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Various multivariate extensions to the well-known Fay–Herriot model
have been proposed in the small area estimation literature. Such multi-
variate models are quite effective in combining information through
correlations among small area survey estimates of related variables or
historical survey estimates of the same variable or both. Though the liter-
ature on small area estimation is already very rich, construction of
second-order efficient confidence intervals from multivariate models has
received little attention. In this article, we develop a parametric bootstrap
method for constructing a second-order efficient confidence interval for
a general linear combination of small area means using the multivariate
Fay–Herriot normal model. The proposed parametric bootstrap method
replaces difficult and tedious analytical derivations by the power of effi-
cient algorithm and high speed computer. Moreover, the proposed
method is more versatile than the analytical method because the paramet-
ric bootstrap method can be easily applied to any method of model pa-
rameter estimation and any specific structure of the variance–covariance
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matrix of the multivariate Fay–Herriot model avoiding all the cumber-
some and time-consuming calculations required in the analytical method.
We apply our proposed methodology in constructing confidence inter-
vals for the median income of four-person families for the fifty states
and the District of Columbia in the United States. Our data analysis dem-
onstrates that the proposed parametric bootstrap method, applied to both
multivariate and univariate Fay–Herriot models, generally provides
much shorter confidence intervals compared to the corresponding tradi-
tional direct method. Moreover, the confidence intervals obtained from
the multivariate model are generally shorter than the corresponding inter-
vals from the univariate model indicating the potential advantage of
exploiting correlations of median income of four-person families with
median incomes of three- and five-person families.

KEYWORDS: Empirical Best predictor; Higher-order asymptotics;
Small area estimation.

1. INTRODUCTION

For the last few decades, there has been an increasing demand to produce reli-
able estimates for small geographic areas, commonly referred to as small areas,
since such estimates are routinely used for fund allocation and regional plan-
ning. The primary data, usually survey data, are usually too sparse to produce
reliable direct small area estimates that use data from the small area under con-
sideration. To improve upon direct estimates, different small area estimation
techniques that use multi-level models to combine information from relevant
auxiliary data have been proposed in the literature. The readers are referred to
Jiang and Lahiri (2006) and Rao and Molina (2015) for a comprehensive re-
view of small area estimation.

In estimating per-capita income of small places (population less than 1,000),
Fay and Herriot (1979) proposed an empirical Bayes method to improve on di-
rect survey-weighted estimates by borrowing strength from administrative data
and survey estimates from a bigger area. Their method uses a two-level normal
model in which the first level captures the variability in the survey estimates
and the second level links the true small area means to aggregate statistics
from administrative records and survey estimates for a bigger area.
Researchers working on small area estimation have found the Fay–Herriot
model useful in investigating various theoretical properties as well as imple-
menting methodology in different applied problems when we do not have ac-
cess to micro-data because of confidentiality and other reasons. For a review
on the Fay–Herriot model and the related empirical best predictions, readers
are referred to Lahiri (2003b).

Following the pioneering paper by Fay and Herriot (1979), several multivar-
iate extensions of the Fay–Herriot model have been considered to combine
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information from small area estimates of related variables or from past small
area estimates of the same variable or both. They are essentially special cases
of the general multivariate random effects or two-level multivariate model. In
the context of estimating median income of four-person families for the fifty
states and the District of Columbia (small areas), Fay (1987) suggested a multi-
variate extension of the Fay–Herriot model, commonly referred to as the multi-
variate Fay–Herriot (MFH) model, to borrow strength from the corresponding
survey estimates of median income of three- and five-person families for the
small areas. Alternatively, in Fay’s setting one could think of using survey esti-
mates of median income for the three-person and five-person families as auxil-
iary variables in a univariate Fay–Herriot (UFH) model. But, unlike the UFH
model, the MFH model incorporates sampling variance–covariance matrix of
direct survey estimates of median income of the three-, four-, and five-person
families for each small area. Moreover, the MFH model borrows strengths
through correlations of the components of area-specific vector of random
effects associated with the true median income of three-, four-, and five-person
families. Inferences on the four-person median income for the small areas
drawn from the MFH model are expected to be more efficient and reasonable
when compared to the inferences drawn from an UFH model with survey esti-
mates of the median income for three- and five-person families as auxiliary
variables. This is because the UFH model would ignore the sampling variabil-
ity of the survey estimates of median income for the three- and five-person
families in the small areas.

In estimating median income of four-person families for the fifty states and
the District of Columbia, Datta, Fay, and Ghosh (1991) used a bivariate Fay–
Herriot model with a general structure for the variance–covariance matrix of
the vector of area-specific random effects. However, in many small area appli-
cations, structured variance–covariance matrices for the vector of area-specific
random effects arise naturally. For example, to combine information from the
related past data, Rao and Yu (1994) proposed a stationary time series cross-
sectional model while Datta, Lahiri, and Maiti (2002a) proposed a random
walk time series and cross-sectional model. Although the time series cross-
sectional models can be viewed as special cases of the MFH model, one can
achieve greater efficiency in estimating the unknown variance–covariance ma-
trix by reducing the number of parameters in the variance–covariance matrix
through time series cross-sectional models.

Empirical best linear unbiased predictions and associated uncertainty meas-
ures for MFH models with or without structured variance–covariance matrices
for the vector of random effects have been adequately studied (see, e.g., Datta
et al. 1991; Rao and Yu 1994; Benavent and Morales 2016; Datta et al. 2002a;
and others). However, the problem of constructing second-order efficient con-
fidence intervals for the MFH model, that is, confidence intervals with cover-
age error oðm�1Þ; m being the number of small areas, received very little
attention.
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Datta, Ghosh, Smith, and Lahiri (2002b) obtained a second-order efficient
confidence interval for a small area mean using an analytical method. To this
end, they first obtained the exact expression for the term of order Oðm�1Þ in a
higher-order expansion of coverage probability of a normality-based empirical
Bayes confidence interval, originally proposed by Cox (1975). Then, using the
Oðm�1Þ term in the expansion, they suggested an adjustment to the normal per-
centile to lower the coverage error to oðm�1Þ. The approach of Ito and
Kubokawa (2021) in obtaining a second-order efficient confidence region for
the vector of means for each area is essentially a multivariate generalization of
Datta et al. (2002b). However, their results are specifically designed for the
MFH model with an unstructured variance–covariance matrix when a method-
of-moment estimator of the variance–covariance matrix of the vector of ran-
dom effect is used. The derivation of the second-order efficient confidence
intervals by the analytical method of Datta et al. (2002b) or Ito and Kubokawa
(2021) is cumbersome, and one needs to go through the such derivation each
time one changes the model [say, an MFH model with model variance–covari-
ance structure suggested by the time series cross-sectional model of Rao and
Yu (1994) or Datta et al. (2002a)] or estimation method for the model
parameters.

Parametric bootstrap method for obtaining second-order unbiased mean
squared error estimation was first proposed by Butar and Lahiri (2002).
Construction of the second-order efficient confidence interval based on the em-
pirical best linear predictor of a small area parameter for a general linear mixed
model was proposed by Chatterjee, Lahiri, and Li (2008). For parametric boot-
strap confidence intervals for the UFH model, see Lahiri (2003a) and Li and
Lahiri (2010). In this paper, we develop a parametric bootstrap method for
obtaining second-order efficient confidence intervals for small area parameters
from an MFH model. Compared to the analytical method, our parametric boot-
strap approach for constructing second-order confidence intervals for small
area parameters is versatile and theoretically complete because our method
applies to any variance estimator with minimal assumptions and theoretical
justification is directly provided to the proposed method.

In section 2, we describe the multivariate model, associated estimation of
the model parameters, and the proposed parametric confidence interval for a
linear combination of small area means. We present our data analysis in
section 3. An outline of the technical proof of our main result is deferred to the
Appendix.

118 Saegusa, Sugasawa, and Lahiri

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/article/10/1/115/6019944 by U
niversity of M

aryland user on 07 August 2022



2. PARAMETRIC BOOTSTRAP CONFIDENCE
INTERVALS FOR THE MFH MODEL

2.1 MFH Model

Let hi ¼ ðhi1; . . . ; hisÞt and yi ¼ ðyi1; . . . ; yisÞt be a vector of characteristics of
interest and a vector of direct survey estimates of hi for area i ði ¼ 1; . . . ;mÞ,
respectively, where m is the number of small areas. The MFH model (Fay,
1987; Benavent and Morales, 2016) is given by

yi ¼ hi þ ei; hi ¼ Xibþ vi; i ¼ 1; . . . ;m; (1)

where Xi is a s� p matrix of known explanatory variables; ei and vi are vectors
of area-specific sampling errors and random effects, respectively; and
fei; i ¼ 1; . . . ;mg and fvi; i ¼ 1; . . . ;mg are all independent with ei � Nð0;DiÞ
and vi � Nð0;AðwÞÞ,Di being the s� s known sampling variance–covariance ma-
trix of yi; i ¼ 1; . . . ;m.

We assume that AðwÞ, the variance–covariance matrix of the random effects
hi, depends on k unknown parameters w ¼ ðw1; . . .wkÞ with
1 � k � sðsþ 1Þ=2. For the small area application considered by Datta et al.
(1991), AðwÞ is an unstructured variance–covariance matrix with s¼ 2 and
k¼ 3. For the stationary time series cross-sectional model of Rao and Yu
(1994), AðwÞ is a structured variance–covariance matrix with s as the number
of time points, and k ¼ 3: For the random walk time series cross-sectional
model of Datta et al. (2002a), AðwÞ is a structured variance–covariance matrix
with s as the number of time points, and k ¼ 2: Let / ¼ ðb;wÞ be a vector of
all the unknown parameters.

We define y ¼ ðyt1; . . . ; ytmÞ
t; X ¼ ðXt

1; . . . ;X
t
mÞ

t and define v; e, and h in the
same way as y. Then, the model can be expressed as

y ¼ Xbþ vþ e;

where v � Nð0; ~AðwÞÞ with ~AðwÞ ¼ diagðAðwÞ; . . . ;AðwÞÞ 2 R
ms�ms and e

� Nð0;DÞ with D ¼ diagðD1; . . . ;DmÞ 2 R
ms�ms. With this notation, we can

write VarðyÞ � R ¼ diagðAðwÞ þ D1; . . . ;AðwÞ þ DmÞ. In this paper, we are
interested in constructing confidence intervals for T ¼ cth, where c is a ms-di-
mensional vector of known constants. For example, if we let c ¼ ð1; 0; . . . ; 0Þ;
T ¼ hi1 is the small area mean of the first characteristics in the first area.

Under the model (1), the best linear unbiased predictor of hi with known
model parameters is given by

~hi ¼ yi � DifAðwÞ þ Dig�1ðyi � XibÞ; i ¼ 1; . . . ;m;

which shrinks yi toward the regression part Xib. Note that each element in ~hi
depends not only on the corresponding observation but also on other observa-
tions in the same area when Di or AðwÞ have nonzero off-diagonal elements.
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Exploiting the information from the correlation structure, the best linear unbi-
ased predictor can potentially provide more accurate estimates of hi than sim-
ple applications of the univariate FH models to each element. In fact, we have
empirically shown that such advantage is inherited to interval lengths of confi-
dence intervals. The MFH model provides more efficient confidence intervals
than the UFH model by borrowing information from related components.

2.2 Estimation of Model Parameters

Because the best linear unbiased predictor ~hi depends on unknown model
parameters, statistical inference on hi is carried out via the empirical best linear
unbiased estimator given by

bhi ¼ yi � DifAðbwÞ þ Dig
�1
ðyi � Xi

bbÞ;
where AðbwÞ and bb are consistent estimators of AðwÞ and b, respectively. We
estimate b by the generalized least squares estimator

bb ¼ ðXtbR�1
XÞ�1XtbRy

once AðbwÞ in bR is obtained. There are several different methodologies to esti-
mate AðwÞ (e.g., the restricted maximum likelihood estimator (Benavent and
Morales, 2016) and moment-based estimators (Ito and Kubokawa, 2021)), but
the proposed method to construct the empirical Bayes confidence interval does
not depend on a specific variance estimator. For the data analysis in section 3,
we adopt the maximum likelihood estimator that maximizes

Lð/Þ ¼ � 1
2

Xm
i¼1

log jAðwÞ þ Dij

� 1
2

Xm
i¼1

ðyi � XibÞtfAðwÞ þ Dig�1ðyi � XibÞ:

In this paper, we use the EM algorithm, described in the Appendix, for obtain-
ing maximum likelihood estimates. Note that this method estimates b and AðwÞ
simultaneously and automatically yields the generalized least squares estimatorbb as the maximum likelihood estimator.

2.3 Confidence Intervals via Parametric Bootstrap

We describe our methodology to construct the empirical Bayes confidence in-
terval for T ¼ cth. To motivate our method, we first consider a traditional ap-
proach to interval estimation. The key observation for this approach is that the
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conditional distribution of T ¼ cth under model (1) is given by
T jy � NðlT ; r2

TÞ, where

lT � lTðy;/Þ ¼ ctDR�1Xbþ ct~AðwÞR�1y;

r2
T � r2

TðwÞ ¼ ctdiag
�
ðAðwÞ�1 þ D�1

1 Þ�1; . . . ; ðAðwÞ�1 þ D�1
m Þ�1

�
c:

Since r�1
T ðT � lTÞ follows the standard normal distribution, one can find z

such that Pðr�1
T jT � lT j � zÞ ¼ 1 � a for a fixed a 2 ð0; 1Þ. Because the re-

sultant interval lT6zrT for T contains unknown parameters lT and rT, the tra-
ditional approach replaces these parameters by their consistent estimators blT

and brT to obtain the confidence interval blT6zbrT for T. Though this interval
has a correct coverage asymptotically, it tends to be too short or too long in
practice. This undesirable phenomenon is due to the reliance on the rather
crude approximation of the distribution of br�1

T ðT � blTÞ by the standard nor-
mal distribution, which yields the coverage error of Oðm�1Þ. Because lT and
rT must be estimated, the issue of the asymptotic approximation is not avoid-
able. Instead, we consider the distribution of br�1

T ðT � blTÞ from the beginning
and consider a method to precisely approximate it. We achieve this goal
through the parametric bootstrap.

We construct the bootstrap sample in a parametric way as follows. First, we
independently generate v�i � Nð0;AðbwÞÞ and e�i � Nð0;DiÞ. Because hi ¼ Xib
þvi and yi ¼ hi þ ei in model (1), we construct

h�i ¼ Xi
bb þ v�i ;

y�i ¼ h�i þ e�i :

The resultant bootstrap sample is fðy�1;X1Þ; . . . ; ðy�m;XmÞg. To approximate the
distribution of br�1

T ðT � blTÞ, we compute T� ¼ cth� with
h� ¼ ððh�1Þ

t; . . . ; ðh�mÞ
tÞt. Bootstrap estimates bl�

T and br� of lT and rT are
obtained in the same way as blT and brT by replacing the original sample yi by
the bootstrap sample y�i . For example, one can compute the bootstrap maxi-
mum likelihood estimate b/�

¼ ðbb�
; bw�

Þ by maximizing

L�ð/Þ ¼ � 1
2

Xm
i¼1

log jAðwÞ þ Dij

� 1
2

Xm
i¼1

ðy�i � XibÞtfAðwÞ þ Dig�1ðy�i � XibÞ:

Once b/�
is computed, we obtain bl�

T ¼ lTðy�; b/�
Þ and br�

T ¼ rTðbw�
Þ.
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The conditional distribution of

br�1�
T ðT� � bl�

TÞ

given the data y is the parametric bootstrap approximation to the distribution ofbr�1
T ðT � blTÞ. Because the random variable br�1�

T ðT� � bl�
TÞ can be generated

as described above, one can find (q1, q2) satisfying Pðq1 � br�1�
T ðT� � bl�

TÞ
� q2Þ ¼ 1 � a as precisely as possible. Specifically, we compute the lower
and upper (a=2) quantiles of the bootstrap distribution. Because parametric boot-
strap provides a precise approximation, (q1, q2) is expected to yield a similar proba-
bility for br�1

T ðT � blTÞ. The proposed parametric bootstrap confidence interval is

blT þ brTq1 � T � blT þ brTq2:

The following theorem states that the proposed empirical Bayes confidence in-
terval achieves correct coverage asymptotically with error Oðm�3=2Þ.

Theorem 1 We assume the following conditions:

• The matrix X is of full rank satisfying ðXtR�1XÞ�1 ¼ Oðm�1Þ.
• AðbwÞ is a strictly positive definite matrix satisfying
EjjAðbwÞ � AðwÞjjF ¼ Oðm�1Þ, where jj � jjF is the Frobenius norm.

• There exists positive constants k and �k such that the sampling variance–
covariance matrix Di satisfies kIs � Di � �kIs for i ¼ 1; . . . ;m.

Let a 2 ð0; 1Þ. Suppose (q1, q2) satisfies

Pðq1 � br�1�
T ðT� � bl�

TÞ � q2Þ ¼ 1 � a:

Then
PðblT þ brTq1 � T � blT þ brTq2Þ ¼ 1 � aþ Oðm�3=2Þ:

3. APPLICATION

In this section, we use old data used earlier by Datta et al. (1991) to compare
three different confidence interval methods: direct method and parametric
bootstrap confidence interval methods—one based on a UFH model and the
other based on MFH model. The data contain direct survey estimates of median
income of three-, four-, and five-person families and their associated standard
errors for the fifty states and the District of Columbia during years 1979–1988.
In addition, data contain the census median income of three-, four-, and
five-person families obtained from the 1970 and 1980 decennial censuses. The
US Department of Health and Human Services (HHS) administers a program of
energy assistance to low-income families. Eligibility for the program is
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determined by a formula where the most important variable is an estimate of the
current median income for four-person families by states.

Let hi1; hi2, and hi3 denote the true median income of three-, four-, and five-
person families, respectively, for i ¼ 1; . . . ;m, where m¼ 51 is the number of
states and the District of Columbia in the United States. Let yi1; yi2 and yi3 be
the corresponding direct survey estimates. Our primary interest is the four-
person family median income, hi2. We consider estimation of the four-person
family median income by borrowing strength from not only area-specific auxil-
iary variables but also the direct survey estimates of median income for the
three- and five-person families. As for the area-specific auxiliary variables, we
consider the median income data obtained from the most recent decennial cen-
sus and an “adjusted” census median income obtained by multiplying the most
recent census median income by the ratio of per-capita income of the current
year to the most recent decennial census year. The per-capita income informa-
tion is available from administrative records maintained by the Bureau of
Economic Analysis. The covariate matrix Xi is a 3� 9 matrix given by

Xi ¼ diagðð1; xi1; x�i1Þ; ð1; xi2; x�i2Þ; ð1; xi3; x�i3ÞÞ;

where xik and x�ik denote the census and adjusted census median income for the
k-person family (k¼ 3, 4, 5) in the ith area.

For each year during the period 1981–1988, we first applied the MFH model
described by (1). We used 1979 median income data obtained from the 1980
decennial census data as auxiliary variables. For comparison, we also applied
the UFH model only to the four-person family income data yi2 with the corre-
sponding census data as auxiliary variables. We found that the maximum like-
lihood estimates of the random effects variance in the UFH model were 0 in
1982, 1983, and 1986 and thus for these years confidence interval of hi2 cannot
be obtained. On the other hand, we observed that the MFH model produces
positive definite estimates for A in all the years, and correlations are quite high
in some years. This indicates that the random effects variance in hi2 can be ade-
quately estimated by borrowing strength from other information such as yi1
and yi3 through the MFH model (1). For illustration, we focus on the results in
1984 and 1987 in which the estimated correlation matrices are given by

1 0:171 0:938

0:171 1 0:200

0:938 0:200 1

0
BB@

1
CCA;

1 0:780 0:587

0:780 1 0:915

0:587 0:915 1

0
BB@

1
CCA;

respectively. Note that the correlations are quite high in 1987 while relatively
small in 1984.

Based on 1,000 bootstrap replications, we computed 95 percent parametric
bootstrap confidence intervals of hi2 under both MFH and UFH models. We
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also computed 95 percent confidence intervals based on the direct estimator
(denoted by DIR), given by ðyi2 � z0:025

ffiffiffiffiffiffiffiffi
Di22

p
; yi2 þ z0:025

ffiffiffiffiffiffiffiffi
Di22

p
Þ, where z0:025

is the upper 0.025 quantile of the standard normal distribution, and Di22 is the
(2)-element of Di. Figure 1 displays the differences between lengths of 95 per-
cent parametric bootstrap confidence interval based on the MFH model and
those based on the UFH model and the DIR method, where the states are ar-
ranged in the ascending order of sampling variances. A negative value of the
difference indicates that the length of the confidence interval from the MFH
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Figure 1. Plots of the Differences between the Lengths of 95 Percent Parametric
Bootstrap Confidence Intervals Based on the MFH Model and Those of the
Corresponding Parametric Bootstrap Confidence Intervals Based on the UFH
Model [the Naive Confidence Intervals Based on Direct Estimates (DIR)] against
States Arranged in the Ascending Order of Their Sampling Variances.

Table 1. Descriptive Statistics of Lengths of 95 Percent Confidence Intervals
Constructed using the Parametric Bootstrap Method Based on the MFH and
UFH Models and the Direct Method (DIR)

Year Method Minimum 25% Median Mean 75% Maximum

1984 MFH 4.12 5.55 6.13 6.02 6.38 8.28
UFH 4.21 5.78 6.42 6.32 6.72 8.44
DIR 3.96 6.66 7.75 8.00 8.84 21.30

1987 MFH 4.54 6.08 6.78 6.74 7.23 12.87
UFH 5.86 7.60 8.57 8.39 8.95 11.85
DIR 6.18 8.23 10.71 10.84 12.15 32.39

NOTE.—The statistics are computed using data for all the states and the District of
Columbia.
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model is shorter than that from the UFH model or the DIR method. In table 1,
we report descriptive statistics of lengths of confidence intervals constructed
using these three methods. Comparing the intervals from the MFH model and
the DIR method, the difference tends to increase as sampling variance
increases. This is reasonable because we can improve the accuracy of inference
on parameters in areas with large sampling variances by borrowing strength
through the model. Comparing intervals from the MFH and UFH models, the
lengths are comparable in 1984 possibly because the correlations among three
median incomes are not so strong. The advantage of borrowing strength from
the other incomes can be limited. On the other hand, in 1987, the MFH model
produces shorter confidence intervals than the UFH model in almost all the
areas due to the high correlations.

We next investigate the performance of the confidence intervals using the
1979 census data treating them as true values. We applied the MFH and UFH
methods to the 1979 survey data using the 1969 census data as covariates. In
this case, we applied the UFH method not only to yi2 but also to yi1 and yi3.
We observe that for the UFH model both maximum likelihood and restricted
maximum likelihood estimates of the random effects variances are zero (for yi2
and yi3) or very small (for yi1). Based on 1,000 bootstrap replications and the
maximum likelihood method, we obtained 95 percent confidence intervals of
hik (k¼ 1, 2, 3) for the MFH and UFH models. We calculated the mean and
median lengths of confidence intervals, given by, (Len1) m�1 Pm

i¼1 jCIij and
(Len2) MedianfjCI1j; . . . ; jCImjg, respectively, where CIi is the confidence in-
terval for the ith state. We also computed the empirical coverage rate (CR),
given by m�1 Pm

i¼1 Iðhi 2 CIiÞ, using the 1979 census data as true values hi.
The results are reported in table 2. Although the UFH model provides shorter
confidence intervals than the MFH model, the empirical CR is quite low when
compared to the nominal level 95 percent. This suggests that the confidence
intervals for the UFH model are too anti-conservative in this case, possibly

Table 2. Performance of 95 Percent Confidence Intervals Constructed using the
Parametric Bootstrap Method Based on the MFH and UFH Models and the
Direct Method (DIR)

Method Three-person family Four-person family Five-person family

CR Len1 Len2 CR Len1 Len2 CR Len1 Len2

MFH 100 3.21 3.13 96.1 2.40 2.29 100 4.52 4.36
UFH 74.5 1.77 1.69 – – – – – –
DIR 86.3 5.57 5.41 86.3 5.88 5.91 86.3 9.25 8.98

NOTE.—The results for UFH in four- and five-person family incomes do not exist be-
cause of zero estimates of the random effects variances.
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because of small estimates of random effects variance. On the other hand, the
MFH model provides reasonable confidence intervals. Their CRs are quite
high and their lengths are much shorter than those of the direct method.

4. CONCLUDING REMARKS

In this article, we introduce a parametric bootstrap method for constructing a
second-order accurate confidence interval of a small area parameter from the
MFH model. The proposed parametric bootstrap method is easy to implement
and can be applied to different estimators of model parameters for a wide range
of small area models. This is in a sharp contrast to the analytical calibration
method proposed by Datta et al. (2002b) and Ito and Kubokawa (2021) where
a different estimation method of model parameters requires cumbersome deri-
vations of the correction terms and tedious checking of assumptions. We have
demonstrated superiority of the proposed methodology over the corresponding
parametric bootstrap method for the univariate model and direct method using
a real-life data analysis. Better coverage and generally shorter length of the
proposed interval are due to the effective use of the correlation structure in the
same area and direct approximation of the distribution through the parametric
bootstrap method.

We can extend the proposed methodology in several new directions. An im-
mediate extension will be to construct the parametric bootstrap confidence re-
gion of a vector of small area parameters as an alternative to the analytical
method studied by Ito and Kubokawa (2021). In this paper, we have focused
on a linear combination of small area parameters. When more than three
parameters are of interest, our simple and versatile parametric bootstrap
method is expected to be a powerful alternative to the analytical calibration.
Though the methodology proposed in this paper can be easily extended to con-
struct confidence region for multiple parameters, theoretical justification of
such method is expected to be a challenging problem because the problem
involves multivariate integrals. Another research direction would be to extend
the parametric bootstrap to a more general multivariate linear mixed models.
Because theoretical arguments by Chatterjee et al. (2008) for the general uni-
variate case is similar to that in this paper, its multivariate extension can be
attempted in a similar way. Another interesting problem of future research in-
terest would be to address the issue of possible nonpositive definiteness of the
estimated variance–covariance matrices. Singularities of estimated variance–
covariance matrices may occur in estimates derived from both the original
sample and the bootstrap replicates. Because this issue compromises the valid-
ity of the parametric bootstrap procedure, it is important to develop reasonable
adjustment methods such as the existing approaches in the univariate situation
(e.g., Li and Lahiri, 2010).
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APPENDIX

EM ALGORITHM

The EM algorithm for computing the maximum likelihood estimates starts
with initial values bð0Þ and wð0Þ. The algorithm then updates the values at the
ðsþ 1Þth iteration from the sth iteration as follows:

bðsþ1Þ ¼ fXtRðwðsÞÞ�1Xg�1
XtRðwðsÞÞ�1y;

wðsþ1Þ ¼ argminw

Xm
i¼1

log jRiðwÞj

þ
Xm
i¼1

ðyi � Xib
ðsþ1ÞÞtRiðwÞ�1ðyi � Xib

ðsþ1ÞÞ;

where RiðwÞ ¼ AðwÞ þ Di and RðwÞ ¼ blockdiagðR1ðwÞ; . . . ;RmðwÞÞ. If the
updated variance–covariance matrix RðwÞ is nonpositive definite, we modify
the matrix to make it positive definite. Let RðwÞ ¼ HtKH be an eigenvalue
decomposition, where H is an orthogonal matrix and K ¼ diagðk1; . . . ; ksÞ
with eigenvalues k1; . . . ; ks of RðwÞ. Then, a modified version of RðwÞ is de-
fined as R�ðwÞ ¼ HtK�H, where K� ¼ diagðmaxðd; k1Þ; . . . ;maxðd; ksÞÞ for
some d > 0.

PROOF OF THEOREM 1

For notational simplicity, we suppress the dependence of matrices on w. For
example, we write A and bA for AðwÞ and AðbwÞ, respectively.

Recall that the conditional distribution of h given Y is a multivariate normal
distribution with mean l ¼ ðlt1; . . . ; ltmÞ

t and the variance–covariance matrix
r2 ¼ diagfðA�1 þ D�1

1 Þ�1; . . . ; ðA�1 þ D�1
m Þ�1g, where li ¼ AðAþ DiÞ�1yi

þ DiðAþ DiÞ�1Xib. Let T ¼ cth. The conditional distribution of T given Y is
then a normal distribution with mean lT ¼ ctl and variance r2

T ¼ ctr2c. Let
U and / be the cumulative distribution function and density function for the
standard normal random variable, respectively. Define QðYÞ ¼
r�1
T fblT � lT þ rðbrT � rTÞg. It follows that
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Pðbr�1
T ðT � blTÞ � rÞ ¼ E½r�1

T ðT � lTÞ � r þ QðYÞjYÞ	

¼ E½Uðr þ QðYÞÞ	

¼ UðrÞ þ /ðrÞE½QðY 	 � 1
2
r/ðrÞE½QðYÞ2	

þ 1
2
E½
ðrþQ

r
ðr þ Q� xÞ2ðx2 � 1Þ/ðxÞdx	

� UðrÞ þ /ðrÞT1 �
1
2
r/ðrÞT2 þ T3:

Because of the facts that jrþQ�xj � jQj for x 2 ðr; r þ QÞ and ðx2 � 1Þ/ðxÞ
is uniformly bounded, we have

T3ðrÞ ¼
1
2
E½
ðrþQ

r
ðr þ Q� xÞ2ðx2 � 1Þ/ðxÞdx	

� 1
2
E½
ðrþQ

r
jr þ Q� xj2jðx2 � 1Þ/ðxÞjdx	

� CE½Q2
Ð rþQ
r dx	 � CEjQj3;

for some constant C> 0. Thus, the evaluation of Pðbr�1
T ðT � blTÞ � rÞ reduces

to the evaluation of EQ, EQ2, and EjQj3. In particular, if EQ ¼ Oðm�1Þ;
EQ2 ¼ Oðm�1Þ and EQ4 ¼ Oðm�2Þ, then it follows that

EjQj3 � ðEQ4Þ�3=4 ¼ Oðm�3=2Þ

by the Hölder’s inequality so that

Pðbr�1
T ðT � blTÞ � rÞ ¼ UðrÞ þ Oðm�1Þcðr; b;wÞ þ Oðm�3=2Þ; (2)

where c is a smooth function of O(1). A mathematical argument similar to the
one used in the derivation of (2) leads to

Pðbr�1�
T ðT� � bl�

TÞ � rÞ ¼ UðrÞ þ Oðm�1Þcðr; bb; bwÞ þ Oðm�3=2Þ:

In the following, we provide a sketch of the proof of (2) by verifying
EQ4 ¼ Oðm�2Þ. Once we obtain this result, the theorem can be proved along
the lines of Chatterjee et al. (2008).

To study the moment of Q, first consider the element of blT � l. We have
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bli � li ¼ AðAþ DiÞ�1yi þ DiðAþ DiÞ�1Xib� bAðbA þ DiÞ�1yi þ DiðbA þ DiÞ�1Xi
bb

¼ DiðAþ DiÞ�1XiðXtR�1XÞ�1XtR�1ðvþ eÞ

þDiðAþ DiÞ�1XifðXtbR�1
XÞ�1XtbR�1 � ðXtR�1XÞ�1XtR�1gðvþ eÞ

þ
�bAðbA þ DiÞ�1 � AðAþ DiÞ�1

�
ðJi � XiðXtbR�1

XÞ�1XtbR�1Þðvþ eÞ

þ
�
DiðbA þ DiÞ�1 � DiðAþ DiÞ�1

�
Xib

þ
�bAðbA þ DiÞ�1 � AðAþ DiÞ�1

�
Xi
bb

¼ R1i þ R2i þ R3i þ R4i þ R5i;

where Ji is a s� s matrix with 1 in the (i, i)-element and 0 otherwise. Let
Rj ¼ ðRt

j1; . . . ;R
t
jmÞ

t; j ¼ 1; . . . ; 5. Thus, we can write

QðYÞ ¼ r�1
T fctR1 þ ctR2 þ ctR3 þ ctR4 þ ctR5 þ qðbrT � rTÞg:

We evaluate moments of ctR1. Clearly, E½ctR1	 ¼ 0. For the second mo-
ment, a general term of the matrix E½R1Rt

1	 is given by

E½R1iR
t
1j	 ¼ DiðAþ DiÞ�1XiðXtR�1XÞ�1Xt

j ðAþ DjÞ�1Dt
j:

Since ðXtR�1XÞ�1 ¼ Oðm�1Þ and c is fixed, we obtain EðctR1Þ2 ¼ Oðm�1Þ.
For the eighth moment, note that the fourth moment of the sum is the sum of
the fourth moments up to constant. Thus, we consider the fourth moment of
ctiR1i. We first note that ðXtR�1XÞ�1 ¼ Oðm�1Þ and

U � XtR�1ðvþ eÞ ¼
Xm
i¼1

XiR
�1
i ðvi þ eiÞ ¼ Opðm1=2Þ:

The last result is obtained by an application of the central limit theorem since
fvi þ eigi¼1;...;m are independent. An application of the Cauchy–Schwartz in-
equality yields

EðctiR1iÞ4 � ðcticiÞ
2fE½Rt

1iR1i	g2 ¼ ðcticiÞ
2ftrðPiE½UUt	Þg2

;

where Pi¼ðXtR�1XÞ�1Xt
iD

2
i ðAþDiÞ�2XiðXtR�1XÞ�1. Since E½UUt	¼OpðmÞ;

Pi ¼ Oðm�2Þ from ðXtR�1XÞ�1 ¼ Oðm�1Þ, and dimensions of ci, Pi, and U are
constant, we have EðctiR1iÞ4 ¼ Oðm�2Þ.

To evaluate the fourth moment of rest of the terms in Q(Y), we need to eval-
uate the moment of Gi � ðbA þ DiÞ�1 � ðAþ DiÞ�1 and H � bR�1 � R�1: To
see this, we have, for example,
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R2i ¼ DiGiXiKXtHðvþ eÞ þ DiGiXiKXtR�1ðvþ eÞ

þDiGiXiðXtR�1XÞ�1XtHðvþ eÞ þ DiGiXiðXTR�1XÞ�1XtR�1ðvþ eÞ

þDiðAþ DiÞ�1XiKXtHðvþ eÞ þ DiðAþ DiÞ�1XiKXtR�1ðvþ eÞ

þDiðAþ DiÞ�1XiðXtR�1XÞ�1XtHðvþ eÞ;

where K ¼ ðXtbR�1
XÞ�1 � ðXtR�1XÞ�1. Note that the evaluation of

ðbA þ DiÞ�1 � ðAþ DiÞ�1 and bR�1 � R�1 involves asymptotic expansions of
matrix entries. As pointed out by Chatterjee et al. (2008, p. 1240), this compu-
tation involves numerous elementary calculations. In the end, both fourth
moments reduce to the fourth moment of the Frobenius norm of bA � A, which
is Oðm�2Þ. We omit these details and refer to Chatterjee et al. (2008).
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