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ABSTRACT. Harmonic maps into a Coxeter complex of Teichmiiller spaces are
described by a certain degenerate elliptic partial differential equation. We
analyze the structure of the singular set near a junction of Teichmiiller spaces.
In particular, we show that the singular set is (n — 1)-rectifiable.

1. INTRODUCTION

In recent years, there has been increasing attention towards variational problems
associated with singular spaces. Some noteworthy examples among many others
include: (i) the fundamental work of Gromov-Schoen on p-adic superrigidity (cf.
[GrSc]) and the development of the theory of harmonic maps to metric spaces (cf.
[KS1], [KS2], [Jo], [DM1] and [DaMeVd]); (ii) the work of Eells-Fuglede on har-
monic functions or more generally harmonic maps defined on singular domains (cf.
[EF], [DM5] and [DMT7)); (iii) the theory of degenerations of character varieties and
coupled Yang-Mills equations (cf. [DDW], [T]); and finally (iv) the theory of har-
monic maps into Teichmiiller space related to holomorphic rigidity of Teichmiiller
space and the rigidity of the mapping class group (cf. [DM3)]).

The simplest examples of singular spaces that are not pseudo-manifolds are trees
and their generalizations. For example, a Euclidean building (which can be thought
of as a higher dimensional version of a tree) can be characterized by the property
that any two points lie in an isometrically and totally geodesically embedded copy
of Euclidean space. A common theme in all the work above is to consider harmonic
(or energy minimizing) maps to trees or buildings and obtain estimates on the size
as well as the structure of their singular set. From this, one then can conclude
important geometric and analytic consequences.

The reason why trees and buildings are amongst the simplest types of singular
spaces is because they are made out of Euclidean spaces. On the other hand, in
[DM2] and [DM3], we studied harmonic maps into the Weil-Petersson completion of
Teichmiiller space. This is a space, as explained below, that has significantly worse
singularities than buildings. More precisely, let T denote the Teichmiiller space of
a genus g Riemann surface with n punctures and 3g —3 +n > 0. Endowed with
the Weil-Petersson metric, T is a smooth incomplete Kéhler manifold of negative
sectional curvature. Its metric completion 7, called the Weil-Petersson completion
of Teichmiiller space, is no longer a Riemannian manifold, but an NPC' space; i.e. a
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412 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

complete metric space of non-positive curvature in the sense of Alexandrov (cf.
[Yal]).

A neighborhood N C T of a point in 9T is asymptotically a product U x V (cf.
[Yal], [DW], [Wol], [Wo2], [LSY1], [LSY2] and [DM4]), where the smooth manifold
U is an open subset of a lower dimensional Teichmiiller space along with the Weil-
Petersson metric and V is an open subset of H x --- x H where H (referred to as
the model space) is the metric completion of the half-plane

H={(p,¢) e R*: p >0}

with respect to the metric g = dp® + pd¢?. The Riemannian manifold (H, gg1)
is not complete reflecting also the incompleteness of T via neck pinching of nodal
surfaces (cf. [Wo3], [Ch]). The metric completion of (H, ggz) is the NPC space

(1) (H,du) = (HU{PR},dn)

constructed by identifying the axis p = 0 to a single point Fy and extending the
induced distance function dg of gi to H by setting dg(Q, Po) = p for Q = (p, ¢) €
H.

Since each boundary stratum of 7 is a smooth Riemannian manifold, the singular
behavior of the Weil-Petersson geometry is completely captured by the model space
H. A harmonic map into 7 can be locally expressed as

(V,ol, .. 0™),

where V' maps into a lower dimensional Teichmiiller space and v' (for I =1,...,m)
maps into H. As the Weil-Petersson metric is only asymptotically a product metric
near the boundary, the component map v' is not harmonic. On the other hand, as
explained in detail in [DM3], ' is approximately harmonic and the crucial step in
understanding the behavior of harmonic maps into 7 is understanding the behavior
of harmonic maps into H.

Since the sectional curvature of H blows up near Py, the harmonic map equations
become very degenerate. For a map v : Q@ — H, we can write in a neighborhood of
a regular point u = (u,, ue) in terms of the coordinates (p, ¢) and write down the
harmonic map equations

(2) upAu, = 3ug|Vu¢\2 and uﬁAu¢ = —6Vu, - uiVu¢.

Although the right hand side of the above equations is locally bounded by the
Lipschitz regularity of harmonic maps (cf. [KS1] Theorem 2.4.6), the left hand
side is degenarate since u,(z) is the distance of the image u(z) to Py which tends
to zero. Thus, from this point of view, it is hard to see why the map should be
uniformly regular near a singular point.

An important observation is that, because of the non-local compactness of H
near Py, the Alexandrov tangent space Tp,H of H at Py (which is isometric to the
interval [0, 00)) does not properly reflect the geometry of H in a neighborhood of
Py. Thus, a tangent map of a harmonic map u : Q@ — H at a singular point (i.e. a
point in u~1(Py)) does not map into Tp, H. Indeed, (cf. [DM3, proof of Lemma
3.13] or [W]), a tangent map of a harmonic map u into H at a singular point is a
harmonic map u, whose image is contained in the space

(3) Hy =8 0va”...0H"Y) ~
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NONLINEAR DEGENERATE PDE 413

defined by taking N copies ﬁ(l), e ,ﬁ(N) of H and where ~ indicates that the

point Py from each copy is identified as a single point. The space ﬁ(N) should be
thought of as a tree-like N-pod where all the 2-dimensional simplices, in this case
copies of H, meet at the single vertex Py.

In [DM2], we studied how harmonic maps into Hy approximate harmonic maps
into H near a point of order 1. The goal of this paper is to investigate the singular
set of a harmonic map u : Q — Hy. The main theorem is the following:

Theorem 1. If u : Q@ — Hy is a non-constant harmonic map from an n-
dimensional smooth Riemannian domain, then the singular set u='(Py) is (n —1)-
rectifiable.

In [Ya2], Yamada constructed a geodesic completion X of the Teichmiiller space
through the formalism of Coxeter complex with the Teichmiiller space as its non-
linear non-homogeneous fundamental domain. His main result is that this space
X, called the Teichmiiller-Cozeter complez, is of finite rank (in the sense of [KS2])
which in turn implies an existence theorem of equivariant harmonic maps (cf. [Ya2,
Theorem 2]). Given a harmonic map u :  — X from a n-dimensional Riemannian
domain into a Teichmiiller-Coxeter complex, we can define a regular point as a
point of Q that maps to the interior of some fundamental domain of X (i.e. an
isometric copy of 7 in X), the regular set R(u) as the set of regular points and the
singular set S(u) as the complement of R(u). By combining [DM3] and Theorem 1,
we obtain the following regularity result:

Theorem 2. Ifu:Q — X is a harmonic map from a n-dimensional Riemannian
domain into a Teichmiiller-Cozeter complex, then S(u) is (n — 1)-rectifiable.

2. PRELIMINARIES

Let (H, gu) and (H, dy) be as above. The homogeneous cordinates (p, ®) of H
are defined by setting

O = pio.
It can be easily seen that the metric gy is invariant under the scaling

p— Ap, = \D.

For A\ € (0,00), we define the map P — AP using homogeneous coordinates by
setting

(4) AP = { (Ap];j@ for g)r: P(p:, ¢]>D)O§ H
The distance function is homogeneous degree 1 in the sense that
da(AP, A\Q) = Adu (P, Q).
We now let Hy as in (3). The distance function dg, on Hy is defined by
setting diy (P, P) = du(Py, Py) if P, Py € H” for some j € {1,...,N} and
diz, (P, P2) = p1 + p2 i Pu = (p1,¢1) € HO = H\[Py} and Py = (p2, ) €

H® = ﬁ(k)\{Po} for j # k. The metric space (Hy,dm, ) is an NPC space (cf.
[BH]).
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414 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

Convention 3. For N =2, we write

(5) H,=H uUH /~
where H = ﬁ(l) and H = ﬁ@). We will consider Hy as a totally geodesic subset
of Hy by the obvious inclusion. Furthermore, we define coordinates on Ha\{Py}
by first applying the change of variables (p, ®) — (—p, @) to oblain new coordinates

for H . Thus, we then have coordinates

(6) (p.¢) € R\{0} xR

for Ho\{Py} with the property that p > 0 implies (p,¢) € HY and p < 0 implies
(p, @) € H™. The metric gu, at (p,d) with p # 0 is given by

(7) g1, (p, @) = dp® + p°dg”.

We also define the homogeneous coordinates (p, ®) on Ha\{Py}.

Convention 4. Given Hy and any two copies H(]) and H( ) , there is a totally

geodesic isometry o : Hy — Hy with image 7y / ~. In partlcular (6) and

(7) induce coordinates and a metric on the image of o inside Hy.

For a map v : Q — Hy from a bounded Riemannian domain, let the function
|Vv|? be the energy density as defined in [KS1]. The energy of v is

/ \Vo|2dp.

Definition 5. The map u : Q — Hy is said to be harmonic if for every x € Q,
there exists v > 0 such that u’B @) is energy minimizing with respect to all finite

energy maps v : B,.(z) — Hy with the same trace (cf. [KS1]).

For a harmonic map u : @ — Hy, we have the following important monotonicity
formula. Given zg € Q and o > 0 such that B,(zo) C Q, let

E*(0) ::/ |Vul?’dp and I“(0) ::/ d?(u, u(zx))dx.
Bs(x0) 9B, (o)

There exists a constant ¢ > 0 depending only on the C? norm of the metric on g
(with ¢ = 0 when g is the standard Euclidean metric) such that
20 E%(0)
I(o)
is non-decreasing. As a non-increasing limit of continuous functions,
20 E¥(0)
1(0)
is an upper semicontinuous function and Ord“(zg) > 1. (See Section 1.2 of [GS]
with [KS1] and [KS2] justify various technical steps.)

o— e’

Ord"(zg) := lim e®
o—0

Definition 6. The value Ord"(zo) is called the order of u at xo.
The singular set of a harmonic map « : @ — Hy is defined by
S(u) ={z € Q:u(zx) = Pp}.
The set S(u) is partitioned into the following two sets
So(u) = {z € S(u) : Ord“(z) > 1}
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NONLINEAR DEGENERATE PDE 415

and
Si(u) ={z € S(u) : Ord“(z) = 1}.
The following result follows from [DM2] or [DM3].

Lemma 7. If u : B1(0) — Hy is a harmonic map, then the set of higher order
points of u is of Hausdorff codimension at least 2, i.e.

dimH(S()(u)) <n-—2.

Proof. In [DM2, Theorem 35] or [DM3, Proposition 3.16], we state this result in
the case N =1 or N = 2. On the other hand, the argument presented there goes
through without modification in the case when NV is any finite positive integer. [

Lemma 7 implies that we need only consider S;(u) in order to prove Theorem 1.

We now define the notion of blow-up maps of u at x € Q. To do this, we need
that the domain metric is expressed with respect to normal coordinates so we make
Definition 8.

Definition 8. A smooth Riemannian metric g on Br(0) C R™ is said to be nor-
malized if the standard Euclidean coordinates (z*,...,x™) are normal coordinates
of g. The metric g5 for s € (0, R] on B1(0) is defined by

gs(x) = g(sz).

Given a normalized metric g on Bg(0) and a harmonic map u : (Bg(0), g) — Hx,
the homogeneous coordinates can be used to define blow-up maps of u at 0. More
precisely, write

u = (up, us)
in homogeneous coordinates. For o € (0, R], define a harmonic map (which will be
referred to as a blow-up map)

(8) Uy = (Uop, Uod) : (B1(0),95,) — Hn
by setting
topl) = 1 (@Yup(02) and s (x) = p~ (s (o)
where
Q nlo) = 20

The choice of the scaling constant p(o) implies that

(10) I" (1) = / d*(ug, Pp)dY = 1.
9B1(0)

By the monotonicity property stated above, E% (1) < 20rd*(0) for o > 0 suffi-
ciently small. Thus, by [KS1, Theorem 2.4.6], {u,} has a local uniform modulus
of continuity. In turn, this implies that given a sequence u,, with o; — 0, there
exists a subsequence converging locally uniformly in the pullback sense to a map
Uy : B1(0) = (Ya, d.) into an NPC space (cf. [KS1, Proposition 3.7]). In particular,

d(tg; (+)s Ug; (+)) = du(us(-), us(+)) uniformly on compact sets.

Following [GrSc|, we have that u, is a homogeneous map of degree a = Ord*(0),
fe. d(ux(z),u.(0)) = |x\‘)‘d(u*(‘”7|,u(0)) and the curve ¢ — wu,(tx) is a geodesic in
Y. for each z € 0B1(0).
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416 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

We now state the qualitative behavior of harmonic maps at order one points.
This is already given in [DM2, Lemma 9] when the target is Ha, but the same
argument yields the following:

Lemma 9. Let g be a normalized metric on B1(0) and u : (B1(0),g9) — Hy a
harmonic map with Ord*(0) = 1 and uw(0) = Py. Then given a sequence o; — 0,
there exists a subsequence (denoted again by o;), a rotation R : R® — R", a
sequence of homogeneous degree 1 maps l,, : B1(0) — Hy C Hy defined by (after
renumbering the copies of H in Hy if necessary and using Convention 4)

(Az',0t) a'>0
(11) lo,(z) = Py xl =0
(Azt, ¢, ) 2t <0

for a constant A > 0 and sequences {¢}. }, {¢.} such that

lim sup d(us, oR,ls,) =0, Vr € (0,1)
1—00 BT(O)

where uy, are the blow-up maps u at 0.

After rotating the domain if necessary, we may assume in Lemma 9 that

lim d(ue,,ls,) =0.

71— 00

For each i, define an isometry ¢, : Hy — Hy by first defining

(p,o—of,) if P=(p,¢) with p >0
L,_-”(P): PQ lfP:PO

(p,¢ —d5,) if P=(p,¢) with p <0

on H; and extending it to Hy as an identity map outside of Hy. In particular, we
then have [(z) := 14, 0 l,,(z) = (Az',0) and

(12) lim d(iy, 0 uy,,1) = 0.
11— 00
3. ORDER 1 SINGULAR POINTS

We start with the following:

Theorem 10. Let Ey > 0, A > 0 and a normalized metric g on B1(0) be given.
There exist o9 > 0, Dy € (O,%) and C > 0 such that if o € (0,00] and u :

(B1(0),9,) — Hy is a harmonic map that satisfies

’LL(O) :P07 Llp(u‘Bl(o)) §E07
2

and

(13) sup d(u,l) < Dy where l(z) = (Az*,0),
B1(0)

then

sup d(u,l) < CDgs, Vs e (0,1].
B;(0)
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NONLINEAR DEGENERATE PDE 417

Proof. First notice that the proof of [DM3, Iterative Lemma 5.5] goes through
without any changes when we replace the target space H by Hy. In the situation
when the target space is H, we showed that this implies the image of the harmonic
map u lies in the interior H (cf. [DM3, Proposition 3.22]). Below, we argue in the
same way as in the proof of [DM3, Proposition 3.22] to show that in the case of
H )y, we obtain the linear decay asserted in this theorem.

For Ey, A and g given in the statement of the theorem and for oy > 0 sufficiently
small such that g, is close to the Euclidean metric, let 6 € (0, ﬁ), € > 0 and
Dy € (0, %) be as in the [DM3, Iterative Lemma 5.5]. By letting o/ = [ and
00 = Dy, the assumption implies

{ sup g, (o) d(u, ol) < Do
sup g, (o), — Az'| < 0d.

Apply the [DM3, Iterative Lemma 5.7] repeatedly to conclude that for all i =

0,1,2,...,

23 (A +9D;)”
3

€o

sup d(v,l) < 61 (
B, (0)

+ 10) Do.

For s € (0,1], let i be a nonnegative integer such that s € (§°*1,%]. Then
sup d(u,l) < sup d(u,l)

B,(0) B, (0)
(22 (A+9Dy)?
< o <7( - 9Do)” 10) D
€0
2% (A +9D,)*
< 5072 (# + 10) Dy
€0
< CDos
for some C' > 0 depending only on Ey, A and g. |

Lemma 11. Let g be a normalized metric defined on Br(0) (cf. Definition 8) and
u : (Bg(0),9) = (Hy,d) be a harmonic map with Ord“(0) = 1 and u(0) = P.
Furthermore, let R and A > 0 be as in Lemma 9. Given 6y > 0, there exists o > 0
such that
s~ sup d(ug,l, oR) < &y, Vs € (0,1)
B (0)

where ug is a blow-up map of u at 0 as defined in (8) and I, : B1(0) — Hy C Hy
defined by

(Axt ) 2t >0
(14) lo(x) = Py 2t =0

(Azt,¢7) 2t <0
for some fized constants ¢}, ¢, € R.

Proof. Let 0; — 0 as in Lemma 9. By the normalization (10) and the fact that
Ord*(zp) = 1, we have that

lim E“ei(1) = 1.

G’i—>0

For o; > 0 sufficiently small such that E%si < 2 there exists Ey > 0 such that
Lip(u,, ) < % For this choice of Ey > 0, A > 0 and ¢ given in the statement

B1(0)
2
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418 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

of the lemma, let o9 > 0, Dy > 0 and C' > 0 be as in Theorem 10. Given §y > 0,
we can choose Dy > 0 sufficiently small such that CDy < dy (cf. comment in
[DM3, before equation (5.70)]). Fix o; € (0,00] sufficiently small such that (after
applying a rotation in the domain and an isometry in the target)

sup d(ue,,1) < Dy.
B%(O)

Set 0 = 0; > 0, u(x) = uy,(2x) and note that u(0) = Py, Lip(u) < Ep and
SUp g, (0 d(u,l) < Dy. Theorem 10 implies the assertion immediately. O

Lemma 12. If g is a normalized metric defined on Bg(0) and u : (Bgr(0),g) —
(Hy, d) is a harmonic map with Ord*(0) = 1 and u(0) = Py, then

Proof. The fact that the limit as » — 0 of the ratio f;(fl) exists follows from [GrSc]

(also see [DM1, Corollary 60]). Let R and A > 0 be as in Lemma 11. By choosing
60 € (0,4) in Lemma 11, there exists o > 0 such that

SUP [Ugp — lop 0 R| < sup d(te,ly 0 R) < dps
B,(0) B, (0)

Applying the triangle inequality, we obtain

s
— < sup lyp 0 R — Sup |Ugp —lop 0 R| < SUD Ugp.
B, (0) B, (0) B;(0)

Therefore,
A 1
= < lim - .
0F g = g e
The assertion now follows from the fact that
I'(r) _ I%(o) _oI%(or)
Tn-i—l - Un—l (O-,F)n—i-l'

]

Let g be a normalized metric defined on Bg(0) and u : (Bg(0),9) — (Hy,d) be
a harmonic map with «(0) = Py and Ord“(0) = 1. By virtue of Lemma 12, there
exists a constant A > 0 such that

As < p(s) < A ls

where p is defined in (9). Thus, we will consider blow-up maps of u at 2o normalized
by 1 instead of pu~!(¢).

Definition 13. The map

— 1
(15) u': B1(0) = Hy, u'(z):= ;u(ta:)
will be referred to as the renormalized blow-up map.

We now prove uniqueness of the tangent map.
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NONLINEAR DEGENERATE PDE 419

Theorem 14. If g is a normalized metric defined on Br(0) (cf. Definition 8) and
u : (Br(0),g9) — (Hy,d) is a harmonic map with Ord*(0) = 1 and u(0) = P.
Then there exists a rotation Rg : R® — R™ and constants Ay, ¢, ¢~ € R such
that
lim sup d(u?,loRp) =0
t—0 B1(0) ( 0)
where | : B1(0) — Hy C Hy is defined by
(Agzt,¢t) 2! >0
(16) I(x) = Py zt =0
(Agxt, ™) ! <O0.

Proof. By Lemma 11, given §g > 0, we can choose o > 0 and a homogeneous degree
1 map I, : B1(0) = Hy given by (14) such that

sup d(ug,ly 0 Ro) < bgs, Vs € (0,1).

B;(0)

The lemma now follows immediately since o is fixed. O

Proposition 15. Ifu: Q — Hy is a harmonic map, then the set
Si(u) =u Y (Py)N{x € Q: Ord“(z) =1}
is locally a graph of a Lipschitz function over an (n—1)-dimensional affine subspace.

Proof. For the sake of simplicity, we will assume in this proof that €2 is a Euclidean
domain. Slight modification of the argument below will prove the case when Q is
equipped with an arbitrary Riemannian metric. By [Si, Section 3.8 Corollary 1], it is
enough to show that given 6 € (0,1) and yo € S1(u), there exist pg > 0, €9 > 0 and
an (n—1)-dimensional affine subset Ly C R™ such that for any y € Be, (yo) NS1(u),

(17) Si(u) N B,(y) C {x : dist(z, Lo) < dp},  Vp < po.
Let Ty > 0 be such that Bar, (yo) C Q. Theorem 14 implies that (after rotating the
domain if necessary) there exists [ as in (16) such that

. t _
fimg sup (1) =0
2

where

— 1
uy, : Bi(0) = Hy, uy (z) = ;u(yo + tx),

Without the loss of generality, we can assume ¢ = ¢~ = 0 in (16). By the local
Lipschitz continuity ([KS1, Theorem 2.4.6]), there exists Ey > 0 such that the
Lipschitz constant of uf, for ¢ € (0,Ty) and y € Br,(0) is bounded by Ey. For Ej,
A= Ag and 69 = 1, let o9 > 0, Dg > 0, C > 0 be as in Theorem 10. As in the
proof of Lemma 11, choose Dy small such that

(18) 20Dy < AS

and ¢y € (0,Tp] such that

Dy
sup d(ulo 1) < —.
B%(O) Yo 2

By the continuity of u, there exists ¢y > 0 such that

D
fo ytoy < 70, Yy € Be, (Yo)-

sup d(u, , uy,

B1(0)
2
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420 GEORGIOS DASKALOPOULOS AND CHIKAKO MESE

Thus, by the triangle inequality,

sup d(ufﬁ, ) < Dy, Yy € Be(yo)-
Bi(0)

In other words, assumption (13) of Theorem 10 is satisfied with u(z) = u'* (%), and
thus by (18) we can conclude

1
— sup d(u,l) = sup d(u;o,l) < 2CDys < Ads, Vs € (0, ?].

0 Baty (v) B.(0)
By letting pg = ‘7‘)2t°, we obtain
y € Be,(y0) = sup d(u,l) < Adsty, Vs e (0, @]
Batg (y) 2
< sup d(u,l) < Adp, Vp € (0, po)
B, (y)

Therefore, assuming y € B, (yo) and p € (0, pg], we have
2 €S(W)NB,(y) = o' = %d(Po,l(ac)) - %d(u(m),l(m)) < bp.
By setting Ly equal to the hyperplane {z; = 0}, this immediately implies (17). O
4. PROOF OF THEOREM 1 AND THEOREM 2
We are now ready to prove our main theorems.

Proof of Theorem 1. Combine Lemma 7 and Proposition 15 (]

Proof of Theorem 2. Let P be a point in the boundary of a Teichmiiller-Coxeter
complex. The metric estimates of [DM4] imply that the Weil-Petersson metric is
asymptotically a product of a lower dimensional Teichmiiller space and copies of
Hy'’s. This is analogous to the situation in [DM1] where we studied harmonic maps
to the Weil-Petersson completion 7 of Teichmiiller space. In this case T is, near
a point in the boundary, asymptotically a product space of a lower dimensional
Teichmiiller space and copies of H’s. In particular, we showed that the singular
component maps (the component maps which map into H) have blow-up maps and
tangent maps at singular points. Similarly, we can show the same for component
maps into Hy. Thus, applying an argument as in the proof of Theorem 1, the
theorem follows. |
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