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Abstract—The increasing deployment of wireless sensors
enables a broad spectrum of health-related wearable applications.
Due to the sensitivity of collected personal health information,
these wearables should be authenticated together with their users
as “wearable-user pairs” to ensure that they are attached to
legitimate users. However, various devices are equipped with
dedicated sensing abilities and wireless protocols correspond-
ing to data characteristics in practice. Traditional authentication
methodologies may not work in this heterogeneous environment
because of protocol incompatibility. For example, how to verify a
new ZigBee-enabled monitor when the existing trusted device is
Wi-Fi-enabled? Therefore, to achieve authentication across pro-
tocols, in this article, we leverage the unique cross-technology
interference (CTI), triggered by heterogeneous wireless trans-
missions, along with human physiological activity measurements
(e.g., respiration patterns) to design an authentication scheme
between wearables and users. Specifically, the authentication
from an unknown ZigBee wearable to a trusted Wi-Fi device
is achieved by monitoring the channel state information (CSI)
changes according to human respiration. Our approach not only
successfully recognizes a legitimate wearable-user pair but also
blocks illegal access from adversaries. Extensive experiments have
been conducted to demonstrate both the security and feasibility
of the proposed scheme. The designed mechanism can achieve
over 92% authentication accuracy with human subjects.

Index Terms—Biometrics, channel state information (CSI),
device authentication, wireless coexistence.

I. INTRODUCTION

WEARABLE devices collect multidimensional data con-
tinuously, timely, and accurately to support a large

variety of health-related applications, including fitness track-
ing and health monitoring. Recently, there are plenty of works
to improve the efficiency and comfortableness in personal
health monitoring by making wearable sensors smaller and
more noninvasive with advanced technologies, e.g., nano-
materials. These wearables can be closely attached to the
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tissue surface to capture the thermal, electrical, mechanical,
or chemical changes of objectives, including glucose concen-
tration in sweat, the gas molecules in exhaled breath, and
physiological signals that reflect heart function [1]. However,
the privacy and security issue becomes the stumbling block. It
is dangerous if the collected health data are leaked due to their
sensitivity. Therefore, the identities of people accessing data
should be verified to prevent unauthorized access. Moreover, in
health monitoring, stronger authentication is expected, where
the verification should not be limited to the user identity.
The data sources also need authentication. If the health data
are coming from malicious entities and mismatch with gen-
uine user identities, applications may hazardously produce
incorrect diagnosis results and healthcare recommendations.
Consequently, to achieve these two goals simultaneously, a
new wearable must first get authenticated to verify that it is
possessed and accessed by legitimate users only, for which we
denote as the “wearable-user authentication.”

Unfortunately, current practices lack standardized regula-
tions due to wearables’ resource and ability constraints, as
well as the various wireless protocols in use [2]. For exam-
ple, a blood glucose monitor, whose data update frequency
is low, may be a tiny device using the ZigBee protocol to
achieve long battery life, whereas continuous electrocardio-
graphy (ECG) signals should be transmitted by Wi-Fi to
meet their transmission bandwidth requirement. In this hetero-
geneous environment, where devices with different resource
constraints use different wireless protocols to transmit vari-
ous types of data, additional hubs/gateways are required for
authentication in traditional authentication systems. However,
ZigBee-enabled monitors can hardly fulfill security goals even
with the help of a hub/gateway because ZigBee standard
does not provide a strong security guarantee, and monitors
have limited ability and resources for complicated protec-
tion. To overcome these constraints, we intend to find shared
features of wearables despite using diverse wireless proto-
cols and measuring different health parameters. The shared
features we plan to utilize are the ubiquitous wireless sig-
nals transmitted from wearable devices, and we authenticate
a new wearable-user pair with the help of a wearable that
is already verified. For example, a new ZigBee-based wear-
able is to be verified that it is placed on the same legitimate
user with a trusted Wi-Fi-based device, corresponding to the
aforementioned examples of blood glucose monitor and ECG
monitor. Existing authentication schemes may provide simi-
lar solutions, such as device-to-device (D2D) authentication.
Specifically, most D2D authentication schemes in IoT either
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use a preinstalled key [3] or generate a common key based
on shared features, such as channel state information (CSI)
and received signal strength indicator (RSSI) [4], and nonlin-
ear distortion of speaker-microphone systems [5]. In practice,
the major drawback of the above works is that they over-
look wearable systems’ heterogeneous abilities and wireless
environments. They can only work for devices with similar
embedded hardware or under the same wireless protocol and
fail to authenticate the wearable-user pair. Meanwhile, extract-
ing identical secret information from CSI requires a short
distance between devices to (e.g., less than 0.4λ ≈ 5 cm for
2.4 GHz in [6], where λ is the wavelength), which is too strict
for general wearable systems.

To make sure that our scheme can support wearable authen-
tication better, we explore the mutual influence between the
coexisting heterogeneous wireless technologies, e.g., Wi-Fi
and ZigBee transmissions in the 2.4-GHz band [7], which is
named as cross-technology interference (CTI). Most previous
studies focus on mitigating CTI to avoid packet corruption
and thus, boost service quality [8]. However, the full potential
of CTI is not reached. The on-body deployment of wear-
ables in health monitoring provides an opportunity to trigger
unique CTI sequences, which are reflected on CSI and affected
by device distance, transmission power, and user-dependent
physiological behavior, e.g., respiration and ECG [9]. In this
work, instead of reducing CTI, we leverage its uniqueness to
develop a novel authentication scheme among coarsely posi-
tioned devices of diverse capabilities. Our contributions are
listed as follows.

1) Our work is the first to leverage CTI across
Wi-Fi and ZigBee in heterogeneous environments for
authentication.

2) By exploring the potential of CTI, we bypass the
constraints of existing authentication approaches based
on shared secrets and wireless signal physical layer
properties. The achieved wearable-user pair authen-
tication achieved more complex goals than regular
authentication.

3) The authentication scheme is robust against illegitimate
accesses. Our design does not need a centralized trusted
third party, and thus, reduces deployment costs.

The remainder of this article is organized as follows.
Section II gives preliminaries about wireless signals and how
they are used in health monitoring, followed by our motiva-
tions in Section III. The theoretical reasoning is provided in
Section IV. Section V gives the detailed design of our authen-
tication scheme. Thorough evaluations are given in Section VI
to prove the effectiveness. Section VII discusses related works.
Finally, Section VIII concludes this article.

II. PRELIMINARIES

A. Channel-State Information and Physiological Signal
Sensing

1) Channel-State Information: The CSI is a metric to
evaluate channel properties of transmission links that are
multiple-input/multiple-output (MIMO) radio channel [10]. It
is produced by estimating the time-varying channel frequency

response for the orthogonal frequency-division multiplexing
(OFDM) symbols. This information describes how a signal
propagates from the transmitter to the receiver and represents
the combined effect of, for example, scattering, fading, and
power decay with distance.

Suppose a communication system has NTX transmitter anten-
nas, NRX receiver antennas, and Ns OFDM subcarriers in
one channel. This channel exists NTX × NRX × Ns subcarriers
when transmitting signals. The CSI H(f , t) measures chan-
nel frequency response in different subcarriers with frequency
f [11]. Let X(f , t) and Y(f , t) represent the transmitted and
received signal with different subcarrier frequencies. H(f , t)
can be calculated at the receiver side using a known transmit-
ted signal via H(f , t) = Y(f , t)/X(f , t)

H(f , t) =





h11 h12 · · · h1NTx
h21 h22 · · · h2NTx
...

...
. . .

...

hNRx 1 hNRx 2 · · · hNRx NTx




(1)

where hmn is the complex transmission coefficient from the
transmitter antenna m to the receiver antenna n. hmn reflects
the condition of transmission link and is sensitive to the
changes in the lengths of transmission paths. When a human
subject is in the transmission environment of Wi-Fi signals,
their movements change the path lengths of Wi-Fi signals and
thus, perturb the CSI. From the variation of CSI, the human
movements can be recognized.

2) Physiological Signal Sensing by CSI: The sensitive CSI
is rich in information and can reflect not only vigorous human
activities but also small-scale movements caused by physio-
logical activities, such as breathing and heartbeats. A human
respiration cycle includes inhalation and exhalation, during
which air is taken in and pushed out by the forces from lung
and surrounding muscles. An important muscle involved is
the diaphragm, a dome-shaped muscle at the bottom of the
lungs. It controls breathing and separates the chest cavity from
the abdominal cavity. When a breath is taken, it flattens out
and pulls forward, making more space for the lungs. During
exhalation, the diaphragm expands and forces air out [12]. By
monitoring the amplitudes and phases of CSI, the displacements
of muscles that occur in respiration cycles can be detected [13].
When monitoring the respiration cycles, the muscle movements
and the vibration of blood vessels in the chest area caused by
heartbeats are also captured. Recently, there are works that
track breathing and heartbeat simultaneously by filtering out
the interference of breathing in CSI [14].

As indicated in [15], sensing physiological signals from
CSI are not as accurate as from on-body sensors and faces
practically constraints in a large-scale environment, but is
still effective enough to identify individuals. The respiratory
system, if elaborated as a mechanical behavior, is actually the
pressure differences applied to the system, either by the res-
piratory muscles or by external devices, and the associated
volume changes of the system [16]. Previous studies on the
nature of respiration show that the properties of respiration
are determined by physical factors, such as pulmonary struc-
ture, different respiration scenarios, mechanical properties of
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lung tissue (e.g., intraesophageal pressure, lung compliance,
and lung resistance), the interaction with organs or body parts,
etc., [17], [18]. The volume of breathing depends on the elas-
tic forces within the respiratory system, while the breathing
rate is decided by forces resulting from frictional resistance
within the lung parenchyma and the surrounding tissues and
forces relating to acceleration of mass. Most of these influ-
ence factors are determined by distinctive human demographic
attributes and vary from person to person. This distinctiveness
also applies to heartbeats. Inspired by these research findings,
we leverage the existing Wi-Fi signals emitted from wearable
devices and discover how the unique physiological information
embedded in the CSI can help our goal of authentication.

B. Cross Technology Interference Between Heterogeneous
Wireless Protocols

In practice, the CSI is under the influence of the transmis-
sion of signals other than Wi-Fi signals. The 2.4-GHz ISM
band is a license-free radio band that is shared by industrial
wireless network standards based on IEEE 802.15.4 (ZigBee,
WirelessHART, and ISA100), IEEE 802.11b/g/n, and other
protocols. When these signals are propagating in the same
frequency, they interfere with each other and the reliability
of wireless communications could be deteriorated due to this
CTI. The CTI among protocols will cause significant packet
loss, where the degree of interference is determined by vari-
ous types of factors, including transmission rate, energy, and
distance. More specifically, 802.11b networks have a much
larger impact than those of 802.11g due to its longer channel-
time for 802.11 packets [7]. Under the presence of Wi-Fi
traffic, the transmission latency will increase for traffic using
802.15.4 due to the use of the CSMA/CA protocol in the
data link layer. When the 802.15.4 radio is far away from the
smartphones or the channel RSSI is low, the Wi-Fi traffic is
not corrupted. However, ZigBee packets are contaminated by
Wi-Fi traffic, and thus, they will be discarded by the receiver.
On the other hand, 802.11 packets will backoff during 802.15.4
transmissions when the distance is small.

Recent studies found out that when the power level of on-
going ZigBee traffic is not high enough to interrupt Wi-Fi
transmission, the Wi-Fi packets will be successfully delivered,
though the preambles of Wi-Fi packets are interfered and the
amplitudes of CSI are changed [19]. In the heterogeneous envi-
ronment of health monitoring, the CTI is inevitable. Instead
of mitigating CTI, we plan to explore the uniqueness lying in
the statistical features of CSI hmn triggered by CTI to sup-
plement the distinctiveness of physiological information and
thus, fulfill wearable-user authentication simultaneously.

III. MOTIVATION

A. Overview

To address the diversity of commercial health-related wear-
ables, we propose an authentication scheme that takes advan-
tage of CTI-interfered CSI changes detected by on-body
Wi-Fi-based wearables. Since wearables are attached to the
human body surface, the CSI is jointly affected by the user’s
physiological activities, e.g., respiration and heartbeats, and

Fig. 1. System description.

Fig. 2. System model.

CTI from other wearables belonging to this user together.
Hence, not the device but the wearable-user pair is authen-
ticated by the combined information, and illegitimate users,
who fail to mimic the physiological activities and CTI, are pre-
vented from using the device. Our scheme turns the “harmful”
CTI from ZigBee wearables into a helpful hand.

Our proposed system is illustrated in Fig. 1. Assume that a
Wi-Fi on-body device is trusted, and a wearable device using
a different wireless protocol, e.g., ZigBee, is trying to authen-
ticate itself to the Wi-Fi device before data collection. The
ZigBee-based wearable sends ZigBee packets in the presence
of a Wi-Fi transmission pair, i.e., a Wi-Fi router and the Wi-
Fi device. After detecting the presence of CTI from CSI, the
Wi-Fi device begins capturing CSI samples. The individual-
dependent inhalation-exhalation process and heartbeats will
result in wireless channel path changes and the distance from
the ZigBee device to the Wi-Fi device, demonstrated as CSI
characteristic changes in CTI-interfered Wi-Fi packets. Then,
the Wi-Fi device is able to uncover unique features and decide
if the new device is attached to the legitimate wearer’s body
by a trained classification model.

B. System Setting

As shown in Fig. 2, we consider a healthcare scenario,
where the user has several wearable devices attached to body
for monitoring different physiological and daily activities.

1) Wi-Fi Router: It communicates with the Wi-Fi device
using 802.11 protocol and works as an anchor for
generating background Wi-Fi traffic.

2) Wi-Fi-Based Wearable: This device is considered as a
trusted device, which is able to collect health-related
data and send data to the cloud via a Wi-Fi router in
2.4-GHz band. It may be worn on wrist or attached to
chest according to its functions. It detects and records
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Fig. 3. Impact of ZigBee traffic on CSI.

CTI. It is also responsible for comparing the template
with CTI-interfered CSI for authentication.

3) ZigBee-Based Wearable: The ZigBee-based device is
capable of broadcasting ZigBee packets and generating
CTIs with its transmission. It is attached to the user’s
upper body, where the majority of health monitoring
devices are place, including chest, neck, and abdomen.

C. From Human Respiration and CTI to CSI

To analyze the practicality of designing an authentication
scheme using “interfered” CSI measurements, we demon-
strate how CSI amplitudes change with physiological activities
and CTI from ZigBee transmission. Specifically, as shown in
Fig. 2, we use a Raspberry Pi 4 as the Wi-Fi wearable, which
is installed with Nexmon [20], a C-based firmware patch-
ing framework for Broadcom/Cypress Wi-Fi chips enabling
functions, including raw Wi-Fi signal transmission and CSI
extraction, and a TI CC26x2R Wireless MCU LaunchPad to
send ZigBee packets periodically on overlapping frequencies.

1) CSI Changes With Physiological Activities and ZigBee
Interference: We attach the Wi-Fi device to a subject’s chest,
set up the transmission power of ZigBee device on abdomen,
and measure the CSI values of Wi-Fi packets. Fig. 3 demon-
strates CSI time series obtained with and without ZigBee
interference in the tenth subcarrier of Wi-Fi Channel 1.

In the first round of data collection, there are no interfering
signals in the transmission environment and the human sub-
ject is sitting still, so physiological activities, e.g., breathing,
is the only factor that can greatly affect CSI. Despite random
noises, the amplitudes of uncontaminated CSI show a clear
cyclical up-and-down tendency, which matches the back-and-
forth chest movements during respiration and indicates the
existence of inhale–exhale cycles. Here, approximately two
cycles are recorded.

Then, we add ZigBee interference to the previous settings
by letting LaunchPad send a few packets at power −15 dBm.
Each ZigBee packet is designed to cover approximately 40
Wi-Fi packets and the interval between ZigBee packets covers

Fig. 4. ZigBee traffic on CSI-different Tx power.

around 15 Wi-Fi packets. From Fig. 3, we can see that the
CTI is captured by the increased CSI amplitudes while the
peaks and valleys in respiration cycles can still be visually
detected. From these findings, we tell that CTI can change CSI
amplitudes while preserving some physiological features. We
further speculate that given different patterns of ZigBee packet
flow, the CSI pattern influenced by ZigBee packets may also
vary.

2) CSI Distinctiveness and Similarity Among Subjects:
Then, we place the two devices on two human subjects. The
transmission power levels of the Wi-Fi device, the distance
between the Wi-Fi device and router, and the distance between
the Wi-Fi device and ZigBee device are set to be the same.
The CSI amplitudes demonstrate apparent differences for two
human subjects due to their distinct demographic attributes, as
shown in Fig. 4. When the ZigBee device works at −15 dBm,
the amplitudes from the two subjects almost have no coin-
cidence point. The distinctiveness of CSI sequences between
subject 1 and 2 is obvious. When the power of the ZigBee
device is assigned with a larger value (0 dBm), the interfered
amplitudes are much higher than those when the ZigBee power
is −15 dBm, and two subjects’ amplitudes move closer to each
other. Nevertheless, they are still misaligned.

We use the Kendall rank correlation coefficient [21] to test
whether two raw CSI sequences are statistically dependent.
The sequences are aligned by the first peak. The correlation
coefficients between Subject 1’s and Subject 2’s CSI sequences
when the power of ZigBee is 0 and −15 dBm are 0.0666
and 0.0071 with a p-value of 0.1611 and 0.1879, respec-
tively. It echoes the findings that CSI sequences are distinctive
personwise and higher ZigBee noises may weaken the distinc-
tiveness. The correlation coefficients between two Subject 2’s
CSI sequences when the power of ZigBee is 0 dBm is 0.8281
with a p-value of 0.0005, which verifies the similarity between
the same subject’s CSI sequences. The correlation coefficients
between Subject 2’s CSI sequences when the power of ZigBee
is 0 and −15 dBm are 0.2844 with a p-value of 0.0001.
It indicates that even being contaminated by different CTI,
the CSI sequences coming from the same person are more
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(a) (b)

(c) (d)

Fig. 5. Means and variances of CSI for different subjects. (a) Mean—two
sub., −6 dBm. (b) Var.—two sub., −6 dBm. (c) Mean—two sub., −12 dBm.
(d) Var.—two sub., −12 dBm.

closely correlated than those from different persons. Overall,
the average same-person coefficient for ten subjects under the
identical level of CTI is 0.88011, and the average different-
person coefficient for ten subjects under the identical level of
CTI is 0.08267.

In addition, we quantize this distinctiveness via dynamic
time warping (DTW) distance. DTW is a technique used
to measure the similarity between two arrays or time series
with different lengths. We collect CSI series with the afore-
mentioned settings from ten subjects. The DTW distances
between series are calculated and normalized by the aver-
age amplitudes of clean CSI. The average DTW distances
between CSI series of the same subject are 1.919, while
the average DTW distances between different human sub-
jects under 0 and −15 dBm ZigBee interference are 4.623
and 13.654. Obviously, CSI series obtained from the same
user are similar but those obtained across subjects show
distinctiveness.

3) CSI Distinctiveness and Similarity on Wi-Fi Subcarriers:
To further investigate the distinctiveness of CSI sequences
based on the aforementioned observations, we statistically
explore the CSI amplitudes on different Wi-Fi subcarriers.
An example of the means and variances of CSI amplitudes
from thousands of Wi-Fi packets with different interference
power levels on each subcarrier is calculated and demonstrated
in Fig. 5. The differences are more significant at subcarri-
ers 10-30, because these subcarriers react more acutely to
CTI because of the higher sensitivity to chest displacement at
their frequencies [22]. When the ZigBee transmission power
is larger (−6 dBm), the gap between statistics is smaller.
It echoes the findings in Section III-C2: the higher CTI
hides more physiological features and brings CSI from differ-
ent subjects closer, the lower CTI incurs less ZigBee-related
information and may impede the authentication from device
perspective. These differences are also visible on other pairs
chosen from ten tested subjects.

(a) (b)

Fig. 6. Mean and variance of CSI for one subject. (a) Mean—subject 1.
(b) Variance—subject 1.

TABLE I
DTW DISTANCES ON SUBCARRIERS

The feasibility of designing a wearable-user authentication
scheme based on CSI sequences is demonstrated in Fig. 6
as supplementary to the statistical analysis in Section III-C2.
Though the ZigBee power levels are different, the means
and variances share a similar tendency and their values are
quite similar for the identical human subject. This empirical
observation shows that besides the fact that different human
respiration and ZigBee transmission patterns uniquely impact
CSI, the CSI sequences interfered by different levels of CTI
for one subject nearly remain stable.

The average DTW distances between CSI series acquired
from pairs of subjects are computed to show the similar-
ity and distinctiveness, which are shown in Table I. The
trends of DTW distances echo with the aforementioned anal-
ysis. Therefore, the feasibility of our proposed CTI-enabled
authentication scheme is fully presented.

D. Adversarial Model

We assume there is an active attacker, Eve, that can sense
the wireless environment, inject new traffic, and replay pack-
ets to pretend itself as a legitimate one. The malicious device
controlled by Eve is off-body and at least more than one wave-
length away (12.5 cm for 2.4 GHz) from ZigBee devices
in case being visually detected. The attacker may perform
attacks whenever it detects the transmission from the legit-
imate device. Our work makes no exploration of protecting
against passive attacks such as eavesdropping attacks and
information leakage because the information exchanged during
the authentication process reveals no value.

IV. MEASURING DISTANCE VARIATIONS

In our scheme, we turn the traditional CSI-based device
authentication problem into “how to verify the ZigBee device’s
physical proximities to the Wi-Fi device and the device is
on the body.” To formulate this problem, we define the term
“relative distance,” which is the dynamic distance between
Wi-Fi device and ZigBee device during respiration. In the
following, we theoretically demonstrate how the relative dis-
tance is touched by respiration and CTI and further prove
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Fig. 7. Path changes due to respiration.

the feasibility of leveraging unique CTI for authentication. In
particular, the signal received by the Wi-Fi device at time t is

r(f , t) = s(f , t)H(f , t) + ω(f , t) (2)

where s(f , t) is the signal sent from the Wi-Fi router, H is the
CSI matrix, and ω is the noise. Note that we only consider
the amplitudes of the CSI values in this work.

A. Path Changes Due to Muscle Displacement

The displacement of muscles around the patient’s chest
largely depends on respiration rather than heartbeats. During
regular respiration cycles, the human subject’s chest and
abdomen occur in a periodic way. This cyclic process alters
the “relative distance” between the on-body Wi-Fi device and
ZigBee device and impacts the path lengths of Wi-Fi connec-
tions. Fig. 7 illustrates that the regular respiration will cause
path changes reflected by surroundings and the Line-of-Sight
(LoS) path between the Wi-Fi device and the Wi-Fi router. To
further investigate how respiration impacts the received CSI
characteristics, we have the following formulation as in [11]:

φ(t) = e−j2πdk(t)/λ (3)

H(f , t) = e−j2π%ft
∑

ak(f , t)φ(t) (4)

where ak(f , t) is the attenuation (complex value) and initial
phase offset of the kth path, φ(t) is the phase shift on the kth
path caused by path length change, λ is the wavelength, dk(t)
is the change of path length on the kth path, e−j2π%ft is the
phase shift caused by the carrier frequency difference between
the sender and receiver, and t is the time variable. Hence, the
power of CSI, |H(f , t)|2, can be calculated as

|H(f , t)|2 =
∑

k

|ak(f , t)|2

+2
∑

k %=m

∣∣∣∣ak(f , t)am(f , t) cos
(

2πdk(t) − 2πdm(t)
λ

+ φkm

)∣∣∣∣

where φkm is a constant value.
We take a step further to analyze how the path is changing

during inhalation and exhalation. As shown in Fig. 8(a), %AEC
represents the LoS path and mth path reflected by the wall

(a) (b)

Fig. 8. CSI changes regarding distances. (a) Change of one single path.
(b) Abdominal displacement.

when the user is inhaling, while %BED jointly draws the LoS
path and mth path during exhaling. Since the drift of LoS path
is far smaller than the distance from Wi-Fi device to router,
EC and ED roughly coincide. The chest displacement of a
normal adult is less than 6.25 cm (half of the wavelength for
2.4-GHz Wi-Fi) [23]. Therefore, to show CSI can be leveraged
as a stable feature, we demonstrate that CSI changes can be
mapped to the path changes during one inhale–exhale process.

Theorem 1: The CSI power in one respiration cycle is
monotonically changing with time in correspondence to the
inhale–exhale process.

Proof:

CD
BD − AC

= sin θ2 − sin θ1

sin θ3 − sin θ4
= sin(π − 2θ3) − sin(π − 2θ4)

sin θ3 − sin θ4

= 2 sin θ3 cos θ3 − 2 sin θ4 cos θ4

sin θ3 − sin θ4
.

Obviously, 0 < sin θ3 < sin θ4 < 1 because θ3 < θ4. So

2 sin θ3 cos θ3 − sin θ3 > 2 sin θ4 cos θ4 − sin θ4.

Moreover

2 sin θ3 cos θ3 − 2 sin θ4 cos θ4

sin θ3 − sin θ4

= 2(sin θ3 − cos θ3) − 2
(
sin3 θ4 − cos3 θ4

)

sin θ3 − cos θ4

= 2 − 2 sin θ3 cos θ4 − 2 sin2 θ4 − 2 cos2 θ3 < 2.

Thus, 1 < [CD/(BD − AC)] < 2, indicating that 0 <

2πdk(t)/λ − 2πdm(t)/λ < π/2.
For two pairs of (dk(t1), dm(t1)) and (dk(t2), dm(t2)) satis-

fying the above inequality, the direction cosine of a direction
vector l going through these pairs of point is

cos α = dk(t2) − dk(t1)√
[dk(t2) − dk(t1)]2 + [dm(t2) − dm(t1)]2

cos β = dm(t2) − dm(t1)√
[dk(t2) − dk(t1)]2 + [dm(t2) − dm(t1)]2

.

Then

al = ∂
(
2 − 2 sin θ3 cos θ4 − 2 sin2 θ4 − 2 cos2 θ3

)

∂l
= cos α(−2 sin θ3 − 4 sin θ4) + cos β(−4 sin θ3 − 2 sin θ4)

= sin θ3(−2 cos α − 4 cos β) + sin θ4(−4 cos α − 2 cos β).
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If dk(t1) < dk(t2) (e.g., during exhaling), dm(t) < dm(t2)

al < sin θ4(−6 cos α − 6 cos β) < 0.

The shift is monotonically decreasing during inhaling
because

al > sin θ3(−6 cos α − 6 cos β) > 0.

The shift is monotonically increasing.

B. Relative Distances Changes During Respiration

The CTI-interfered CSI can be estimated from the received
symbols r = (H+HZ)sk+w with known ground-truth symbols,
which is usually transmitted on pilot subcarriers, as

Ĥ = rs∗ =
(
H + HZ)

|s| + ws∗ (5)

where HZ is the changes on CSI caused by CTI.
The ZigBee device is also experiencing periodic displace-

ment caused by respiration no matter it is placed on the chest
or abdomen. If it is placed on the chest, it experiences displace-
ments similar in tendency but different in distances compared
to chest displacement. If placed on the abdomen, the devia-
tion produced by abdomen displacement on CSI measurement
is comparably small due to the small abdominal wall displace-
ment, which could be only 1/8 of the chest displacement [23].
The abdominal wall moves in the opposite direction to the
direction of chest during breathing. As illustrated in Fig. 8(b),
the relative distance drift between ZigBee device and Wi-Fi
device during an inhale–exhale process is |DF − CG|, where
DF represents the extreme of exhaling and FG is for the
extreme of inhaling. Intuitively, if the line between the mid-
point of FG and the midpoint of CD is perpendicular to CD,
|DF−CG| = 0; if the midpoint of FG is above the midpoint of
CD, DF−CG > 0; otherwise, DF−CG < 0. If DF−CG > 0,
the received CTI power of ZigBee packets decreases dur-
ing exhaling because the Wi-Fi device moves farther away
from the ZigBee device. FG’s midpoint is person-identifiable
since it is determined by body figures and respiration situa-
tions. Therefore, the LoS path length in CSI power |H(f , t)|2
and relative distance in CTI interference are both dynamically
changing when the user is inhaling or exhaling, which makes
the CSI sequence sole environmentwise and personwise, as
well as unpredictable to attackers.

V. CTI-ENABLED WEARABLE AUTHENTICATION

In the detailed design, the Wi-Fi device acquires a CSI tem-
plate by training CSI sequences collected with CTI from an
authorized ZigBee device. Then, to initiate the authentication
protocol, a newly attached ZigBee device sends its authenti-
cation request packets and generate CTI. We expect that the
received CSI changes will be close enough to the changes
embedded in the template.

A. ZigBee Packet Design

The ZigBee device has to send packets on ZigBee channels
that are overlapped with Wi-Fi channels in the frequency domain,
i.e., ZigBee Channel 11, ZigBee Channel 13, and Wi-Fi Channel

Fig. 9. Overlapped ZigBee packet design.

1, to raise CTI. As shown in Fig. 9, we assume the ZigBee device
in our system is half-duplex, and it sends authentication request
packets with length Tp and time interval of Ti. Meanwhile, Wi-
Fi packets in regular transmission have a length T ′

p and time
interval T ′

i . Generally, ZigBee packets last longer than Wi-Fi
packets in the time domain, so Tp > T ′

p. To let ZigBee packets
cover the maximum number of Wi-Fi packets, their packet
lengths and transmit intervals are designed as

Tp > n ×
(

2T ′
p + T ′

i

)
, Ti < 2n ×

(
T ′

p + T ′
i

)
− Tp

p ×
(
Tp + Ti

)
= q ×

(
T ′

p + T ′
i

)

where n, p, and q are integers.

B. CTI Detection

According to the experimental results in Section III-C, the
statistics of CSI sequence changes after ZigBee packets get
involved. After acquiring a sample of CSI at time t, the Wi-Fi
device computes the variances Var(t) = {Var(t)m, . . . , Var(t)n}
on subcarriers m to n interfered by CTI for the latest s samples.
The dynamic thresholds for each subcarrier are assigned in line
with the experimental setting in [24]

|H(t)|2 =
{

min |H(fm, t)|2, . . . , min |H(fn, t)|2
}

where fi is the center frequency of subcarrier i, i ∈ [m, n] and
min |H(fi, t)|2 means the minimum CSI power in the latest s
samples at time t. If for more than half of the total subcarriers,
Var(i) > min |H(fi, t)|2 while Var(t′) < min |H(fi, t)|2 for t′ <

t, the Wi-Fi device believes that it confronts CTI and begins
recording CSI sequences.

C. Authentication Mechanism Design

We apply the long short-term memory (LSTM) recur-
rent neural networks (RNNs), which are capable of learning
long-term dependencies and nonlinear dynamics when clas-
sifying time sequences in the authentication scheme. The
authentication is successful only if the CTI-involved CSI
sequences can be classified into the same class with the
template.

1) Template Acquisition and Training: In practice, the types
and locations of on-body wearables are limited, most of which
are attached to the chest, abdomen, and wrist in correspond-
ing to the locations of internal organs. If the device with a
Wi-Fi module is worn on the wrist, i.e., smartwatches, the
user places that hand on the chest and starts CSI record-
ing. Otherwise, the Wi-Fi device is directly placed on the
chest. The upper body area is divided by two lines sepa-
rating the chest area with the abdomen and neck due to
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their different displacement distances during respiration so
that CSI sequences collected in the same area share similar
patterns. In both the chest and abdomen/neck sections, we
choose three to seven locations, where the distances between
these locations are 10 cm. By placing the ZigBee device
on determined locations, a bunch of CSI sequences is col-
lected. These CSI sequences are denoised with the principal
component analysis [25] to extract dominant features and
both “template 1” and “template 2” are labeled as class
“legitimate.”

If these devices are shared by multiple people, which means
that there could be only one device but are multiple “wearable-
user pairs” needed to be authenticated, the classification model
treats the authentication as a multiclass classification task,
where each class corresponds to the legitimate samples of
each user. However, instead of directly output the predicted
classes, we translate the results into “illegitimate” and “legit-
imate” for each user. For every user, the classes belonging
to other users are equal to “illegitimate” classes from their
point of view, which means that the authentication fails if
their data are classified into any other users’ “legitimate” class.
If there is only one “wearable-user pair,” the user collects
some extra CSI sequences by placing the ZigBee device wher-
ever away from their body and labels the CSI sequences as
“illegitimate.”

Finally, The LSTM RNNs are trained with these samples to
learn their features.

2) CSI Recording, Classification, and Authentication:
Suppose at timestamps {t1, t2, . . . , tn}, the Wi-Fi device mea-
sures a series of CSI powers from P = {Pt1 , Pt2 , . . . , Ptn}. We
list the elements in Pt1 as an example

Pt1 =
{

h1t1
11 , . . . , h1t1

1NTx
, . . . , h1t1

NRx 1, . . . , h1t1
NTx ,NTx

· · · hNsht1
11 , . . . , hNsht1

1NTx
, . . . , hNsht1

NRx 1, . . . , hNsht1
NTx ,NTx

}

where Nsh is the number of Wi-Fi subcarriers covered by
the ZigBee channel. The CSI sequences, after truncated by
a window and filled with forward filling and back filling, are
passed to the LSTM layer. The LSTM layers use memory
units with forget gates, combined with an input layer and
an output layer. The forget gates control the oblivion of old
CSI values and help updating the new cell state. The input
layer picks the new CSI value for update and creates a new
candidate cell state. Then, the cell state is weighted and cal-
culated from the output of forget gates and candidate cell
state. We use a log loss function and a sigmoid activation
function in our model. The output layer is a fully connected
one with a softmax activation function, and the outputs of
each softmax function characterize the probability distribu-
tion over classes. The sequence will be classified into the
one having the highest probability among classes “legitimate”
and “illegitimate.” The authentication is successful if P can
be classified into “legitimate,” which means that P is either
this user’s “template 1” or “template 2.” Otherwise, the fail-
ure on authentication may be attributed to reasons like CTI
is not detected, or the ZigBee device is not on the proper
user, etc.

VI. SCHEME EVALUATION

A. Security Analysis

1) Feasibility of CSI-Based Authentication: In the proposed
scenario, the channel is dynamic due to chest movement.
Coherence time is a metric describing the dynamic features of
a communication channel, which is defined as the time dura-
tion over which the channel impulse response is considered
stable. An approximation of coherence time Tc is given by
T̃c = 0.423/f̃m, f̃m = (̃v/c)fc, where fc is the center frequency,
ṽ is the average approximation of subject, and c is the speed
of light. The human subject is sitting at a fix position, so
the movement involved is slow and steady. The time duration
of one ZigBee packet follows, Tp < Tc, which means that
CSI values are not contaminated by Doppler shift, and the
CSI-based authentication is feasible.

2) Analysis of Device Authenticity: We analyze how our
scheme defends against two kinds of common active attacks
to demonstrate device authenticity.

Spoofing Attack: Devices are verified based on the phys-
iological activity and relative distance information. If the
attacker Eve, who locates at a place one wavelength away,
pretends to be a legitimate device and requests for authentica-
tion, she cannot generate the same CTI as the ZigBee device.
So, she can succeed only if a sequence of CSI values guessed
by Eve is close enough to the actual measurement, which
has a very low probability. Even if she compromises Wi-Fi
router and knows the respiration pattern due to channel reci-
procity, Eve still cannot perform spoofing attack because of
the unpredictable ZigBee interference with the Wi-Fi device.

Injection and Replay Attacks: An active attacker can inject
a packet or record ZigBee packet and replay it to the Wi-
Fi device for authentication. However, when recording CSI
samples for authentication, the relative distances between the
attacking device and Wi-Fi device are different from the rela-
tive distances between the legitimate device and Wi-Fi device.
Therefore, the levels of CTI caused by the attacking device
and the legitimate device are different. The Wi-Fi device can
easily know that the CTI-interfered CSI samples do not share
similar features. As a result, the attacking device will not be
recognized as a legitimate one. These attacks are successfully
defended.

B. Experiment Setting

We detail our experimental settings consisting of devices,
environment, and human subjects to evaluate the performance
of our proposed wearable authentication scheme.

1) Experiment Devices: We use Texas Instrument
SimpleLink Multistandard CC26x2R Wireless MCU
LaunchPads (LAUNCHXL-CC26X2R1) and Raspberry
Pi 4 in our experiment. To save the resource consumption
on Raspberry Pi, the LSTM RNNs are first trained on a
laptop. The Raspberry Pi is only responsible of testing after
optimizing LSTM RNNs model into a TensorFlow Lite model
or updating only a portion of layers in the model when new
data are coming in. This step can greatly reduce the burden
of Raspberry Pi.
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(a) (b)

Fig. 10. Experiment settings. (a) Deployed setup 1. (b) Deployed setup 2.

2) Wireless Environment: We use Channel 1 (2401–
2423 MHz with center frequency of 2412 MHz) among all
802.11n Wi-Fi channels. As for ZigBee, we choose Channel
11 (center frequency 2405 MHz) and Channel 13 (center
frequency 2415 MHz) that overlap with Wi-Fi Channel 1.
Twenty Wi-Fi packets are transmitted per second.

3) Human Subject Setting: Two setups as shown in Fig. 10.
In the first setup, one Raspberry Pi is tied to the subject’s
chest and another Raspberry Pi is placed on the desk used as
the Wi-Fi router. The launchpad is tied around abdomen. The
Raspberry Pi is tied to wrist in the second setup, where users
raise their arms and place it on the chest during authentication.

4) Data Set Setting: Our experiment is set up to verify
that our scheme can work at a more strict scenario, where
one device is shared by multiple people, or, in other words,
there is only one device but are multiple “wearable-user pairs”
needed to be authenticated. Ten female and ten male human
subjects, whose ages are between 22 and 50 and heights are
between 160 and 180 cm, are recruited. For each subject and
each round, we record and label a CSI sequence lasting 20
s, which contains about 360 packets and covers four to seven
respiration cycles. In total, we collect 30 rounds (10 min) for
each individual, and 15 rounds for each ZigBee device. Before
each round, the location of ZigBee devices is changed to be
10 cm away from the previous location by moving the elastic
cord rings. The data set is split into training (80% in total, 40%
for template 1 and 40% for template 2), validation (10%), and
test (10%) sets. The trained models are validated on another
10% of data. The trained model is tested to Raspberry Pi on
the remaining 10% data.

For each user, the classes belonging to the other 19 users
equal to “illegitimate” classes from their point of view, which
means that the authentication fails if their data are classified
into any other users’ “legitimate” class (either “template 1” or
“template 2”). This data set setting is to mimic the situation
that 20 people share one single device, while, in practice, the
number of users should be much smaller.

C. Device Authentication Performance

The number of received Wi-Fi packets is not constant for
every round due to the changes in the environment, so the
classification performance metrics for each subject is weighted
averaged over the number of packets received. The average
true positive rate (TPR) is reflected by the confusion matrix

Fig. 11. Confusion matrix of accuracy.

Fig. 12. Authen. accuracy—personwise.

in Fig. 11. We observe that the achieved TPR is over 90% for
19 out of 20 subjects, where the highest among them is 97%.
The average TPR is around 92.09% with a standard deviation
of 2.39%. The false positive rates (FPRs), or false acceptance
rate, have a mean of 7.95% and a standard deviation of 3.04%.
The false negative rates (FNRs), or false rejection rates, have
a mean of 7.96% and a standard deviation of 2.42%. The
comparably high TPRs and low FPRs verify the effectiveness
of our proposed authentication scheme. We then explore the
detailed influence factors of performance.

1) Optimal ZigBee Transmission Power: Here, we use
accuracy, which is the ratio of true positive and true negative
to all results, to quantify performance. Due to the unique phys-
ical and physiological properties, the effect of CTI is different
among individuals. Thus, the most beneficial (contributing to
the highest TPR) ZigBee power is also different personwise.
For example, the accuracy can be as high as 100% for subject
18 when the power is −12 dBm in Fig. 12, while the accuracy
for subject 8 under the same setting is only 86%. Therefore, it
would be better if the ZigBee power is a user-defined param-
eter. However, there are some common characteristics that lie
within. For example, the accuracy is downgraded for the pop-
ulation when the power is below −15 dBm because the power
level is too low to carry enough identifiable variations to CSI
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Fig. 13. Authen. accuracy—channelwise.

(a) (b)

Fig. 14. Overall accuracy of authentication model. (a) Different packet length.
(b) Different batch size.

values. Therefore, results under −15 dBm are discarded when
considering the overall accuracy.

2) ZigBee Channel Selection: To identify whether choosing
different ZigBee channels (frequencies) will affect the authen-
tication performance, we compare the accuracy for ZigBee
devices working on Channels 11, and 13, respectively. For
each power level, we calculate the average Euclidean distances
between the accuracy set with 20 subjects from Channel 11
and the set from Channel 13. The average Euclidean distances
are drawn in Fig. 13. Only the accuracy from subject 1 is
drawn for clarity. In all, the average Euclidean distance is
always under 0.05 and is nearly 0 under some circumstances,
indicating the small differences between the two sets. From
the small Euclidean distances and proximity of two value sets
from subject 1, we can tell that the authentication accuracy is
stable in terms of frequency and will not be influenced by the
selection of ZigBee channels.

3) Choice of Training Parameters: To study how the set-
tings of LSTM RNN impact accuracy, we run training and
testing under different training lengths (the numbers of input
CSI samples) and batch sizes (the numbers of samples pro-
cessed before the model update). Initially, we perform 50
rounds of training and testing under different training lengths
with a batch size of 100. Then, the training length is set to 500
and we repeatedly test the model with varying sizes of batch.
As shown in Fig. 14, the accuracy is increasing with more
training data and larger batch size. When the training data
contains more than 350 packets (transmitted in about 20 s)
and the batch size is over 75, our system can achieve consis-
tent accuracy of over 90%. The cost of building CSI profiles
for accurate authentication is negligible.

D. Comparison Between Two Setups

We further investigate if our scheme can achieve similar
performance even if the Wi-Fi device is not closely attached

TABLE II
ACCURACY COMPARISON FOR SETUP 1 AND SETUP 2

(a) (b)

Fig. 15. Unintended successful authentication. (a) Distance versus Succ. rate.
(b) Power versus succ. rate.

to the chest. To compare the performance under two setups,
Table II illustrates the statistics of TPR differences between
the two sets of classification results. The overall average dif-
ference is as low as 2.469% and the STD is below 1%, from
which we reason that the performance is not greatly impacted
and remains stable even if the Wi-Fi device is tied on the
wrist instead of chest. The displacements brought by chest are
explicitly reflected in wrist movements when wrist is placed on
the chest. The accuracy difference shows dissimilar patterns in
terms of subjects due to their physical diversities. Generally,
the differences are smaller when the ZigBee power is lower
because less CTI is triggered. Despite of the differences, the
performance remains high for both setups. Therefore, our
scheme is generalized to common on-body devices placed on
body.

E. Performance Against Illegitimate Access

Then, we test the performance against the adversarial device
Eve. We define a metric as the attack success rate to quantify
the defense results, which is the ratio of the number of CSI
sequences from the active attackers that are falsely recognized
as from the legitimate device to the total number of samples.

1) Distance to the Wi-Fi Device: The power of the illegiti-
mate device is set to −6 dBm. The distance is expressed as a
ratio of the distance from attacking device to the Wi-Fi device
to the distance from the legitimate device to the Wi-Fi device.
As shown in Fig. 15(a), it can pretend to be a legal device
with a probability below 50% only if its distance to the Wi-Fi
device is the same as that of an authenticated device, which
is smaller than the overall authentication accuracy due to the
unpredictable relative distance and environmental variations
when the illegitimate device is placed off-body. However, any
attacker in that small range will be visually detected. When the
distance becomes larger, the probability plunges. The attacker
cannot mimic CTI even by holding similar energy as a legal
device from Wi-Fi device’s view, so the probability is no
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greater than 8%, which does not exceed the misclassification
rate in Fig. 11. Therefore, the attacker gains no advantage.

2) Transmission Power: Then, we set the distance ratio of
the attacker to 3, and its attack ability is tested with dif-
ferent ZigBee transmission powers. The results are listed in
Fig. 15(b). Obviously, the overall success rate is smaller than
the misclassification rate of the original authentication scheme.
Hence, the attacker is still powerless even he tries to altering
its transmission power. Under such a low attack success rate,
attackers can be blocked out with brief methods, i.e., put a
restriction on the number of authentication attempts.

VII. RELATED WORK

A. CSI-Based Respiration Measurement

In healthcare systems, CSI is acquired from deployed Wi-Fi-
based devices to achieve contact-free respiration measurement,
which is more convenient and nonintrusive than other meth-
ods [9], [22]. The chest movement caused by respiration is
reflected in the amplitudes and phases of channel response.
This method is first proposed in WiSleep [26] to detect human
respiration rate for sleep monitoring based on CSI in commod-
ity smartphones. Clear ripple-like patterns of CSI amplitudes,
which correspond to the movement of chest, are detected. They
also find out that not all the CSI sequences show the pattern
of breathing. For example, subcarrier 30 does not contain as
much information of breathing as other subcarriers. In their
paper, sleeping position detection is also achieved. Further
research works discover the possibility of detecting more
detailed information, such as abnormal breathing patterns and
heart rate [22], [27]. Liu et al. [28] further extracted biometrics
from respiration interfered CSI to enable user authentication.
Compared to these works, our work defines the “relative dis-
tance” and thus, captures more physiological information and
achieves simultaneous device-user authentication.

B. Device/User Authentication in Healthcare

Existing device or user authentication schemes designed
for healthcare are based on physiological values, channel
properties, etc., [29].

1) Physiological-Based Schemes: The physiological-based
schemes can authenticate either user’s or device’s identity.
They first extract features from some physiological sig-
nals, such as electrocardiogram (ECG) signals and electroen-
cephalogram (EEG) signals, and then generate a common
secret from the extracted features [30]–[32] for devices with
similar features. Recently, smartwatches or wristbands are
more and more used in authentication due to the plethora
data they can collect. Vhaduri and Poellabauer [33] and
Ekiz et al. [34] used multimodal biometrics to authenticate
the wearable users with machine learning models. They are
straightforward, but they cannot simultaneously verify device
and user. They are not scalable because they require a power-
ful device to collect multiple dimensions of biometrics while
in practice, some health monitoring devices may lack the
required sensing module and do not have built-in mechanisms
to authenticate themselves.

2) Channel-Property-Based Authentication: Channel prop-
erty is a shared, symmetric metric, regardless of devices’
sensing abilities. In [35], two devices are close to each other,
so the channel reciprocity produces a common secret based on
RSSI for two devices while preventing the eavesdropper from
getting this secret. Shi et al. [36] analyzed the characteristics of
on-body (both transceivers are located on the surface of or in
close vicinity to body) and off-body (at least one transceiver is
off-body) channels to block secret information from off-body
attackers. The fundamental shortcoming is the RSSI values
are integers and only changes within a narrow range when the
person is breathing. Hence, they cannot capture physiological
activities precisely [26].

Device authentication based on CSI is usually more accu-
rate and achieves higher secret generation rate than RSSI-
based ones. In [37], a CSI-based secret generation protocol
is proposed using a validation recombination mechanism.
However, it requires high signal-to-noise-ratio to reach an
agreement as even a single bit mismatch will result in a failure.
Despite of the advantages, CSI is very sensitive so it is easy
to be contaminated or corrupted by CTI among monitoring
traffics.

However, channel-property-based schemes are severely
obstructed by the distance restriction and wireless coexistence
in the healthcare scheme. The RSSI and CSI observed by two
devices vary greatly if they are placed more than one wave-
length away [6], [38]. Moreover, a healthcare system involves
various wireless protocols due to the diversity in manufac-
turers and demands, while CSI is not supported in protocols
other than Wi-Fi, and RSSI is not unified due to nonidentical
transmission powers. Our work overcomes their limitations.

Yu et al. [39] used a hash function to generate a chain
of authorization code and transmits the authorization code to
achieve the authentication between ZigBee-based devices and
Wi-Fi-based devices. In their settings, the devices using dif-
ferent protocols can understand each other’s messages through
cross technology communication techniques. It requires addi-
tional modification in device hardware and/or protocol design,
which is not practical for regular health monitoring sensors.
Compared to their work, our work achieves authentication with
existing protocol designs and is easier to be used.

3) Noncontact Respiration-Based Authentication: Recently,
researchers are investigating into leveraging channel properties
that contain features brought by physiological activities for
human identity authentication and people counting. To achieve
authentication, existing works either extract human respira-
tion rate from CSI [40] or directly using breathing patterns
for classification [41]. These works are efficient in their eval-
uations regarding mitigating noises and trying to tackle the
complex multiperson situation. However, these works merely
focusing on mitigating interference, and primarily only natural
environmental interference. For example, to combat noises,
Wang et al. [40] combined CSI on different subcarriers to
enhance the signal-to-noise ratio. This approach can select
an optimal set of subcarriers under natural random noises
but will probably enhance the CTI that spread over many
subcarriers and worsen the noise contamination, especially if
the CTI is intentionally injected into most Wi-Fi subcarriers.
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In this case, intending to separate interferences from signals
may detrimentally discard information for identification. On
the contrary, our work bypasses these limitations by using
CTI and achieving two goals, “wearable-user authentication”
simultaneously.

VIII. CONCLUSION

The growth of wearable devices brings significant security
challenges. Most wearables cannot perform efficient authen-
tication due to heterogeneous environments and constraints.
This research work takes advantage of CTI resulted from
wireless coexistence and embeds it with human physiological
signals to achieve on-body wearable-user authentication. The
changes of ZigBee-Wi-Fi relative distances and Wi-Fi path
lengths during respiration are explored both empirically and
theoretically. The proposed scheme breaks the boundary of
protocol incompatibility and achieves simultaneous wearable-
user authentication while preventing illegitimate access from
unauthorized wearables. Through extensive experiments and
analysis, we demonstrate the practicality, efficiency, and secu-
rity of the authentication scheme.
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