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PARAMETRIC BOOTSTRAP CONFIDENCE
INTERVALS FOR THE MULTIVARIATE
FAY-HERRIOT MODEL

TAKUMI SAEGUSA
SHONOSUKE SUGASAWA*
PARTHA LAHIRI

Various multivariate extensions to the well-known Fay—Herriot model
have been proposed in the small area estimation literature. Such multi-
variate models are quite effective in combining information through
correlations among small area survey estimates of related variables or
historical survey estimates of the same variable or both. Though the liter-
ature on small area estimation is already very rich, construction of
second-order efficient confidence intervals from multivariate models has
received little attention. In this article, we develop a parametric bootstrap
method for constructing a second-order efficient confidence interval for
a general linear combination of small area means using the multivariate
Fay—Herriot normal model. The proposed parametric bootstrap method
replaces difficult and tedious analytical derivations by the power of effi-
cient algorithm and high speed computer. Moreover, the proposed
method is more versatile than the analytical method because the paramet-
ric bootstrap method can be easily applied to any method of model pa-
rameter estimation and any specific structure of the variance—covariance
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116 Saegusa, Sugasawa, and Lahiri

matrix of the multivariate Fay—Herriot model avoiding all the cumber-
some and time-consuming calculations required in the analytical method.
We apply our proposed methodology in constructing confidence inter-
vals for the median income of four-person families for the fifty states
and the District of Columbia in the United States. Our data analysis dem-
onstrates that the proposed parametric bootstrap method, applied to both
multivariate and univariate Fay-Herriot models, generally provides
much shorter confidence intervals compared to the corresponding tradi-
tional direct method. Moreover, the confidence intervals obtained from
the multivariate model are generally shorter than the corresponding inter-
vals from the univariate model indicating the potential advantage of
exploiting correlations of median income of four-person families with
median incomes of three- and five-person families.

KEYWORDS: Empirical Best predictor; Higher-order asymptotics;
Small area estimation.

1. INTRODUCTION

For the last few decades, there has been an increasing demand to produce reli-
able estimates for small geographic areas, commonly referred to as small areas,
since such estimates are routinely used for fund allocation and regional plan-
ning. The primary data, usually survey data, are usually too sparse to produce
reliable direct small area estimates that use data from the small area under con-
sideration. To improve upon direct estimates, different small area estimation
techniques that use multi-level models to combine information from relevant
auxiliary data have been proposed in the literature. The readers are referred to
Jiang and Lahiri (2006) and Rao and Molina (2015) for a comprehensive re-
view of small area estimation.

In estimating per-capita income of small places (population less than 1,000),
Fay and Herriot (1979) proposed an empirical Bayes method to improve on di-
rect survey-weighted estimates by borrowing strength from administrative data
and survey estimates from a bigger area. Their method uses a two-level normal
model in which the first level captures the variability in the survey estimates
and the second level links the true small area means to aggregate statistics
from administrative records and survey estimates for a bigger area.
Researchers working on small area estimation have found the Fay—Herriot
model useful in investigating various theoretical properties as well as imple-
menting methodology in different applied problems when we do not have ac-
cess to micro-data because of confidentiality and other reasons. For a review
on the Fay—Herriot model and the related empirical best predictions, readers
are referred to Lahiri (2003b).

Following the pioneering paper by Fay and Herriot (1979), several multivar-
iate extensions of the Fay—Herriot model have been considered to combine
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Parametric Bootstrap Confidence Intervals 117

information from small area estimates of related variables or from past small
area estimates of the same variable or both. They are essentially special cases
of the general multivariate random effects or two-level multivariate model. In
the context of estimating median income of four-person families for the fifty
states and the District of Columbia (small areas), Fay (1987) suggested a multi-
variate extension of the Fay—Herriot model, commonly referred to as the multi-
variate Fay—Herriot (MFH) model, to borrow strength from the corresponding
survey estimates of median income of three- and five-person families for the
small areas. Alternatively, in Fay’s setting one could think of using survey esti-
mates of median income for the three-person and five-person families as auxil-
iary variables in a univariate Fay—Herriot (UFH) model. But, unlike the UFH
model, the MFH model incorporates sampling variance—covariance matrix of
direct survey estimates of median income of the three-, four-, and five-person
families for each small area. Moreover, the MFH model borrows strengths
through correlations of the components of area-specific vector of random
effects associated with the true median income of three-, four-, and five-person
families. Inferences on the four-person median income for the small areas
drawn from the MFH model are expected to be more efficient and reasonable
when compared to the inferences drawn from an UFH model with survey esti-
mates of the median income for three- and five-person families as auxiliary
variables. This is because the UFH model would ignore the sampling variabil-
ity of the survey estimates of median income for the three- and five-person
families in the small areas.

In estimating median income of four-person families for the fifty states and
the District of Columbia, Datta, Fay, and Ghosh (1991) used a bivariate Fay—
Herriot model with a general structure for the variance—covariance matrix of
the vector of area-specific random effects. However, in many small area appli-
cations, structured variance—covariance matrices for the vector of area-specific
random effects arise naturally. For example, to combine information from the
related past data, Rao and Yu (1994) proposed a stationary time series Cross-
sectional model while Datta, Lahiri, and Maiti (2002a) proposed a random
walk time series and cross-sectional model. Although the time series cross-
sectional models can be viewed as special cases of the MFH model, one can
achieve greater efficiency in estimating the unknown variance—covariance ma-
trix by reducing the number of parameters in the variance—covariance matrix
through time series cross-sectional models.

Empirical best linear unbiased predictions and associated uncertainty meas-
ures for MFH models with or without structured variance—covariance matrices
for the vector of random effects have been adequately studied (see, e.g., Datta
et al. 1991; Rao and Yu 1994; Benavent and Morales 2016; Datta et al. 2002a;
and others). However, the problem of constructing second-order efficient con-
fidence intervals for the MFH model, that is, confidence intervals with cover-
age error o(m™'), m being the number of small areas, received very little
attention.
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Datta, Ghosh, Smith, and Lahiri (2002b) obtained a second-order efficient
confidence interval for a small area mean using an analytical method. To this
end, they first obtained the exact expression for the term of order O(m™!) in a
higher-order expansion of coverage probability of a normality-based empirical
Bayes confidence interval, originally proposed by Cox (1975). Then, using the
O(m~") term in the expansion, they suggested an adjustment to the normal per-
centile to lower the coverage error to o(m~!). The approach of Ito and
Kubokawa (2021) in obtaining a second-order efficient confidence region for
the vector of means for each area is essentially a multivariate generalization of
Datta et al. (2002b). However, their results are specifically designed for the
MFH model with an unstructured variance—covariance matrix when a method-
of-moment estimator of the variance—covariance matrix of the vector of ran-
dom effect is used. The derivation of the second-order efficient confidence
intervals by the analytical method of Datta et al. (2002b) or Ito and Kubokawa
(2021) is cumbersome, and one needs to go through the such derivation each
time one changes the model [say, an MFH model with model variance—covari-
ance structure suggested by the time series cross-sectional model of Rao and
Yu (1994) or Datta et al. (2002a)] or estimation method for the model
parameters.

Parametric bootstrap method for obtaining second-order unbiased mean
squared error estimation was first proposed by Butar and Lahiri (2002).
Construction of the second-order efficient confidence interval based on the em-
pirical best linear predictor of a small area parameter for a general linear mixed
model was proposed by Chatterjee, Lahiri, and Li (2008). For parametric boot-
strap confidence intervals for the UFH model, see Lahiri (2003a) and Li and
Lahiri (2010). In this paper, we develop a parametric bootstrap method for
obtaining second-order efficient confidence intervals for small area parameters
from an MFH model. Compared to the analytical method, our parametric boot-
strap approach for constructing second-order confidence intervals for small
area parameters is versatile and theoretically complete because our method
applies to any variance estimator with minimal assumptions and theoretical
justification is directly provided to the proposed method.

In section 2, we describe the multivariate model, associated estimation of
the model parameters, and the proposed parametric confidence interval for a
linear combination of small area means. We present our data analysis in
section 3. An outline of the technical proof of our main result is deferred to the
Appendix.
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2. PARAMETRIC BOOTSTRAP CONFIDENCE
INTERVALS FOR THE MFH MODEL

2.1 MFH Model

Let 0; = (01,...,0;) and y; = (vir, ..., yis)" be a vector of characteristics of
interest and a vector of direct survey estimates of 0; for area i (i = 1,...,m),
respectively, where m is the number of small areas. The MFH model (Fay,
1987; Benavent and Morales, 2016) is given by

yi:9i+giv Hi:Xiﬁ—’_via i:lv"'7m7 (1)

where X; is a s X p matrix of known explanatory variables; ¢; and v; are vectors
of area-specific sampling errors and random effects, respectively; and
{e;i=1,...,m}and {v;, i =1,...,m} are all independent with &; ~ N (0, D;)
andv; ~ N(0,A(y)), D;being the s x s known sampling variance—covariance ma-
tixofy;, i=1,...,m.

We assume that A(/), the variance—covariance matrix of the random effects
0;, depends on k& unknown parameters Y = (Y,...\,) with
1 < k < s(s+ 1)/2. For the small area application considered by Datta et al.
(1991), A(y) is an unstructured variance—covariance matrix with s=2 and
k=3. For the stationary time series cross-sectional model of Rao and Yu
(1994), A(y) is a structured variance—covariance matrix with s as the number
of time points, and k = 3. For the random walk time series cross-sectional
model of Datta et al. (2002a), A(y/) is a structured variance—covariance matrix
with s as the number of time points, and k = 2. Let ¢ = (8, /) be a vector of
all the unknown parameters.

We definey = (y,,...,y ), X = (X!,...,X" )" and define v, ¢, and 0 in the
same way as y. Then, the model can be expressed as

y=Xf+v+e,

where v ~ N(0,A()) with A()) = diag(A(y),...,A(Y)) € R™*™ and &
~ N(0,D) with D = diag(Dy, ...,D,,) € R™*™_With this notation, we can
write Var(y) = X = diag(A(¥) + Dy, ...,A({) + D,,). In this paper, we are
interested in constructing confidence intervals for T = ', where c is a ms-di-
mensional vector of known constants. For example, if we let ¢ = (1,0,...,0),
T = 0;; is the small area mean of the first characteristics in the first area.

Under the model (1), the best linear unbiased predictor of 0; with known
model parameters is given by

0;=yi— D{AW) +D;} ' (i = XiB), i=1,...,m,

which shrinks y; toward the regression part X;f. Note that each element in 0,
depends not only on the corresponding observation but also on other observa-
tions in the same area when D; or A(y/) have nonzero off-diagonal elements.
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Exploiting the information from the correlation structure, the best linear unbi-
ased predictor can potentially provide more accurate estimates of 0; than sim-
ple applications of the univariate FH models to each element. In fact, we have
empirically shown that such advantage is inherited to interval lengths of confi-
dence intervals. The MFH model provides more efficient confidence intervals
than the UFH model by borrowing information from related components.

2.2 Estimation of Model Parameters

Because the best linear unbiased predictor 0, depends on unknown model
parameters, statistical inference on 0, is carried out via the empirical best linear
unbiased estimator given by

0 =y — DAW) + D1} (v — XiB),

where A(y) and f§ are consistent estimators of A(1) and f, respectively. We
estimate f§ by the generalized least squares estimator

B =S %) xSy

once A(@) in ¥ is obtained. There are several different methodologies to esti-
mate A(Y/) (e.g., the restricted maximum likelihood estimator (Benavent and
Morales, 2016) and moment-based estimators (Ito and Kubokawa, 2021)), but
the proposed method to construct the empirical Bayes confidence interval does
not depend on a specific variance estimator. For the data analysis in section 3,
we adopt the maximum likelihood estimator that maximizes

Lg) =33 Toxla) + D
;Z ~ X TAW) + DY (i~ Xif).

In this paper, we use the EM algorithm, described in the Appendix, for obtain-
ing maximum likelihood estimates. Note that this method estimates f§ and A (/)
simultaneously and automatically yields the generalized least squares estimator
f as the maximum likelihood estimator.

2.3 Confidence Intervals via Parametric Bootstrap

We describe our methodology to construct the empirical Bayes confidence in-
terval for T = ¢'0. To motivate our method, we first consider a traditional ap-
proach to interval estimation. The key observation for this approach is that the
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conditional ~distribution of T =c¢'6 under model (1) is given by
Tly ~ N(piz, %), where

pr = pr(v, ¢) = 'DE'XB+ A(Y)=y,

7 = () = cding((A) "+ 7))+ D) e

Since 7'(T — uz) follows the standard normal distribution, one can find z
such that P(o7'|T — py| < z) =1 — o for a fixed « € (0, 1). Because the re-
sultant interval u,*zor for T contains unknown parameters yy and o, the tra-
ditional approach replaces these parameters by their consistent estimators i
and G7 to obtain the confidence interval fi;*=zor for T. Though this interval
has a correct coverage asymptotically, it tends to be too short or too long in
practice. This undesirable phenomenon is due to the reliance on the rather
crude approximation of the distribution of 6, (T — fi;) by the standard nor-
mal distribution, which yields the coverage error of O(m~'). Because y7 and
o7 must be estimated, the issue of the asymptotic approximation is not avoid-
able. Instead, we consider the distribution of 3}1 (T — fig) from the beginning
and consider a method to precisely approximate it. We achieve this goal
through the parametric bootstrap.

We construct the bootstrap sample in a parametric way as follows. First, we
independently generate vi ~ N(0,A(y)) and & ~ N(0, D;). Because 0; = X;f8
+v; and y; = 60; + ¢; in model (1), we construct

0? = X,B + V;k,

yi=07+¢.
The resultant bootstrap sample is {(y}, X1), ..., (¥}, Xn)}. To approximate the
distribution  of 6, (T —@iy), we compute T*=c'0"  with
0" = ((07),...,(0:)"). Bootstrap estimates iy and G° of pr and o are

obtained in the same way as fi; and o7 by replacing the original sample y; by
the bootstrap sample y;. For example one can compute the bootstrap maxi-
mum likelihood estimate d) (ﬂ w ) by maximizing

L'(¢) = log |A(y) + Dil

| = NI —_
i)

O = Xip)'{AW) + Di} ' (vF — Xip).

Il
-

~x

Once a* is computed, we obtain iy = ur(y*, 5*) andoy = ar(y ).
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The conditional distribution of
~—1% * o~k
or (T —uy)

given the data y is the parametric bootstrap approximation to the distribution of
6, (T — Tiy). Because the random variable G, '*(T* — fi}.) can be generated
as described above, one can find (¢, ¢,) satisfying P(q; < G, “(T* — 7i})
< ¢2) = 1 — o as precisely as possible. Specifically, we compute the lower
and upper (¢/2) quantiles of the bootstrap distribution. Because parametric boot-
strap provides a precise approximation, (g1, ¢») is expected to yield a similar proba-

bility for 3;1 (T — 1y ). The proposed parametric bootstrap confidence interval is
dr+orqr < T < lip + 379

The following theorem states that the proposed empirical Bayes confidence in-
terval achieves correct coverage asymptotically with error 0(m’3/ 2).

Theorem 1 We assume the following conditions:

* The matrix X is of full rank satisfying x'='x)' = o(m™).

* A(Y) is a  strictly  positive  definite  matrix  satisfying
E|[AW) — A(Y)|| = O(m™"), where || - || is the Frobenius norm.

e There exists positive constants A and J. such that the sampling variance—
covariance matrix D; satisfies A, < D; < Jfori=1,...,m.

Let o € (0, 1). Suppose (qi, q») satisfies

Plg <G;.5(T" 1) < o) =1 —o.

Py +6rq1 < T < fip+67q2) = 1 — o+ O(m/?).

3. APPLICATION

In this section, we use old data used earlier by Datta et al. (1991) to compare
three different confidence interval methods: direct method and parametric
bootstrap confidence interval methods—one based on a UFH model and the
other based on MFH model. The data contain direct survey estimates of median
income of three-, four-, and five-person families and their associated standard
errors for the fifty states and the District of Columbia during years 1979-1988.
In addition, data contain the census median income of three-, four-, and
five-person families obtained from the 1970 and 1980 decennial censuses. The
US Department of Health and Human Services (HHS) administers a program of
energy assistance to low-income families. Eligibility for the program is
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determined by a formula where the most important variable is an estimate of the
current median income for four-person families by states.

Let 0,1, 0,», and 0;3 denote the true median income of three-, four-, and five-
person families, respectively, for i = 1,. .., m, where m =51 is the number of
states and the District of Columbia in the United States. Let y;;, y;» and y;3 be
the corresponding direct survey estimates. Our primary interest is the four-
person family median income, 0;,. We consider estimation of the four-person
family median income by borrowing strength from not only area-specific auxil-
iary variables but also the direct survey estimates of median income for the
three- and five-person families. As for the area-specific auxiliary variables, we
consider the median income data obtained from the most recent decennial cen-
sus and an “adjusted” census median income obtained by multiplying the most
recent census median income by the ratio of per-capita income of the current
year to the most recent decennial census year. The per-capita income informa-
tion is available from administrative records maintained by the Bureau of
Economic Analysis. The covariate matrix X; is a 3 X 9 matrix given by

X = diag((hxihx?l% (laxi2>x?2)> (1,)6,'3,)63)),

where x;; and xj, denote the census and adjusted census median income for the
k-person family (k= 3, 4, 5) in the ith area.

For each year during the period 1981-1988, we first applied the MFH model
described by (1). We used 1979 median income data obtained from the 1980
decennial census data as auxiliary variables. For comparison, we also applied
the UFH model only to the four-person family income data y;; with the corre-
sponding census data as auxiliary variables. We found that the maximum like-
lihood estimates of the random effects variance in the UFH model were O in
1982, 1983, and 1986 and thus for these years confidence interval of 0;; cannot
be obtained. On the other hand, we observed that the MFH model produces
positive definite estimates for A in all the years, and correlations are quite high
in some years. This indicates that the random effects variance in ;, can be ade-
quately estimated by borrowing strength from other information such as y;
and y;3 through the MFH model (1). For illustration, we focus on the results in
1984 and 1987 in which the estimated correlation matrices are given by

1 0.171 0.938 1 0.780 0.587
0.171 1 0.200 |, 0.780 1 0.915 |,
0.938 0.200 1 0.587 0.915 1

respectively. Note that the correlations are quite high in 1987 while relatively
small in 1984.

Based on 1,000 bootstrap replications, we computed 95 percent parametric
bootstrap confidence intervals of 6;; under both MFH and UFH models. We
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Figure 1. Plots of the Differences between the Lengths of 95 Percent Parametric
Bootstrap Confidence Intervals Based on the MFH Model and Those of the
Corresponding Parametric Bootstrap Confidence Intervals Based on the UFH
Model [the Naive Confidence Intervals Based on Direct Estimates (DIR)] against
States Arranged in the Ascending Order of Their Sampling Variances.

Table 1. Descriptive Statistics of Lengths of 95 Percent Confidence Intervals
Constructed using the Parametric Bootstrap Method Based on the MFH and
UFH Models and the Direct Method (DIR)

Year Method Minimum 25% Median Mean 75% Maximum

1984 MFH 4.12 5.55 6.13 6.02 6.38 8.28
UFH 4.21 5.78 6.42 6.32 6.72 8.44
DIR 3.96 6.66 7.75 8.00 8.84 21.30
1987 MFH 4.54 6.08 6.78 6.74 7.23 12.87
UFH 5.86 7.60 8.57 8.39 8.95 11.85
DIR 6.18 8.23 10.71 10.84  12.15 32.39

Note.—The statistics are computed using data for all the states and the District of
Columbia.

also computed 95 percent confidence intervals based on the direct estimator
(denoted by DIR), given by (yi» — z0.025v/Di22, iz + 20.025v/Diz2), where 29,025
is the upper 0.025 quantile of the standard normal distribution, and Dy, is the
(2)-element of D;. Figure 1 displays the differences between lengths of 95 per-
cent parametric bootstrap confidence interval based on the MFH model and
those based on the UFH model and the DIR method, where the states are ar-
ranged in the ascending order of sampling variances. A negative value of the
difference indicates that the length of the confidence interval from the MFH
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Table 2. Performance of 95 Percent Confidence Intervals Constructed using the
Parametric Bootstrap Method Based on the MFH and UFH Models and the
Direct Method (DIR)

Method Three-person family Four-person family Five-person family

CR Lenl Len2 CR Lenl Len2 CR Lenl Len2

MFH 100 3.21 313 96.1 240 2.29 100 452 436
UFH 74.5 1.77 1.69 - - - - - -
DIR 86.3 5.57 5.41 863 5.88 591 863 9.25 8.98

Note.—The results for UFH in four- and five-person family incomes do not exist be-
cause of zero estimates of the random effects variances.

model is shorter than that from the UFH model or the DIR method. In table 1,
we report descriptive statistics of lengths of confidence intervals constructed
using these three methods. Comparing the intervals from the MFH model and
the DIR method, the difference tends to increase as sampling variance
increases. This is reasonable because we can improve the accuracy of inference
on parameters in areas with large sampling variances by borrowing strength
through the model. Comparing intervals from the MFH and UFH models, the
lengths are comparable in 1984 possibly because the correlations among three
median incomes are not so strong. The advantage of borrowing strength from
the other incomes can be limited. On the other hand, in 1987, the MFH model
produces shorter confidence intervals than the UFH model in almost all the
areas due to the high correlations.

We next investigate the performance of the confidence intervals using the
1979 census data treating them as true values. We applied the MFH and UFH
methods to the 1979 survey data using the 1969 census data as covariates. In
this case, we applied the UFH method not only to y; but also to y;; and y;3.
We observe that for the UFH model both maximum likelihood and restricted
maximum likelihood estimates of the random effects variances are zero (for y;,
and y;3) or very small (for y;;). Based on 1,000 bootstrap replications and the
maximum likelihood method, we obtained 95 percent confidence intervals of
0y (k=1, 2, 3) for the MFH and UFH models. We calculated the mean and
median lengths of confidence intervals, given by, (Lenl) m~!' >""  |CI;| and
(Len2) Median{|CI;|, ..., |CL,|}, respectively, where CI; is the confidence in-
terval for the ith state. We also computed the empirical coverage rate (CR),
given by m™! S, 1(0; € CL), using the 1979 census data as true values 0.
The results are reported in table 2. Although the UFH model provides shorter
confidence intervals than the MFH model, the empirical CR is quite low when
compared to the nominal level 95 percent. This suggests that the confidence
intervals for the UFH model are too anti-conservative in this case, possibly
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because of small estimates of random effects variance. On the other hand, the
MFH model provides reasonable confidence intervals. Their CRs are quite
high and their lengths are much shorter than those of the direct method.

4. CONCLUDING REMARKS

In this article, we introduce a parametric bootstrap method for constructing a
second-order accurate confidence interval of a small area parameter from the
MFH model. The proposed parametric bootstrap method is easy to implement
and can be applied to different estimators of model parameters for a wide range
of small area models. This is in a sharp contrast to the analytical calibration
method proposed by Datta et al. (2002b) and Ito and Kubokawa (2021) where
a different estimation method of model parameters requires cumbersome deri-
vations of the correction terms and tedious checking of assumptions. We have
demonstrated superiority of the proposed methodology over the corresponding
parametric bootstrap method for the univariate model and direct method using
a real-life data analysis. Better coverage and generally shorter length of the
proposed interval are due to the effective use of the correlation structure in the
same area and direct approximation of the distribution through the parametric
bootstrap method.

We can extend the proposed methodology in several new directions. An im-
mediate extension will be to construct the parametric bootstrap confidence re-
gion of a vector of small area parameters as an alternative to the analytical
method studied by Ito and Kubokawa (2021). In this paper, we have focused
on a linear combination of small area parameters. When more than three
parameters are of interest, our simple and versatile parametric bootstrap
method is expected to be a powerful alternative to the analytical calibration.
Though the methodology proposed in this paper can be easily extended to con-
struct confidence region for multiple parameters, theoretical justification of
such method is expected to be a challenging problem because the problem
involves multivariate integrals. Another research direction would be to extend
the parametric bootstrap to a more general multivariate linear mixed models.
Because theoretical arguments by Chatterjee et al. (2008) for the general uni-
variate case is similar to that in this paper, its multivariate extension can be
attempted in a similar way. Another interesting problem of future research in-
terest would be to address the issue of possible nonpositive definiteness of the
estimated variance—covariance matrices. Singularities of estimated variance—
covariance matrices may occur in estimates derived from both the original
sample and the bootstrap replicates. Because this issue compromises the valid-
ity of the parametric bootstrap procedure, it is important to develop reasonable
adjustment methods such as the existing approaches in the univariate situation
(e.g., Li and Labhiri, 2010).
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APPENDIX

EM ALGORITHM

The EM algorithm for computing the maximum likelihood estimates starts
with initial values ﬁ(m and W(O). The algorithm then updates the values at the
(s + 1)th iteration from the sth iteration as follows:

ﬁ(erl) _ {sz(.//@)*IX}ﬂXtZ(lP(S))*ly,

YO = argmin, > " log [Z;(y))|
i=1

3 0= XY ) - X)),

i=1

where X;() = A(Y) + D; and 2(y) = blockdiag(Z, (), ..., Zu(¥)). If the
updated variance—covariance matrix (/) is nonpositive definite, we modify
the matrix to make it positive definite. Let () = H'AH be an eigenvalue
decomposition, where H is an orthogonal matrix and A = diag(4,...,4;)
with eigenvalues 41, ..., A; of £(¥). Then, a modified version of (i) is de-
fined as X*(y) = H'A"H, where A* = diag(max (4, 4;), ..., max(d, 4)) for
some ¢ > 0.

PROOF OF THEOREM 1

For notational simplicity, we suppress the dependence of matrices on . For
example, we write A and A for A(¥) and A(@), respectively.

Recall that the conditional distribution of 6 given Y is a multivariate normal
distribution with mean = (1, ..., ! )" and the variance—covariance matrix
o =diag{(A~' + D7), ... (A + D)"Y, where 1 = A(A+ D)y,
+ Di(A+ D,-)le,‘ﬁ. Let T = ¢'6. The conditional distribution of T given Y is
then a normal distribution with mean p; = ¢’y and variance 67 = c'o”c. Let
® and ¢ be the cumulative distribution function and density function for the
standard normal random variable, respectively. Define Q(Y)=

o7 {liy — ur + r(Gr — ar)}. It follows that
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PG (T —Tir) < r)=Eloz" (T — ur) < r+0Q(Y)]Y)]

= (D(V) + ¢(V)T1 —%r(]’)(}’)Tz + T3.

Because of the facts that [r+Q—x| < |Q| forx € (r,r + Q) and (x> — 1)¢(x)
is uniformly bounded, we have

r+Q
1) =5 El| (4 Q-0 - Dl

r

r+Q
<SE| 0Pl - )oeola

< CE[Q* [ ax] < CE|QP,

for some constant C > 0. Thus, the evaluation of P(6;' (T — Ji;) < r) reduces
to the evaluation of EQ, EQ?, and E|Q\3. In particular, if EQ = O(m™!),
EQ? = O(m™') and EQ* = O(m™?), then it follows that

ElQ]' < (BQ") ™ = 0(m™"?)
by the Holder’s inequality so that
PG (T ~fip) < 1) =®(r) + O(m ™ )yp(r. f) + Om2), @)

where 7 is a smooth function of O(1). A mathematical argument similar to the
one used in the derivation of (2) leads to

PG7 " (T" = ip) < 1) = ®(r) + O(m™ " Yy(r, B, 1) + O(m ™).

In the following, we provide a sketch of the proof of (2) by verifying
EQ* = O(m™?). Once we obtain this result, the theorem can be proved along
the lines of Chatterjee et al. (2008).

To study the moment of Q, first consider the element of 1i; — p. We have
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fi— 1 =AA+D;) 'y + Di(A+ D;) ' X;f — A(A + Di)"'yi + Di(A + D;)”

=Di(A+D) ' X;(XT'X) ' X'Z (v +¢)

DA+ D) XA s 0 s - (e X)X (v 4 6)
+(AA@+ D)™ — A4+ D)) - X2 X)X v+ e)
—&-(Di(ﬁ +D,)" —Di(A + Di)il)Xiﬁ
+(Z(Z D) —AA —|—D,~)_1)X,~ﬁ

= Ry; + Ry + R3; + Ry; + Rs;,

where J; is a s X s matrix with 1 in the (i, i)-element and O otherwise. Let
R; = (R;l, ... ,Rj’m) j=1,...,5. Thus, we can write

Q(Y) = O';I{CtRl + CIRZ + CtR3 + CtR4 + C,R5 + q(b\'T - GT)}.

We evaluate moments of ¢'R;. Clearly, E[c'R;] = 0. For the second mo-
ment, a general term of the matrix E[R, R} ] is given by

-1 —1y—1 —1
E[RuR};) = Di(A+ D;)" ' Xi(X'Z™'X)"'X{(A + D))" ' D}.

Since (X'=7'X)™" = O(m™!) and c is fixed, we obtain E(¢'R;)* = O(m™").
For the eighth moment, note that the fourth moment of the sum is the sum of
the fourth moments up to constant. Thus, we consider the fourth moment of
¢!Ry;. We first note that (X'Z~'X) ™" = O(m™") and

U=XZT'(v+e)=> XZ ' (vi+a)=0,m"?).
i=1

The last result is obtained by an application of the central limit theorem since
{vi +e&i}i_y__, are independent. An application of the Cauchy—Schwartz in-

equality yields
E(cRy)* < (o) {ER,Ri)Y = (cler)* {r(PE[UUT)Y,

where P;=(X'Z"'X) "' X! D? (A +D,) *X,(X'Z7'X)"". Since E[UU'] =0, (m),
P; = O(m™?) from (X2~ 1X) O(m 1), and dimensions of c;, P;, and U are
constant, we have E(c ’R1,) o(m=2).

To evaluate the fourth moment of rest of the terms in Q(Y), we r}eed to eval-
uate the moment of G;= (A +D;) ' —(A+D;) 'and H=% —X' To
see this, we have, for example,

"X

~
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Ry = DiGX;KX'H(v + &) + D;GXKX'Z (v +¢)
+DGX(X'Z'X) ' X' H(v + &) + D,GX;(XTZ7'X) X' =7 (v 4 ¢)
+D;(A+D;) ' X;KX'H(v + &) + Di(A +D;) "' X;,KX'Z (v +¢)
+Di(A+ D) ' X,(X'Z7'X) ' X'H(v + &),

where K = (X’flilX)f1 - (XA’Z]’IX)A. Note that the evaluation of
(X + D,-)_l —(A+ Di)_' and L — X! involves asymptotic expansions of
matrix entries. As pointed out by Chatterjee et al. (2008, p. 1240), this compu-
tation involves numerous elementary calculations. In the end, both fourth
moments reduce to the fourth moment of the Frobenius norm of A — A, which
is O(m~%). We omit these details and refer to Chatterjee et al. (2008).
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