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Abstract. Harmonic maps into a Coxeter complex of Teichmüller spaces are
described by a certain degenerate elliptic partial differential equation. We
analyze the structure of the singular set near a junction of Teichmüller spaces.
In particular, we show that the singular set is (n− 1)-rectifiable.

1. Introduction

In recent years, there has been increasing attention towards variational problems
associated with singular spaces. Some noteworthy examples among many others
include: (i) the fundamental work of Gromov-Schoen on p-adic superrigidity (cf.
[GrSc]) and the development of the theory of harmonic maps to metric spaces (cf.
[KS1], [KS2], [Jo], [DM1] and [DaMeVd]); (ii) the work of Eells-Fuglede on har-
monic functions or more generally harmonic maps defined on singular domains (cf.
[EF], [DM5] and [DM7]); (iii) the theory of degenerations of character varieties and
coupled Yang-Mills equations (cf. [DDW], [T]); and finally (iv) the theory of har-
monic maps into Teichmüller space related to holomorphic rigidity of Teichmüller
space and the rigidity of the mapping class group (cf. [DM3]).

The simplest examples of singular spaces that are not pseudo-manifolds are trees
and their generalizations. For example, a Euclidean building (which can be thought
of as a higher dimensional version of a tree) can be characterized by the property
that any two points lie in an isometrically and totally geodesically embedded copy
of Euclidean space. A common theme in all the work above is to consider harmonic
(or energy minimizing) maps to trees or buildings and obtain estimates on the size
as well as the structure of their singular set. From this, one then can conclude
important geometric and analytic consequences.

The reason why trees and buildings are amongst the simplest types of singular
spaces is because they are made out of Euclidean spaces. On the other hand, in
[DM2] and [DM3], we studied harmonic maps into the Weil-Petersson completion of
Teichmüller space. This is a space, as explained below, that has significantly worse
singularities than buildings. More precisely, let T denote the Teichmüller space of
a genus g Riemann surface with n punctures and 3g − 3 + n > 0. Endowed with
the Weil-Petersson metric, T is a smooth incomplete Kähler manifold of negative
sectional curvature. Its metric completion T , called the Weil-Petersson completion
of Teichmüller space, is no longer a Riemannian manifold, but an NPC space; i.e. a
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412 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

complete metric space of non-positive curvature in the sense of Alexandrov (cf.
[Ya1]).

A neighborhood N ⊂ T of a point in ∂T is asymptotically a product U × V (cf.
[Ya1], [DW], [Wo1], [Wo2], [LSY1], [LSY2] and [DM4]), where the smooth manifold
U is an open subset of a lower dimensional Teichmüller space along with the Weil-
Petersson metric and V is an open subset of H × · · · ×H where H (referred to as
the model space) is the metric completion of the half-plane

H = {(ρ, φ) ∈ R2 : ρ > 0}

with respect to the metric gH = dρ2 + ρ6dφ2. The Riemannian manifold (H, gH)
is not complete reflecting also the incompleteness of T via neck pinching of nodal
surfaces (cf. [Wo3], [Ch]). The metric completion of (H, gH) is the NPC space

(1) (H, dH) = (H ∪ {P0}, dH)

constructed by identifying the axis ρ = 0 to a single point P0 and extending the
induced distance function dH of gH to H by setting dH(Q,P0) = ρ for Q = (ρ, φ) ∈
H.

Since each boundary stratum of T is a smooth Riemannian manifold, the singular
behavior of the Weil-Petersson geometry is completely captured by the model space
H. A harmonic map into T can be locally expressed as

(V, v1, . . . , vm),

where V maps into a lower dimensional Teichmüller space and vl (for l = 1, . . . ,m)
maps into H. As the Weil-Petersson metric is only asymptotically a product metric
near the boundary, the component map vl is not harmonic. On the other hand, as
explained in detail in [DM3], vl is approximately harmonic and the crucial step in
understanding the behavior of harmonic maps into T is understanding the behavior
of harmonic maps into H.

Since the sectional curvature ofH blows up near P0, the harmonic map equations
become very degenerate. For a map u : Ω → H, we can write in a neighborhood of
a regular point u = (uρ, uφ) in terms of the coordinates (ρ, φ) and write down the
harmonic map equations

uρ△uρ = 3u6
ρ|∇uφ|

2 and u4
ρ△uφ = −6∇uρ · u

3
ρ∇uφ.(2)

Although the right hand side of the above equations is locally bounded by the
Lipschitz regularity of harmonic maps (cf. [KS1] Theorem 2.4.6), the left hand
side is degenarate since uρ(x) is the distance of the image u(x) to P0 which tends
to zero. Thus, from this point of view, it is hard to see why the map should be
uniformly regular near a singular point.

An important observation is that, because of the non-local compactness of H
near P0, the Alexandrov tangent space TP0

H of H at P0 (which is isometric to the
interval [0,∞)) does not properly reflect the geometry of H in a neighborhood of
P0. Thus, a tangent map of a harmonic map u : Ω → H at a singular point (i.e. a
point in u−1(P0)) does not map into TP0

H. Indeed, (cf. [DM3, proof of Lemma
3.13] or [W]), a tangent map of a harmonic map u into H at a singular point is a
harmonic map u∗ whose image is contained in the space

(3) HN = H
(1)

∪H
(2)

· · · ∪H
(N)

/ ∼
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NONLINEAR DEGENERATE PDE 413

defined by taking N copies H
(1)

, . . . ,H
(N)

of H and where ∼ indicates that the

point P0 from each copy is identified as a single point. The space H
(N)

should be
thought of as a tree-like N-pod where all the 2-dimensional simplices, in this case
copies of H, meet at the single vertex P0.

In [DM2], we studied how harmonic maps into H2 approximate harmonic maps
into H near a point of order 1. The goal of this paper is to investigate the singular
set of a harmonic map u : Ω → HN . The main theorem is the following:

Theorem 1. If u : Ω → HN is a non-constant harmonic map from an n-
dimensional smooth Riemannian domain, then the singular set u−1(P0) is (n− 1)-
rectifiable.

In [Ya2], Yamada constructed a geodesic completion X of the Teichmüller space
through the formalism of Coxeter complex with the Teichmüller space as its non-
linear non-homogeneous fundamental domain. His main result is that this space
X, called the Teichmüller-Coxeter complex, is of finite rank (in the sense of [KS2])
which in turn implies an existence theorem of equivariant harmonic maps (cf. [Ya2,
Theorem 2]). Given a harmonic map u : Ω → X from a n-dimensional Riemannian
domain into a Teichmüller-Coxeter complex, we can define a regular point as a
point of Ω that maps to the interior of some fundamental domain of X (i.e. an
isometric copy of T in X), the regular set R(u) as the set of regular points and the
singular set S(u) as the complement of R(u). By combining [DM3] and Theorem 1,
we obtain the following regularity result:

Theorem 2. If u : Ω → X is a harmonic map from a n-dimensional Riemannian
domain into a Teichmüller-Coxeter complex, then S(u) is (n− 1)-rectifiable.

2. Preliminaries

Let (H, gH) and (H, dH) be as above. The homogeneous cordinates (ρ,Φ) of H
are defined by setting

Φ = ρ3φ.

It can be easily seen that the metric gH is invariant under the scaling

ρ → λρ, Φ → λΦ.

For λ ∈ (0,∞), we define the map P 
→ λP using homogeneous coordinates by
setting

(4) λP =

{

(λρ, λΦ) for P = (ρ,Φ) ∈ H

P0 for P = P0.

The distance function is homogeneous degree 1 in the sense that

dH(λP, λQ) = λdH(P,Q).

We now let HN as in (3). The distance function dHN
on HN is defined by

setting dHN
(P1, P2) = dH(P1, P2) if P1, P2 ∈ H

(j)
for some j ∈ {1, . . . , N} and

dH2
(P1, P2) = ρ1 + ρ2 if P1 = (ρ1, φ1) ∈ H(j) = H

(j)
\{P0} and P2 = (ρ2, φ2) ∈

H(k) = H
(k)

\{P0} for j �= k. The metric space (HN , dHN
) is an NPC space (cf.

[BH]).
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414 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

Convention 3. For N = 2, we write

(5) H2 = H
+
⊔H

−
/ ∼

where H
+
= H

(1)
and H

−
= H

(2)
. We will consider H2 as a totally geodesic subset

of HN by the obvious inclusion. Furthermore, we define coordinates on H2\{P0}
by first applying the change of variables (ρ, φ) 
→ (−ρ, φ) to obtain new coordinates

for H
−
. Thus, we then have coordinates

(6) (ρ, φ) ∈ R\{0} ×R

for H2\{P0} with the property that ρ > 0 implies (ρ, φ) ∈ H+ and ρ < 0 implies
(ρ, φ) ∈ H−. The metric gH2

at (ρ, φ) with ρ �= 0 is given by

gH2
(ρ, φ) = dρ2 + ρ6dφ2.(7)

We also define the homogeneous coordinates (ρ,Φ) on H2\{P0}.

Convention 4. Given HN and any two copies H
(j)

and H
(k)

, there is a totally

geodesic isometry σ : H2 → HN with image H
(j)

⊔H
(k)

/ ∼. In particular (6) and
(7) induce coordinates and a metric on the image of σ inside HN .

For a map v : Ω → HN from a bounded Riemannian domain, let the function
|∇v|2 be the energy density as defined in [KS1]. The energy of v is

Ev =

∫

Ω

|∇v|2dµ.

Definition 5. The map u : Ω → HN is said to be harmonic if for every x ∈ Ω,
there exists r > 0 such that u

∣

∣

Br(x)
is energy minimizing with respect to all finite

energy maps v : Br(x) → HN with the same trace (cf. [KS1]).

For a harmonic map u : Ω → HN , we have the following important monotonicity
formula. Given x0 ∈ Ω and σ > 0 such that Bσ(x0) ⊂ Ω, let

Eu(σ) :=

∫

Bσ(x0)

|∇u|2dµ and Iu(σ) :=

∫

∂Bσ(x0)

d2(u, u(x))dΣ.

There exists a constant c > 0 depending only on the C2 norm of the metric on g
(with c = 0 when g is the standard Euclidean metric) such that

σ 
→ ecσ
2 σ Eu(σ)

Iu(σ)

is non-decreasing. As a non-increasing limit of continuous functions,

Ordu(x0) := lim
σ→0

ecσ
2 σ Eu(σ)

Iu(σ)

is an upper semicontinuous function and Ordu(x0) ≥ 1. (See Section 1.2 of [GS]
with [KS1] and [KS2] justify various technical steps.)

Definition 6. The value Ordu(x0) is called the order of u at x0.

The singular set of a harmonic map u : Ω → HN is defined by

S(u) = {x ∈ Ω : u(x) = P0}.

The set S(u) is partitioned into the following two sets

S0(u) = {x ∈ S(u) : Ordu(x) > 1}
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NONLINEAR DEGENERATE PDE 415

and
S1(u) = {x ∈ S(u) : Ordu(x) = 1}.

The following result follows from [DM2] or [DM3].

Lemma 7. If u : B1(0) → HN is a harmonic map, then the set of higher order
points of u is of Hausdorff codimension at least 2, i.e.

dimH(S0(u)) ≤ n− 2.

Proof. In [DM2, Theorem 35] or [DM3, Proposition 3.16], we state this result in
the case N = 1 or N = 2. On the other hand, the argument presented there goes
through without modification in the case when N is any finite positive integer. �

Lemma 7 implies that we need only consider S1(u) in order to prove Theorem 1.
We now define the notion of blow-up maps of u at x ∈ Ω. To do this, we need

that the domain metric is expressed with respect to normal coordinates so we make
Definition 8.

Definition 8. A smooth Riemannian metric g on BR(0) ⊂ Rn is said to be nor-
malized if the standard Euclidean coordinates (x1, . . . , xn) are normal coordinates
of g. The metric gs for s ∈ (0, R] on B1(0) is defined by

gs(x) = g(sx).

Given a normalized metric g on BR(0) and a harmonic map u : (BR(0), g) → HN ,
the homogeneous coordinates can be used to define blow-up maps of u at 0. More
precisely, write

u = (uρ, uΦ)

in homogeneous coordinates. For σ ∈ (0, R], define a harmonic map (which will be
referred to as a blow-up map)

(8) uσ = (uσρ, uσΦ) : (B1(0), gσ) → HN

by setting

uσρ(x) = µ−1(σ)uρ(σx) and uσΦ(x) = µ−1(σ)uΦ(σx)

where

(9) µ(σ) =

√

Iu(σ)

σn−1
.

The choice of the scaling constant µ(σ) implies that

(10) Iuσ (1) =

∫

∂B1(0)

d2(uσ, P0)dΣ = 1.

By the monotonicity property stated above, Euσ(1) ≤ 2Ordu(0) for σ > 0 suffi-
ciently small. Thus, by [KS1, Theorem 2.4.6], {uσ} has a local uniform modulus
of continuity. In turn, this implies that given a sequence uσi

with σi → 0, there
exists a subsequence converging locally uniformly in the pullback sense to a map
u∗ : B1(0) → (Y∗, d∗) into an NPC space (cf. [KS1, Proposition 3.7]). In particular,

d(uσi
(·), uσi

(·)) → d∗(u∗(·), u∗(·)) uniformly on compact sets.

Following [GrSc], we have that u∗ is a homogeneous map of degree α = Ordu(0),
i.e. d(u∗(x), u∗(0)) = |x|αd(u∗(

x
|x| , u(0)) and the curve t 
→ u∗(tx) is a geodesic in

Y∗ for each x ∈ ∂B1(0).
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416 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

We now state the qualitative behavior of harmonic maps at order one points.
This is already given in [DM2, Lemma 9] when the target is H2, but the same
argument yields the following:

Lemma 9. Let g be a normalized metric on B1(0) and u : (B1(0), g) → HN a
harmonic map with Ordu(0) = 1 and u(0) = P0. Then given a sequence σi → 0,
there exists a subsequence (denoted again by σi), a rotation R : Rn → Rn, a
sequence of homogeneous degree 1 maps lσi

: B1(0) → H2 ⊂ HN defined by (after
renumbering the copies of H in HN if necessary and using Convention 4)

(11) lσi
(x) =







(Ax1, φ+
σi
) x1 > 0

P0 x1 = 0
(Ax1, φ−

σi
) x1 < 0

for a constant A > 0 and sequences {φ+
σi
}, {φ−

σi
} such that

lim
i→∞

sup
Br(0)

d(uσi
◦ R, lσi

) = 0, ∀r ∈ (0, 1)

where uσi
are the blow-up maps u at 0.

After rotating the domain if necessary, we may assume in Lemma 9 that

lim
i→∞

d(uσi
, lσi

) = 0.

For each i, define an isometry ισi
: HN → HN by first defining

ισi
(P ) =







(ρ, φ− φ+
σi
) if P = (ρ, φ) with ρ > 0

P0 if P = P0

(ρ, φ− φ−
σi
) if P = (ρ, φ) with ρ < 0

on H2 and extending it to HN as an identity map outside of H2. In particular, we
then have l(x) := ισi

◦ lσi
(x) = (Ax1, 0) and

(12) lim
i→∞

d(ισi
◦ uσi

, l) = 0.

3. Order 1 singular points

We start with the following:

Theorem 10. Let E0 > 0, A > 0 and a normalized metric g on B1(0) be given.
There exist σ0 > 0, D0 ∈ (0, 1√

8
) and C > 0 such that if σ ∈ (0, σ0] and u :

(B1(0), gσ) → HN is a harmonic map that satisfies

u(0) = P0, Lip(u
∣

∣

B 1
2

(0)
) ≤ E0,

and

(13) sup
B1(0)

d(u, l) < D0 where l(x) = (Ax1, 0),

then

sup
Bs(0)

d(u, l) < CD0s, ∀s ∈ (0, 1].
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Proof. First notice that the proof of [DM3, Iterative Lemma 5.5] goes through
without any changes when we replace the target space H by HN . In the situation
when the target space is H, we showed that this implies the image of the harmonic
map u lies in the interior H (cf. [DM3, Proposition 3.22]). Below, we argue in the
same way as in the proof of [DM3, Proposition 3.22] to show that in the case of
HN , we obtain the linear decay asserted in this theorem.

For E0, A and g given in the statement of the theorem and for σ0 > 0 sufficiently
small such that gσ is close to the Euclidean metric, let θ ∈ (0, 1

24 ), ǫ0 > 0 and

D0 ∈ (0, 1√
8
) be as in the [DM3, Iterative Lemma 5.5]. By letting 0l = l and

0δ = D0, the assumption implies
{

supB1(0) d(u, 0l) < D0

supB1(0)|uρ −Ax1| < 0δ.

Apply the [DM3, Iterative Lemma 5.7] repeatedly to conclude that for all i =
0, 1, 2, . . . ,

sup
B

θi
(0)

d(v, l) < θi−1

(

23 (A+ 9D0)
3

ǫ30
+ 10

)

D0.

For s ∈ (0, 1], let i be a nonnegative integer such that s ∈ (θi+1, θi]. Then

sup
Bs(0)

d(u, l) ≤ sup
B

θi
(0)

d(u, l)

< θi−1

(

23 (A+ 9D0)
3

ǫ30
+ 10

)

D0

≤ sθ−2

(

23 (A+ 9D0)
3

ǫ30
+ 10

)

D0

< CD0s

for some C > 0 depending only on E0, A and g. �

Lemma 11. Let g be a normalized metric defined on BR(0) (cf. Definition 8) and
u : (BR(0), g) → (HN , d) be a harmonic map with Ordu(0) = 1 and u(0) = P0.
Furthermore, let R and A > 0 be as in Lemma 9. Given δ0 > 0, there exists σ > 0
such that

s−1 sup
Bs(0)

d(uσ, lσ ◦ R) < δ0, ∀s ∈ (0, 1)

where uσ is a blow-up map of u at 0 as defined in (8) and lσ : B1(0) → H2 ⊂ HN

defined by

(14) lσ(x) =







(Ax1, φ+
σ ) x1 > 0

P0 x1 = 0
(Ax1, φ−

σ ) x1 < 0

for some fixed constants φ+
σ , φ

−
σ ∈ R.

Proof. Let σi → 0 as in Lemma 9. By the normalization (10) and the fact that
Ordu(x0) = 1, we have that

lim
σi→0

Euσi (1) = 1.

For σi > 0 sufficiently small such that Euσi ≤ 2 there exists E0 > 0 such that
Lip(uσi

∣

∣

B 1
2

(0)
) < E0

2 . For this choice of E0 > 0, A > 0 and g given in the statement

Licensed to Johns Hopkins Univ. Prepared on Sun Aug  7 16:14:54 EDT 2022 for download from IP 128.220.8.15.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



418 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

of the lemma, let σ0 > 0, D0 > 0 and C > 0 be as in Theorem 10. Given δ0 > 0,
we can choose D0 > 0 sufficiently small such that CD0 < δ0 (cf. comment in
[DM3, before equation (5.70)]). Fix σi ∈ (0, σ0] sufficiently small such that (after
applying a rotation in the domain and an isometry in the target)

sup
B 1

2

(0)

d(uσi
, l) < D0.

Set σ = σi > 0, u(x) = uσi
(2x) and note that u(0) = P0, Lip(u) < E0 and

supB1(0) d(u, l) < D0. Theorem 10 implies the assertion immediately. �

Lemma 12. If g is a normalized metric defined on BR(0) and u : (BR(0), g) →
(HN , d) is a harmonic map with Ordu(0) = 1 and u(0) = P0, then

Iu
∗ := lim

r→0

Iu(r)

rn+1
�= 0.

Proof. The fact that the limit as r → 0 of the ratio Iu(r)
rn+1 exists follows from [GrSc]

(also see [DM1, Corollary 60]). Let R and A > 0 be as in Lemma 11. By choosing
δ0 ∈ (0, A2 ) in Lemma 11, there exists σ > 0 such that

sup
Bs(0)

|uσρ − lσρ ◦ R| ≤ sup
Bs(0)

d(uσ, lσ ◦ R) < δ0s

Applying the triangle inequality, we obtain

As

2
≤ sup

Bs(0)

lσρ ◦ R − sup
Bs(0)

|uσρ − lσρ ◦ R| ≤ sup
Bs(0)

uσρ.

Therefore,

0 �=
A

2
≤ lim

s→0

1

s
sup
Bs(0)

uσρ.

The assertion now follows from the fact that

Iu(r)

rn+1
=

Iu(σ)

σn−1
σ−2 I

uσ (σr)

(σr)n+1
.

�

Let g be a normalized metric defined on BR(0) and u : (BR(0), g) → (HN , d) be
a harmonic map with u(0) = P0 and Ordu(0) = 1. By virtue of Lemma 12, there
exists a constant λ > 0 such that

λs ≤ µ(s) ≤ λ−1s

where µ is defined in (9). Thus, we will consider blow-up maps of u at x0 normalized
by 1

t
instead of µ−1(t).

Definition 13. The map

(15) ut : B1(0) → HN , ut(x) :=
1

t
u(tx)

will be referred to as the renormalized blow-up map.

We now prove uniqueness of the tangent map.
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NONLINEAR DEGENERATE PDE 419

Theorem 14. If g is a normalized metric defined on BR(0) (cf. Definition 8) and
u : (BR(0), g) → (HN , d) is a harmonic map with Ordu(0) = 1 and u(0) = P0.
Then there exists a rotation R0 : Rn → Rn and constants A0, φ

+, φ− ∈ R such
that

lim
t→0

sup
B1(0)

d(ut, l ◦ R0) = 0

where l : B1(0) → H2 ⊂ HN is defined by

(16) l(x) =







(A0x
1, φ+) x1 > 0
P0 x1 = 0

(A0x
1, φ−) x1 < 0.

Proof. By Lemma 11, given δ0 > 0, we can choose σ > 0 and a homogeneous degree
1 map lσ : B1(0) → HN given by (14) such that

sup
Bs(0)

d(uσ, lσ ◦ R0) < δ0s, ∀s ∈ (0, 1).

The lemma now follows immediately since σ is fixed. �

Proposition 15. If u : Ω → HN is a harmonic map, then the set

S1(u) = u−1(P0) ∩ {x ∈ Ω : Ordu(x) = 1}

is locally a graph of a Lipschitz function over an (n−1)-dimensional affine subspace.

Proof. For the sake of simplicity, we will assume in this proof that Ω is a Euclidean
domain. Slight modification of the argument below will prove the case when Ω is
equipped with an arbitrary Riemannian metric. By [Si, Section 3.8 Corollary 1], it is
enough to show that given δ ∈ (0, 1) and y0 ∈ S1(u), there exist ρ0 > 0, ǫ0 > 0 and
an (n−1)-dimensional affine subset L0 ⊂ Rn such that for any y ∈ Bǫ0(y0)∩S1(u),

(17) S1(u) ∩Bρ(y) ⊂ {x : dist(x, L0) ≤ δρ}, ∀ρ < ρ0.

Let T0 > 0 be such that B2T0
(y0) ⊂ Ω. Theorem 14 implies that (after rotating the

domain if necessary) there exists l as in (16) such that

lim
t→0

sup
B 1

2

(0)

d(ut
y0
, l) = 0

where

ut
y0

: B1(0) → HN , ut
y0
(x) =

1

t
u(y0 + tx),

Without the loss of generality, we can assume φ+ = φ− = 0 in (16). By the local
Lipschitz continuity ([KS1, Theorem 2.4.6]), there exists E0 > 0 such that the
Lipschitz constant of ut

y for t ∈ (0, T0) and y ∈ BT0
(0) is bounded by E0. For E0,

A = A0 and δ0 = 1, let σ0 > 0, D0 > 0, C > 0 be as in Theorem 10. As in the
proof of Lemma 11, choose D0 small such that

(18) 2CD0 < Aδ

and t0 ∈ (0, T0] such that

sup
B 1

2

(0)

d(ut0
y0
, l) <

D0

2
.

By the continuity of u, there exists ǫ0 > 0 such that

sup
B 1

2

(0)

d(ut0
y0
, ut0

y ) <
D0

2
, ∀y ∈ Bǫ0(y0).
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Thus, by the triangle inequality,

sup
B 1

2

(0)

d(ut0
y , l) < D0, ∀y ∈ Bǫ0(y0).

In other words, assumption (13) of Theorem 10 is satisfied with u(x) = ut0(x2 ), and
thus by (18) we can conclude

1

t0
sup

Bst0
(y)

d(u, l) = sup
Bs(0)

d(ut0
y , l) < 2CD0s < Aδs, ∀s ∈ (0,

σ0

2
].

By letting ρ0 = σ0t0
2 , we obtain

y ∈ Bǫ0(y0) ⇒ sup
Bst0

(y)

d(u, l) < Aδst0, ∀s ∈ (0,
σ0

2
]

⇔ sup
Bρ(y)

d(u, l) < Aδρ, ∀ρ ∈ (0, ρ0]

Therefore, assuming y ∈ Bǫ0(y0) and ρ ∈ (0, ρ0], we have

x ∈ S1(u) ∩Bρ(y) ⇒ x1 =
1

A
d(P0, l(x)) =

1

A
d(u(x), l(x)) < δρ.

By setting L0 equal to the hyperplane {x1 = 0}, this immediately implies (17). �

4. Proof of Theorem 1 and Theorem 2

We are now ready to prove our main theorems.

Proof of Theorem 1. Combine Lemma 7 and Proposition 15 �

Proof of Theorem 2. Let P be a point in the boundary of a Teichmüller-Coxeter
complex. The metric estimates of [DM4] imply that the Weil-Petersson metric is
asymptotically a product of a lower dimensional Teichmüller space and copies of
HN ’s. This is analogous to the situation in [DM1] where we studied harmonic maps
to the Weil-Petersson completion T of Teichmüller space. In this case T is, near
a point in the boundary, asymptotically a product space of a lower dimensional
Teichmüller space and copies of H’s. In particular, we showed that the singular
component maps (the component maps which map into H) have blow-up maps and
tangent maps at singular points. Similarly, we can show the same for component
maps into HN . Thus, applying an argument as in the proof of Theorem 1, the
theorem follows. �
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