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Effects of High-β on Phase-Locking Stability and
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Abstract—Phase-locked laser arrays have been extensively inves-
tigated in terms of their stability and nonlinear dynamics. Specif-
ically, enhancing the phase-locking stability allows laser arrays
to generate high-power and steerable coherent optical beams for
a plethora of applications, including remote sensing and opti-
cal communications. Compared to other coupling architectures,
laterally coupled lasers are especially desirable since they allow
for denser integration and simpler fabrication process. Here, we
present the theoretical effects of varying the spontaneous emission
factor β, an important parameter for micro- and nanoscale lasers,
on the stability conditions of phase-locking for two laterally coupled
semiconductor lasers. Through bifurcation analyses, we observe
that increasing β contributes to the expanding of the in-phase
stability region under all scenarios considered, including complex
coupling coefficients, varying pump rates, and frequency detuning.
Moreover, the effect is more pronounced for β approaching 1, thus
underlining the significant advantages of implementing nanolasers
with intrinsically high β in phase-locked laser arrays for high-
power generation. We also show that the steady-state phase differ-
ences can be widely tuned – up to π radians – by asymmetrically
pumping high-β coupled lasers. This demonstrates the potential
of high-β nanolasers in building next-generation optical phased
arrays requiring wide scanning angles with ultra-high resolution.

Index Terms—Laser dynamics, phase locking, nanolaser,
semiconductor lasers, laser arrays, bifurcation analysis.

I. INTRODUCTION

P
HASE-LOCKED laser arrays have been extensively inves-

tigated owing to their potential in generating high-power

and coherent optical beams valuable for applications such as
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LiDAR, optical communications and remote sensing [1]–[3].

Additionally, the ability to tune the phase difference between

constituent elements in an on-chip semiconductor laser array

is vital for beam forming and steering applications [4],[5].

To realize the desired phase offset of the lasers in the arrays,

i.e., in-phase operation for high power emission and shifted

phase operation for beam forming and scanning, establishing

stable phase locking is imperative. However, such stability is

challenging to achieve due to multiple factors such as mode

competition, distinct time scales of photon and carrier dynamics,

complex nonlinear dynamics over a wide range of physical

parameters including inter-cavity distances and differences in

resonator dimensions of coupled lasers, and most notably, due to

the amplitude-phase coupling in semiconductor lasers quantified

by the linewidth enhancement factor [6],[7]. Despite the chal-

lenges, stable in-phase locking has been demonstrated through

spatial and spectral mode engineering, including evanescent

coupling in topological cavities [8], non-Hermitian coupling in

super-symmetry arrays [9], diffractive coupling via Talbot effect

[10], global antenna coupling [11], and gain matching [12].

Achieving similar phase synchronization in laterally coupled

lasers arranged in close proximity, although difficult, is highly

desirable since it involves simpler fabrication procedures and

offers denser on-chip integration compared to the other coupling

schemes mentioned above. Moreover, the dynamical behavior of

laterally coupled lasers can be accurately analyzed and predicted

by non-complex mathematical models.

In fact, theoretical analysis of the stability in laterally cou-

pled semiconductor lasers has been widely reported in the

literature [13]–[18]. In these studies, a plethora of dynamical

regimes including stable continuous-wave operation, periodic

and period-doubling oscillations, chaos, bistability, and chimera

states are identified via bifurcation analysis. These dynamical

behaviors are obtained by either analytically or numerically

solving the coupled rate equations that govern the temporal

dynamics of the emitted laser field. The impact of a variety of

important parameters such as current injection rate, linewidth

enhancement factor, laser size differences, as well as carrier and

photon lifetimes, are addressed in these analyses. However, one

critical parameter consistently overlooked in the majority of the

theoretical works in the literature thus far is the spontaneous

emission factor β. This β factor, defined as the fraction of spon-

taneous emission funneled into the lasing mode relative to all

the other supported modes, is smaller than 10−3 in typical com-

mercial laser diodes, and thus is reasonably neglected in most
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bifurcation studies [15]–[17]. Over the past two decades, how-

ever, nanolasers that exhibit intrinsically high and non-negligible

β values have been demonstrated on various platforms [19]–

[23]. These nanoscale light sources offer unique advantages

such as ultracompact footprints, low power consumption and

high-speed modulation that make them ideal candidates for

dense, on-chip integration [23]–[26]. A handful of studies so

far have reported on the significant impact that spontaneous

emission can exert on coupling behavior such as mode switching

for coupled photonic crystal nanolasers [10],[27] and partial

locking for mutually coupled micropillar lasers operating in the

few-photon regime [28],[29]. Notably, some previous theoretical

investigations have suggested that the larger damping effect in-

duced by higher β may help suppress the instability encountered

in lateral coupling schemes [14],[30]. This hypothesis as well

as the rapid advances in nanolaser technology necessitate an

in-depth analysis of how large values ofβ can contribute towards

stable phase-locking operation.

In this manuscript, we theoretically investigate the effects of

varying β on the stability of phase locking in two laterally cou-

pled semiconductor lasers through bifurcation analyses. With

increasing β, a corresponding expansion of the stability region

is observed when first considering a purely imaginary coupling

coefficient, representing a system where the supermodes have

identical losses. In order to assess the feasibility of such stability

enhancement due to high-β in a more practical device, we

also consider other important control parameters such as the

pump rate and the resonance frequency detuning between the

coupled lasers that can result due to fabrication imperfections.

We then further extend the study by including complex coupling

coefficients in order to better account for realistic scenarios

where the supermodes face dissimilar losses. Increases in the

phase-locking stability regions driven by increases in β are

observed across variations of all the control parameters, thereby

confirming that the β-driven stable phase-locking phenomenon

is not merely restricted to any specific pump power level or to

only negligibly small frequency detuning. Finally, by pumping

the two lasers unequally, it can be shown that the steady-state

phase difference between the emitters varies as a function of

β, with higher values of β resulting in a wider range of relative

phase tunability. Therefore, the results presented here emphasize

the significance of using high-β nanolasers in phase-locked

arrays which can demonstrate both high output power density

as well as beam forming and steering capabilities depending on

the desired application.

This paper is organized into four sections. Section II elab-

orates on the theoretical model used to perform the numerical

simulations. Then in Section III, the effects of varying β on

the phase-locking stability is discussed in detail. To provide an

intuitive understanding of the results in this section, the model is

reduced to be as simple as possible initially and then sequentially

increased in complexity, one additional parameter at a time.

Specifically, equal pumping, an imaginary coupling coefficient

and no frequency detuning are assumed while evaluating the

effects of altering β in Section III-A. Then, the pump rate,

frequency detuning and a complex coupling coefficient are

gradually introduced into the model in Sections III-B, III-C and

TABLE I
LASER PARAMETERS

III-D, respectively. In Section IV, we present our results for

the case of unequal pumping, demonstrating how increasing β
yields a much wider range for the steady state values of the

phase difference. The contribution of intrinsic noise in lasers to

the phase-locking of lasers is discussed in Section V. Finally,

Section VI concludes the manuscript.

II. THEORETICAL MODEL AND METHODS

The coupled rate equations, with β included, that govern

the temporal dynamics of two laterally coupled laser cavities

considered here are described in [27]:

d |E1,2|
dτ

=

(

ΓGN (N1,2 −N0)−
1

τp

) |E1,2|
2

+
ΓFpβN1,2

2τrad|E1,2|2
|E1,2|

∓ κ sin (∆Φ) |E2,1|+ γ cos (∆Φ) |E2,1| (1a)

dN1,2

dτ
= P1,2 − N1,2

τnr
− (Fpβ + 1− β)N1,2

τrad

−GN (N1,2 −N0) |E1,2|2 (1b)

d∆Φ

dτ
=

α

2
ΓGN (N2 −N1) + ∆w + κ

( |E1|
|E2|

− |E2|
|E1|

)

cos (∆Φ)− γ

( |E1|
|E2|

+
|E2|
|E1|

)

sin (∆Φ) (1c)

where |E1,2| are the amplitudes of the electric fields in cavities

1 and 2, |E1,2|2 are the photon densities, N1,2 are the carrier

densities and ∆Φ = Φ2 − Φ1 is the phase difference between

the electric fields in the two cavities. The definitions of the

other parameters and their representative values for an InGaAsP

material system that is considered in the numerical simulations,

are summarized in Table I. Practically, β cannot be varied solely

without changing other parameters. Additionally, Purcell factor

Fp and β are related and both are indeed functions of mode

volume [21], [35], [36]. In theory, the laser rate equations can

be simplified to consider mode volume as the only variable if one

assumes a specific laser design whereFp and β depend solely on

the mode volume. However, in this study,Fp and β are treated as
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independent from one another as well as the mode volume for

the simplicity and intuitiveness of the analysis. Moreover, we

are primarily interested in the universal trends of stability with

respect to increasing values of β irrespective of different specific

cavity designs. A deterministic model using an averageβ instead

of a stochastic model considering random intensity noise in

lasers is applied because the continuation analysis requires the

system to start from a steady state [37]. The effect of noise on

the phase-locking stability is discussed later in Section V.

Finally, the coupling between the two cavities is introduced

in a phenomenological manner via a complex coupling coef-

ficient iκ+ γ, that includes a dispersive coupling rate κ and

a dissipative coupling rate γ. The parameters κ and γ origi-

nate from the dissimilarities in effective refractive indices and

losses, respectively, between the two eigenmodes – bonding

and anti-bonding - supported by the coupled cavities. To be

more precise, κ can be calculated from the frequency splitting

between the bonding and antibonding modes (denoted by +
and -) using κ = 1

2 (w+ − w−), while γ can be calculated

from the loss splitting as γ = 1
4 (w−

Q−
− w+

Q+
), where Q+/− are

the quality factors of the supermodes [27]. To generalize the

effects of increasing β for any laterally coupled system, the

dependence of κ and γ on either coupling geometry or material

properties is neglected, and their values are chosen to be within

a range that can be feasibly achieved in coupled laser platforms

[26],[30]. Although both the sign and the values of κ and γ can

be precisely controlled through altering the coupling geometry

and material composition [38]–[41], such as changing the size of

the nanoholes in the center barrier for coupled photonic crystal

lasers, we first assume γ = 0 and κ > 0 for the simplicity

of understanding the model and results presented here. Once

we obtain enough initial insight into how stability depends on

β and the other control parameters, we extend the study to

consider a complex coupling coefficient with γ �= 0 and the

coupling rates demonstrating both positive and negative signs.

This allows the model to reflect scenarios where either of the

supermodes can exhibit higher eigenfrequency and/or higher

losses. In other words, in addition to the coupling geometry

and material composition, the sign and values of κ and γ also

depend on the comparative values of the eigenfrequencies and

losses of the two supermodes. It is worthy to mention that the

mathematical model and bifurcation analysis used in this work

can be applied to a wide range of laser platforms, including

metal-clad lasers [22]–[24], plasmonic lasers [42], nanowire

lasers [15], photonic crystal lasers [27] or even conventional

semiconductor lasers with larger dimension. The lateral cou-

pling can be achieved by evanescent waves, gain guiding, index

guiding, or the combination of these methods [15]–[17], [27].

III. PHASE-LOCKING STABILITY V.S. β

In this study, the stable phase locking regions for the two

laterally coupled lasers are identified as functions of β, pump

rate P and the frequency detuning ∆w using the bifurcation

software XPPAUT, which contains the numerical continuation

package AUTO [37]. The electric fields and carrier densities in

in (1) are normalized to reduce the simulation time. The time

Fig. 1. 2-parameter bifurcation diagrams of the (a) in-phase solution and
(b) out-of-phase solution in (κτp, β) plane with P1 = P2 = 1.2Pth. Stable
locking region is shown in green, unstable region in orange. Solid lines are
the supercritical (purple) and subcritical (blue) HOPF bifurcation boundaries.
Dashed line is the pitchfork bifurcation boundary.

scale of the rate equations is also normalized with respect to the

photon lifetime τp (see Appendix). Additionally, a small signal

analysis is performed to provide physical insight into the results

(see Appendix for details). In this work, only three types of

bifurcation points are discussed – pitchfork, saddle-node (SN)

and Hopf bifurcations – since the stable regions are found to be

exclusively bounded by these three types of bifurcations. It is

important to note here that although the numerical continuation

analysis of the coupled laser model reveals a plethora of dynam-

ical regimes such as stable phase-locking, periodic oscillations,

period doubling, and chaotic oscillations, we only consider the

conditions that yield stable phase-locking. As a result, the latter

three dynamical behaviors are categorized as unstable locking

regimes for the purposes of this study.

A. Imaginary Coupling Coefficient

The simplest representation of the model assumes no fre-

quency detuning, a constant pump rate and a purely imaginary

coupling coefficient represented as iκτp, which is representative

of the case when the two supermodes experience similar losses.

Figs. 1(a) and (b) illustrate the stability maps within the same

parameter space for in-phase (∆Φ = 0) and out-of-phase

(∆Φ = π) solutions, respectively, as a function of κτp and
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β at a pump power of P1,2 = 1.2Pth. The variable Pth denotes

the pump power at lasing threshold for a single laser and can be

identified from the steady-state solutions of the rate equations

when no coupling is considered. The solid purple and blue

lines in Fig. 1(a) denote the Hopf bifurcation boundary and

the dashed purple line in Fig. 1(b) represents the pitchfork

bifurcation boundary. The Hopf boundary in Fig. 1(a) can be

further demarcated into the supercritical Hopf (purple) and the

subcritical Hopf (blue) branches. The regions colored in green

and orange denote the stable and unstable locking regimes,

respectively, for both figures. The coexistence of in-phase and

out-of-phase solutions for some values of κτp and β can be

explained by the fact that the two supermodes exhibit identical

losses (γ = 0).

A phenomenon common to both Fig. 1(a) and (b) is the

expansion of the green stable regions as β is increased from

10−5 to its maximum possible value of 1. For the out-of-phase

solutions depicted in Fig. 1(b), the slight increase in the area

of the stable phase-locking region, located to the right of the

plot at higher κτp values, is easier to distinguish due to the soli-

tary pitchfork boundary present in this graphic. In comparison,

the supercritical and subcritical Hopf bifurcations for in-phase

solutions in Fig. 1(a) dissect the parameter space into multiple

sections. For β ≤ 10−2, only one stable region exists at very

small coupling rates and it remains nearly unchanged in area

as β increases from 10−5 to 10−2, bounded by the supercritical

Hopf bifurcation point. In comparison, for β > 10−2, it can be

observed that the stable locking region in the weak coupling

regime significantly expands when β is increased due to the

supercritical Hopf bifurcation point moving to much higher

values of κτp. Moreover, as the coupling coefficient κτp further

increases, a second stable region appears after the subcritical

Hopf point, seen towards the right side of Fig. 1(a). This second

stability region has not been reported in literature till date,

where mainly weak coupling κτp � 1 and negligible β are

considered. Despite the complex demarcations in Fig. 1(a), it can

be clearly observed that increasing β leads to a narrowing of the

unstable region as the boundaries of the two Hopf bifurcations

move towards each other. In fact, when β = 0.89, the two

bifurcation branches become connected at κτp ≈ 0.09 as shown

in the inset of Fig. 1(a). For values of β beyond this point of

confluence (i.e., β > 0.89), the steady-state solutions of the

rate equations yield in-phase, stable solutions irrespective of

the coupling strength. Intuitively, the positive effect of β on the

phase-locking stability can be explained by the faster damping

rate of high-β lasers and robustness of them to a perturbation

involving photon fluctuations [43] (also see Appendix A). This

result holds major significance as it suggests that nanolasers

with β values approaching 1 are ideal candidates to be used in

phase-locking arrays to generate high power far-field emission.

B. Pump Rate

In the previous section, the pump rate was fixed at a constant

value for both lasers. In order to gauge whether increasing β
leads to a similar expansion in the stability regions for any

arbitrary pump rate, 3-dimensional (3-D) stability plots with

Fig. 2. (a) 3-dimensional stability plot in the (κτp, P/Pth, β) plane for
in-phase solutions. The 3-D surface is the Hopf bifurcation stability boundary.
The color denotes various pump rate as shown in the colorbar. Stable phase
locking region is shown in white, and the unstable region in grey. (b) 3-D
stability plot in the (κτp, P/Pth, β) plane for out-of-phase solutions using
same color convention as in (a). The surface now represents the pitchfork
bifurcation stability boundary.

varying P/Pth ( P1 = P2 = P ) being the third dimension, are

created for the in-phase and out-of-phase solutions as shown in

Fig. 2(a) and (b), respectively. The stable regions are denoted in

white while the unstable ones are shaded in grey in these figures.

For the in-phase solutions depicted in Fig. 2(a), when β ≤ 0.01,

the supercritical bifurcation branch (surface on the left) moves

towards larger κτp as the pump rate P/Pth increases, thereby

enhancing the stability. This trend has also been reported in

another study that focused exclusively on weak coupling and

did not consider the effect of the β factor [16]. For β ≥ 0.01,

however, increasing the pump rate can cause the supercritical

bifurcation to shift to smaller κτp, and thus shrink the stable

locking region. This stability reduction as pump rate increases

can be explained by the small signal analysis detailed in the

Appendix. Essentially, for weak coupling, the damping rate of

the small perturbations can be mathematically approximated to

be that of the relaxation oscillations, with this rate increasing

for small β and decreasing for large β as pump rate increases.

Therefore, as the pump rate is increased for large β, the lower

damping rate means that the system is now more susceptible to
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small perturbations and hence, exhibits less stability. Similarly,

for the subcritical bifurcation branch (right side of the surface

in Fig. 2(a)), an increasing pump rate P/Pth pushes the branch

to larger coupling coefficients, which also leads to narrowing

of the stable locking region. Despite these seemingly disparate

effects of the pump on stability, however, the most important

observation from Fig. 2(a) is that the two Hopf bifurcation

branches always move towards each other as β increases. The

increasing proximity of the two bifurcations in turn, results in an

expansion of the stability region. Therefore, it can be concluded

that although varying the pump rate affects the stability in a

non-uniform manner, higher β values always contribute towards

increased in-phase locking irrespective of the pump rate.

In contrast, for the out-of-phase solutions depicted in

Fig. 2(b), the pitchfork bifurcation boundary remains almost

unaltered despite varying both P/Pth and β. The reason for this

can be inferred from small signal analysis (see Appendix), which

reveals that the pitchfork boundary is approximately propor-

tional toN1,2 −N0. Given thatN1,2 clamps to a threshold value

asP/Pth increases, the stability boundary therefore stays almost

constant. Though higher β values result in a slight increase

of N1,2, the consequent expansion of the stability region is

miniscule. Fortuitously, for most applications, only the in-phase

solutions are of interest as they are essential for the generation

of higher power density. Therefore, in the next section when

we consider frequency detuning, we focus exclusively on the

solutions around ∆Φ = 0, which are referred to as “in-phase

solutions” for simplicity.

C. Frequency Detuning

Now we consider the case where two cavities exhibit disparate

resonance frequencies and investigate whether a stability en-

hancement from high-β can be observed in this scenario. While

frequency detuning is usually induced by dissimilarities in the di-

mensions of the resonators caused by fabrication imperfections,

it can also be intentionally introduced into the coupled struc-

ture for certain applications. For example, phase-locked laser

arrays with shifted frequencies between the adjacent elements

can be implemented in ultra-high-resolution lidar systems for

distance-angle beam steering tasks [44]–[46].

In Fig. 3, the stable regions of the in-phase solutions

are depicted in a 3-D parameter space (κτp,∆wτp, β) with

P1,2/ Pth = 1.2. To provide a more intuitive visualization, the

parameter space is dissected into two regions at κτp = 0.1,

which is the approximate point of confluence where the su-

percritical and subcritical Hopf branches become connected,

as shown in the zoomed-in inset of Fig. 1(a). Consequentially,

Fig. 3(a) represents the region ofκτp ≤ 0.1 containing the super-

critical Hopf bifurcation while Fig. 3(b) illustrates the scenario

when κτp ≥ 0.1 and the subcritical Hopf branch is observed.

Like in Fig. 2, the stable and unstable regions are represented in

white and grey, respectively, in Fig. 3(a) and (b) as well.

Detuning the frequency gives rise to two symmetric SN bi-

furcation boundaries for the case of weak coupling (κτp ≤ 0.1)
depicted in Fig. 3(a). These SN bifurcation surfaces, along with

the supercritical Hopf boundary, enclose the stable in-phase

Fig. 3. (a) 3-dimensional stability plot in the (κτp, ∆wτp, β) plane for in-

phase solutions with κτp ∈ [10−3, 10−1]. The 3-D surfaces are the stability
boundaries for HOPF and SN bifurcations. The colors denote varyingβ as shown
in the colorbar. The red region denotes β ≥ 0.89. Stable phase locking region is
shown in white, and the unstable region is colored in grey. (b) 3-D stability plot
in the (κτp, ∆wτp, β) plane for in-phase solutions with κτp ∈ [ 10−1, 200]
using the identical color convention as in (a).

locking region. As detuning is decreased, the SN boundaries

move closer to one another but remain unconnected for the case

of zero detuning resulting in only Hopf bifurcation boundaries

that are observed in this case. More importantly, as β increases,

although the SN boundaries remain largely unperturbed, the

supercritical Hopf branch relocates to higher κτp values. This,

in turn, expands the stable phase locking region in Fig. 3(a).

Similarly, for κτp ≥ 0.1 in Fig. 3(b), the stable phase lock-

ing region is also seen to expand for higher β values when

the subcritical Hopf bifurcation serving as its sole boundary

shifts towards smaller κτp. It is important to note here that the

subcritical Hopf points for ultra-small β (the bluer-parts of the

3-D surface in Fig. 3(b)) require extremely high values of κτp
(κτp > 10) which are not realistically achievable in experiment.

This explains why the second stability region shown in Fig. 3(b)

has not been previously reported in the literature where usually,

only weak coupling and negligible β are considered. The results

here indicate that increasing β helps expand the stable, in-phase

locking regions for both weak and strong coupling cases despite

the lasers demonstrating dissimilar frequencies.
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Fig. 4. 2-parameter bifurcation diagrams of the in-phase solutions in the
(κτp,∆wτp) plane with P1 = P2 = 1.2Pth for (a) β = 10−3 , (b) β =
0.25, and (c) β ≥ 0.9. Stable locking regions are colored in green, unstable
regions in orange. Solid lines represent the supercritical (purple, red, magenta)
and subcritical (blue, light blue, cyan) HOPF bifurcation boundaries. Dashed
lines denote the SN bifurcation points.

In Fig. 1(a), it was seen that when β ≥ 0.89, stability holds

irrespective of the strength of coupling for the ∆w = 0 case.

However, the same does not hold true when the frequency

detuning between the two lasers is non-zero. For β ≥ 0.89 with

non-zero detuning, the stability boundaries are colored in red as

shown in Fig. 3(a) and (b) and indicate that the stability is lost

when detuning is non-negligible. To better illustrate the in-phase

stability map with frequency detuning in the low, moderate and

high β regimes, we combine the parameter spaces shown in

Fig. 3(a) and (b) and present them in Fig. 4 as 2-D parameter

projections at β = 10−3, 0.25 and approaching 1. The stable re-

gions are now denoted in green while their unstable counterparts

are colored in orange. Considering first the case of β = 10−3

in Fig. 4(a), the stable solutions can be seen to be enclosed in

an extremely narrow parameter space by the SN (dashed purple

lines) and supercritical Hopf (solid purple line) bifurcations. As

β is increased to 0.25 in Fig. 4(b), the stable region expands to

cover a much larger area while a second stable region is created

at high κτp values due to the presence of the subcritical Hopf

boundary (solid blue line). Finally, as β is increased beyond 0.89

in Fig. 4(c), the supercritical and subcritical Hopf boundaries

merge, resulting in stable in-phase locking regions that span a

significantly larger range of both κτp and ∆wτp values. Akin to

what was observed when varying the pump rate, the desirable

result of high-β increasing the stability of two laterally coupled

lasers is preserved even when frequency detuning is considered.

It is worth mentioning here that the enhancement of stability

due to large β for the non-zero frequency detuning case is not

restricted only to the pump rate assumed in the above results.

Though they have not been included in this work, additional sim-

ulations show that increasing or decreasing the pump rate around

P1,2/ Pth = 1.2will only slightly modify the quantitative value

of the bifurcation points while the main features of the stability

plots remain unaltered. Specifically, increasing the pump rate

provides increased stability for coupled lasers with small β and

a reduction in the stable region for coupled lasers with high β,

as observed in Fig. 2(a). More importantly, it is observed that for

any given pump rate, systems with higher β always demonstrate

a larger stable phase locking region over the parameter space

(κτp,∆wτp), i.e., better stability. Another reason for choosing

the pump rate of P1,2/ Pth = 1.2 for the above simulations is

that in practice, lasers operating lightly above threshold have

the highest energy transfer efficiency, i.e., wall plug efficiency

(WPE) [47], and can also be prevented from overheating due

to large current injection. Since nanolasers with high β exhibit

a low pumping threshold [43], it is not only energy efficient to

operate slightly above threshold, but stable phase locking is also

most achievable with a high β value and low pump rate.

D. Complex Coupling Coefficient

To further extend the analysis to account for the scenarios

where the supermodes exhibit dissimilar losses, a complex cou-

pling coefficient iκ+ γ - where κ and γ can be either positive

or negative - is used to replace the purely imaginary coupling

coefficient used thus far in the model. This modification is espe-

cially important if considering coupling geometries employing

gain-guiding and carrier-induced index antiguiding [16], where

either of the supermodes can exhibit higher eigenfrequencies

and/or higher losses. In order to simplify the ensuing bifurcation

analysis, the coupling amplitude |κ| and phase θκ are used

instead of κ and γ to provide better intuition for the control

parameters used, i.e., i|κ| ejθκ = iκ+ γ, κ = |κ| cosθκ, and

γ = −|κ|sinθκ, where θκ ∈ [−π, π]. Furthermore, the pump

rates are assumed to be P1,2/ Pth = 1.2 to obtain a high energy

efficiency in practice. Altering the pump rate around this value

does not significantly impact the general shape of the stability

regions and only negligibly shifts the boundaries. Therefore, the

variation of the stable phase locking regions due to β is unlikely

to be affected by the choice of the pump rate level. Finally, the
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Fig. 5. (a) 2-parameter bifurcation diagrams of in-phase and out-of-phase
solutions in the (θκ, |κτp|) plane with β = 10−3 0.05, 0.25 and 1. The
stable in-phase locking region is shown in red; the stable out-of-phase locking
region is colored in blue and the unstable region is shown in white. The solid lines
denote Hopf bifurcations, while the dashed lines denote Pitchfork bifurcations.
(b) – (e) Zoom-in of the region θκ ∈ [−0.1π, 0.1π], |κτp| ∈ [1, 10] for β =
0.001, 0.05, 0.25, 1, respectively.

frequency detuning is assumed to be 0 initially for simplicity,

with a more detailed analysis on non-zero detuning discussed

briefly towards the end of this section.

The stability plots, when considering the complex coupling

coefficient and varying β = 10−3 0.05, 0.25 and 1, are super-

imposed and presented in Fig. 5(a). Although the bifurcation

analysis yields a plethora of bifurcation boundaries, in Fig. 5(a),

we only show those that directly demarcate the stable and

unstable regions, i.e., Hopf points (solid lines) and the pitchfork

points (dashed lines). In Fig. 5(a), the regions in red represent

stable in-phase solutions, the ones colored in blue denote stable

out-of-phase solutions and the white, unshaded regions represent

unstable solutions. From this figure, it can be observed that the

stability regions of in-phase (red) and out-of-phase solutions

(blue) with the same β values are identical in shape albeit shifted

with respect to each other by π radians. The reason for this hori-

zontal shift, which can be easily deduced from the rate equations

(Appendix (A1)), is that if γ flips its sign, i.e., θκ becomes

θκ + π, then ∆Φ is shifted by π radians. This underlines the

significance that the signs of κ and γ hold and how controlling

them would allow a coupled system to achieve the desired phase

difference as predicted by the rate equations. However, the even

more significant finding from Fig. 5(a) is that asβ increases, both

the in-phase and out-of-phase solutions expand in size, which is

consistent with what was observed in Fig. 1(a) and (b). We would

like to note that not all coupling values illustrated in Fig. 5(a) are

realistically achievable in experiment. For instance, for coupled

systems with Q+/− on the order of hundreds of more, γ cannot

be on the same order as κ and therefore θκ values around ±π/2
cannot be realized from the definition of the coupling coefficient

provided in Section II. Nevertheless, the purpose of choosing

this wide range of complex coupling coefficients is to provide

an accurate picture of how the stability regions expand as β is

increased. Moreover, a large span of coupling coefficients have

been demonstrated in common laser platforms. For example,

evanescently coupled metallo-dielectric nanolasers have been

reported to exhibit frequency and loss splitting that leads to |κτp|
from 4.16 to 0.04 and θκ ≈ −π when the distance between two

nanolasers ranges from 0nm to 90nm, respectively [31]. Using

the same coupling mechanism in photonic crystal nanolasers,

|κτp| ≈ 1.88 and θκ ≈ 0.01π are achieved, and the coupling

coefficients can further be modulated by controlling the size

and number of air holes in the coupling region [27]. Therefore,

even though not all the coupling parameters in the (θκ, |κτp|)
plane in Fig. 5 are realistic, a wide range of coupling coefficients

can be achieved by typical coupled-laser designs, which justifies

the choice of the range of (θκ, |κτp|) in our simulation.

Another interesting observation is the coexistence of in-phase

and out-of-phase solutions in certain parts of the (θκ, |κτp|)
parameter space, specifically around θκ = 0 (and θκ = π).

Recall that around these values, the supermodes have nearly

identical losses and therefore exhibit approximately equal prob-

ability of being supported by the coupled system. The same

coexistence of solutions was also observed in Fig. 1(a) and

(b), since the purely imaginary and positive coupling coefficient

used in the analysis in that section can be viewed as a special

case of θκ = 0. The evolution of these bistable regions as β
is varied is plotted in Fig. 5(b)-(e). It can be clearly observed

that in addition to expanding stable regions, increasing β can

also lead to a larger overlap of the in-phase and out-of-phase

stable solutions, thereby increasing the likelihood of achieving

bistability. Within these bistable regions, the final steady state

depends on the initial state of the phase relations between the

two solutions. Such bistable operation poses great potential for

use as memories such as for optical flip-flops [27], [48] as well

as for optical analogues of the degenerated spins in an Ising

machine [49].

When non-zero frequency detuning is considered along with

the complex coupling coefficient, it is observed that both the

in-phase and out-of-phase stable regions have a lower bound in

|κτp|, which is due to the SN boundary arising from the non-zero

∆w. As ∆w increases, both the SN and Hopf bifurcation points

are shifted in a manner that reduces the stable phase locking

region in the parameter space (θκ, |κτp|). However, for any non-

zero ∆w, an enhanced stability from higher β can always be

observed, which is consistent with the results from previous

sections. Though discussed briefly here, the detailed results are

not included in this work for brevity.

In summary, with regards to stable phase-locking, increasing

β unequivocally leads to an expansion in the stability regions

despite considering varying pump rates, detuned frequencies

and both imaginary and complex coupling coefficients. The

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 04,2022 at 00:12:13 UTC from IEEE Xplore.  Restrictions apply. 



1800312 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 28, NO. 1, JANUARY/FEBRUARY 2022

robustness of the desirable effects of high β on stability truly

emphasize the tantalizing potential of nanolaser arrays to harness

this advantage and help in the generation of high optical power

via in-phase locking. Additionally, high-β nanolaser arrays can

also aid in the development of next generation active optical

phased arrays as discussed in the next section.

IV. PHASE DIFFERENCE MODULATION V.S. β

In the previous section, the stability of phase locking was stud-

ied as functions of β,P ,∆w and θκ. The results were focused on

the in-phase (∆Φ = 0) and out-of-phase (∆Φ = π) solutions

for their potential in high-power beam generation and optical

memory. In some other applications such as beam steering for

LiDAR and imaging systems, a tunable phase offset between

adjacent lasers is required. In fact, having a wide range of tunable

phase differences between coupled lasers can prove essential

in these applications, since this attribute can help increase the

azimuthal and vertical scanning ranges. Using lasers as array

elements instead of passive phase shifters injected by a single

laser source offers the advantage of both frequency and phase

reconfiguration, which are essential for complex detection and

sensing applications [44], [45]. In this section, we theoretically

propose and analyze a method to modulate the phase difference

between two coupled lasers. For a symmetrically coupled sys-

tem like we have considered thus far, i.e., equal pumping rate

P1 = P2 , the case of zero-frequency detuning ∆w = 0 yields

only two possible solutions for the steady-state phase difference

∆Φ: the in-phase (∆Φ = 0) and the out-of-phase solutions

(∆Φ = π). If the symmetry between the two lasers is broken

by pumping the cavities at dissimilar rates, then values of ∆Φ
that are neither 0 nor π are achievable. In fact, ∆Φ can then

be tuned within the stable phase-locking range according to the

ratio of the pump rates for the two lasers.

To identify the feasibility of nanolasers to be implemented

in novel phased arrays for beam steering, the dependence of the

phase difference tunability onβ is investigated. In the simulation

for each β value, the pump rate for one of the lasers, P1, is fixed

while the pump rate for its neighbor, P2, is varied. We choose

to keep P1/ Pth = 1.2 for the same reason of energy efficiency

that was mentioned in the previous sections. To realize phase

difference modulation, P2 needs to be varied within a range

where only stable phase locking is supported by the coupled

cavities. Additionally, P2 needs to be experimentally achievable

and is thus varied only from Pth to 12Pth throughout this

simulation. The three sequential steps followed to perform the

analysis are as follows: First, by keeping β and P1 constant, a

one-parameter bifurcation analysis by varying P2 is conducted,

and the maximum and minimum possible ∆Φ within the stable

region are recorded. Secondly, the above step is repeated for

β’s ranging from 10−5 to 1, and the maximum and minimum

∆Φ that can be achieved by varying P2 are recorded for each β
value. Finally, these results are depicted in Fig. 6(a) where the

maximum and minimum ∆Φ values are plotted as a function

of β, as well as in Fig. 6(b) where the phase tuning range rep-

resenting the differences between the maximum and minimum

∆Φ is also shown as a function of β. For these simulations, the

Fig. 6. (a) Maximum (purple) and minimum (orange) phase differences
achieved by varying the pump rate P2 while keeping P1 constant, plotted as
a function of β. For each β value, the maximum values are marked with circles,
and the minimum values are marked with asterisks. P1 is set to be 1.2Pth. (b)
Phase difference tuning range as a function of β. The colored regions in both
(a) and (b) represent the number of bifurcation points observed in the solutions.
This is better illustrated in (c)-(e) which show the steady-state phase differences
for three different values of β- 10−4, 0.0175, and 0.1. Depending on the value
of β, there may exist zero (c), one (d) or two (e) SN bifurcations points in the
solution, corresponding to the yellow, pink and blue regions in (a), respectively.

frequency detuning between the two lasers is neglected, and γ is

assumed to be 0 for simplicity. Additionally, only an imaginary

and constant coupling rate of κτp = 10−3 is considered. It is

important to note here that phase tunability was only observed

with a coupling rate within the first stability region (to the left

of the supercritical Hopf bifurcation boundary in Fig. 1(a)) and

not for κτp values in the second stability region (to the right of

the subcritical Hopf boundary in Fig. 1(a)). Moreover, within

the first stability region, varying κτp affects the values of ∆Φ
only in a negligible manner.

As can be clearly observed in Fig. 6(a) and (b), as β is in-

creased, a wider range of tuning in ∆Φ is afforded. Specifically,

in the yellow region demarcated by extremely low-β (10−5 to

10−3), the maximum and minimum ∆Φ achievable are around

−0.05π and 0.05π, respectively. As β is increased to values

in the blue region, the range for ∆Φ expands significantly to

about [−π/2, π/2]. Therefore, the phase tuning range shown in

Fig. 6(b) increases from around0.1π toπ asβ increases from that

of conventional semiconductor lasers, i.e., β ≤ 10−3, to that of

microscale and nanoscale lasers, i.e., β > 0.01. The reason for

this wider range of phase tunability brought about by increasing

β lies in the manner in which bifurcation points alter the stable

solutions. For the range of extremely low- β values shaded as the

yellow region in Fig. 6(a), the coupled lasers remain stable for

all values of P2/Pth ∈ [1, 12] as shown in Fig. 6(c). However,

when β is increased to values in the pink region of Fig. 6(a), an

SN bifurcation point arises that pushes the lower limit of ∆Φ
closer to −π/2. This result is encapsulated in Fig. 6(d) for a

specific value of β = 0.0175 that lies within the pink region in

Fig. 6(a). Finally, for high-β values in the blue region of Fig. 6(a),

two SN bifurcation points further define the stability boundary

such that ∆Φ can now vary from −π/2 to π/2 when P2/Pth

varies within a small range around 1.2, as illustrated in Fig. 6(e)
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for β = 0.1. Therefore, increasing β can significantly increase

the range of phase differences possible for stable phase-locked

solutions, highlighting the fact that laterally coupled nanolasers

with intrinsically high β values can prove valuable in realizing

wide scanning angles in optical phased arrays.

V. DISCUSSION

In the previous analysis, the noise contribution from the intrin-

sic intensity fluctuation and spontaneous emission is neglected.

Such random noise can be mathematically accounted for by

introducing Langevin noise into the stochastic rate equations

[27], which cannot be analyzed by the bifurcation analysis

software [37]. However, we will discuss qualitatively how in-

tensity fluctuations can affect the results presented earlier. The

intensity noise introduces instant asymmetry in photon numbers

in two coupled cavities and causes the phase difference to

deviate from ∆Φ = 0 or π depending on the difference in

the photon numbers ∆Nph compared to the mean value Nph,

i.e., ∆ nph = ∆Nph/Nph. While the instantaneous ∆nph is

small, the coupled system will have a quasi-phase-locking state

with ∆Φ close to 0 or π. However, when ∆nph is very large,

phase-locking in two distinct cavities cannot be achieved, and

the system can be driven by the intensity noise into unstable

regime until a noise event with small ∆nph pulls the system

back into the stable regime. Therefore, coupled lasers with

large signal to noise ratio (SNR) is more robust to intensity

fluctuation as the noise contribution can be safely neglected.

For example, the average photon number in an experimentally

demonstrated metallo-dielectric nanolaser with a radius of 350

nm and β = 0.25 [22] is estimated to be 1090 when the pump

power is around two times the threshold [47]. This corresponds

to around 3.4× 105 photons in a pulse considering a pulse width

of 11ns and repetition rate of 290KHz. Using such type of high-β
lasers in the coupled system, we can assume that quasi-in-phase

or out-of-phase locking can be achieved even when intensity

fluctuations are considered. However, smaller lasers that have

higher β values and lower photon numbers can be more prone

to intensity noise. The robustness of stable phase-locking in

coupled nanolasers with β approaching 1 and that have low

photon numbers will be analyzed in a future study. Nevertheless,

for the same noise level, increasing the pump power to obtain a

higher SNR can help to mitigate the effect of the intensity noise

[50]. Another way to squeeze the intensity noise is to use quiet

pumping with the help of new designs for extreme dielectric

confinement, such as a bow-tie structure [51].

VI. CONCLUSION

The theoretical effects of varying the spontaneous emission

factor, β, on the stability and tunability of phase-locking in

two laterally coupled semiconductor lasers are presented in this

study. In order to first determine how β affects the stability of

the coupled system, bifurcation analysis is performed over the

laser rate equations using numerical continuation. Initial results

with a simplistic model considering constant and equal pump

rates, identical resonance frequencies and an imaginary coupling

coefficient reveal that increasing β leads to an overall expansion

of the stable phase-locking regions. To account for realistic

experimental conditions and practical device designs, additional

control parameters such as varying pump rate, frequency detun-

ing and complex coupling coefficients were considered in the

model. The desirable effects of high-β on stability were found to

be robust to the addition of these multiple parameters. More im-

portantly, the stable in-phase locking regions, conducive for gen-

erating high output optical power, were observed to increase in

area as a direct result of increasingβ.Such stability enhancement

becomes even more significant for β ≥ 0.89,where the in-phase

solutions are stable over a wide range of coupling coefficients

and frequency detuning. During the stability analysis, regions

of bistability that increase in area due to increasing β were

also observed. The simultaneous coexistence of two solutions in

this manner can find applications in optical memories. Finally,

higher values of β were also found to exert influence on the

range of stable phase differences attainable from a laterally

coupled system. By breaking the symmetry of pumping for the

two lasers while altering β, a range of phase differences as wide

as π (from -π/2 to π/2) was attained for β > 0.025. Wide

ranges of tunability of this form are desirable in applications

that require a large scanning angle and beam steering such as

in lidar systems. This is the first study demonstrating rigorous

analysis on the specific effects of high-β on the phase-locking

stability and tunability of laterally coupled semiconductor lasers,

to the best of our knowledge. Future analysis on the stability of

coupled lasers can consider more than just two interacting lasers,

specific coupling geometries and the contribution from intrinsic

noise terms.

APPENDIX A

NORMALIZATION AND THE LINEAR ANALYSIS OF COUPLED

RATE EQUATIONS

Before we perform the small signal analysis, the different

bifurcation points need to be introduced and identified. The

saddle-node bifurcation indicates the collision and disappear-

ance of two equilibria. A pitchfork bifurcation occurs when the

system transitions from one fixed point to three fixed points. In

both these types of bifurcation points, the Jacobian matrix of

the dynamical systems has one zero eigenvalue. In contrast, at

the Hopf bifurcation points, the solution switches from being

stable to exhibiting periodicity, i.e., instability. For the super-

critical Hopf bifurcation, one fixed point diverges into periodic

oscillations, while the reverse holds true for the subcritical Hopf

bifurcation. The occurrence of this Hopf point corresponds to a

pair of purely imaginary eigenvalues.

We use a linear gain model for G(N1,2) with G (N1,2) =
GN (N1,2 −N0), where GN is the differential gain and N0

is the carrier density at transparency. The rate equations in

(1) can be normalized using X1,2 = |E1,2|
√
GNτnr, Y1,2 =

(N1,2 −N0) ΓτpGN and a dimensionless time that is normal-

ized to the photon lifetime as t = τ/τp. We can then write the

normalized equation as:

dX1,2

dt
=

1

2
(Y1,2 − 1)X1,2
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+
τnr
τrad

Fpβ

2

(Y1,2 +Nonorm)

|X1,2|2
|X1,2|

∓ κτp sin (∆Φ)X2,1 + γτp cos (∆Φ)X2,1 (A1a)

dY1,2

dt
= Tnorm

[

Pnorm − γc (Y1,2 +N0norm
)− Y1,2X

2
1,2

]

(A1b)

d∆Φ

dt
=

α

2
(Y2 − Y1) + ∆wτp + κτp

(

X1

X2
− X2

X1

)

cos (∆Φ)

− γτp

(

X1

X2
+

X2

X1

)

sin (∆Φ) (A1c)

where Tnorm = τp /τnr, Nonorm = N0 ΓτpGN , γc =
τnr

τrad
(Fpβ + 1− β) + 1, and Pnorm = Pnorm ΓτpGN/τnr is

the normalized pump rate.

We then perform small signal analysis like in [ref. 16 and

assume:

X1,2 = X̄1,2 + x1,2e
λt, Y1,2 = Ȳ1,2 + y1,2e

λt,

∆Φ = ∆Φ̄ + δφeλt (A2)

Substituting (A2) into (A1), neglecting higher order terms and

assuming X1 ≈ X2, results in:

x1λ =
1

2

(

Y1 − 1
)

x1 −
τnr
τrad

Fpβ

2

(Y1 +Nonorm)
∣

∣X̄1

∣

∣

2 x1

+

(

1

2
X̄1 +

τnr
τrad

Fpβ

2

1

X̄1

)

y1

+
[

γτp cos
(

∆Φ̄
)

− κτpsin
(

∆Φ̄
)]

x2

−
[

γτp sin
(

∆Φ̄
)

+ κτp cos
(

∆Φ̄
)]

X̄2δφ (A3a)

x2λ =
1

2

(

Y2 − 1
)

x2 −
τnr
τrad

Fpβ

2

(Y2 +Nonorm)
∣

∣X̄2

∣

∣

2 x2

+

(

1

2
X̄2 +

τnr
τrad

Fpβ

2

1

X̄2

)

+
[

γτp cos
(

∆Φ̄
)

_ + τpsin
(

∆Φ̄
)]

x1

−
[

γτp sin
(

∆Φ̄
)

− κτp cos
(

∆Φ̄
)]

X̄1δφ (A3b)

y1λ = Tnorm

(

−γcy1 − 2X̄1Ȳ1x1 −X1
2
y1

)

(A3c)

y2λ = Tnorm

(

−γcy2 − 2X̄2Ȳ2x2 −X2
2
y2

)

(A3d)

δφλ =
α

2
(y2 − y1) + 2κτp cos

(

∆Φ̄
) x1 − x2

X1

− 2γτp sin
(

∆Φ̄
) x1 + x2

X̄1
− 2γτp cos

(

∆Φ̄
)

δφ

(A3e)

By considering equal pumping and neglecting the dissipative

coupling by setting γ = 0, the above equations can be further

simplified. We then add (A3a) and (A3b), as well as (A3c) and

(A3d) and arrive at:

(x1 + x2)

[

λ − 1

2

(

Y1 − 1
)

+
τnr
τrad

Fpβ

2

(Y1 +Nonorm)
∣

∣X̄1

∣

∣

2

]

=

(

1

2
X̄1 +

τnr
τrad

Fpβ

2

1

X̄1

)

(y1 + y2) (A4a)

(x1 + x2)
(

−2TnormX̄1Ȳ1

)

=
[

λ + Tnorm

(

γc + X̄2
1

)]

(y1 + y2) (A4b)

Combining (A4a) and (A4b), we have:

λ
2 +A1λ + A2 = 0

where

A1 = Tnorm

(

γc + X̄2
1

)

− 1

2

(

Ȳ1 − 1
)

+
τnr
τrad

Fpβ

2

(Y1 +Nonorm)
∣

∣X̄1

∣

∣

2

Recall that τnr

τrad

Fpβ
2

(Y1+Nonorm)

|X̄1|2
= − 1

2 (Ȳ1 − 1) andA1 =

Tnorm (γc + X̄2
1 )− (Y1 − 1). In order for the small perturba-

tions to approach zero as time evolves, the real part of λ must be

negative. This requires A1 = 2Re(λ) > 0. For the expression

of A1, the first term on the RHS signifies the radiative recom-

bination of carriers by all means, and the second term denotes

recombination involving only spontaneous emission. Therefore,

A1 > 0 always hold true.

We then subtract (A3b) from (A3a), as well as (A3d) from

(A3c) and arrive at:

(x1 − x2)

[

λ − 1

2

(

Ȳ1 − 1
)

+
τnr
τrad

Fpβ

2

(Y1 +Nonorm)
∣

∣X̄1

∣

∣

2

]

=

(

1

2
X̄1 +

τnr
τrad

Fpβ

2

1

X̄1

)

(y1 − y2)

− 2κτp cos
(

∆Φ̄
)

X̄1δφ (A5a)

(x1 − x2)
(

−2TnormX̄1Ȳ1

)

=
[

λ + Tnorm

(

γc + X̄2
1

)]

(y1 − y2) (A5b)

Substituting (A3e) into (A5a) results in:

λ
3 +B1λ

2 +B2λ + B3 = 0 (A6a)

where

B1 = Tnorm

(

γc + X̄2
1

)

−
(

Ȳ1 − 1
)

(A7a)

B2 = Tnorm X̄1Ȳ1

(

X̄1 +
τnr
τrad

Fpβ
1

X̄1

)

− Tnorm

(

γc + X̄2
1

) (

Ȳ1 − 1
)

+ 4κ2τ2p cos
2
(

∆Φ̄
)

(A7b)

B3 = 4κ2τ2p cos
2 (∆Φ)Tnorm

(

γc + X̄2
1

)

+ 2ακτpTnormX̄2
1 Ȳ1 cos

(

∆Φ̄
)

(A7c)
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The solutions to (A6) are one real value and two conjugate

complex values. The real solution gives the saddle-node bifurca-

tions or pitchfork bifurcations while the complex solutions gives

the Hopf bifurcations.

For very weak coupling, B3 in (A7c) is approximately 0

and (A6) can be simplified to be quadratic. Consequentially,

the solution of λ can then be approximated to be that of the

relaxation oscillations (RO), where Re(λ) is the damping rate

and Im(λ) is the RO frequency, which is Tnorm(γc + X̄2
1 ) +

τnr

τrad
Fpβ

(Y1+Nonorm)

|X̄1|2
. In this case, a larger β always results in

faster damping, therefore, enhancing the stability in the weak

coupling region. The pump rate can also increase the damping

rate for smallβ. For largeβ, the scenario becomes more complex

and requires more detailed examination. However, since the

damping rate can be approximated to be that of the RO as

Tnorm(γc + X̄2
1 ) +

τnr

τrad
Fpβ

(Y1+Nonorm)

|X̄1|2
, for very small β, the

second term can be neglected. This means that as pump rate

increases, a larger X̄2
1 gives a faster damping, i.e., better stability.

While for larger β, the second term can not be neglected. Since

X̄2
1 is now in the denominator, a larger X̄2

1 gives a slower

damping rate, i.e., a worse stability.

To have the real parts of the solutions to λ be negative, and

thus have stable phase locking, the following conditions must

hold,

B1 > 0, B3 > 0, B1B2 −B3 > 0 (A8)

Since B1 = A1 > 0 has already been proven to be true, we

focus on the second and the third conditions.

The condition B3 > 0 makes the real solution negative, and

thus yields,

4κ2τ2p cos
2
(

∆Φ̄
)

Tnorm

(

γc + X̄2
1

)

>

− 2ακτpTnormX̄2
1 Ȳ1 cos

(

∆Φ̄
)

(A9)

In the case of zero detuning, this can be simplified to:

κτp > − αTnormX̄2
1 Ȳ1

2Tnorm

(

γc + X̄2
1

) , when ∆ Φ̄ = 0, (A10a)

And

κτp >
αTnormX̄2

1 Ȳ1

2Tnorm

(

γc + X̄2
1

) , when ∆ Φ̄ = π (A10b)

For the condition B1B2 −B3 > 0 to hold true, the real part

of the complex solutions to λ must be negative. Consequentially,

this yields a second order equation for κ,

C1κ
2 + C2κ+ C3 > 0 (A11)

where

C1 = − 4cos2
(

∆Φ̄
) (

Ȳ1 − 1
)

(A12a)

C2 = − 2αTnorm cos
(

∆Φ̄
)

X̄2
1 Ȳ1 (A12b)

C3 = Tnorm

[

Tnorm

(

γc + X̄2
1

)

−
(

Y1 − 1
)]

×
(

βτnr
τrad

Ȳ1 − γcȲ1 + γc + X̄2
1

)

(A12c)

An explicit expression describing the stable phase-locking

conditions is challenging to obtain. Nevertheless, we can plot

out and observe that the Hopf bifurcation boundary withC1κ
2 +

C2κ+ C3 = 0, is a parabolic function, whose center and width

vary with β and P . Each set of parameters generates a different

parabolic function, and generates either zero, one or two roots,

as shown in Fig. 1(a).
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