities

Optimizer’s
Cost Model

Left-Deep
Plan Search B⋈

A C

⋈

Optimal Plan

≈ ≡

C
Simple

Cost Model

Shortest Path Soft Shortest Path

≈

A B

S

D

B A C

A C⋈⋈

S

D

B A C

A B A C⋈⋈

Figure 2: The query optimization process has two non-
di"erentiable components: the cost model and the plan
search algorithm. We develop di"erentiable approxima-
tions for these so we can understand how sensitive query
plans are to changes in cardinality estimates.

improving accuracy of estimates that matter most to the quality of
the plans produced by the optimizer, while tolerating larger errors
for other estimates. This loss function will need to be di"erentiable
so we can optimize it using standard gradient descent methods.

To understand how cardinality estimates impact the resulting
query plan, let us consider the basic structure of a query optimizer.
There are two independent components, as highlighted in Figure
2: (i) a cost model, which outputs a cost for every join given the
cardinality estimates for all sub-plans. (ii) a DP search algorithm,
which !nds the cheapest query plan. Our goal is to approximate
both components using analytical functions that can be combined
into a single, di"erentiable loss function:

(̂
! (·)
−−−−→ Join-Cost

" (·)
−−−→ Plan. (2)

Here# (·) maps the cardinality estimates, (̂ , to the cost of each join,
and) (·) maps the join costs to the optimal plan. Approximating
the cost model as an analytical function is conceptually straightfor-
ward since it is already represented using analytical expressions. In
principle, we can make this function as precise as we want, but we
found that a simple approximation with terms to cost joins with or
without indexes works well in our workloads (De!nition 4.5).

However, the DP search algorithm is non-trivial to model an-
alytically. Our key contribution is in developing a di"erentiable
analytical function to approximate left-deep plan search. Left-deep
plans join a single table to a sub-plan at each step. Our construc-
tion exploits a connection between left-deep plan search and the
shortest path problem on a certain “plan graph”. While we focus on
left-deep search for tractability, the resulting loss function improves
the performance for all query plans, as the sub-plans required for
costing left-deep plans are the same as required for all plans.

Figure 2 shows the plan graph corresponding to a simple query
that joins three tables ", $, and # . Every edge in the plan graph
represents a join and has a cost, and every path between) and *
represents a left-deep plan. The DP search algorithm outputs the
cheapest plan, i.e. the shortest path. When cardinality estimates
change, they change the cost of the edges in the plan graph, possibly
changing the shortest path. Therefore, to capture the in#uence of

SELECT COUNT(*)
FROM title AS t, kind_type AS kt, cast_info AS ci,

role_type AS rt, name AS n
WHERE t.id = ci.movie_id AND t.kind_id = kt.id

AND ci.person_id = n.id AND ci.role_id = rt.id
AND kt.kind IN (‘movie’) AND rt.role IN (‘actor’, ‘director’)
AND n.gender IN (‘f’) AND t.production_year <= 2015

Query

Optimal Plan

kt⋈
t

⋈
rt⋈

n

⋈
Join Graph

rtn

ci

t

kt

ci

Figure 3: Join graph and optimal plan for sample query +1

on the IMDb database.

cardinality estimates on the plan analytically, we need an expression
to relate edge costs to the shortest path in the plan graph.

But this alone is not enough. The shortest path is insensitive
to small changes to most edge costs (and hence, small changes to
most cardinality estimates). For instance, consider any edge not on
the shortest path; slightly increasing or decreasing the cost of that
edge would not change the shortest path. Therefore an analytical
function based on the shortest path would not have a gradient with
respect to the cost of such edges. This would make it impossible
for gradient-descent-based learning approaches to improve.

We tackle these challenges by using a soft approximation to the
shortest path problem. In this formulation, the plan graph is viewed
as an electrical circuit, with each edge having a resistance equal to
its cost. One unit of current is sent from) to * , split across paths in
a way that minimizes the total energy consumed.1 This formulation
has two advantages over shortest path. First, it provides an explicit,
closed-form expression relating the edge resistances (costs) to the
amount of current on every path. Second, it does not su"er from
the non-existent gradient problem described above. In an electrical
circuit, the current is not exclusively sent on the path with the
least resistance (i.e., the path corresponding to the cheapest plan).
Instead, all low-resistance paths carry a non-negligible amount of
current. Therefore, changing the resistance (cost) of an edge on any
of these paths will a"ect the distribution of current across the entire
circuit. The implication in our context is that all joins involved in
low-cost query plans matter (even if they do not appear in the
cheapest plan). This aligns with the intuition that the optimizer is
sensitive to precisely these joins: changing their cost could easily
change the plan it picks.

4 DEFINITIONS
This section formally de!nes the plan graph and the concepts we
use to develop our new loss function, Flow-Loss. As a running

1Electrical #ows have been used for graph algorithms in various !elds: modeling
random walks [7], developing more e$cient algorithms for approximating the maxi-
mum #ow problem [6, 22, 28], modeling landscape connectivity in ecology [33], and
inferring relatedness in evolutionary graphs in biology [27].

2021

2022

precise way in which current #ows in the circuit can be obtained
by solving the following energy minimization3 problem:

, ∗ (() = argmin
#

∑

$∈%

(-,() · , 2$ (6)

s.t
∑

$∈&'((")

,$ =

∑

$∈)* (+)

,$ = 1 (7)

∑

$∈&'((,)

,$ =

∑

$∈)* (,)

,$ (8)

Here the optimization variable , assigns a #ow of current to each
edge. Equation (7) enforces that one unit of #ow is sent from) to
* . Equation (8) is the conservation constraint for all nodes except
) and * — it enforces that the amount of #ow going in and out of a
node should be the same. The thickness of edges in Figure 4 show
the #ows assigned to each edge by , ∗ (Y).

Computing , ∗ is a basic problem in circuit design [1, 6], and
it has a simple closed form expression as a function of the resis-
tances# (-,(). For a plan graph with. edges and / nodes, we can
compute the #ows by:

, ∗ (() = "$−10, (9)

where 0 ∈ 1- is the constant vector of [1, 0, ...,−1]; " ∈ 1.,- is a
weighted adjacency matrix. Each entry is de!ned by:

"(',/),0 =






1
! ($,1) if 2 = 3

− 1
! ($,1) if 4 = 3

0 otherwise.

and entries for $ ∈ 1- ,- are given by:

$',0 =






∑

$∈)* (')∪&'((')

1
! ($,1) if 2 = 3

− 1
! ((',0),1) if (2,3) is an edge

0 otherwise.

, ∗ just multiplies two matrices, thus is clearly di"erentiable. We
also provide an explicit closed form expression for the gradient of
, ∗ online [35]. We are now ready to de!ne our !nal loss function.

De!nition 5.1. Flow-Loss.

Flow-Loss((̂ ,Y) =
∑

$∈%

(-,Y) · , ∗ ((̂)2$ (10)

Notice the similarity to P-Cost (Equation 5). P-Cost computed the
sum of the true edge costs of the path chosen by 5∗ ((̂), whereas
Flow-Loss is a weighted sum of the true edge costs, where the
weight of an edge is the square of the #ow assigned to that edge,
i.e., , ∗ ((̂)2$. An intuitive interpretation of Flow-Loss is the energy
dissipated in a circuit with currents , ∗ ((̂) passing resistances C(e,
Y). Since , ∗ (·) and # (·) (De!nition 4.5) are both di"erentiable, so
is Flow-Loss, and we can use the chain rule to get the gradients of
Flow-Loss w.r.t (̂ .

Corollary 5.1. Flow-Loss is minimized when (̂ = Y.

3Recall that the energy dissipated when current) #ows through a resistor with resis-
tance 2 is 2) 2 [1].

Proof. Note that , ∗ (Y) assigns each edge, ,$ s.t.
∑
$∈% # (-,Y) ·

, 2$ is minimized (Equation 6). This is precisely the equation for
Flow-Loss (Equation 10), since the costs in Flow-Loss, # (-,Y), are
computed using true cardinalities as well. Thus, setting (̂ = Y, is a
(not unique) minimizer of Flow-Loss.

Moerkotte et al. [34] showed PC((̂ ,Y) ≤ 64PC(Y,Y), where 6
is the largest Q-Error over all sub-plans. This loosely bounds how
much worse can the plan using (̂ be than the plan using Y in terms
of Q-Error. We prove a similar result for Flow-Loss.

Theorem 5.2.

PC((̂ ,Y) ≤ 72Flow-Loss((̂ ,Y) (11)

≤ 72
Flow-Loss((̂ ,Y)

Flow-Loss(Y,Y)
PC(Y,Y) (12)

where 7 =
1

min
!∈"∗ (#̂) #

∗ (1̂)!
, i.e., inverse of the minimum #ow

on the path 5∗ ((̂).
Proof. Flow-Loss (Equation 10) sums over all edges; Consider

only the terms summing over 5∗ ((̂), i.e.,
∑

$∈3∗ (1̂)

(-,Y) · , ∗ ((̂)2$. (13)

This is a weighted version of PC((̂ ,Y). We de!ned 7 , such that the
smallest weight is 1

42 . Thus multiplying Equation 13 by 72 ensures
that the coe$cients of# (-,() would be greater than 1, and Equation
11 follows. Equation 12 follows because we multiplied Equation 11
with a term greater than 1, since Flow-Loss(Y,Y) ≤ PC(Y,Y) (to
see this, notice that a potential solution for , ∗ (Y) sets the #ow of
each edge in 5∗ (Y) to 1, and rest to 0. This would make Flow-Loss
(Y,Y) = 5# (Y,Y). But, , ∗ (Y) chooses the #ow values to minimize
Flow-Loss (Y,Y), thus it will be at least as small as 5# (Y,Y)) !

Flow-Loss(1̂ ,Y)
Flow-Loss(Y,Y) is typically much smaller than 7 . But 7 is hard to

bound — and gets larger as the set of interesting paths increase.
Empirically this seems to be at least as good as the Q-Error bound.
But mostly, both these bounds provide intuition for why these are
sensible loss functions, since other loss functions, such as mean
squared error, provide no worst case guarantees whatsoever.

5.2 Discussion

Beyond left-deep plans. P-Cost, and therefore Flow-Loss, are de-
!ned over left-deep plans. Extending Flow-Loss to bushy plans is
more challenging: we will need a graph similar to the plan graph,
where every valid bushy plan is a path, but this will lead to an
exponential increase in the number of paths. But it does not seem
required to consider bushy plans explicitly when optimizing for
cardinality estimates. First, the best left-deep plan often has reason-
able performance compared to the best overall plan [23]. Second,
every sub-plan in the query is required to !nd the best left-deep
plan, therefore, the the same set of cardinality estimates are re-
quired to optimize both bushy plans and left-deep plans. Moreover,
when indices are used, left-deep sub-plans are a prominent part
of bushy plans. Hence, estimates that are important for choosing
good left-deep plans are also important for bushy plans.

Anchoring. An unusual property of Flow-Loss compared to loss
functions such as Q-Error is that it is not very sensitive to the

2023

2024

shows three representative examples of how Q-Error and Flow-
Loss change as we multiply or divide the cardinality of one node
by increasing amounts while keeping the others !xed at their true
values. Q-Error changes identically for all nodes (the lines overlap),
but the behavior of Flow-Loss di"ers depending on the node. Node
80 ! % has multiple expensive paths that go through it (note the red
edges in Figure 4). As we underestimate its cardinality, Flow-Loss
shoots up (blue line). This aligns with the intuition that underesti-
mating this node makes bad paths appear cheaper, which may cause
the optimizer to choose one of them instead of the actual cheapest
path. Overestimating its cardinality, on the other hand, make bad
paths appear even more expensive, which is good as we want the
optimizer to avoid these paths. Thus, it is sensible that Flow-Loss
stays near its minimum in this case. The node 80 ! 9 ! :% ! % is on
the cheapest path, while the node 7% ! % has two relatively good
paths passing through it (c.f. Figure 4). For these nodes, Flow-Loss
remains at its minimum for underestimates (since it makes good
paths appear cheaper), and shoots up for overestimates (since it
makes good paths appear more expensive). Recall that Flow-Loss
uses all relatively good paths, not just the cheapest, and therefore,
it is impacted by both nodes.

Flow-Loss roughly tracks PPC decision boundaries. Figure 7
compares the shapes of Q-Error, PPC, and Flow-Loss as we vary
the cardinality of a single node. Each curve is plotted on its own
scale as we only want to compare their trends. Node 80 ! 9 ! :%
is already on the cheapest path (cf. Figure 4), so Flow-Loss is only
sensitive to overestimating its cardinality, like PPC. Node 80 ! :%
is not on the cheapest path, and like PPC, Flow-Loss is a lot more
sensitive to underestimates as it causes #ow to be diverted to the
paths containing this node from potentially cheaper paths. Node
80 ! 7% ! :% ! % is an example of a case where Flow-Loss leads
to a di"erent behavior from PPC. For overestimates, PPC is #at at
its minimum while Flow-Loss blows up. 80 ! 7% ! :% ! % is not
on the cheapest path, but there are multiple nearly optimal paths
using this node (cf. Figure 4). Since Flow-Loss routes a non-trivial
amount of #ow on such paths, it is sensitive to making them more
expensive, even though the optimizer does not switch from the
cheapest path (thus, PPC remains #at). This is a desirable property
from the standpoint of robustness. It re#ects the fact that any of
the nearly optimal paths could become the cheapest path and get
chosen by the optimizer if the cardinalities change slightly. For
instance, although node 80 ! 7% ! :% ! % is not on the cheapest
path when all edges are costed using true cardinalities, it would
be on the cheapest path if we underestimate the cost of the 80 !
7% ! % → 80 ! 7% ! :% ! % edge (or overestimate the cost of the
actual cheapest path). In that case, PPC would have been sensitive
to increasing the cardinality of this node. By considering all good
paths simultaneously, Flow-Loss robustly captures the behavior of
the optimizer in response to such variations in cardinalities. As a
further example, in Figure 8, we vary cardinalities of two sub-plans
simultaneously. Once again we observe that Flow-Loss roughly
re#ects the behavior of PPC — it is highest when cardinalities for
both the nodes are underestimated (lower left quadrant).

6.3 Bene!ts of Flow-Loss
In practice, cardinality estimation models face several challenges:
limited model capacity (making it impossible to learn all the intrica-
cies of the data distribution), limited training data (since collecting
ground truth data is expensive), insu$cient features (e.g., it may
be hard to represent predicates on columns with a large number of
categorical values), noisy training data, changing data (e.g., Wang
et al. [50] show that learned models can have a steep drop in per-
formance after data is updated), and changing query workloads.
Thus, it is inevitable that such models will make mistakes. As the
examples in §6.2 suggest, Flow-Loss guides the learning to focus
on estimates that matter, and to improve their accuracy only to
the extent necessary for improving query performance. This has
several positive consequences as we highlight below.

Model capacity. Lower capacity models, or less expressive fea-
tures, make it harder for learned models to achieve high accuracy.
Flow-Loss helps use the limited model capacity in a way that maxi-
mizes the model’s impact on query performance.

Domain-speci!c regularization. A model trying to minimize
Q-Error treats each estimate as equally important, which makes
it easy to over!t to the training data. Regularization is a general
approach to mitigate over!tting and improve generalization, but
generic regularization techniques such as weight decay [2] simply
bias towards learning simpler models (e.g., smoother functions)
without taking advantage of the problem structure. Flow-Loss pro-
vides a stronger, guided regularization by utilizing domain-speci!c
knowledge about query optimization.6 The key information is to
know which details of the training data can be ignored without
impacting query performance. If estimation errors on a subset of
sub-plans do not typically cause worse plans, then there is no need
to learn a more complex model to correct them. This is precisely
what Flow-Loss does by allowing a high tolerance to cardinality
estimation errors for noncritical sub-plans.

Tolerance to noisy training data. As a direct consequence of the
previous point, by ignoring accuracy on less important subsets of
the data, Flow-Loss can better handle noisy, or missing training
data, which can let us avoid the expensive process of executing all
sub-plans to generate the true cardinalities. Instead, we can train
models using approximate cardinalities obtained via sampling [25].

7 FEATURIZATION AND MODELS
This section introduces the model architectures and featurization
that we use to evaluate Flow-Loss.

Featurization. As described by Kipf et al. [18], a sub-plan 6 is
mapped to three sets of input vectors: ;5 , <5 , and 55 for the tables,
joins, and predicates in the sub-plan. We augment these with a
vector =5 that captures the properties of the sub-plan in the con-
text of the plan graph. A one-hot vector encodes each table in the
sub-plan (;5), and a second one-hot vector encodes each join (<5).
For range predicates, we use min-max normalization [18, 39]. For
in predicates we use feature hashing [43], in which categorical
features with large alphabet sizes are hashed to / bins. Even if

6There are similar examples in other ML applications, e.g., Li et al. show domain-
speci!c loss functions for physics applications lead to improved generalization via
implicit regularization [26].

2025

/ is much smaller than the alphabet size, it still provides a sig-
nal for the learned models. For like predicates feature hashing
with character n-grams [51], and use additional features such as
the number of characters and the presence of a digit. We !nd that
/ = 10 bins each for every column-operator pair works well on
our workloads. As proposed by Dutt et al. [9], we add the cardi-
nality estimate for each table (after applying its predicates) from
PostgreSQL to that table’s vector in ;5 , which we found to be su$-
cient for our workload. For a stronger runtime signal, we could add
sample bitmaps [18, 19] (i.e., bitmaps indicating qualifying sample
tuples), however, as this would signi!cantly increase the model’s
parameters, we omit this optimization. Similarly, we do not ex-
plicitly encode group by columns like earlier work does [17] and
rely on PostgreSQL’s estimates instead. =5 is a vector for the plan
graph-based properties of a sub-plan. This includes information
about the immediate children of the sub-plan node in the plan graph
(i.e., the nodes obtained by joining the sub-plan with a base table).
Speci!cally: the number of children, the cost using PostgreSQL’s
estimated cardinalities of the join producing that child, and the rel-
ative estimated cardinality of that child compared to the sub-plan.
Intuitively, such information about neighboring plan graph nodes
could be useful to generalize to new queries. For all cardinalities,
we apply log transformation for training the models [9].

Models. To compare Q-Error and Flow-Loss, we train two repre-
sentative neural network architectures with both loss functions.
Fully-Connected Neural Network (FCNN) was used by Ortiz et
al. [39] and Dutt et al. [9]. It takes as input a 1-D feature vector
that concatenates the vectors in ;5 , <5 , 55 , and =5 . Multi-Set Con-
volutional Network (MSCN) was proposed by Kipf et al. [18] based
on the DeepSets architecture [58], and we extend it to include the
=5 features as well. These are very di"erent architectures, and rep-
resent important trade-o"s — FCNN is a lightweight model that
trains e$ciently, but does not scale to increasing database sizes
(number of parameters grow with the number of columns), while
MSCN’s set-based formulation is scalable but less e$cient to train.

8 CARDINALITY ESTIMATION BENCHMARK
(CEB)

Table 1: Comparing CEB with JOB.

Dataset
JOB
(IMDb)

CEB
(IMDb)

CEB
(SE)

Queries 113 13,644 3435

Sub-plans 70K 3.5M 500K

Templates 31 15 6

Joins 5 – 16 5 – 15 5 – 8

Optimal plans 88 2200 113

Benchmark. We create a tool to generate a large number of chal-
lenging queries based on prede!ned templates and rules. Using this
tool, we generate the Cardinality Estimation Benchmark (CEB) [36],
a workload on two di"erent databases (IMDb [23] and StackEx-
change (SE) [44]) containing over 16! unique queries and true
cardinalities for over 4. sub-plans including count and group

Figure 9: TOML con!guration !le for generating queries
based on a prede!ned template and rules.

by aggregates, and range, in, and like predicates. Table 1 summa-
rizes the key properties of CEB, and contrasts them with Join Order
Benchmark (JOB) [23]. Notice that for the 13! IMDb queries in CEB,
there are over 2! unique plans generated by PostgreSQL with true
cardinalities — showing that di"erent predicates lead to a diverse
collection of optimal query plans. CEB addresses the two major
limitations of queries used in previous works [8, 18, 39]: First, past
work on supervised cardinality estimation [8, 18, 39] evaluate on
workloads with only up to six joins per query. CEB has much more
complex queries ranging from !ve to sixteen joins. Second, while
JOB [23] contains challenging queries with up to 16 joins, they only
have two to !ve queries per template. This is insu$cient training
data for supervised learning methods. CEB contains hundreds of
queries per hand-crafted template with real-world interpretations.

Query generator.Generating predicate values for query templates
is challenging because predicates interact in complex ways, and
sampling them independently would often lead to queries with
zero or very few results. Our key insight is to generate interesting
predicate values for multiple columns together, using prede!ned
SQL queries that take into account correlations and other user
speci!ed conditions. Figure 9 shows a complete template which
generates queries with the same structure as our running example,
+1. We will walk through the process of generating a sample query
following the rules speci!ed in this template. [base sql] is the SQL
query to be generated, with a few unspeci!ed predicates to be
!lled in. [predicates] are rules to choose the predicates for groups
columns. For the predicate year we choose a value uniformly from
the given list. We sample predicate values for the remaining three
in predicates together because kind, role, and gender are highly
correlated columns. For these, we also add year as a dependency
— as the year chosen would in#uence predicate selectivities for all
these columns. We generate a list of candidate triples using a group
by query, and sample 2 to 7 values for each in predicate.

Timeouts. Some sub-plans in the StackExchange queries time out
when collecting the true values. This is due to unusual join graphs
which make certain sub-plans behave like cross-joins (see online
appendix [35]). In such cases, we use a large constant value in

2026

place of the true cardinalities as the label for the timed out sub-
plans in the training data. We veri!ed that the plans generated
by injecting all known true cardinalities and this constant value
into PostgreSQL leads to almost 10× faster runtimes than using the
default PostgreSQL estimates.

Approximate training data. Intuitively, we may not need precise
cardinality estimates to get the best plans — thus, approximate
query processing (AQP) techniques, such as wander join [25] or
IBJS [24], should provide su$cient accuracy. However, we cannot
use these techniques for query optimization because they are too
slow to provide estimates for all sub-plans at runtime. But these
techniques are much faster than generating the ground truth cardi-
nality estimates for all sub-plans, which is the most expensive step
in building a cardinality estimation model. We modify the wander
join algorithm to e$ciently generate all the cardinality estimates
in a given workload (excluding LIKE / regex queries), with precise
implementation details given in the online appendix [35]. We use
this only as a proof of concept; our implementation is not optimized,
and uses a mix of Python and SQL calls. Despite this, we generate
the wander join estimates with speedups over generating ground
truth data that range from 10× to 100× for di"erent templates.
For instance, for the largest template with around 3! sub-plans,
generating all the ground truth data on a single core takes about
5 hours, while wander join estimates take less than 5 minutes. In
Section 9.5, we explore if the wander join estimates are as good as
true cardinalities to train learned models.

9 EXPERIMENTS

Setup. We use PostgreSQL 12 and MySQL 8 (with the MyISAM
storage backend). We tune the con!gurations to reasonable settings,
while disabling some optimizations like parallelism and material-
ization in both the DBMSs. The precise con!gurations, and code
to reproduce the execution environment is provided online [36].
For the runtime experiments, we use Amazon EC2 instances with a
NVMe SSD device, and 8GB RAM.

Loss functions. Our main focus is to compare the Q-Error and
Flow-Loss loss functions to train the neural networkmodels.We use
the true cardinalities and estimates from PostgreSQL as baselines
to compare against the learned models.

Training and test sets. We consider two scenarios:
(1) Testing on seen templates. The model is evaluated on new

queries from the same templates that it was trained on. We put
20% of the queries of each template into the validation set (used
to tune hyperparameters), and 40% each into the training and
test sets. We report results from the test set.

(2) Testing on unseen templates. The model is evaluated on
di"erent templates than the ones it was trained on. We split
the templates equally into training and test templates. Since
the number of templates is much smaller than the number of
queries, we use ten-fold cross-validation for these experiments:
the training / test set splits are done randomly using ten di"er-
ent seeds (seeds = 1 − 10). We use the same hyperparameters
as determined in the seen templates scenario. Even though the
templates are di"erent in the second scenario, there is signi!-
cant overlap with the training set on query sub-plans. This tests
the robustness of these models to slight shifts in the workload.

Key result. Figure 10a shows the results of all approaches w.r.t.
PPC on IMDb. All models outperform PostgreSQL’s estimator sig-
ni!cantly on seen templates. However, only the Flow-Loss trained
models do so consistently on unseen templates as well. For seen
templates, the models trained using Flow-Loss do better than the
models trained using Q-Error on PPC. All models get worse when
evaluated on unseen templates - but the Flow-Loss models degrade
more gracefully. When the queries are from seen templates, the
di"erence in PPC does not translate into runtime improvements (cf.
Figure 10b). However, on unseen templates, we see clear improve-
ments in runtime as well.

9.1 Testing on seen templates

Worse Q-Error, better PPC, similar runtimes.We give detailed
evaluations on the seen templates in the online appendix [35], but
the key takeaway is that all learned cardinality estimationmodels do
equally well and improve signi!cantly over PostgreSQL estimates.
The median Q-Error of the models trained using Flow-Loss was
typically 2× worse than models trained using Q-Error, while being
up to 10× worse at the 99%ℎ percentile. But, this is to be expected
— our goal was to improve cardinality estimates only when it is
important for query optimization. As seen in Figure 10, the Flow-
Loss trained models improve mean PPC over the Q-Error models,
getting close to the PPC with true cardinalities. This suggests that
Flow-Loss models better utilize their model capacity to focus on
sub-plans that are more crucial for PPC. It also shows that better
Q-Error estimates do not directly translate into improved plans.
However, in terms of runtimes, all models do equally well, and are
very close to the performance of using true cardinalities.

9.2 Testing on unseen templates
When we split the training set and test set by templates, each
partition leads to very di"erent information available to the models
— therefore we will analyze the partitions individually.

Flow-Loss generalizes better. In Figure 11a, we look at the perfor-
mance of a model trained with Flow-Loss compared to one trained
with Q-Error w.r.t. query runtime. A single bar represents the same
model architecture (FCNN or MSCN) trained and evaluated on
one of the ten partitions in the unseen templates scenario. This
!gure highlights the overall trends across all unseen partition ex-
periments: we see signi!cant improvements on some partitions,
relatively smaller regressions on some partitions, and similar per-
formance on many partitions. This behavior is also re#ected in the
PPC trends.

Zooming in on partitions. For the FCNN and MSCN models,
we sort all the partitions by the di"erence in the mean runtimes
between the Flow-Loss and the Q-Error models. We select the best,
median, and worst partition for Flow-Loss and show the 50> , 90> ,
and 99> for runtimes in Figure 12. For both architectures, the model
trained with Flow-Loss signi!cantly improves on the best partition
, particularly at the tail — being up to 8×, and hundreds of seconds
faster than the Q-Error model at the 99th percentile. On the worst
partition, it is about 20 seconds slower than the Q-Error model at the
99%ℎ percentile. There are an additional six cases where the Flow-
Loss models improve over the Q-Error models, with improvements
in tens of seconds, which is comparable to the best improvement

2027

2028

2029

2030

REFERENCES
[1] Anant Agarwal and Je"rey Lang. 2005. Foundations of analog and digital electronic

circuits. Elsevier.
[2] Christopher M Bishop. 1995. Regularization and complexity control in feed-

forward networks. (1995).
[3] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-

mensional Workload-Aware Histogram. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara, CA, USA, May
21-24, 2001. 211–222. https://doi.org/10.1145/375663.375686

[4] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic cardinality
estimation: Tighter upper bounds for intermediate join cardinalities. In Proceed-
ings of the 2019 International Conference on Management of Data. 18–35.

[5] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Ken Salem.
2021. Accurate Summary-based Cardinality Estimation Through the Lens of
Cardinality Estimation Graphs. arXiv preprint arXiv:2105.08878 (2021).

[6] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and
Shang-Hua Teng. 2011. Electrical #ows, laplacian systems, and faster approxi-
mation of maximum #ow in undirected graphs. In Proceedings of the forty-third
annual ACM symposium on Theory of computing. 273–282.

[7] Peter G Doyle and J Laurie Snell. 1984. Random walks and electric networks.
Vol. 22. American Mathematical Soc.

[8] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.
E$ciently Approximating Selectivity Functions using Low Overhead Regression
Models. Proc. VLDB Endow. 13, 11 (2020), 2215–2228. http://www.vldb.org/pvldb/
vol13/p2215-dutt.pdf

[9] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. PVLDB 12, 9 (2019), 1044–1057. https://doi.org/10.14778/
3329772.3329780

[10] Pablo Ezzatti, Enrique S. Quintana-Ortí, and Alfredo Remón. 2011. Using graphics
processors to accelerate the computation of the matrix inverse. J. Supercomput.
58, 3 (2011), 429–437. https://doi.org/10.1007/s11227-011-0606-4

[11] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estimation
using Probabilistic Models. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, Santa Barbara, CA, USA, May 21-24, 2001.
461–472. https://doi.org/10.1145/375663.375727

[12] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020. 1035–1050. https://doi.org/10.1145/3318464.3389741

[13] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021.
Simplicity Done Right for Join Ordering.. In CIDR.

[14] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proc. VLDB Endow. 13, 7 (2020), 992–1005. http://www.vldb.org/pvldb/vol13/p992-
hilprecht.pdf

[15] Oleg Ivanov and Sergey Bartunov. 2017. Adaptive cardinality estimation. arXiv
preprint arXiv:1711.08330 (2017).

[16] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities using Bandwidth-Optimized Kernel Density Models. Proc. VLDB
Endow. 10, 13 (2017), 2085–2096. https://doi.org/10.14778/3151106.3151112

[17] Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas Neumann,
and Alfons Kemper. 2019. Estimating Filtered Group-By Queries is Hard: Deep
Learning to the Rescue. 1st International Workshop on Applied AI for Database
Systems and Applications (2019).

[18] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. [n.d.]. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR 2019, 9th Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. http:
//cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[19] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Viktor
Leis, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. [n.d.]. Estimating
Cardinalities with Deep Sketches. In Proceedings of the 2019 International Confer-
ence on Management of Data, SIGMOD Conference 2019, Amsterdam, The Nether-
lands, June 30 - July 5, 2019. 1937–1940. https://doi.org/10.1145/3299869.3320218

[20] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. CoRR abs/1808.03196 (2018). arXiv:1808.03196 http://arxiv.org/abs/
1808.03196

[21] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spiel-
man. 2016. Sparsi!ed cholesky and multigrid solvers for connection laplacians. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.
842–850.

[22] Yin Tat Lee, Satish Rao, andNikhil Srivastava. 2013. A new approach to computing
maximum #ows using electrical #ows. In Proceedings of the forty-!fth annual
ACM symposium on Theory of computing. 755–764.

[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB
9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[24] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sam-
pling. In CIDR 2017, 8th Biennial Conference on Innovative Data Systems Re-
search, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. http:
//cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf

[25] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-
gation via random walks. In Proceedings of the 2016 International Conference on
Management of Data. 615–629.

[26] Li Li, Stephan Hoyer, Ryan Pederson, Ruoxi Sun, Ekin D Cubuk, Patrick Riley,
and Kieron Burke. 2020. Kohn-Sham equations as regularizer: Building prior
knowledge into machine-learned physics. arXiv preprint arXiv:2009.08551 (2020).

[27] Wes Maciejewski. 2012. Resistance and relatedness on an evolutionary graph.
Journal of The Royal Society Interface 9, 68 (2012), 511–517.

[28] Aleksander Madry. 2016. Computing maximum #ow with augmenting electrical
#ows. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 593–602.

[29] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2020. Bao: Learning to Steer Query Optimizers. CoRR
abs/2004.03814 (2020). arXiv:2004.03814 https://arxiv.org/abs/2004.03814

[30] Ryan Marcus and Olga Papaemmanouil. 2019. Towards a Hands-Free Query
Optimizer through Deep Learning. In CIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16, 2019, Online
Proceedings. http://cidrdb.org/cidr2019/papers/p96-marcus-cidr19.pdf

[31] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. PVLDB 12, 11 (2019), 1705–1718. https://doi.org/10.14778/
3342263.3342644

[32] Yossi Matias, Je"rey Scott Vitter, and Min Wang. 1998. Wavelet-based histograms
for selectivity estimation. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data. 448–459.

[33] Brad H McRae, Brett G Dickson, Timothy H Keitt, and Viral B Shah. 2008. Using
circuit theory to model connectivity in ecology, evolution, and conservation.
Ecology 89, 10 (2008), 2712–2724.

[34] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB 2, 1
(2009), 982–993. https://doi.org/10.14778/1687627.1687738

[35] Parimarjan Negi. 2021. Flow-Loss Online Appendix. Retrieved July 27, 2021
from https://parimarjan.github.io/#ow_loss_appendix [Online;].

[36] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Mao Hongzi, Nesime Tatbul, Tim
Kraska, and Mohammad Alizadeh. 2021. Cardinality Estimation Benchmark.
Retrieved July 27, 2021 from https://github.com/learnedsystems/ceb [Online;].

[37] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and
Mohammad Alizadeh. 2020. Cost-Guided Cardinality Estimation: Focus Where it
Matters. In 2020 IEEE 36th International Conference on Data EngineeringWorkshops
(ICDEW). IEEE, 154–157.

[38] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep Rein-
forcement Learning. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning, DEEM@SIGMOD 2018, Houston, TX, USA, June
15, 2018. 4:1–4:4. https://doi.org/10.1145/3209889.3209890

[39] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. CoRR
abs/1905.06425 (2019). arXiv:1905.06425 http://arxiv.org/abs/1905.06425

[40] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2018. Quicksel: Quick
selectivity learning with mixture models. arXiv preprint arXiv:1812.10568 (2018).

[41] Matthew Perron, Zeyuan Shang, TimKraska, andMichael Stonebraker. 2019. How
I Learned to Stop Worrying and Love Re-optimization. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 1758–
1761. https://doi.org/10.1109/ICDE.2019.00191

[42] Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without
the attribute value independence assumption. In VLDB, Vol. 97. 486–495.

[43] Dipanjan (DJ) Sarkar. 2019. Categorical Data. https://towardsdatascience.com/
understanding-feature-engineering-part-2-categorical-data-f54324193e63

[44] StackExchange. 2020. StackExchange Data Explorer. https://data.stackexchange.
com/

[45] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
PVLDB 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[46] NIPPON TELEGRAPH and TELEPHONE CORPORATION. 2013. PG Hint Plan.
https://pghintplan.osdn.jp/pg_hint_plan.html

[47] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan
Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded Query Evaluation
via Reinforcement Learning. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. 1153–1170. https://doi.org/10.1145/3299869.3300088

2031

https://doi.org/10.1145/375663.375686
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.1007/s11227-011-0606-4
https://doi.org/10.1145/375663.375727
https://doi.org/10.1145/3318464.3389741
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
https://doi.org/10.14778/3151106.3151112
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.1145/3299869.3320218
https://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
https://doi.org/10.14778/2850583.2850594
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
https://arxiv.org/abs/2004.03814
https://arxiv.org/abs/2004.03814
http://cidrdb.org/cidr2019/papers/p96-marcus-cidr19.pdf
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/1687627.1687738
https://parimarjan.github.io/flow_loss_appendix
https://github.com/learnedsystems/ceb
https://doi.org/10.1145/3209889.3209890
https://arxiv.org/abs/1905.06425
http://arxiv.org/abs/1905.06425
https://doi.org/10.1109/ICDE.2019.00191
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
https://data.stackexchange.com/
https://data.stackexchange.com/
https://doi.org/10.14778/3368289.3368296
https://pghintplan.osdn.jp/pg_hint_plan.html
https://doi.org/10.1145/3299869.3300088

[48] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2013. E$ciently
adapting graphical models for selectivity estimation. VLDB J. 22, 1 (2013), 3–27.
https://doi.org/10.1007/s00778-012-0293-7

[49] Nisheeth K Vishnoi. 2012. Laplacian solvers and their algorithmic applications.
Theoretical Computer Science 8, 1-2 (2012), 1–141.

[50] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2020. Are We Ready For Learned Cardinality Estimation? arXiv preprint
arXiv:2012.06743 (2020).

[51] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Chara-
gram: Embedding words and sentences via character n-grams. arXiv preprint
arXiv:1607.02789 (2016).

[52] Wikipedia. [n.d.]. Metric (Mathematics). Retrieved July 27, 2021 from https:
//en.wikipedia.org/wiki/Metric_(mathematics) [Online;].

[53] Wikipedia. [n.d.]. Pseudometric Space. [Online;].
[54] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang

Lehner. 2019. Cardinality estimation with local deep learning models. In Pro-
ceedings of the Second International Workshop on Exploiting Arti!cial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2019, Amsterdam, The Nether-
lands, July 5, 2019. 5:1–5:8. https://doi.org/10.1145/3329859.3329875

[55] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
PVLDB 12, 3 (2018), 210–222. https://doi.org/10.14778/3291264.3291267

[56] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. CoRR
abs/2006.08109 (2020). arXiv:2006.08109 https://arxiv.org/abs/2006.08109

[57] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Peter
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279–292.
https://doi.org/10.14778/3368289.3368294

[58] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. In Advances in neural
information processing systems. 3391–3401.

[59] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. 1525–1539. https://doi.org/10.1145/3183713.3183739

2032

https://doi.org/10.1007/s00778-012-0293-7
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.14778/3291264.3291267
https://arxiv.org/abs/2006.08109
https://arxiv.org/abs/2006.08109
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1145/3183713.3183739

