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Effects of High-5 on Phase-Locking Stability and
Tunability in Laterally Coupled Lasers

Sizhu Jiang*“, Suruj S. Deka, Si Hui Pan

Abstract—Phase-locked laser arrays have been extensively inves-
tigated in terms of their stability and nonlinear dynamics. Specif-
ically, enhancing the phase-locking stability allows laser arrays
to generate high-power and steerable coherent optical beams for
a plethora of applications, including remote sensing and opti-
cal communications. Compared to other coupling architectures,
laterally coupled lasers are especially desirable since they allow
for denser integration and simpler fabrication process. Here, we
present the theoretical effects of varying the spontaneous emission
factor 3, an important parameter for micro- and nanoscale lasers,
on the stability conditions of phase-locking for two laterally coupled
semiconductor lasers. Through bifurcation analyses, we observe
that increasing (3 contributes to the expanding of the in-phase
stability region under all scenarios considered, including complex
coupling coefficients, varying pump rates, and frequency detuning.
Moreover, the effect is more pronounced for 3 approaching 1, thus
underlining the significant advantages of implementing nanolasers
with intrinsically high 3 in phase-locked laser arrays for high-
power generation. We also show that the steady-state phase differ-
ences can be widely tuned — up to 7 radians — by asymmetrically
pumping high-3 coupled lasers. This demonstrates the potential
of high-3 nanolasers in building next-generation optical phased
arrays requiring wide scanning angles with ultra-high resolution.

Index Terms—Laser dynamics, phase locking, nanolaser,
semiconductor lasers, laser arrays, bifurcation analysis.

I. INTRODUCTION

HASE-LOCKED laser arrays have been extensively inves-
I tigated owing to their potential in generating high-power
and coherent optical beams valuable for applications such as
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LiDAR, optical communications and remote sensing [1]-[3].
Additionally, the ability to tune the phase difference between
constituent elements in an on-chip semiconductor laser array
is vital for beam forming and steering applications [4],[5].
To realize the desired phase offset of the lasers in the arrays,
i.e., in-phase operation for high power emission and shifted
phase operation for beam forming and scanning, establishing
stable phase locking is imperative. However, such stability is
challenging to achieve due to multiple factors such as mode
competition, distinct time scales of photon and carrier dynamics,
complex nonlinear dynamics over a wide range of physical
parameters including inter-cavity distances and differences in
resonator dimensions of coupled lasers, and most notably, due to
the amplitude-phase coupling in semiconductor lasers quantified
by the linewidth enhancement factor [6],[7]. Despite the chal-
lenges, stable in-phase locking has been demonstrated through
spatial and spectral mode engineering, including evanescent
coupling in topological cavities [8], non-Hermitian coupling in
super-symmetry arrays [9], diffractive coupling via Talbot effect
[10], global antenna coupling [11], and gain matching [12].
Achieving similar phase synchronization in laterally coupled
lasers arranged in close proximity, although difficult, is highly
desirable since it involves simpler fabrication procedures and
offers denser on-chip integration compared to the other coupling
schemes mentioned above. Moreover, the dynamical behavior of
laterally coupled lasers can be accurately analyzed and predicted
by non-complex mathematical models.

In fact, theoretical analysis of the stability in laterally cou-
pled semiconductor lasers has been widely reported in the
literature [13]-[18]. In these studies, a plethora of dynamical
regimes including stable continuous-wave operation, periodic
and period-doubling oscillations, chaos, bistability, and chimera
states are identified via bifurcation analysis. These dynamical
behaviors are obtained by either analytically or numerically
solving the coupled rate equations that govern the temporal
dynamics of the emitted laser field. The impact of a variety of
important parameters such as current injection rate, linewidth
enhancement factor, laser size differences, as well as carrier and
photon lifetimes, are addressed in these analyses. However, one
critical parameter consistently overlooked in the majority of the
theoretical works in the literature thus far is the spontaneous
emission factor 3. This /3 factor, defined as the fraction of spon-
taneous emission funneled into the lasing mode relative to all
the other supported modes, is smaller than 102 in typical com-
mercial laser diodes, and thus is reasonably neglected in most
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bifurcation studies [15]-[17]. Over the past two decades, how-
ever, nanolasers that exhibit intrinsically high and non-negligible
[ values have been demonstrated on various platforms [19]-
[23]. These nanoscale light sources offer unique advantages
such as ultracompact footprints, low power consumption and
high-speed modulation that make them ideal candidates for
dense, on-chip integration [23]-[26]. A handful of studies so
far have reported on the significant impact that spontaneous
emission can exert on coupling behavior such as mode switching
for coupled photonic crystal nanolasers [10],[27] and partial
locking for mutually coupled micropillar lasers operating in the
few-photon regime [28],[29]. Notably, some previous theoretical
investigations have suggested that the larger damping effect in-
duced by higher /3 may help suppress the instability encountered
in lateral coupling schemes [14],[30]. This hypothesis as well
as the rapid advances in nanolaser technology necessitate an
in-depth analysis of how large values of 5 can contribute towards
stable phase-locking operation.

In this manuscript, we theoretically investigate the effects of
varying /3 on the stability of phase locking in two laterally cou-
pled semiconductor lasers through bifurcation analyses. With
increasing f3, a corresponding expansion of the stability region
is observed when first considering a purely imaginary coupling
coefficient, representing a system where the supermodes have
identical losses. In order to assess the feasibility of such stability
enhancement due to high-3 in a more practical device, we
also consider other important control parameters such as the
pump rate and the resonance frequency detuning between the
coupled lasers that can result due to fabrication imperfections.
We then further extend the study by including complex coupling
coefficients in order to better account for realistic scenarios
where the supermodes face dissimilar losses. Increases in the
phase-locking stability regions driven by increases in [ are
observed across variations of all the control parameters, thereby
confirming that the /3-driven stable phase-locking phenomenon
is not merely restricted to any specific pump power level or to
only negligibly small frequency detuning. Finally, by pumping
the two lasers unequally, it can be shown that the steady-state
phase difference between the emitters varies as a function of
B, with higher values of § resulting in a wider range of relative
phase tunability. Therefore, the results presented here emphasize
the significance of using high-/3 nanolasers in phase-locked
arrays which can demonstrate both high output power density
as well as beam forming and steering capabilities depending on
the desired application.

This paper is organized into four sections. Section II elab-
orates on the theoretical model used to perform the numerical
simulations. Then in Section III, the effects of varying 5 on
the phase-locking stability is discussed in detail. To provide an
intuitive understanding of the results in this section, the model is
reduced to be as simple as possible initially and then sequentially
increased in complexity, one additional parameter at a time.
Specifically, equal pumping, an imaginary coupling coefficient
and no frequency detuning are assumed while evaluating the
effects of altering 5 in Section III-A. Then, the pump rate,
frequency detuning and a complex coupling coefficient are
gradually introduced into the model in Sections III-B, ITI-C and
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TABLE I
LASER PARAMETERS
Symbol Definition Value (Unit)

T, Photon lifetime 1.5 (ps) [31,32]
Trad Radiative carrier lifetime 2 (ns) [33]

. Nonra{ii}ittli\rlsecamer 0.625 (ns) [33]

a Henry factor 4 [32]

r Confinement factor 0.8[31]

N, Transparent carrier density 2 x 10%* (m3) [32]

E, Purcell factor 1

Gy Differential gain 4.28 x 10712 (m™3) [33, 34]
P, Pump rate 1035 t0 1.2 x 10%°(m=3-s71)

Frequency detuning
Aw between two lasers Aw = —2to2 (THz)
W, — Wy

III-D, respectively. In Section IV, we present our results for
the case of unequal pumping, demonstrating how increasing /3
yields a much wider range for the steady state values of the
phase difference. The contribution of intrinsic noise in lasers to
the phase-locking of lasers is discussed in Section V. Finally,
Section VI concludes the manuscript.

II. THEORETICAL MODEL AND METHODS

The coupled rate equations, with S included, that govern
the temporal dynamics of two laterally coupled laser cavities
considered here are described in [27]:

d|E1 | 1Y B
Sl (PG (Nyp— Np) — — | =5
0r N (N2 0) - >
I'F,BN-
L“Q\EM
27—rad|E1,2|
F wsin (A®) |Ea 1| + vy cos (AD) |Es 1] (1a)
dNip _ p  Nia (FpB+1— ) N
dr 2 Tnr Trad
— Gy (N12 — No) |Ex 2| (1b)
dADd « |E1|  |Es]
= S TGN (Ny— Np) + A 1zl 122l
g~ g LOn (V=N w*”(|E2| B
22 |E2|)-
cos (AD) — —— + — | sin (A® 1c
@0) - ({2 + 2 )sm(a®) a0

where |E 2| are the amplitudes of the electric fields in cavities
1 and 2, |E1}2|2 are the photon densities, IV; o are the carrier
densities and A® = $, — P, is the phase difference between
the electric fields in the two cavities. The definitions of the
other parameters and their representative values for an InGaAsP
material system that is considered in the numerical simulations,
are summarized in Table I. Practically, /5 cannot be varied solely
without changing other parameters. Additionally, Purcell factor
F), and 3 are related and both are indeed functions of mode
volume [21], [35], [36]. In theory, the laser rate equations can
be simplified to consider mode volume as the only variable if one
assumes a specific laser design where F), and 3 depend solely on
the mode volume. However, in this study, F}, and 3 are treated as
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independent from one another as well as the mode volume for
the simplicity and intuitiveness of the analysis. Moreover, we
are primarily interested in the universal trends of stability with
respect to increasing values of 3 irrespective of different specific
cavity designs. A deterministic model using an average 3 instead
of a stochastic model considering random intensity noise in
lasers is applied because the continuation analysis requires the
system to start from a steady state [37]. The effect of noise on
the phase-locking stability is discussed later in Section V.
Finally, the coupling between the two cavities is introduced
in a phenomenological manner via a complex coupling coef-
ficient ik + -, that includes a dispersive coupling rate x and
a dissipative coupling rate . The parameters « and 7 origi-
nate from the dissimilarities in effective refractive indices and
losses, respectively, between the two eigenmodes — bonding
and anti-bonding - supported by the coupled cavities. To be
more precise, x can be calculated from the frequency splitting
between the bonding and antibonding modes (denoted by +
and -) using K = % (wy —w_), while v can be calculated
from the loss splitting as v = + (% - g—*), where Q4 /_ are
the quality factors of the supermodes [27T To generalize the
effects of increasing 3 for any laterally coupled system, the
dependence of x and y on either coupling geometry or material
properties is neglected, and their values are chosen to be within
arange that can be feasibly achieved in coupled laser platforms
[26],[30]. Although both the sign and the values of x and ~ can
be precisely controlled through altering the coupling geometry
and material composition [38]-[41], such as changing the size of
the nanoholes in the center barrier for coupled photonic crystal
lasers, we first assume v = 0 and x > 0 for the simplicity
of understanding the model and results presented here. Once
we obtain enough initial insight into how stability depends on
[ and the other control parameters, we extend the study to
consider a complex coupling coefficient with v % 0 and the
coupling rates demonstrating both positive and negative signs.
This allows the model to reflect scenarios where either of the
supermodes can exhibit higher eigenfrequency and/or higher
losses. In other words, in addition to the coupling geometry
and material composition, the sign and values of x and ~ also
depend on the comparative values of the eigenfrequencies and
losses of the two supermodes. It is worthy to mention that the
mathematical model and bifurcation analysis used in this work
can be applied to a wide range of laser platforms, including
metal-clad lasers [22]-[24], plasmonic lasers [42], nanowire
lasers [15], photonic crystal lasers [27] or even conventional
semiconductor lasers with larger dimension. The lateral cou-
pling can be achieved by evanescent waves, gain guiding, index
guiding, or the combination of these methods [15]-[17], [27].

III. PHASE-LOCKING STABILITY V.S. 3

In this study, the stable phase locking regions for the two
laterally coupled lasers are identified as functions of 3, pump
rate P and the frequency detuning Aw using the bifurcation
software XPPAUT, which contains the numerical continuation
package AUTO [37]. The electric fields and carrier densities in
in (1) are normalized to reduce the simulation time. The time
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Fig. 1. 2-parameter bifurcation diagrams of the (a) in-phase solution and
(b) out-of-phase solution in (k7p, 8) plane with Py = P, = 1.2P;,. Stable
locking region is shown in green, unstable region in orange. Solid lines are
the supercritical (purple) and subcritical (blue) HOPF bifurcation boundaries.
Dashed line is the pitchfork bifurcation boundary.

scale of the rate equations is also normalized with respect to the
photon lifetime 7, (see Appendix). Additionally, a small signal
analysis is performed to provide physical insight into the results
(see Appendix for details). In this work, only three types of
bifurcation points are discussed — pitchfork, saddle-node (SN)
and Hopf bifurcations — since the stable regions are found to be
exclusively bounded by these three types of bifurcations. It is
important to note here that although the numerical continuation
analysis of the coupled laser model reveals a plethora of dynam-
ical regimes such as stable phase-locking, periodic oscillations,
period doubling, and chaotic oscillations, we only consider the
conditions that yield stable phase-locking. As a result, the latter
three dynamical behaviors are categorized as unstable locking
regimes for the purposes of this study.

A. Imaginary Coupling Coefficient

The simplest representation of the model assumes no fre-
quency detuning, a constant pump rate and a purely imaginary
coupling coefficient represented as 77, which is representative
of the case when the two supermodes experience similar losses.
Figs. 1(a) and (b) illustrate the stability maps within the same
parameter space for in-phase (A® = 0) and out-of-phase
(A® = m) solutions, respectively, as a function of 7, and
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B at a pump power of P} 9 = 1.2F;;. The variable P}, denotes
the pump power at lasing threshold for a single laser and can be
identified from the steady-state solutions of the rate equations
when no coupling is considered. The solid purple and blue
lines in Fig. 1(a) denote the Hopf bifurcation boundary and
the dashed purple line in Fig. 1(b) represents the pitchfork
bifurcation boundary. The Hopf boundary in Fig. 1(a) can be
further demarcated into the supercritical Hopf (purple) and the
subcritical Hopf (blue) branches. The regions colored in green
and orange denote the stable and unstable locking regimes,
respectively, for both figures. The coexistence of in-phase and
out-of-phase solutions for some values of x7, and S can be
explained by the fact that the two supermodes exhibit identical
losses (v = 0).

A phenomenon common to both Fig. 1(a) and (b) is the
expansion of the green stable regions as [ is increased from
107° to its maximum possible value of 1. For the out-of-phase
solutions depicted in Fig. 1(b), the slight increase in the area
of the stable phase-locking region, located to the right of the
plot at higher x7;, values, is easier to distinguish due to the soli-
tary pitchfork boundary present in this graphic. In comparison,
the supercritical and subcritical Hopf bifurcations for in-phase
solutions in Fig. 1(a) dissect the parameter space into multiple
sections. For 8 < 1072, only one stable region exists at very
small coupling rates and it remains nearly unchanged in area
as (3 increases from 1075 to 102, bounded by the supercritical
Hopf bifurcation point. In comparison, for 3 > 1072, it can be
observed that the stable locking region in the weak coupling
regime significantly expands when [ is increased due to the
supercritical Hopf bifurcation point moving to much higher
values of k7,. Moreover, as the coupling coefficient k7, further
increases, a second stable region appears after the subcritical
Hopf point, seen towards the right side of Fig. 1(a). This second
stability region has not been reported in literature till date,
where mainly weak coupling ~7, < 1 and negligible (3 are
considered. Despite the complex demarcations in Fig. 1(a), it can
be clearly observed that increasing J leads to a narrowing of the
unstable region as the boundaries of the two Hopf bifurcations
move towards each other. In fact, when § = 0.89, the two
bifurcation branches become connected at k7, ~ 0.09 as shown
in the inset of Fig. 1(a). For values of § beyond this point of
confluence (i.e., 5 > 0.89), the steady-state solutions of the
rate equations yield in-phase, stable solutions irrespective of
the coupling strength. Intuitively, the positive effect of 5 on the
phase-locking stability can be explained by the faster damping
rate of high-{3 lasers and robustness of them to a perturbation
involving photon fluctuations [43] (also see Appendix A). This
result holds major significance as it suggests that nanolasers
with 3 values approaching 1 are ideal candidates to be used in
phase-locking arrays to generate high power far-field emission.

B. Pump Rate

In the previous section, the pump rate was fixed at a constant
value for both lasers. In order to gauge whether increasing (3
leads to a similar expansion in the stability regions for any
arbitrary pump rate, 3-dimensional (3-D) stability plots with
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Fig. 2. (a) 3-dimensional stability plot in the (k7,, P/P:p, ) plane for
in-phase solutions. The 3-D surface is the Hopf bifurcation stability boundary.
The color denotes various pump rate as shown in the colorbar. Stable phase
locking region is shown in white, and the unstable region in grey. (b) 3-D
stability plot in the (k7p, P/Pip, §) plane for out-of-phase solutions using
same color convention as in (a). The surface now represents the pitchfork
bifurcation stability boundary.

varying P/ Py, ( Py = P> = P) being the third dimension, are
created for the in-phase and out-of-phase solutions as shown in
Fig. 2(a) and (b), respectively. The stable regions are denoted in
white while the unstable ones are shaded in grey in these figures.
For the in-phase solutions depicted in Fig. 2(a), when 5 < 0.01,
the supercritical bifurcation branch (surface on the left) moves
towards larger x7, as the pump rate P/P;;, increases, thereby
enhancing the stability. This trend has also been reported in
another study that focused exclusively on weak coupling and
did not consider the effect of the 3 factor [16]. For 5 > 0.01,
however, increasing the pump rate can cause the supercritical
bifurcation to shift to smaller x7,, and thus shrink the stable
locking region. This stability reduction as pump rate increases
can be explained by the small signal analysis detailed in the
Appendix. Essentially, for weak coupling, the damping rate of
the small perturbations can be mathematically approximated to
be that of the relaxation oscillations, with this rate increasing
for small 8 and decreasing for large 5 as pump rate increases.
Therefore, as the pump rate is increased for large (3, the lower
damping rate means that the system is now more susceptible to
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small perturbations and hence, exhibits less stability. Similarly,
for the subcritical bifurcation branch (right side of the surface
in Fig. 2(a)), an increasing pump rate P/ Py, pushes the branch
to larger coupling coefficients, which also leads to narrowing
of the stable locking region. Despite these seemingly disparate
effects of the pump on stability, however, the most important
observation from Fig. 2(a) is that the two Hopf bifurcation
branches always move towards each other as [ increases. The
increasing proximity of the two bifurcations in turn, results in an
expansion of the stability region. Therefore, it can be concluded
that although varying the pump rate affects the stability in a
non-uniform manner, higher 3 values always contribute towards
increased in-phase locking irrespective of the pump rate.

In contrast, for the out-of-phase solutions depicted in
Fig. 2(b), the pitchfork bifurcation boundary remains almost
unaltered despite varying both P/ P, and /3. The reason for this
can be inferred from small signal analysis (see Appendix), which
reveals that the pitchfork boundary is approximately propor-
tional to N1 o — Ny. Given that N o clamps to a threshold value
as P/ P, increases, the stability boundary therefore stays almost
constant. Though higher  values result in a slight increase
of Nj o, the consequent expansion of the stability region is
miniscule. Fortuitously, for most applications, only the in-phase
solutions are of interest as they are essential for the generation
of higher power density. Therefore, in the next section when
we consider frequency detuning, we focus exclusively on the
solutions around A® = 0, which are referred to as “in-phase
solutions” for simplicity.

C. Frequency Detuning

Now we consider the case where two cavities exhibit disparate
resonance frequencies and investigate whether a stability en-
hancement from high-5 can be observed in this scenario. While
frequency detuning is usually induced by dissimilarities in the di-
mensions of the resonators caused by fabrication imperfections,
it can also be intentionally introduced into the coupled struc-
ture for certain applications. For example, phase-locked laser
arrays with shifted frequencies between the adjacent elements
can be implemented in ultra-high-resolution lidar systems for
distance-angle beam steering tasks [44]—-[46].

In Fig. 3, the stable regions of the in-phase solutions
are depicted in a 3-D parameter space (k7,, AwT,, ) with
P / Py, = 1.2. To provide a more intuitive visualization, the
parameter space is dissected into two regions at k7, = 0.1,
which is the approximate point of confluence where the su-
percritical and subcritical Hopf branches become connected,
as shown in the zoomed-in inset of Fig. 1(a). Consequentially,
Fig. 3(a) represents the region of k7, < 0.1 containing the super-
critical Hopf bifurcation while Fig. 3(b) illustrates the scenario
when k7, > 0.1 and the subcritical Hopf branch is observed.
Like in Fig. 2, the stable and unstable regions are represented in
white and grey, respectively, in Fig. 3(a) and (b) as well.

Detuning the frequency gives rise to two symmetric SN bi-
furcation boundaries for the case of weak coupling (k7, < 0.1)
depicted in Fig. 3(a). These SN bifurcation surfaces, along with
the supercritical Hopf boundary, enclose the stable in-phase
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Fig. 3. (a) 3-dimensional stability plot in the (k7,, AwTp, B) plane for in-
phase solutions with k7, € [1073, 1071]. The 3-D surfaces are the stability
boundaries for HOPF and SN bifurcations. The colors denote varying 3 as shown
in the colorbar. The red region denotes 5 > 0.89. Stable phase locking region is
shown in white, and the unstable region is colored in grey. (b) 3-D stability plot
in the (K7, AwTy, B) plane for in-phase solutions with k7, € [ 1071, 200]
using the identical color convention as in (a).

locking region. As detuning is decreased, the SN boundaries
move closer to one another but remain unconnected for the case
of zero detuning resulting in only Hopf bifurcation boundaries
that are observed in this case. More importantly, as /3 increases,
although the SN boundaries remain largely unperturbed, the
supercritical Hopf branch relocates to higher 7, values. This,
in turn, expands the stable phase locking region in Fig. 3(a).
Similarly, for x7, > 0.1 in Fig. 3(b), the stable phase lock-
ing region is also seen to expand for higher S values when
the subcritical Hopf bifurcation serving as its sole boundary
shifts towards smaller ~7,. It is important to note here that the
subcritical Hopf points for ultra-small /3 (the bluer-parts of the
3-D surface in Fig. 3(b)) require extremely high values of x7,
(x7p > 10) which are not realistically achievable in experiment.
This explains why the second stability region shown in Fig. 3(b)
has not been previously reported in the literature where usually,
only weak coupling and negligible 3 are considered. The results
here indicate that increasing /3 helps expand the stable, in-phase
locking regions for both weak and strong coupling cases despite
the lasers demonstrating dissimilar frequencies.
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Fig. 4. 2-parameter bifurcation diagrams of the in-phase solutions in the
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and subcritical (blue, light blue, cyan) HOPF bifurcation boundaries. Dashed
lines denote the SN bifurcation points.

In Fig. 1(a), it was seen that when S > (.89, stability holds
irrespective of the strength of coupling for the Aw = 0 case.
However, the same does not hold true when the frequency
detuning between the two lasers is non-zero. For 8 > 0.89 with
non-zero detuning, the stability boundaries are colored in red as
shown in Fig. 3(a) and (b) and indicate that the stability is lost
when detuning is non-negligible. To better illustrate the in-phase
stability map with frequency detuning in the low, moderate and
high 3 regimes, we combine the parameter spaces shown in
Fig. 3(a) and (b) and present them in Fig. 4 as 2-D parameter
projections at 3 = 102, 0.25 and approaching 1. The stable re-
gions are now denoted in green while their unstable counterparts
are colored in orange. Considering first the case of 3 = 1073
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in Fig. 4(a), the stable solutions can be seen to be enclosed in
an extremely narrow parameter space by the SN (dashed purple
lines) and supercritical Hopf (solid purple line) bifurcations. As
B is increased to 0.25 in Fig. 4(b), the stable region expands to
cover a much larger area while a second stable region is created
at high k7, values due to the presence of the subcritical Hopf
boundary (solid blue line). Finally, as /3 is increased beyond 0.89
in Fig. 4(c), the supercritical and subcritical Hopf boundaries
merge, resulting in stable in-phase locking regions that span a
significantly larger range of both x7, and Awr), values. Akin to
what was observed when varying the pump rate, the desirable
result of high-/ increasing the stability of two laterally coupled
lasers is preserved even when frequency detuning is considered.

It is worth mentioning here that the enhancement of stability
due to large /3 for the non-zero frequency detuning case is not
restricted only to the pump rate assumed in the above results.
Though they have not been included in this work, additional sim-
ulations show that increasing or decreasing the pump rate around
P15/ Py, = 1.2 will only slightly modify the quantitative value
of the bifurcation points while the main features of the stability
plots remain unaltered. Specifically, increasing the pump rate
provides increased stability for coupled lasers with small 5 and
a reduction in the stable region for coupled lasers with high 3,
as observed in Fig. 2(a). More importantly, it is observed that for
any given pump rate, systems with higher 5 always demonstrate
a larger stable phase locking region over the parameter space
(kTp, AwTy), €., better stability. Another reason for choosing
the pump rate of Py o/ P, = 1.2 for the above simulations is
that in practice, lasers operating lightly above threshold have
the highest energy transfer efficiency, i.e., wall plug efficiency
(WPE) [47], and can also be prevented from overheating due
to large current injection. Since nanolasers with high 3 exhibit
a low pumping threshold [43], it is not only energy efficient to
operate slightly above threshold, but stable phase locking is also
most achievable with a high S value and low pump rate.

D. Complex Coupling Coefficient

To further extend the analysis to account for the scenarios
where the supermodes exhibit dissimilar losses, a complex cou-
pling coefficient ix + v - where s and -y can be either positive
or negative - is used to replace the purely imaginary coupling
coefficient used thus far in the model. This modification is espe-
cially important if considering coupling geometries employing
gain-guiding and carrier-induced index antiguiding [16], where
either of the supermodes can exhibit higher eigenfrequencies
and/or higher losses. In order to simplify the ensuing bifurcation
analysis, the coupling amplitude || and phase 0, are used
instead of s and v to provide better intuition for the control
parameters used, i.e., i|k| e’ = ik +, K = |k| cosb,, and
v = —|k|sinb,, where 0,; € [—m, 7]. Furthermore, the pump
rates are assumed to be P, o/ Py, = 1.2 to obtain a high energy
efficiency in practice. Altering the pump rate around this value
does not significantly impact the general shape of the stability
regions and only negligibly shifts the boundaries. Therefore, the
variation of the stable phase locking regions due to /3 is unlikely
to be affected by the choice of the pump rate level. Finally, the
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Fig. 5. (a) 2-parameter bifurcation diagrams of in-phase and out-of-phase
solutions in the (0, |k7p|) plane with 3 = 1072 0.05, 0.25 and 1. The
stable in-phase locking region is shown in red; the stable out-of-phase locking
regionis colored in blue and the unstable region is shown in white. The solid lines
denote Hopf bifurcations, while the dashed lines denote Pitchfork bifurcations.
(b) — (¢) Zoom-in of the region 6, € [—0.1m, 0.17], |k7y| € [1,10] for 8 =
0.001, 0.05, 0.25, 1, respectively.

frequency detuning is assumed to be 0O initially for simplicity,
with a more detailed analysis on non-zero detuning discussed
briefly towards the end of this section.

The stability plots, when considering the complex coupling
coefficient and varying 8 = 10~2 0.05, 0.25 and 1, are super-
imposed and presented in Fig. 5(a). Although the bifurcation
analysis yields a plethora of bifurcation boundaries, in Fig. 5(a),
we only show those that directly demarcate the stable and
unstable regions, i.e., Hopf points (solid lines) and the pitchfork
points (dashed lines). In Fig. 5(a), the regions in red represent
stable in-phase solutions, the ones colored in blue denote stable
out-of-phase solutions and the white, unshaded regions represent
unstable solutions. From this figure, it can be observed that the
stability regions of in-phase (red) and out-of-phase solutions
(blue) with the same [ values are identical in shape albeit shifted
with respect to each other by 7 radians. The reason for this hori-
zontal shift, which can be easily deduced from the rate equations
(Appendix (Al)), is that if v flips its sign, i.e., 8, becomes
0, + m, then A® is shifted by 7 radians. This underlines the
significance that the signs of x and « hold and how controlling
them would allow a coupled system to achieve the desired phase
difference as predicted by the rate equations. However, the even
more significant finding from Fig. 5(a) is that as [ increases, both
the in-phase and out-of-phase solutions expand in size, which is
consistent with what was observed in Fig. 1(a) and (b). We would
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like to note that not all coupling values illustrated in Fig. 5(a) are
realistically achievable in experiment. For instance, for coupled
systems with () ,_ on the order of hundreds of more, v cannot
be on the same order as « and therefore 6, values around £ /2
cannot be realized from the definition of the coupling coefficient
provided in Section II. Nevertheless, the purpose of choosing
this wide range of complex coupling coefficients is to provide
an accurate picture of how the stability regions expand as 3 is
increased. Moreover, a large span of coupling coefficients have
been demonstrated in common laser platforms. For example,
evanescently coupled metallo-dielectric nanolasers have been
reported to exhibit frequency and loss splitting that leads to |k 7, |
from 4.16 to 0.04 and 6,. ~ —7 when the distance between two
nanolasers ranges from Onm to 90nm, respectively [31]. Using
the same coupling mechanism in photonic crystal nanolasers,
|kTp| =~ 1.88 and 6, ~ 0.017 are achieved, and the coupling
coefficients can further be modulated by controlling the size
and number of air holes in the coupling region [27]. Therefore,
even though not all the coupling parameters in the (6., |k7,])
plane in Fig. 5 are realistic, a wide range of coupling coefficients
can be achieved by typical coupled-laser designs, which justifies
the choice of the range of (6, |k7p|) in our simulation.

Another interesting observation is the coexistence of in-phase
and out-of-phase solutions in certain parts of the (6., |k7,])
parameter space, specifically around 6, = 0 (and 0, = ).
Recall that around these values, the supermodes have nearly
identical losses and therefore exhibit approximately equal prob-
ability of being supported by the coupled system. The same
coexistence of solutions was also observed in Fig. 1(a) and
(b), since the purely imaginary and positive coupling coefficient
used in the analysis in that section can be viewed as a special
case of §,, = 0. The evolution of these bistable regions as /3
is varied is plotted in Fig. 5(b)-(e). It can be clearly observed
that in addition to expanding stable regions, increasing /3 can
also lead to a larger overlap of the in-phase and out-of-phase
stable solutions, thereby increasing the likelihood of achieving
bistability. Within these bistable regions, the final steady state
depends on the initial state of the phase relations between the
two solutions. Such bistable operation poses great potential for
use as memories such as for optical flip-flops [27], [48] as well
as for optical analogues of the degenerated spins in an Ising
machine [49].

When non-zero frequency detuning is considered along with
the complex coupling coefficient, it is observed that both the
in-phase and out-of-phase stable regions have a lower bound in
|7, |, which is due to the SN boundary arising from the non-zero
Aw. As Aw increases, both the SN and Hopf bifurcation points
are shifted in a manner that reduces the stable phase locking
region in the parameter space (6, |7, |). However, for any non-
zero Aw, an enhanced stability from higher 8 can always be
observed, which is consistent with the results from previous
sections. Though discussed briefly here, the detailed results are
not included in this work for brevity.

In summary, with regards to stable phase-locking, increasing
[ unequivocally leads to an expansion in the stability regions
despite considering varying pump rates, detuned frequencies
and both imaginary and complex coupling coefficients. The
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robustness of the desirable effects of high /5 on stability truly
emphasize the tantalizing potential of nanolaser arrays to harness
this advantage and help in the generation of high optical power
via in-phase locking. Additionally, high-3 nanolaser arrays can
also aid in the development of next generation active optical
phased arrays as discussed in the next section.

IV. PHASE DIFFERENCE MODULATION V.S. 3

In the previous section, the stability of phase locking was stud-
ied as functions of 3, P, Aw and 6,.. The results were focused on
the in-phase (A® = 0) and out-of-phase (A® = ) solutions
for their potential in high-power beam generation and optical
memory. In some other applications such as beam steering for
LiDAR and imaging systems, a tunable phase offset between
adjacent lasers is required. In fact, having a wide range of tunable
phase differences between coupled lasers can prove essential
in these applications, since this attribute can help increase the
azimuthal and vertical scanning ranges. Using lasers as array
elements instead of passive phase shifters injected by a single
laser source offers the advantage of both frequency and phase
reconfiguration, which are essential for complex detection and
sensing applications [44], [45]. In this section, we theoretically
propose and analyze a method to modulate the phase difference
between two coupled lasers. For a symmetrically coupled sys-
tem like we have considered thus far, i.e., equal pumping rate
P; = P, , the case of zero-frequency detuning Aw = 0 yields
only two possible solutions for the steady-state phase difference
A®: the in-phase (A® = 0) and the out-of-phase solutions
(AP = m). If the symmetry between the two lasers is broken
by pumping the cavities at dissimilar rates, then values of A
that are neither 0 nor 7 are achievable. In fact, A® can then
be tuned within the stable phase-locking range according to the
ratio of the pump rates for the two lasers.

To identify the feasibility of nanolasers to be implemented
in novel phased arrays for beam steering, the dependence of the
phase difference tunability on /3 is investigated. In the simulation
for each (3 value, the pump rate for one of the lasers, P, is fixed
while the pump rate for its neighbor, P, is varied. We choose
to keep Py / Py, = 1.2 for the same reason of energy efficiency
that was mentioned in the previous sections. To realize phase
difference modulation, P, needs to be varied within a range
where only stable phase locking is supported by the coupled
cavities. Additionally, P> needs to be experimentally achievable
and is thus varied only from P, to 12P,;, throughout this
simulation. The three sequential steps followed to perform the
analysis are as follows: First, by keeping 5 and P; constant, a
one-parameter bifurcation analysis by varying P is conducted,
and the maximum and minimum possible A® within the stable
region are recorded. Secondly, the above step is repeated for
’s ranging from 107° to 1, and the maximum and minimum
A® that can be achieved by varying P; are recorded for each
value. Finally, these results are depicted in Fig. 6(a) where the
maximum and minimum A® values are plotted as a function
of 3, as well as in Fig. 6(b) where the phase tuning range rep-
resenting the differences between the maximum and minimum
A® is also shown as a function of (. For these simulations, the
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Fig. 6. (a) Maximum (purple) and minimum (orange) phase differences
achieved by varying the pump rate P> while keeping P; constant, plotted as
a function of 3. For each 3 value, the maximum values are marked with circles,
and the minimum values are marked with asterisks. P is set to be 1.2P;. (b)
Phase difference tuning range as a function of . The colored regions in both
(a) and (b) represent the number of bifurcation points observed in the solutions.
This is better illustrated in (c)-(e) which show the steady-state phase differences
for three different values of 8- 1074, 0.0175, and 0.1. Depending on the value
of 3, there may exist zero (c), one (d) or two (e) SN bifurcations points in the
solution, corresponding to the yellow, pink and blue regions in (a), respectively.

frequency detuning between the two lasers is neglected, and +y is
assumed to be O for simplicity. Additionally, only an imaginary
and constant coupling rate of k7, = 103 is considered. It is
important to note here that phase tunability was only observed
with a coupling rate within the first stability region (to the left
of the supercritical Hopf bifurcation boundary in Fig. 1(a)) and
not for k7, values in the second stability region (to the right of
the subcritical Hopf boundary in Fig. 1(a)). Moreover, within
the first stability region, varying 7, affects the values of A®
only in a negligible manner.

As can be clearly observed in Fig. 6(a) and (b), as ( is in-
creased, a wider range of tuning in A is afforded. Specifically,
in the yellow region demarcated by extremely low-73 (10~° to
1073), the maximum and minimum A® achievable are around
—0.057 and 0.057, respectively. As [ is increased to values
in the blue region, the range for A® expands significantly to
about [—7/2, 7 /2]. Therefore, the phase tuning range shown in
Fig. 6(b) increases from around 0.17 to 7 as 3 increases from that
of conventional semiconductor lasers, i.e., 5 < 1073, to that of
microscale and nanoscale lasers, i.e., 5 > 0.01. The reason for
this wider range of phase tunability brought about by increasing
B lies in the manner in which bifurcation points alter the stable
solutions. For the range of extremely low- [ values shaded as the
yellow region in Fig. 6(a), the coupled lasers remain stable for
all values of P>/ Py, € [1,12] as shown in Fig. 6(c). However,
when £ is increased to values in the pink region of Fig. 6(a), an
SN bifurcation point arises that pushes the lower limit of Ad
closer to —7 /2. This result is encapsulated in Fig. 6(d) for a
specific value of 3 = 0.0175 that lies within the pink region in
Fig. 6(a). Finally, for high-3 values in the blue region of Fig. 6(a),
two SN bifurcation points further define the stability boundary
such that A® can now vary from —7/2 to w/2 when P2/ Py,
varies within a small range around 1.2, as illustrated in Fig. 6(e)
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for 5 = 0.1. Therefore, increasing /3 can significantly increase
the range of phase differences possible for stable phase-locked
solutions, highlighting the fact that laterally coupled nanolasers
with intrinsically high § values can prove valuable in realizing
wide scanning angles in optical phased arrays.

V. DISCUSSION

In the previous analysis, the noise contribution from the intrin-
sic intensity fluctuation and spontaneous emission is neglected.
Such random noise can be mathematically accounted for by
introducing Langevin noise into the stochastic rate equations
[27], which cannot be analyzed by the bifurcation analysis
software [37]. However, we will discuss qualitatively how in-
tensity fluctuations can affect the results presented earlier. The
intensity noise introduces instant asymmetry in photon numbers
in two coupled cavities and causes the phase difference to
deviate from A® = 0 or 7 depending on the difference in
the photon numbers AN,,;, compared to the mean value N,
i, Any, = ANyy/N,,. While the instantaneous An,y, is
small, the coupled system will have a quasi-phase-locking state
with A® close to 0 or 7. However, when An,,, is very large,
phase-locking in two distinct cavities cannot be achieved, and
the system can be driven by the intensity noise into unstable
regime until a noise event with small An,, pulls the system
back into the stable regime. Therefore, coupled lasers with
large signal to noise ratio (SNR) is more robust to intensity
fluctuation as the noise contribution can be safely neglected.
For example, the average photon number in an experimentally
demonstrated metallo-dielectric nanolaser with a radius of 350
nmand 8 = 0.25 [22] is estimated to be 1090 when the pump
power is around two times the threshold [47]. This corresponds
to around 3.4 x 10° photons in a pulse considering a pulse width
of 11ns and repetition rate of 200KHz. Using such type of high-3
lasers in the coupled system, we can assume that quasi-in-phase
or out-of-phase locking can be achieved even when intensity
fluctuations are considered. However, smaller lasers that have
higher /3 values and lower photon numbers can be more prone
to intensity noise. The robustness of stable phase-locking in
coupled nanolasers with 3 approaching 1 and that have low
photon numbers will be analyzed in a future study. Nevertheless,
for the same noise level, increasing the pump power to obtain a
higher SNR can help to mitigate the effect of the intensity noise
[50]. Another way to squeeze the intensity noise is to use quiet
pumping with the help of new designs for extreme dielectric
confinement, such as a bow-tie structure [51].

VI. CONCLUSION

The theoretical effects of varying the spontaneous emission
factor, 3, on the stability and tunability of phase-locking in
two laterally coupled semiconductor lasers are presented in this
study. In order to first determine how [ affects the stability of
the coupled system, bifurcation analysis is performed over the
laser rate equations using numerical continuation. Initial results
with a simplistic model considering constant and equal pump
rates, identical resonance frequencies and an imaginary coupling
coefficient reveal that increasing [ leads to an overall expansion
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of the stable phase-locking regions. To account for realistic
experimental conditions and practical device designs, additional
control parameters such as varying pump rate, frequency detun-
ing and complex coupling coefficients were considered in the
model. The desirable effects of high-/ on stability were found to
be robust to the addition of these multiple parameters. More im-
portantly, the stable in-phase locking regions, conducive for gen-
erating high output optical power, were observed to increase in
area as adirectresult of increasing 3. Such stability enhancement
becomes even more significant for > 0.89, where the in-phase
solutions are stable over a wide range of coupling coefficients
and frequency detuning. During the stability analysis, regions
of bistability that increase in area due to increasing 3 were
also observed. The simultaneous coexistence of two solutions in
this manner can find applications in optical memories. Finally,
higher values of 3 were also found to exert influence on the
range of stable phase differences attainable from a laterally
coupled system. By breaking the symmetry of pumping for the
two lasers while altering (3, a range of phase differences as wide
as 7 (from -w/2 to 7/2) was attained for 8 > 0.025. Wide
ranges of tunability of this form are desirable in applications
that require a large scanning angle and beam steering such as
in lidar systems. This is the first study demonstrating rigorous
analysis on the specific effects of high-5 on the phase-locking
stability and tunability of laterally coupled semiconductor lasers,
to the best of our knowledge. Future analysis on the stability of
coupled lasers can consider more than just two interacting lasers,
specific coupling geometries and the contribution from intrinsic
noise terms.

APPENDIX A
NORMALIZATION AND THE LINEAR ANALYSIS OF COUPLED
RATE EQUATIONS

Before we perform the small signal analysis, the different
bifurcation points need to be introduced and identified. The
saddle-node bifurcation indicates the collision and disappear-
ance of two equilibria. A pitchfork bifurcation occurs when the
system transitions from one fixed point to three fixed points. In
both these types of bifurcation points, the Jacobian matrix of
the dynamical systems has one zero eigenvalue. In contrast, at
the Hopf bifurcation points, the solution switches from being
stable to exhibiting periodicity, i.e., instability. For the super-
critical Hopf bifurcation, one fixed point diverges into periodic
oscillations, while the reverse holds true for the subcritical Hopf
bifurcation. The occurrence of this Hopf point corresponds to a
pair of purely imaginary eigenvalues.

We use a linear gain model for G(N1 2) with G (N1 ) =
GnN (Ny2 — Ny), where G is the differential gain and N
is the carrier density at transparency. The rate equations in
(1) can be normalized using X1 2 = |E1 2| VGNThr, Y12 =
(N1,2 — No) ', Gy and a dimensionless time that is normal-
ized to the photon lifetime as ¢ = 7/7,. We can then write the
normalized equation as:
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Tnr Fpﬂ (Y1,2 + Nonorm)
- a1 X1z
Trad 2 |X172|
F kTpsin (AD) Xo 1 + 7, cos (AD) Xo 1 (Ala)
dY;
d;,? = Tnorm [Pnorm — Ye (YI,Z + NOnorm) - Y1,2X1272]
(Alb)
dAD « X1 X2
— =3 (Yo — Y1) + Awry, + k7 <X2 Xl)cos (AD)
X X5
— 7 <X1 + Xl) sin (A®) (Alc)
where T} = Tp /Tm“, Nonorm = No FTpGN’ Ye =

:::d (Fpﬁ + 1— 5) + ]-v and Pnorm = L'norm FTpGN/an is
the normalized pump rate.
We then perform small signal analysis like in [ref. 16 and

assume:

o it o e
Xio=X1o +x12¢", Yio=Yi2 +yie

AD = AD + §pe*t (A2)

Substitutﬂg (Aﬁ into (A1), neglecting higher order terms and
assuming X7 ~ X5, results in:

T’I’L T

FLB (Yl + Nonorm)
| X

1 —
.%'1)\,25 (Yl—l)l'l— T

Trad 2

1 T 8 1
X nr 4L'p
+<2 1+de 2 Xl)

+ [v7p cos (A®) — k7psin (AP)] &

— ['yTp sin (A@) + KT, COS (A@)] X269  (A3a)
- 1 . . Tnr pﬂ (YQ + Nonorm)
T2k = 2 (Y2 1) 2 Trad 2 ’X2|2 ’
1_ Trr pﬂ 1

+ <2X2 Trad 2 Xg)

+ ['yTp cos (A@) _+ Tpsin (Atf)] T

- [’yrp sin (Aff)) — KTp COS (A(I))] X169  (A3b)
Y12 = Thorm (—’chl —2X Y12 — 712,%) (A3c)
Y22 = Thorm (—%y2 —2X5Yoxs — Y;yz) (A3d)
OpA = % (y2 — y1) + 2K, cOS (ACI)) MX;llb

— 2y7,sin (A@) xl; 2 2vy1, cos (ACT)) Y0,

1

(A3e)

By considering equal pumping and neglecting the dissipative
coupling by setting v = 0, the above equations can be further
simplified. We then add (A3a) and (A3b), as well as (A3c) and
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(A3d) and arrive at:

FLB (Yl + Nonorm)
Trad 2 |X1|2

TTL '

(z1 + x2)

1_
==X
(2 1+ P X1>(y1+y2)

(1'1 + 1’2) (_2TnormX1Y1)
= [)\' + Thorm (Wc + X%)] (yl + 1112)
Combining (A4a) and (A4b), we have:

1
r-g (-1 +

Tnr pﬁ

(Ada)

(A4b)

)\,2 —+ Al)\. + A2 =0
where
_ 1 -
Al Thorm (’7(‘ =+ X12) - 5 (Yl - 1)

FLB (Yl + Nonorm)
Trad 2 |X1|2

T’I’L ‘A

Recall that 2= 5h % = —1(Y1—1)and 4, =

Trorm (Ve + X?) — (Y1 — 1). In order for the small perturba-
tions to approach zero as time evolves, the real part of A must be
negative. This requires A; = 2Re(2) > 0. For the expression
of Ay, the first term on the RHS signifies the radiative recom-
bination of carriers by all means, and the second term denotes
recombination involving only spontaneous emission. Therefore,
A; > 0 always hold true.

We then subtract (A3b) from (A3a), as well as (A3d) from
(A3c) and arrive at:

Tnr Fpﬂ (Yl + Nonorm)

1 ,-
(21— 22) )L_§(Y1_1)+de 2 ‘X1|2
- (30 2B ) )
— 2KTp COS (Afl)) X160 (A5a)
(21 — 22) (—2ThormX1Y1)
= A+ Thorm (Ve + X7)] (1 — 2) (A5b)
Substituting (A3e) into (AS5a) results in:
A4+ BiA2 4+ Boa+ B3= 0 (A6a)
where
Bi = Toorm (7 +Xi) — (Y1 - 1) (ATa)
By = Torm 13 (X1 + Lo Fpﬁl)
Trad X
— Thorm (Ye + X7) (Y1 = 1) + 4K°72cos® (AD)
(A7Db)
B3 = 4/{275(:05 (A®) Thorm (Ve + X7)
+ 204m'anormX1 Y; cos (A<I>) (A7c)
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The solutions to (A6) are one real value and two conjugate
complex values. The real solution gives the saddle-node bifurca-
tions or pitchfork bifurcations while the complex solutions gives
the Hopf bifurcations.

For very weak coupling, B3 in (A7c) is approximately 0
and (A6) can be simplified to be quadratic. Consequentially,
the solution of A can then be approximated to be that of the
relaxation oscillations (RO), where Re(1) is the damping rate
and Im() is the RO frequency, which is T}opm (Ve + X2) +
%Fpﬁ % In this case, a larger [ always results in
faster damping, therefore, enhancing the stability in the weak
coupling region. The pump rate can also increase the damping
rate for small 3. For large /3, the scenario becomes more complex
and requires more detailed examination. However, since the
damping rate can be approximated to be that of the RO as

Trorm (Ve + X?) + @Fpﬁm'ﬁgw, for very small 3, the

Trad

second term can be neglected. Thils‘ means that as pump rate
increases, alarger X7 gives a faster damping, i.e., better stability.
While for larger 3, the second term can not be neglected. Since
X2 is now in the denominator, a larger X? gives a slower
damping rate, i.e., a worse stability.

To have the real parts of the solutions to A be negative, and
thus have stable phase locking, the following conditions must
hold,

By >0, B3>0, ByB, — B3 >0 (A8)

Since By = A; > 0 has already been proven to be true, we
focus on the second and the third conditions.

The condition B3 > 0 makes the real solution negative, and
thus yields,

4/@27'1,2(3082 (Aff)) Thorm (’yc + Xlz) >

— 2067, Tyorm X1 Y1 cos (AD) (A9)
In the case of zero detuning, this can be simplified to:
Tno7'mX2Y =
KTp > — a L 12 , when AP =0, (AlOa)
2,Arnorm (70 + Xl)
And
T‘normqu}7 =
e — 17l whenAd =7  (AlOb)

2Tnorm (’Yc + X12)

For the condition B; By — B3 > 0 to hold true, the real part
of the complex solutions to A must be negative. Consequentially,
this yields a second order equation for x,

Ci1k? 4+ Cok +C5 >0 (A1l)
where
C1 = —4cos® (AD) (Y; —1) (Al12a)
Co = — 20T 0pm cos (AD) X7V, (A12Db)
C3 = Tnorm [Tnorm (e + X7) — (Y1 = 1)]
x (fT:d Vi — 7. V1 4+ e + X%) (A12c)
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An explicit expression describing the stable phase-locking
conditions is challenging to obtain. Nevertheless, we can plot
out and observe that the Hopf bifurcation boundary with C; k2 +
Cok + C3 = 0,is a parabolic function, whose center and width
vary with $ and P. Each set of parameters generates a different
parabolic function, and generates either zero, one or two roots,
as shown in Fig. 1(a).
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