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The Electron Canonical Battery Effect in Magnetic Reconnection:
Completion of the Electron Canonical Vorticity Framework

Young Dae Yoon and Paul M. Bellan?

Department of Applied Physics and Materials Science, Caltech, Pasadena, CA 91125

A widespread practice in studying magnetic reconnection is to examine the electron momentum equation.
Here we present an alternative, ab initio framework that examines the motion of the electron canonical vor-
ticity, which is the curl of the electron canonical momentum. The competition between just two terms — the
convective term and the electron canonical battery term — determines the dynamics of electron canonical
vorticity and equivalently the electron physics down to first principles. To demonstrate the power of this ap-
proach, the growth, saturation, stability, and morphology of the electron diffusion region are explained within
the electron canonical vorticity framework. The framework provides a clear distinction between reconnection
models where the frozen-in property of the magnetic field is violated by electron inertia and by pressure tensor

effects such as electron viscosity, respectively.

Canonical vorticity, the curl of canonical momentum,
is an important quantity in plasma physics since each
species’ canonical vorticity is frozen into its fluid to the
extent that non-ideal phenomena such as collisions can be
ignored. This freezing-in of canonical vorticity is analo-
gous to the freezing-in of magnetic flux in ideal magneto-
hydrodynamics (MHD), but frozen-in canonical vorticity
is more fundamental than a fluid property as it is valid in
kinetic regimes with proper generalizations'. By gener-
alizing familiar ideas like frozen-in flux from ideal MHD,
the usage of canonical vorticity allows for physical, in-
tuitive explanations of complicated phenomena such as
magnetic reconnection the process where magnetic
field changes topology to release its energy?.

As shown in Fig. 1, a typical collisionless reconnec-
tion geometry involves two different shear length scales
L = B/|VB| for the magnetic field B(x,t). The ini-
tial opposing magnetic field lines shown as black in Fig.
1 reconnect in the electron diffusion region (EDR; tan
box). In the EDR the magnetic field shear length scales
as L ~ d. where d, = ¢/wp, is the electron skin depth. In
contrast, ions diffuse within a broader region (green box)
having characteristic shear scale L ~ d; where d; = ¢/wp;
is the ion skin depth. This difference in ion and elec-
tron flow generates quadrupole out-of-plane Hall mag-
netic fields (plus and minus signs). The inset shows the
set of coordinates that will be used throughout this pa-
per: x is the direction of the reconnected field and the
electron inflow, y is the direction of the initial sheared
magnetic field and the electron outflow, and z is the out-
of-plane direction.

It has been previously demonstrated that the convec-
tion of electron canonical vorticity with the electron flow
is responsible for the growth of the reconnection insta-
bility at electron scales®®. This demonstration provided
the intuitive interpretation that the out-of-plane electron
flow stretches and thins a typical canonical vorticity flux
tube in three dimensions, resulting in a purely growing
instability that accelerates electrons”S.

The purpose of this paper is to demonstrate that an
effect which we define as the “electron canonical battery”
completes the electron canonical vorticity framework for

FIG. 1. A typical collisionless magnetic reconnection geome-
try for a zero initial out-of-plane magnetic field.

magnetic reconnection with validity extending to the
Vlasov frame of reference. In contrast to the generalized
Ohm’s law where multiple terms must be considered, the
generalized canonical induction equation comprises just
two terms, the convective term and the canonical bat-
tery term. The description of reconnection phenomena
becomes simple because competition between these two
terms determines virtually all aspects of the reconnection
electron physics including growth, saturation, stability,
and morphology.

The EDR structure during reconnection has long been
a subject of controversy. It was initially presumed
that stable electron-scale current layers could not ex-
ist because various instabilities would break up these
layers® !,  However, spacecraft observations showed
that, in fact, the EDR has a highly elongated stable
structure'?. The stability of this elongated structure was
interpreted via numerical simulations as resulting from
the divergence of the pressure tensor'?> 4. However, this
interpretation assumed a zero initial out-of-plane B field
(guide field) and later numerical simulations showed that
a small guide field alters the structure completely'®. An-
other study showed that different regimes of the EDR
exist depending on a magnetization parameter!.

It will be shown here that, in the canonical vorticity
framework, these disparities are not only easily resolved
but also unified. In fact, the examination of canonical
vorticity dynamics is essential for an exhaustive inter-
pretation of the physical origin of the current structure.
Different kinetic effects contribute to the canonical bat-
tery term, which then competes with the convective term
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to determine the progression of the electron canonical
vorticity. This progression in turn determines the over-
all structure, evolution, and stability of the EDR. This
framework provides a simpler and clearer alternative to
the traditional approach where each of the multitude of
terms in the electron momentum equation is examined
separately.

The sole assumption is that the ions are station-
ary, which is valid for L < d; corresponding to the
green box in Fig. 1. While the theory to be pre-
sented is similar in many respects to classical electron-
magnetohydrodynamics (EMHD)'7, the minimal restric-
tion of this stationary-ion assumption causes the theory
to differ substantively from EHMD because the assump-
tion permits finite displacement current and the full elec-
tron pressure tensor pe = me [ VLV, f (ve) d*v. where v/,
is the random part of v.. In order to make the rele-
vant equations dimensionless, quantities are normalized
as follows: B to the upstream field strength By, length
to d., time to \wcﬁrl, Pe to B2/po, density n. to the
upstream density ng, and E to vae By = de |wee| Bo. The
dimensionless electron equation of motion is then

Du, V:-pe

E xB=—
T Dt ne

1)

where u. is the electron fluid velocity. Unless specified
otherwise, only normalized quantities and dimensionless
equations will be used throughout this paper.

After decomposing the total derivative Du./Dt =
du. /0t + u. - Vu, = 0u. /0t + V (uZ/Z) —u, x V xu,

and defining the electron canonical vorticity
Q.=Vxu.—B=w,—B, (2)

where w, = V x u. is the electron fluid vorticity, Eq. 1
can be expressed as

ou, u? V - Pe i
E=u.xQc— ot *V(?>*7np- (5)

Taking the curl of Eq. 3 and using Faraday’s law V x
E = —9B/0t yields the generalized canonical induction
equation

Qe
ot

:VX(uere)7VX<u>. (4)

Ne

An important property of Q. is that since w, =
V xu, ~Vx(VxB)~B/L? where L = B/ |VB]|, Eq.
2 shows that Q. ~ B/L? — B ~ —B for L > 1 whereas
Q. ~ w, for L < 1. For regions where L ~ 1 such as
the EDR, both w,. and B are important. In dimensioned
quantities, eQ, = V x P, where P, = meu. + ¢. A is the
electron canonical momentum. It should be noted that
Eq. 4 is also valid for any plasma species given a proper
normalization.

The electron canonical vorticity dynamics governing
electron physics is thus reduced to just the two terms on
the right hand side of Eq. 4. The V X (u. x Q.) term is

a convective term which prescribes that Q. flux is frozen
into ue, and thus provides an intuitive understanding of
the temporal development of Q.. This convective term
is responsible for the zero-beta electron physics of the re-
connection instability®®. By itself, this convective term
causes but cannot terminate the growth of this instabil-
ity. This is seen by examining the y-component of Eq.
4 near the x = 0 line with only the convective term re-
tained, i.e.,

DQey
Dt

B exr
= Qe Vi = Qey (V-0) = ~Quy 5 (9)

Here we have used V- Q. = 0 from Eq. 2 and also
Qe = 0 because Q. cannot reconnect if only the convec-
tive term is retained (recall that finite Qe, corresponds
to reconnection of Q). Since in the vicinity of the re-
connection region the electron inflow has the dependence
Uey ~ —, the quantity —Oue,/dz is strictly positive, so
Eq. 5 produces a solution for @Q., that grows exponen-
tially in time.

Since the convective term describes freezing-in of the
vorticity flux to the flow, —V x (V- pe/ne) is the only
term in Eq. 4 that enables diffusion of Q. across u,
or vice-versa. This term will be called the “electron
canonical battery” term because in the limit of isotropic
pressure (ie. pe = pel = nT.I), =V x (Vpe/n.) =
(Vne x VT.) /n. is the Biermann battery term!®, and
because —V X (V - p./n.) generates Q. as indicated by
Eq. 4. Since Eq. 1 results from the collisionless Vlasov
equation without approximations, Eq. 4 is kinetically
exact.

In order to illustrate how the competition between
the convective term and the canonical battery term gov-
erns magnetic reconnection, we have developed a numeri-
cal simulation that includes compressibility, displacement
current, and kinetic effects. This simulation solves the
normalized Faraday’s Law, Ampere’s law, electron conti-
nuity equation, and generalized Ohm’s law (i.e., Eq. 1)
in terms of j = —n.u.. These equations are

o8
ot
oE Wi, .
WZWZ (VxB-j),
One

ot

i ..
a%:'neE*J'XB+V'<#)+V-pe< (6)

=-VxE,

=V-j,

The set of Egs. 6 solves Eq. 4 exactly and includes
finite displacement current. The numerical method is
a finite-difference-time-domain (FDTD) scheme with a
semi-implicit treatment of j, and periodic boundary con-
ditions are used.

Two different kinetic effects are considered, namely
pressure anisotropy and electron viscosity. Pressure
anisotropy is modeled using the following closure which
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is described in Egedal et al.'® and Le et al.?°:

2 i 2
Pl = ey T 6B 2 1 ™
. _ 1 IR
Pet =Ry g HeB T ®

In Egs. 7 and 8 the tilde represents normalization to far
upstream values (e.g., 7. = n./ng) and the parameter
a = 73 /B? acts as a switch between having an isother-
mal (small &) or a double adiabatic (large ) equation of
state. Equations 7 and 8 are approximations of second or-
der moments of an electron distribution function derived
from an analysis of electron trapping by a combination
of parallel electric fields and magnetic mirrors. The situ-
ation where o > 1 represents trapped electrons because
magnetic mirrors trap electrons at regions of low B and
these trapped electrons increase the local electron den-
sity. The trapped electrons conserve their first and sec-
ond adiabatic invariants and thus obey Chew-Goldberg-
Low?! closure. On the other hand, o < 1 represents
untrapped electrons that provide an isothermal closure.
This closure given by Eqgs. 7 and 8, valid in the regime
vre > v4, enables fluid models to exhibit kinetic effects
missing from an isotropic pressure closure by allowing
for pressure anisotropy to have both spatial and tempo-
ral dependence as given by the local instantaneous value
of a?2.

Equations 7 and 8 contribute to the pressure tensor
a8 Pe,aniso = perl + oBB,where o = (peH 7PEL) /B2
The effect of electron viscosity is expressed as pe,yis =
—pVu., where p is the dynamic viscosity. Because con-
ventional viscosity is in many cases negligible, p repre-
sents an effective viscosity that includes, for example,
turbulent viscosity?® and/or hyper-resistivity?4. The to-
tal pressure tensor is then the sum of the partial pres-
sures; i.e., Pe = Pe,aniso T Pe,vis-

The simulation was initiated by imposing a magnetic
perturbation on a periodic force-free equilibrium used in
Drake?® and Ohia et al.?2, given by

By = tanh (§) - (252 2 0

B.= 1+ B2 - B2 (a), (10)

where Z,,q, is the size of the domain, B, is the out-
of-plane field far from the reconnection region, and \ is
the half-thickness of the shear and A\ < 4. Equation
10 characterizes a guide field that renders B? = B2 + B2
uniform everywhere. Uniform initial pressure and density
are also imposed, so the equilibrium system is initially
force-free. The system is solved in 2D where 9/9z = 0,
and the grid size is 512 x 1024 with 25 grid points per d.
in the z direction and 10 per d. in the y direction. Fixed
parameters are Wee/wpe = 1/2, By = 0.4, and A = 2. This
extremely thin current sheet not only models the small
scale of the EDR, but is also highly relevant in space
plasma phenomena such as electron-only reconnection in
the turbulent magnetosheath?®,

x/d,

/d,

z/d,

FIG. 2. In-plane Q. (red), in-plane B (black) and wu.. (color)
for varying p values and isotropic pressure at ¢t = (a) 380, (b)
450, (c) 560.

In order to verify the results from the fluid simula-
tion, the particle-in-cell (PIC) code SMILEI?" was used
to simulate reconnection with the same parameters as
the fluid simulation. The realistic ion to electron mass
ratio, m;/m. = 1836, was used with ~ 2 x 10% ions and
the same number of electrons. The results from the fluid
simulation are mainly presented because of the ability to
include, exclude, or control particular physics, and be-
cause of the clarity of presentation.

We first examine how electron viscosity affects the
evolution of Q.. Electron viscosity contributes to the
canonical battery term as —V x (n;'V-[-pVu]) =
V x (un;1V2ue) ~ un;'V?w,.. If L < 1 so that
Q. ~ w, and thus V?w, ~ V2Q,, Eq. 4 becomes

Q.
ot

=V x (0 x Q)+ nﬁvzqm (11)

which has the same form as the resistive-MHD induction
equation, 0B/0t = V x (U x B) + (n/uo) V?*B. Thus
at electron scales, electron viscosity allows Q. to recon-
nect, similar to how resisitivity allows B to reconnect.
To mitigate confusion, we emphasize that all fluid simu-
lations presented here solve the set of Eqs. 6, not reduced
equations such as Eq. 11.

Figure 2 shows, for three different values of viscos-
ity, the out-of-plane electron flow w., (color), in-plane
B (black lines), and in-plane Q. (red lines) for a situa-
tion with isotropic pressure (initially 8. = 0.3). Different
times are chosen for each viscosity value because viscos-
ity changes how much time is required for the EDR to
display its characteristic structure. For p = 0 (Fig. 2a)
the system is ideal, so Q. lines remain connected and
pile up near the x = 0 line in contrast to B lines which
reconnect®>78. For finite u (Figs. 2b and 2c), Q. lines
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(a) Anisotropic, 1 = 0

o/d,

/d,
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—0.750
~0.875

ofd,

FIG. 3. Same as Fig. 2 with pressure anisotropy and varying
u values at t = (a) 400, (b) 500, (c) 630.

reconnect as well. It is apparent from Fig. 2 that the out-
of-plane electron current structure (i.e., color contours)
is well manifested by in-plane Q. but not by B — a fea-
ture that is an important advantage of using Q. over B
at electron scales. Fine structures (i.e. small L) of u.
are not manifested by B because |[B| ~ |j| L ~ |u.| L by
Ampére’s law, whereas they are well manifested by Q.
because |Qe| ~ |u.| /L.

Another important feature is that the local increase
of Qey shear corresponds to the local increase of .
To illustrate this point we consider the implications
of an assumed hypothetical toy scenario where Q., ~
A(t)zexp (—a?) where A(t) increases in time. This
profile represents locally sheared Qc,. Using u.. =
—Jweydr ~ — [Qeydx for L < 1 gives ue, ~
A (t) exp (—a?), corresponding to a local increase in ue;.

We next examine how pressure anisotropy affects Q..
In order to bring the system to an anisotropy-driven state
faster, an initial pressure anisotropy with g, = 0.6 and
Ber = 0.1 was imposed. The results for different p are
shown in Figs. 3a-c. In comparison to the isotropic case
it is seen that pressure anisotropy greatly distorts the in-
plane Q. lines so that they pile up in the upper-left and
lower-right quadrants; this corresponds to the anisotropic
regime in Ohia et al.??. Again, the out-of-plane current
structure is correlated with Q. rather than with B; w.,
is enhanced at locations where Q. is sheared. The dis-
tortion of Q. field lines and the corresponding elongation
and tilt of the out-of-plane current are reproduced by the
PIC simulation, as shown in Fig. 4.

The anisotropic contribution to the electron canonical
battery term explains the origin of the distortion of Q.
and equivalently the origin of the elongation of u.,. Fig-
ure 5a shows the convective term §-V x (u. x Q) (color)
and the battery term —g - V X (V- Pe.aniso/Ne) (con-

Particle-in-cell

2/de

—0.075
~0.150
225

300
~0.375

FIG. 4. Same as Fig. 2 from the particle-in-cell simulation at
t = 300.

(a) §- V x (u, x Q) (color), =i - V x (V- Peaniso/ne) (contour)

0.035

0.000

~0.035

(b) 8Qey /0t = -V x (ue X Q) = -V X (V- Peaniso/Me)

0.035

T T T T T T T —0.035
-30 —20 -10 0 10 20 30
y/de

FIG. 5. (a) The y-component of the convective term § -
V X (ue X Qe) (color) and the anisotropic contribution to the
canonical battery term —g - V X (V - Pe.aniso/ne) (contour)
for the simulation corresponding to Fig. 3b. (b) The sum of
-V x(ue X Qe) and —3-V X (V - Pe,aniso/Ne), which is equal
to OQey/0t. The red arrows represent the direction of Qe.

tour). The derivation of why — -V X (V- Pe,aniso/Me)
exhibits such a structure is explained in detail in the
Supplementary Material. Figure 5b shows the sum of
the two terms which is equal to dQ.,/0t, and the red
arrows show the direction of Q.. It can be seen that
—7-V X (V- Pe,aniso/Ne) adds to §- V x (ue x Q) and
increases the spatial extent of 0Qc, /9t; this in turn elon-
gates the structure of wu...

The examination of Q. dynamics and the electron
canonical battery term is not only advantageous but in
fact essential for the correct interpretation of a given
EDR structure. For example, Ohia et al. 2 observed that
imposing isotropic pressure deformed the out-of-plane
current structure to be less elongated, which seemingly
contradicts Fig. 2a. However, in Ohia et al.??, an effec-
tive electron viscosity of 1.5 x 107° with the same nor-
malized units as this study was imposed, approximately
corresponding to Fig. 2c. Thus, it is not isotropic pres-
sure that leads to an out-of-plane current localized at the
origin; instead, the current localization results from the
reconnection of Q. by electron viscosity.

Another such example is the origin of elongated EDR
structures. The elongated structure in Fig. 2a results
from the pile-up of Q. field lines due to the lack of sig-
nificant electron viscosity, whereas the elongated struc-
tures in Fig. 3 result from pressure anisotropy. There-
fore, in order to give correct physical interpretations, the
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scrutiny of the electron canonical battery term and the
ensuing canonical vorticity dynamics is vital.

In Ohia et al.?2, it was found that the plasma ap-
proaches the firehose condition along the elongated cur-
rent layer. This phenomenon can be simply explained
by a direct comparison between the convective term
and the electron canonical battery term. On scales
L > d., the convective term goes like V x (u, X Q) =~
V x (ue x B) ~ =V x ([V x B] x B) ~ B%/L?, and the
anisotropic contribution to the canonical battery term
goes like V x (V- [¢BB]) ~ 0B%/L?. 1t follows that
o ~1or (pe| —per) /B*~ 1 in order for the two terms
to be commensurate; thus, the parallel and perpendicular
electron pressures approach the firehose criterion.

Equation 11 stipulates the condition for the instabil-
ity of the EDR. Because Q. ~ w,. for L <« 1, Eq.
11 is equivalent to the electron fluid vorticity equation
Owe /Ot = V X (ue X We) + (p/ne) V*we. It then natu-
rally follows from fluid dynamics that turbulent flow de-
velops at a sufficiently high Reynolds number Re ~ n./pu.
This unstable regime corresponds to the regimes in Drake
et al.'® and Del Sarto et al.'!.

Equation 4 clarifies the distinction between a tearing-
mode-type reconnection instability and a Sweet-Parker-
type quasi-steady-state reconnection. By itself the con-
vective term yields an exponentially growing solution
even in the non-linear regime, as shown by Eq. 5. Thus,
if the canonical battery term is not sufficiently large to
be significant in Eq. 4, a quasi-steady-state reconnection
or reconnection saturation cannot be achieved.

Equation 4 also clarifies the distinction between recon-
nection models where the magnetic field is broken only
by electron inertia® and those where it is broken also by
pressure tensor effects such as electron viscosity?®2°. If
only the electron inertia term is included, then the sys-
tem is entirely described by the convective term in Eq. 4,
whereas the electron viscosity is manifested by the elec-
tron canonical battery term. A possible scenario is that
electron inertia breaks the magnetic fields during earlier
times, but the EDR is subject to instabilities and turbu-
lence due to the high Reynolds number at latter times.
These instabilities increase the effective viscosity, which
makes the canonical battery term break both the mag-
netic field and the canonical vorticity field. Whether a
particular reconnection event is affected by mostly the
convective term or by both the convective term and the
canonical battery term depends on the parameters and
the time-scale of the system.

The advantage of the canonical vorticity framework is
now clear. The convective term in Eq. 4 signifies the
convection of Q. with u., which intuitively explains re-
connection electron physics for zero beta (no pressure).
One can then study how a particular kinetic effect, such
as electron presssure anisotropy, viscosity, or distribution
function foliation®?, influences reconnection by examin-
ing how that effect is manifested in the canonical battery
term and then competes with the convective term. This
is not only much simpler than examining multiple terms

wt

in the generalized Ohm’s law, but also exhaustive be-
cause Eq. 4 is a direct consequence of the collisionless
Vlasov equation.

In summary, the electron canonical battery term com-
pletes the canonical vorticity framework of the electron
physics in magnetic reconnection. As demonstration of
the power of this approach, the growth, saturation, sta-
bility, and morphology of the EDR have been reinter-
preted, expanded, and unified within this framework.
In particular, the framework illustrates how the changes
in the electron fluid closure (Egs. 7 and 8) affect the
current structure through the electron canonical battery
term. The distinction between electron-inertia-driven
and pressure-tensor-driven models of reconnection is also
clearly demonstrated. The simple yet complete nature of
this framework makes it an appealing alternative to the
traditional magnetic-field-based approach to magnetic re-
connection.

SUPPLEMENTARY MATERIAL

See supplementary material for the derivation of how
different terms compete to yield the structure of the elec-
tron canonical battery shown in Fig. 5a (contour).
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(a) 7-V x (ue X Q) (color), =g - V X (V- Pe.aniso/Me) (contour)
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