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Quantum sensor networks such as the existing networks of atomic clocks and magnetometers offer intriguing
capabilities in searches for transient signals such as dark matter or fields sourced by powerful astrophysical
events. The common matched-filter technique relies on the signal-to-noise-ratio (SNR) detection statistic to
probe such transients. For macroscopic dark matter objects, the network would register a sweeping signal as the
object propagates through at galactic velocities. A potential event is registered when the SNR from a specific
template exceeds a threshold set by a desired false positive rate. Generically, to span the continuous parameter
space for the network-exotic-physics encounter, one has to deal with multiple templates. In such template-bank
searches, the natural generalization of the SNR statistic is the maximum-signal-to-noise-ratio (SNR-max)
statistic, defined as the maximum of the absolute values of SNRs determined from individual template matching.
While individual SNR realizations are Gaussian distributed, SNR-max probability distribution is non-Gaussian.
Moreover, as the individual template-bank SNRs are computed using the same network data streams, SNRs
become correlated between the templates. Cross-template correlations have a sizable effect on the SNR-max
probability and cumulative distributions, and on the threshold SNR-max values. Computing threshold SNR-max
values for large template banks is computationally prohibitive and we develop analytic approaches to computing
properties of the SNR-max statistic. This is done for cases when the template bank is nearly orthogonal (small
cross-template correlations) and for banks with cross-template correlation coefficient distribution “squeezed”
about the most probable cross-template correlation value. Since the cross-template correlation coefficients
quantify the similarity of templates, increasing correlations tend to decrease SNR-max thresholds for specific
values of false positive rates. Increasing the number of templates in the bank increases the SNR-max thresholds.
Our derivations are carried out for networks that may exhibit colored noise and cross-node correlations. Specific
applications are illustrated with a dark matter search with atomic clocks onboard satellites of a Global Positioning
System and with a “toy” planar network with cyclic rotational symmetry.
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I. INTRODUCTION

As precision quantum sensors [1] become ubiquitous, it
is natural to combine them into networks. In this paper, we
focus on time-domain searches for exotic physics signals
with networks of quantum sensors. Time-domain analysis is
a natural fit for transient nonoscillating signals. We refer the
reader to frequency-domain analysis [2] relevant to searches
for oscillating dark matter (DM) signals with networks or to
combined time-frequency domain analyses [3–5] for detecting
oscillating transients such as bursts of gravitational waves
[3,4] or low-mass exotic fields emitted by powerful astrophys-
ical events [5].

The spatial extent of networks can range from microscopic
(atomic ensemble scales) to continental or transcontinental
scales. Specific examples include a constellation of mi-
crowave atomic clocks oboard Global Positioning System
(GPS) satellites [6], a network of gravitational wave detectors
[7,8], a trans-European network of high-performance optical
clocks [9], and the global network of atomic magnetometers
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(GNOME) [10]. The nodes of the networks can be con-
nected by physical links (e.g., optical fiber or microwave
or laser links). Alternatively, synchronized cross-node com-
parison can be accomplished by a simple time stamping of
sensor data relying on worldwide broadcast of GPS time. The
network can be composed of identical sensors (homogeneous
network) or different sensors (heterogeneous network). The
position of the nodes can be stationary or evolving in time
(like in the case of orbiting GPS satellites). Finally, individual
sensors can use entangled or spin-squeezed ensembles that
operate below the quantum projection noise limit (see, e.g.,
Refs. [11–13]). The formalism developed in this paper applies
to all these cases and our results hold for any network with sta-
tionary white or colored Gaussian noise and with and without
cross-node correlations.

It is our explicit intent not to focus on specific physics mod-
els as the nascent network searches for exotic fields evolve
rapidly and new search targets appear in the literature fairly
regularly. Our presented methodology is general to accommo-
date all the transient signals regardless of a specific physics
model. As an illustration of a specific model, we consider the
GPS.DM search [6] for DM-induced transients using a GPS
network of atomic clocks.
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Multiple galactic scale astrophysical observations indicate
that DM comprises 85% of all matter in the universe, with
only 15% left to ordinary matter [14]. These galactic scale
observations only characterize the gravitational interaction
of ordinary matter and dark matter. Little is known of the
microscopic composition of DM or of its nongravitational
interactions with standard model particles and fields. The
primary target for current DM searches is weakly interact-
ing massive particles (WIMPs). With WIMP searches so far
failing to provide convincing evidence, alternative DM can-
didates are being considered [14]. Self-interacting ultralight
fields are one such alternative, where the DM candidate can
take a form of a macroscopic object that is coherent over large
scales [15–18]. These macroscopic DM objects are the target
of the GPS.DM search.

The large diameter of the GPS network is well suited to
search for transients like macroscopic DM objects, or clumps.
There are numerous examples of clumpy DM candidates:
topological defects (TDs) [15,19], Q-balls [16,17], solitons
[20,21], axion stars [22,23], and other stable objects formed
due to dissipative interactions in the DM sector. During the
cooling of the early universe, TDs may be formed through
spontaneous symmetry-breaking phase transition [15,19].
Technically, this requires the existence of hypothesized self-
interacting DM fields, φ. While the exact nature of TDs is
model dependent, the spatial scale of the DM object, d , is
generically given by the Compton wavelength of the particles
that make up the DM field d = h̄/(mφc), where mφ is the field
particle mass, h̄ is the reduced Plank constant, and c is the
speed of light. Each TD type (monopoles, strings, or domain
walls) would exhibit a transient in GPS data with a distinct
signature [18]. For illustration we will consider TDs in the
form of domain walls.

In the context of DMmodels, ultralight fields are character-
ized by macroscopic mode occupation numbers and can thus
be described as classical fields. The effect of exotic physics on
quantum sensors depends on specific interactions [18] (por-
tals) between exotic fields and standard model particles and
fields. Particle detectors rely on energy deposition. By con-
trast, ultralight fields, through their portal interactions, gently
modulate atomic (qubit) energy levels. Detecting such gen-
tle modulations is the domain of precision quantum sensors.
For example, for atomic clocks [18,24], atom interferometers
[25–30], and optical cavities [27,31,32], DM objects can drive
variation of fundamental constants of nature. The change in
fundamental constants in turn affects atomic or cavity fre-
quencies causing an atomic clock to speed up or slow down
when the DM object overlaps with a sensor. Alternatively,
gradients of objects composed of axionlike fields act as ficti-
tious magnetic fields and can be detected with another class of
quantum sensors, magnetometers [33,34]. In both examples,
as the DM object sweeps through, the induced frequency
shifts or fictitious magnetic fields would appear as a transient
perturbation sweeping through the network. A geographically
distributed network can resolve the directionality and speed of
the transient signals. Further, this provides a vetoing mecha-
nism as the network sweep speed and directionality must be
consistent with standard halo model (SHM) priors. Currently,
there are several ongoing DM searches that follow these ideas
[6,10,28–30,32,34,35].

Our GPS.DM collaboration [6,36], focuses on searching
for DM transient signatures by utilizing the network of atomic
clocks aboard GPS satellites. The GPS data have an in-
herent advantage over building a new network of quantum
sensors as there are over two decades of publicly available
archival data [37], ready for data mining. DM signatures
would consist of a correlated propagation of atomic clock
frequency perturbations through the GPS network at galactic
scale velocities (≈300 km/s). Previously, our GPS.DM group
has performed analysis of the archival GPS data in search
for two-dimensional (2D) DM walls [6]. Although no DM
signatures were found, prior astrophysical limits on certain
DM couplings to atoms were improved by several orders of
magnitude. Reference [38] developed the application of the
more sophisticated Bayesian search techniques which may
extend the DM discovery reach further by several orders of
magnitude in both the sensitivity and size or geometry of the
DM objects. The main focus of Ref. [36] was on the per-
formance of an alternative frequentist approach, the matched
filter technique (MFT). That work obtained several analytical
results for an idealized network of white-noise sensors, in-
cluding cross-node correlation. Here we extend the results of
Ref. [36] to template banks.

The MFT is a ubiquitous technique, utilized for example
by the Laser Interferometer Gravitational Wave Observatory
in its gravitational wave detection [7,8]. Also, MFT has appli-
cations in astrophysics [39–42], geophysics [43], and searches
for exotic physics [44–48]. In applications, a large template
bank determined by prior information on the expected signal
is used to match data streams. Quantitatively, the degree of
the match is characterized by a signal-to-noise ratio (SNR).
In Ref. [36], the SNR for individual templates was shown to
be a Gaussian normal random variable. Further maximization
of the template specific SNR variables (ignoring dependence
on sign) was performed over the template bank. In this pro-
cess, a Gaussian distribution was considered instead of the
distribution for the maximum of the absolute valued SNRs
[maximum-signal-to-noise ratio (SNR-max)]. As we discuss
in this paper, the SNR-max distribution is no longer a Gaus-
sian distribution, but a skewed (non-Gaussian) distribution.
Moreover, there exist correlations in the SNR statistic com-
puted for different templates in the bank, which alter the
uncorrelated SNR-max distribution. Thresholds for specific
false positive rates determined in Ref. [36] overestimate the
thresholds due to the effect of correlated templates in a tem-
plate bank. One of the goals of this paper is to determine the
thresholds correctly.

We have compiled the notations and variables used
throughout this paper in Table I. In this table we abbreviate
the terms probability distribution function and cumulative dis-
tribution function as PDF and CDF, respectively.

The structure of this paper is as follows. Section II re-
views the SNR and SNR-max statistics in the context of
detecting transients and introduces notation used in the rest
of the paper. In Sec. III, we discuss various aspects of
generation of template banks in the network searches for tran-
sients. This is illustrated with a pedagogical toy problem of
a highly symmetric planar network and with a more practical
GPS.DM search. Strategies for generating optimal template
banks are discussed in Sec. III C. Section IV focuses on
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TABLE I. Compilation of variables and definitions used in this
paper.

Variable Definition

ρ Signal-to-noise ratio (SNR and SNR-max)
s Signal template
M Number of templates in a bank
z Random variable for SNR-max PDF
Z Random variable for SNR-max CDF
Z∗ Threshold value for SNR-max CDF
E Network covariance matrix
� Template-bank covariance matrix
ĥ Signal strength amplitude estimator
PM (z|�) SNR-max PDF for bank of M templates
CM (Z|�) SNR-max CDF for bank of M templates
δPM (z|�) Perturbed SNR-max PDF
δCM (Z|�) Perturbed SNR-max CDF

correlations between SNRs for different templates and intro-
duces the template-bank covariance matrix. Computations of
the template-bank covariance matrix are illustrated with the
toy problem and with the GPS.DM search. Section V derives
the SNR-max probability distribution function (PDF) and cu-
mulative distribution function (CDF) distribution for several
practical yet analytically treatable cases: for a fully orthogonal
template bank, for a nearly orthogonal template bank, and for
a template bank “squeezed” (e.g., a bank that has a narrow
range of correlation coefficients between templates in the dis-
tribution of correlation matrix elements) about the mean value
of covariance matrix elements. Section VI discusses the effect
on thresholds when the template bank is fully orthogonal, a
special case of the M = 2 template bank, a nearly orthogonal
bank, and a squeezed bank. Lastly, Sec. VII draws the conclu-
sions and addresses the utility of networks with entanglement
shared by geographically separated nodes. The paper contains
several Appendices where we present detailed derivations for
some of the paper results.

II. SNR AND SNR-MAX STATISTICS

In the previous work [36] by our group, we explored the
properties of the SNR statistic in the context of networks of
quantum sensors. In this section we set up the problem, review
relevant results from Ref. [36], and then introduce the SNR-
max detection statistic.

Throughout this paper, we assume that the network data
streams are stationary and Gaussian distributed. The sensor
noise can be colored and the noise can be correlated across
the network. For an atomic clock network, the cross-network
correlation comes from referencing every clock phase to that
of a “reference” clock common to all clocks [6]. Notice our
assumption of the noise stationarity; for clocks this implies
working with frequency data instead of phase (time or time
bias as recorded by the clock) data.

Network data streams d are composed of sensor measure-
ments da

i , where the subscript i refers to the time stamp (time
ti) and superscript a identifies a specific sensor with the total
number of sensors NS. The time grid is assumed to be uniform

with a step size �t . We will refer to a time interval [ti, ti+1) as
an epoch i.

In the most basic search for transient signals, network data
streams d are partitioned into data windows of fixed length J
and the data inside each window are matched to a bank of M
templates. We enumerate windows with an index w and refer
to the portion of the data stream within a specific data window
as dw. The template bank contains multiple signal templates,
sk , k = 1,M. The templates must reflect underlying physics
of the sought signals. The length of each template in the time
domain is equal to that of the data window J . For a network,
each template is represented by an NS × J matrix.

As a concrete example of physics-motivated generation of
a signal template bank, in Sec. III we discuss the bank used in
the GPS.DM search. Briefly, in the GPS.DM search we probe
data streams for sweeps by walls of DM bubbles, with the
assumption that the radius of the DM bubble is much larger
than the network spatial extent. Then the network is swept by
planar walls. These hypothesized walls are to sweep through
the network with velocities within a range prescribed by the
SHM [49]. Each template is distinguished by the specific
values of a DM wall’s incoming velocity and orientation.
We typically use M = 1024 templates in the bank to en-
sure a sufficiently dense coverage of the sweep parameters.
There are nominally NS = 32 atomic clocks onboard GPS
satellites populating orbits on a spherical shell of diameter
D ∼ 5 × 104 km. The atomic clock time readings (biases) are
sampled every �t = 30 s and the length of data window J =
61 is determined by the ratio of the maximum network sweep
time to the sampling time, (D/vmin)/�t , where the minimum
speed vmin ≈ 25 km/s. The minimum value of the speed is
determined by the requirement that the spatial network config-
uration does not change substantially over the duration of the
sweep, since the orbital velocity of the satellites is ≈5 km/s.

The sought physics signal can be parametrized as hsk , with
h being the amplitude or the strength of the signal. h is to be
estimated from the match to the template. Typically, h encodes
the coupling of the sensor to the exotic physics. Formally,
the signal strength estimator for a specific window w and a
template k reads [36]

ĥw
k = (dw )TE−1sk

sTk E
−1sk

, (1)

where E−1 is the inverse of the network noise covariance
matrix E, discussed in Sec. II.

Further, the standard deviation of the estimated signal am-
plitude, Eq. (1), is [36]

σh,k = 1√
sTk E

−1sk
. (2)

This uncertainty does not depend on the measurement data
but it does depend on a specific template. Finally, the SNR,
ρw
k , in window w for a template k is simply the signal strength

estimator (1) divided by the standard deviation of the signal
strength (2):

ρw
k ≡ ĥw

k

σh,k
= sTk E

−1dw√
sTk E

−1sk
. (3)
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As shown in Ref. [36], in the absence of a signal (i.e., when
dw ≡ nw, the noise of sensors), the SNR statistic is Gaussian
distributed with zero mean and a variance of 1:

ρw
k ∼ N (0, 1). (4)

Here N (μ, σ ) is the normal distribution with mean μ and
variance σ 2. This can be seen by examining the SNR def-
inition (3). The denominator,

√
sTk E

−1sk , is a constant as
the template and the network noise covariance matrix are
fixed, while the numerator sTk E

−1dw is a linear combination
of Gaussian random variables. Thereby, the SNR is also a
Gaussian random variable with mean 〈ρw〉 ∝ 〈nw〉 = 0. The
SNR variance is 〈(ρw

k )
2〉 = Var[(nw )TE−1sk]/sTk E

−1sk . Ref-
erence [36] (Appendix B) shows that Var[(nw )TE−1sk] =
(sk )TE−1sk , which results in an SNR variance 〈(ρw

k )
2〉 = 1.

Equation (4) means that given multiple realizations of the
signal-free data streams, the values of SNR ρw

k for a fixed
template sk are distributed as

pSNR
(
ρw
k

) = 1√
2π

e−(ρw
k )2/2. (5)

The above definitions and properties of the SNR statistic hold
for a general case of colored noise and multisensor networks.
If the subsequent windows overlap, then the SNR values for
the two windows are correlated as they are based on partially
overlapping data. Even then the SNR probability distribution
in individual windows still follows Eq. (5). This can be proven
by marginalizing joint probability distribution (multivariate
normal distribution) over SNRs in all other overlapping
windows.

So far we reviewed the properties of the SNR statistic
for a single template. Practical applications involve banks
containing multiple templates. For a given window w, all M
individual template SNRs are compared and the maximum of
the absolute values of the individual template SNRs is used as
a detection statistic:

zw ≡ max
(∣∣ρw

1

∣∣, .., ∣∣ρw
M

∣∣). (6)

Following the literature [48,50,51], we refer to this quantity
as the SNR-max statistic. To simplify notation, from this point
forward we drop the window superscript w, so that the above
definition reads z ≡ max(|ρ1|, . . . , |ρM |).

Matching the same data stream to multiple templates
induces cross-template correlations in the SNR statistic,
〈ρiρ j〉 
= 0. In addition, comparing SNRs and taking their
maximum per Eq. (6) suppresses smaller values of SNR.
This suppression and cross-template correlations substantially
modify the single template SNR distribution (5). It is the
focus of our paper to quantitatively characterize the SNR-max
probability and cumulative distributions. Specifically, we are
interested in a practically important threshold value for false
positives. We remind the reader that the detection can be
claimed when the value of the chosen statistic exceeds the
detection threshold [52]. The threshold values for SNR-max
are required to ensure (at a given confidence level) that the
observed SNR-max values exceeding this threshold are due
to probed physics and not due to randomness. Our previous
analysis [36] did not take into account that the detection statis-
tics may be correlated by templates or that our statistic is no

longer Gaussian distributed. Here we present a more sophis-
ticated analysis to improve upon the treatment of Ref. [36].
Before proceeding to our analysis, below we review relevant
properties of the network noise covariance matrix E, entering
the SNR definition (3).

Network noise covariance matrix E

Network noise covariance matrix E is defined by matrix
elements

E(al )(bm) = 〈
nal n

b
m

〉
. (7)

This definition involves averaging over realizations of
signal-free data nal , i.e., intrinsic noise of the sensors.
Without loss of generality, we assume that the noise has
zero mean, 〈nal 〉 = 0. In our index convention, the letters
at the beginning of alphabet a, b, . . . enumerate the sensors
(range 1,NS), while letters in the middle of the alphabet
l,m, . . . enumerate the epochs (index range 1, J in a data
window). We also introduced a compound index notation
(al ), which organizes sensor-epoch data points into a vector,
i.e., we unroll a NS × J matrix into a one-dimensional
array. For example, for the first window, dw=1 =
(d1

1 , d
1
2 , . . . d

1
J , d

2
1 , d

2
2 , . . . d

2
J , . . . d

NS
1 , dNS

2 , . . . , dNS
J )T . We

will use Greek letters for such compound indices, e.g., Eq. (7)
can be rewritten as Eαβ = 〈nαnβ〉. We remind the reader that
the covariance matrix is symmetric and positive semidefinite.

As an illustration, for a network of white-noise sensors
without a common reference sensor, the noise covariance ma-
trix is diagonal:

E(al )(bm) = σ 2
a δabδlm, (8)

with σ 2
a being the noise variance for sensor a. The matrix

elements of its inverse are

(E−1)(al )(bm) = 1

σ 2
a

δlmδab, (9)

i.e., E−1 is a diagonal matrix.
The same network but referenced to a common sensor

(variance σ 2
R ) has the noise covariance matrix

E(al )(bm) = (
σ 2
a δab + σ 2

R

)
δlm. (10)

Compared to the no-reference sensor case, Eq. (8), the ref-
erence sensor introduces off-diagonal matrix elements. When
all the sensors, except for the reference sensor, are assumed
to have the same variance σ 2, the inverse of the covariance
matrix E−1 can be found analytically [36]:

(E−1)(al )(bm) = 1

σ 2
δlm

(
δab − 1

NS

ξ

1 + ξ

)
, (11)

where the parameter

ξ = NSσ
2
R/σ 2 (12)

has the meaning of the square of the ratio of network-averaged
sensitivity (∝σ/

√
NS) to the reference sensor sensitivity

(∝σR). We will refer to ξ as the relative reference-sensor
sensitivity parameter.

It is instructive to consider a limiting case of a single sensor
(NS = 1) data stream with white noise of zero mean and vari-
ance σ 2. In this case, the inverse of the covariance matrix is
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FIG. 1. Left: A planar network of NS = 10 sensors withC10 sym-
metry. Right: Graphical representation of a bank ofM = 5 templates.
Arrows indicate the direction of the line sweep ûi. The arrows ûi are
normal to the sweeping line. For example, template 1 corresponds to
a vertically oriented line sweeping from the left.

simply E−1 = σ−2I, where I is the J × J identity matrix. Fur-
ther, Eqs. (1), (2), and (3) reduce to ĥw

k = (dw · sk )/(sk · sk ),
σh = σ/

√
(sk · sk ), and ρw

k = (dw · sk )/[σ
√
(sk · sk )], where

we used the conventional definition of the dot product of two
vectors.

III. GENERATION OF TEMPLATE BANKS
IN THE SEARCHES FOR TRANSIENTS

Having defined the SNR and SNR-max statistics, now we
formalize the procedure for template-bank generation. Tem-
plate banks must reflect signals prescribed by the underlying
physics to be probed. While the signal templates are applica-
tion specific, some generic requirements and challenges can
be illustrated with specific examples. First, in Sec. III A we
consider a “toy” 2D problem of a network search for transient
signals induced by sweeps of randomly oriented lines through
a circular network of high-degree symmetry. This toy problem
introduces a number of relevant issues specific for networks,
such as the angular and speed resolutions. After understand-
ing the simplified problem, in Sec. III B, we discuss a more
practical case of the GPS.DM search [2,6,18,36].

A. Toy problem: Circular topology network
withCNS rotational symmetry

As an illustration of generating template banks and their
properties, we consider a planar network with a circular topol-
ogy where identical pointlike sensors are distributed evenly on
a circle of radius R (see Fig. 1).

Sensors’ polar angles are given by

φa = 2π

NS
(a − 1), (13)

so that the sensor coordinates are

ra = R(cosφa, sin φa)
T = Rn̂a, (14)

where we used the coordinate system with the origin at the
circle center and x̂ pointing towards sensor 1. We also intro-
duced a unit vector n̂a pointing towards sensor a. For example,
for the network of Ns = 10 sensors, shown in Fig. 1, φ1 = 0
and φ2 = π/5. This arrangement of sensors has theCNS cyclic
group symmetry, as rotating the network by multiples of the
angle 2π/NS about the circle center maps the network onto

itself. In this toy problem, we do not include effects of the
reference sensor.

We note that this 2D network topology is of relevance to the
configuration of satellites in the GPS constellation. The satel-
lites in the GPS network are arranged into six equally spaced
orbital planes with an inclination of 55◦, and each nearly
circular orbit is populated with four to five satellites. Because
the satellites are not evenly spaced apart within each orbit,
however, theCNS symmetry is broken. Still, understanding our
toy network provides a number of useful insights applicable
to general network topology.

With the toy network topology specified, now we generate
a template bank for sweeps of this 2D network by “lines.”
These lines can be thought of as 2D cross sections of thin
DM walls. The lines sweep through the network, leaving a
geographically distributed imprint on the sensor signals. The
sensor is considered to be affected in a given epoch l , when
the line crosses the sensor in the time interval [tl , tl + �t ).

In our 2D example, the velocities v of the lines lie in
the network plane. However, the component of the velocity
parallel to the line leads to an unobservable translation of
the line along itself. Different templates are then uniquely
specified by the direction and value of velocity component
v⊥ = v⊥û, where û is the unit vector perpendicular to the
line and pointing in the direction of the sweep. We will use
polar angle θ in the network reference frame to character-
ize incidence direction û. For example, the template bank in
Fig. 1 samples M = 5 directions with θk = (2π/M ) (k − 1),
k = 1,M. For simplicity, we assume that all the directions û
are equally probable. The bank should provide an adequate
sampling of both incidence directions û and speeds v⊥.

Templates can be generated based on the following argu-
ment. Suppose tO and ta are the moments of time when the
line reaches the network center and the sensor a, respectively.
The difference between these two times is

ta − tO = (û · n̂a) R
v⊥

. (15)

Since our time sampling is finite, the sensor signal time series
is simply sal = δl,la , where the epoch la is given by

la =
⌊
(û · n̂a) R

v⊥�t

⌋
+ lO. (16)

Here x� is the floor function and lO = (J + 1)/2 is the center
of the data window.

Figure 2 presents a construction of a template for a verti-
cally oriented line sweeping our network from the left. This is
template 1 from the template bank shown in Fig. 1. The left
panel shows slicing of the network by the sweeping line with
the spatial slice width v⊥�t . Slice boundaries correspond to
the sweeping line snapshot at the beginning and the end of a
given epoch, e.g., the leftmost slice is epoch 1.

Since −1 � û · n̂a � 1 in Eq. (16), the constructed tem-
plate spreads over

�l = 2R/(v⊥�t ) (17)

epochs. Clearly, the number of epochs in the window J should
be greater than �l , otherwise a useful portion of the signal is
cut out. For fixed network geometry and sampling time�t ,�l
increases indefinitely as v⊥ approaches small values. Practical
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FIG. 2. Construction of the template corresponding to a ver-
tically oriented line sweeping from the left (polar angle θ = 0).
Sensor 6 is affected first and sensor 1 is affected last. Here we used
R/(v⊥�t ) = 5.01 and the number of epochs J = 15. The center of
the network is crossed in the lO = 7 epoch.

considerations, however, introduce a cutoff at small v⊥. For
example, GPS satellite positions change with time due to their
orbital motion; this limits v⊥ from below (see Sec. II).

If v⊥ > (v⊥)max = 2R/�t , all the sensors are affected in
the same epoch, so the template width �l = 1. (v⊥)max is
the speed at which the line sweeps through the entire spatial
extent (diameter = 2R) over the duration of the sampling
interval �t . In this case, the network loses directional and
velocity resolution. That is, for any incident line orientation
and any v⊥ > (v⊥)max, all the templates are identical, collaps-
ing into a vertical single-epoch column at la = lO in Fig. 2.
Underlying physics may constrain (v⊥)max to lower values
(see, e.g., discussion of the GPS.DM search in Sec. III B),
where (v⊥)max is determined by the DM velocity distribution
cutoff.

As v⊥ decreases, the template width �l increases and
different sensors begin to be perturbed at different epochs. On
average, we expect NS/�l sensors to be affected at the same
epoch. We refer to such groups of sensors as being degenerate
and introduce the average degeneracy factor:

ḡ = NS
v⊥�t

2R
. (18)

This degeneracy factor is a rule of thumb. For example, for
the bank and network parameters in Fig. 2, from Eq. (18) we
expect ḡ = 1, while we observe mostly twofold degeneracies
in the resulting template shown in Fig. 2. This is a conse-
quence of the line propagation direction û being aligned with
one of the network axes of symmetry. Generically, in the limit
of small degeneracy factors, ḡ� 1, we expect all the sensors
to be perturbed at different epochs.

To generate the template bank we need to sample contin-
uous parameter space of directions û and normal speeds v⊥.
This leads to the question of angular and velocity resolutions
of our network.

We start with the angular resolution. Consider two sweep-
ing lines which have the same v⊥ but differ by their angles
of incidence: θ and θ ′ = θ + �θ . Because both the number
of sensors and time sampling are finite, for sufficiently small
relative tilt angles �θ , sweeps by both lines produce the same
template. As we increase the tilt, there is some critical value
of �θ when the two sweeps start mapping onto two distinct
templates. Then the two incident directions can be resolved

in the network search. The critical value of the tilt determines
the network angular resolution.

As an illustration, consider the template construction in
Fig. 2 for a line sweeping from the left, θ = 0. Templates
for tilted sweeps can be generated by rotating the network
sensors counterclockwise by the angle �θ about the circle
center. Since the sensors 5 and 7 are near the edge of the
epoch 3 slice (and sensors 2 and 10 are near the edge of epoch
10), even small tilts �θ > 0 move sensor 7 into epoch 4 and
sensor 2 into epoch 11. However, sensors being at the slice
edge is an exceptional situation. Generically, the sensors are
more likely to be found in the middle of epoch slices. Then the
angular resolution is determined by the maximally separated
sensors within the same slice, i.e., sensors swept within the
central epoch. This leads to the worst-case-scenario angular
resolution estimate:

�θ ≈ sin−1

(
v⊥�t

2R

)
. (19)

Recalling the relation (17) for the template width �l , we
observe that sin�θ = 1/�l . When the template collapses into
a single column due to high values of normal velocity,�l = 1,
and the angular resolution is lost (�θ → π/2) in agreement
with our previous qualitative statements. In the opposite limit
of �l � 1, �θ ≈ 1/�l . For the template of Fig. 2, �θ ≈
1/12 rad. Full, resolution-limited, coverage of the incidence
angles by the bank then requiresM = 2π/�θ ≈ 75 templates.
Having degenerate (affected in the same epoch, but spatially
separated) sensors improves the angular resolution. It is worth
emphasizing that the derived angular resolution is a pure con-
sequence of the line-network encounter geometry and it does
not account for the intrinsic sensor noise (see Refs. [36,38]),
which will worsen the angular resolution (19).

Angular resolution of a geographically distributed net-
work has been considered in several papers. For example, in
Ref. [5], there is a brief discussion on the angular resolution
for bursts of exotic fields propagating through a network of
quantum sensors. Their discussion suggests that the angular
resolution is roughly the ratio of the temporal resolution �t

to the field burst propagation time through the sensor network
(2R/v⊥), in agreement with our formula (19) in the limit of
high sampling rates, �t � 2R/v⊥. We also refer the reader to
papers [3,53] discussing “Rayleigh criterion” angular resolu-
tion for a network of interferometers.

Now we find the resolution in normal velocities v⊥. We
apply the same logic of finding the minimum increment �v so
that the sweeps with two velocities v⊥ and v⊥ + �v map into
two distinct templates. Since the number of sensors and time
sampling is finite, vanishingly small variations in the normal
velocity would produce identical templates. A distinct new
template is generated when the normal velocity is increased
by a critical value �v:

�v ≈ v2
⊥�t

2R
. (20)

This velocity resolution improves for slower sweeps, as the
template spreads over more epochs [see Eq. (17)].

Most of our observations are transferred to the GPS con-
stellation in the following section. We will return to this toy
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FIG. 3. Normal speed v⊥ probability distribution [6] for galacti-
cally bound DM wall objects that cross the network. The distribution
has a maximum at v⊥ = 209 km/s and a cutoff at v⊥ = 760 km/s.

problem in the context of computing template-bank covari-
ance matrices in Sec. IVA.

B. GPS.DM search

Signal templates in the GPS.DM search are determined by
the particular DM model used (monopoles, strings, domain
walls, etc.) and the parameters associated with the event.
For concreteness, we focus on DM wall events, which are
observed as a sweep through the geographically distributed
network, with a given sensor perturbed when the wall over-
laps with the sensor. The relevant parameters for a particular
event are the speed, incident direction, time of the event,
and thickness of the wall. As in the toy problem, only the
normal component of the sweep velocity matters, however the
velocity vector now spans three dimensions. This parameter
space is continuous and it is necessary to discretize it to keep
the number of templates finite. We discuss the discretization
strategies in Sec. III C.

The SHM dictates the necessary parameter prior distribu-
tions. For DM objects the velocity distribution in the halo
frame is quasi-Maxwellian and isotropic with dispersion v ≈
300 km/s [49] and with a cutoff set by the escape veloc-
ity of vesc ≈ 550 km/s. Additionally, the solar system travels
through the halo at galactic velocities of vg ≈ 200 km/s to-
ward the Cygnus constellation, implying that over 90% of
DM sweeps come from the forward facing hemisphere [6]. In
the GPS.DM search, we are interested in the normal velocity
of the DM wall in the Earth centered inertial (ECI) frame.
In Fig. 3 we reproduce the normal velocity distribution for
DM walls bound by the galaxy in the ECI frame [6]. The
maximum normal velocity, v⊥, in this frame is the addition of
the DM escape velocity and the velocity of the solar system,
v⊥ < vesc + vg ≈ 770 km/s. As previously stated, the mini-
mum normal speed that can be resolved must be larger than
the velocities of the GPS satellites va ≈ 5 km/s. This comes
from the requirement that we can fix the positions of orbiting
satellites for a given time window. Similar to the toy problem
of Sec. III A, the event parameters determine in which order

the sensors are swept and the overall sweep time. These char-
acteristics distinguish the templates within the signal template
bank.

The GPS data streams from satellite clocks are given as
time measurement biases with respect to a fixed terrestrial
reference sensor (clock) R. DM-induced sensor bias (phase)
of a given sensor a is proportional to an integral of the
DM-induced frequency shift [18]. Since the clock biases are
a subject to a random-walk noise, we whiten the data by
differencing the data streams.

Both satellite and reference clocks are affected by the DM
sweeps. In general, sensitivity of the clock to the variation of
fundamental constants depends on the clock atom. The GPS
constellation employs mostly Rb and a few Cs clocks. A pre-
cision reference clock can be either an H maser or a Rb clock
(see Ref. [6] for details) and one can choose among several
terrestrial clocks to serve as the reference clock. To simplify
our consideration, we assume that we are only dealing with
a network of Rb clocks (including the reference clock). Then
the DM object affects each clock with the same signal ampli-
tude h. This is the limiting case of a homogeneous network.
To bring out the essentials, we further focus on “thin” walls
characterized by an interaction time with each sensor (clock)
being much shorter than the sampling time interval �t . This
reduces the perturbation of atomic frequencies of each clock
to Kronecker deltas.

The terrestrial reference clock is centered in the network
and we fix its position in the center of our window of length J .
Indeed, the reference clock is located on the Earth, while the
satellite clocks are orbiting approximately 20 000 km above
the Earth. J is chosen to be an odd number, so that the refer-
ence clock is perturbed in the epoch lR = (J + 1)/2. Then the
sought signal in the differenced data stream reads

sal = δl,la + (−1)δl,lR , (21)

where l enumerates the epoch in the data window and la and lR
are the epochs in which the satellite clock and reference clock
interact with the DM object, respectively.

In general, the order in which the sensors are swept by the
DM object depends on the geometry of the network. In our
setup, no matter the directionality of the DM object some of
the satellite sensors are affected prior to the reference clock.
However, for a terrestrial network, or when the reference clock
role is assigned to one of the satellite clocks, one cannot
ascertain which sensors (reference or network) would be af-
fected first in the window. For this reason, we always set the
reference sensor (on Earth or a satellite) to be affected in
the center of the window, thus mitigating any possibility of
missing information from a network sensor that is affected
prior to or after the reference sensor.

The GPS.DM template construction can be visualized sim-
ilar to the toy problem. Figure 4 shows a spherical shell of
diameter D = 2R with sensors distributed on the surface. A
planar DM object passing through the network with normal
velocity v⊥ and time resolution �t segments the sphere into
�l = D/(v⊥�t ) slices. As in our toy problem, �l has the
meaning of template spread. Each segment has a spatial width
L = v⊥ �t . The normal velocity of thin walls determines the
number of equally spaced slices that cut the spherical shell.
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FIG. 4. A spherical shell network sliced by a thin wall propa-
gating from the left. The wall is normal to the page. The shell is
segmented into �l slices and each slice segment of the sphere Sk is
defined by the polar angles θk and θk+1 spanning its width L = v⊥�t .
Angles are θk = cos−1(Xk/R) with Xk = 2R

�l (
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clock is not shown.

Figure 5 shows a signal template for a wall sweep with nor-
mal speed v⊥ = 185 km/s. The network has NS = 25 sensors
and the data window contains J = 61 epochs. The sensors are
numbered in such a way that the sensor a = 1 is swept first
and the sensors are swept in increasing order. The slope of
the sweeping tiles reflects the sweep speed. Notice that once
the sensors are numbered the sweep from a different direction
would result in a different pattern, with the straight sweep-
ing tiles converted into a disordered sequence of sweeping

FIG. 5. Template for a thin wall signal sweeping through the
GPS constellation with the normal speed of v⊥ = 185 km/s. This
network on January 3, 2012 has NS = 25 satellite clocks and the
reference clock. Data window size is J = 61. When the wall interacts
with the satellite clock, a positive spike of magnitude 1 (sweeping
tiles) is observed. When the wall interacts with the reference clock,
there is a spike of opposite sign (vertical reference tiles) at the
epoch 31.

tiles (see, e.g., Fig. 2). The vertical reference tiles (at epoch
J = 31) would remain the same with some of the tiles (cor-
responding to satellites degenerate with the reference sensor)
missing.

Our toy problem discussion (Sec. III A) of template epoch
spread, sensor degeneracy, and angular and normal speed
resolutions applies to the GPS network search. The presence
of the reference sensor requires refinement of some of the
considerations. For example, consider the limiting case when
all the satellite clocks are affected by the DM wall within
the same �t time interval (epoch) as the reference sensor. In
this case, la = lR and the signal template (21) collapses into
a “null” template, where all elements sal of the sought DM
signal stream are zero. This effectively eliminates detectable
DM effects on the data stream. Even when only some of the
satellites are degenerate with the reference sensor, part of the
network sensitivity is effectively eliminated. This effect can be
seen in Fig. 5, where satellites 12 through 15 are degenerate
with the reference clock and lead to lost (null) information
from the satellites and reference sensor (blank rows in Fig. 5).

Another peculiarity of the GPS network is that the network
nodes move due to the orbital motion of the satellites. The spa-
tial positions of the orbiting satellites are parts of the archival
dataset [37] and this information is used in the GPS.DM
search. In analytical estimates, however, a more tractable ap-
proach is to introduce a uniform occupancy approximation,
where the sensors populate a sphere of radius R surrounding
Earth with a random (but uniform in probability) distribution
of sensors on the sphere surface. In this approximation, the
probability for a sensor a to reside on a spherical surface
segment Sk is simply P(a ∈ Sk ) = k/4π , where solid angle
k spans the segment Sk (see Fig. 4). Explicit computations
show that k = 4π/�l , so that P(a ∈ Sk ) = 1/�l , i.e., the
probability is independent of the slice. The average number of
sensors in a given slice is the total number of network sensors
NS multiplied by the probability P(a ∈ Sk ) for a sensor a to
reside on the segment Sk . Thereby, in this uniform occupancy
approximation, the degeneracy factor introduced in Sec. III A
is the same as for the 2D toy problem:

ḡ = NS
v⊥�t

2R
. (22)

As an illustration, the template in Fig. 5 was generated for
NS = 25 sensor networks and sweep velocity v⊥ = 185 km/s
with realistic positions of GPS satellites. Based on Eqs. (17)
and (22) we estimate a template spread �l ≈ 9 with a de-
generacy of ḡ ≈ 3 sensors per epoch. This is consistent with
Fig. 5, which, depending on the epoch, exhibits between one
and four degenerate sensors. While not exact, the uniform
occupancy is a reasonable approximation for the true GPS
network geometry.

The angular and speed resolutions remain the same as in
the toy problem, Sec. III A. The angular resolution depends
on just the normal speed of the DM wall, while the normal
speed resolution is inversely proportional to the square of the
normal speed:

�θ ≈ sin−1

(
v⊥�t

2R

)
, (23)

�v ≈ v2
⊥�t

2R
. (24)
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Because the velocity distribution is peaked at v
p
⊥ ≈

209 km/s, we can introduce the most probable quantities, such
as the most probable template spread:

�l = 2R/(vp
⊥�t ), (25)

which evaluates to �l = 8 for GPS data.

C. Strategies in choosing template banks

Choosing templates in the template bank is a tradeoff be-
tween computational cost and the false negative probability of
missing the sought signal. Indeed, one would like to provide
dense coverage of the transient parameter space to minimize
false negatives, however increasing the number of templates
M raises computational cost of the search. We address this
question in this section and refine some of the statements
further in the text.

There is a natural network resolution-limited choice of
templates. For example, in the GPS.DM search for thin walls,
Sec. III B, one may visualize the template parameter space
(normal speed, polar and azimuthal angles of incidence for
DM wall) as points in three-dimensional (3D) space. Network
resolutions [�v and �θ , Eqs. (24) and (23)] determine a small
“resolution volume” enclosing each point in this continuous
space. Points within the “resolution volume” lead to identical
templates. Thereby, the resolutions �θ and �v effectively de-
termine the grid in this 3D parameter space. As an illustration,
consider a thin wall sweeping the GPS constellation at the
most probable normal speed v⊥ = 209 km/s (from Fig. 3).
Then for �t = 30 s and 2R ≈ 5 × 104 km, the normal speed
resolution is �v ≈ 26 km/s and an angular resolution in both
polar and azimuthal angles of incidence is �θ ≈ 7.2◦. Com-
plete resolution-limited coverage in normal speed coordinates
requires 68 points (with 25 � v⊥ < 760 km/s; the grid is
nonuniform because �v depends on v⊥). For a fixed value
of speed v⊥ = 209 km/s, 25 points for the polar angle and
50 points for the azimuthal angle are required for resolution-
limited angular coverage. Covering the entire 3D cube in the
template parameter space requires ≈2 × 104 points. This is
still computationally prohibitive in our experience.

Since the most important criterion in choosing the bank
is reducing the probability of false negatives, the discussed
resolution-limited bank construction can be further aug-
mented by the importance sampling technique [54], where the
parameter priors determine the density of sampling the tem-
plate parameter space. For example, in the GPS.DM search,
the normal velocity distribution, shown in Fig. 3, is a peaked
distribution. Thus we need more points on the v⊥ grid near
the maximum of the distribution and less points in the tails to
maintain the probability of false negatives uniform throughout
the bank. This can be accomplished by using a nonlinear grid
or using Monte Carlo sampling. To optimize the resulting
grid, we would further limit the spacing between the velocity
grid points to be greater than the resolution �v . The angular
grids can be optimized with a symmetry-adapted choice of
template bank that takes advantage of the network symmetry
(see Sec. IVA).

Reference [55] addressed a similar question of bank opti-
mization in the context of gravitational wave searches. They
proposed to optimize the bank using the singular value de-

composition technique. However, these authors dealt with a
single sensor (not a network) and it remains to be seen if their
technique can be generalized to the network search.

An issue related to the network resolution is the degree
of similarity between the templates. This degree of similarity
will be quantified in Sec. IV with cross-template correlation
coefficients. The generated bank can be optimized further
based on this consideration. We also remind the reader that the
SNR-max statistic is the quantitative measure governing the
results of the search. The choice of template bank affects the
SNR-max PDF, CDF, and threshold values for false positives.
These characteristics of the SNR-max detection statistic are
the focus of the remainder of this paper.

IV. TEMPLATE-BANK COVARIANCE MATRIX

Consider a template bank composed ofM templates. Since
the same data, dw, are used to compute the SNR (3) ρk for
each template, sk , in general, different template SNRs are
correlated, i.e., cross-template correlation coefficients �i j ≡
〈ρiρ j〉 
= 0. Because each SNR is a Gaussian random variable
with zero mean (see Sec. II), their joint PDF f (ρ|�) is given
by the multivariate normal distribution uniquely specified by
the M-dimensional template-bank covariance matrix �:

f (ρ|�) = 1√
det(2π�)

exp

(
−1

2
ρT�−1ρ

)
. (26)

Here ρ = (ρ1, . . . , ρM )T and �−1 is the inverse of the covari-
ance matrix �.

We compute matrix elements of � in Appendix A. The
result reads

�i j = sTi E
−1s j√(

sTi E
−1si

)(
sTj E

−1s j
) , (27)

where the subscripts i and j identify templates. This expres-
sion depends only on the templates and the noise covariance
matrix E. The diagonal matrix elements of � are equal to 1,
in agreement with Ref. [36]. The off-diagonal matrix element
vanishes if the templates are orthogonal in the generalized
sense, sTi E

−1s j = 0. Equation (27) is simply (si · s j ) divided
by the generalized norms of si and s j , where the generalized
dot product is understood as (a · b) ≡ aTE−1b.

Qualitatively, the cross-template correlations �i j quantify
the degree of similarity between two templates. If the two tem-
plates are completely dissimilar (fully orthogonal),�i j = 0. If
the two templates are identical (up to an overall sign), �i j =
±1. To refine statements of Sec. III C, it is desired to generate
banks with the smallest possible values of cross-template cor-
relations to avoid testing data streams against nearly identical
templates. In this sense, the most optimal choice of the bank
templates would be a fully orthogonal bank. However, as we
show in Secs. IVA and IVB, constructing a fully orthogonal
bank is not possible for at least some of the applications.

The result (26) holds for any network with stationary
white or colored Gaussian noise and with and without cross-
node correlations. It also holds for any template-bank choice.
Namely, the properties of � determine the SNR-max statistic
PDF, CDF, and threshold values. In the rest of this section,
we illustrate computation and properties of the template-bank
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covariance matrix with our toy problem of Sec. III A and the
GPS.DM templates of Sec. III B.

A. Toy problem and symmetry-adapted bank construction

Now we return to the toy problem of searching for line
sweeps through a circular topology network of Sec. III A. In
this problem, a template si is uniquely specified by (v⊥)i, i.e.,
by the incident direction ûi and the normal speed (v⊥)i > 0 of
the sweeping line. In component form,

(si)
a
l = δl,l ia , (28)

where l ia is the epoch when sensor a is crossed by the line
moving with (v⊥)i [see Eq. (16)].

We are interested in properties of � as these determine
SNR-max CDF, PDF, and threshold values. The bank covari-
ance matrix elements, Eq. (27), simplify to

�i j = 1

NS

NS∑
a=1

δl ia,l
j
a
. (29)

The sum counts the number of sensors that are affected in the
same epoch in both templates. Apparently, �i j � 0, as a result
of the signals being always positive. In addition,�i j � 1, with
�i j reaching the value of 1 only when both templates are
identical.

We fix v⊥ and discuss selections of incident directions û
of sweeping lines. The CNS symmetry of our network sug-
gests a symmetric choice of ûi : ûi||n̂a, i.e., sweeps towards
sensors. An example for an M = 5 template bank is shown in
Fig. 1 (right panel). Because of the rotational symmetry, all
templates in the bank can be easily generated by cyclic per-
mutation of sensor labels. For the Fig. 1 bank, template 2 can
be generated by relabeling sensors in template 1 of Fig. 2—
1 → 3, 2 → 4, . . . , 9 → 1, 10 → 2—and then swapping the
rows of the resulting template, so that the sensors are normally
ordered.

We remind the reader that � is a symmetric matrix, with
diagonal elements �ii = 1. Based on the rotational symmetry
arguments for the constructed bank, we expect all matrix
elements �i,i±1 to be equal; the same applies to groups of
matrix elements �i,i±2, �i,i±3, etc. Here i ± n is understood
as mod(i ± n,M). In general, �i,i±1 
= �i,i±2 
= �i,i±3 
= . . ..
Such matrices belong to a class of symmetric Toeplitz matri-
ces that offer several computational advantages. This property
is a reflection of the underlying symmetry and would not hold
for randomly selected ûi.

Our explicit computations for the M = 5 bank of Fig. 1
with templates of Fig. 2 show that all off-diagonal matrix el-
ements �i, j 
=i = 1/5, i.e., all pairwise template overlaps have
two simultaneously perturbed sensors. The CDF and PDF of
such template-bank covariance matrices with �i, j 
=i = r can
be treated analytically (see Sec. VD). We refer to such banks
as perfectly squeezed. The CDF CM=5(Z|�r=1/5) for such a
bank is given by Eq. (63).

Now we expand our bank of Fig. 1 to include all NS = 10
possible incident directions towards sensors. The discussed
M = 5 bank in Fig. 1 is just a subset of this M = 10 bank.
We find that all off-diagonal matrix elements of the bank
covariance matrix between the Fig. 1 bank and newly added

templates vanish. The bank breaks into two mutually orthogo-
nal sub-banks. Thus � assumes a block-diagonal form with
�i, j 
=i = 1/5 for each block. Thereby, the joint probability
distribution (26) factorizes and the resulting SNR-max CDF
is the product

CM=10(Z|�) = CM=5(Z|�r=1/5)CM=5(Z|�r=1/5).

We may continue the process of building the symmetry-
adapted bank by augmenting theM = 10 bank with incidence
directions ûi that subdivide the arcs between the adjacent
M = 10 bank directions into equal parts, until we reach the
network angular resolution �θ , introduced in Sec. III A. This
procedure relies on the intrinsic CNS symmetry of our toy
network. The presented ideas of symmetry-adapted bank con-
struction can be extended to the 3D network with icosahedral
point group symmetry Ih. The GPS constellation, discussed in
the following section, unfortunately, lacks point symmetries
and a different approach is required.

B. GPS.DM search

Generation of GPS.DM templates for planar transients was
discussed in Sec. III B. Compared to our toy network, the GPS
constellation has a reference clock, it has a 3D geometry, and
it lacks point symmetries, and positions of satellites evolve in
time.

We start with one of the unoptimized GPS.DM template
banks used in the GPS.DM search. The bank has M = 1024
templates and was generated for the GPS constellation orbital
configuration for Feb. 14, 2005 08:20 UTC time. (We specify
time because the generated templates depend on the orbital
positions of the satellites, which vary throughout the day. Thus
the template bank needs to be regenerated every window.) The
network had NS = 21 sensors and relative reference-sensor
sensitivity parameter (12) ξ = 0.6. Identical white frequency
noise was assumed for all the clocks. Templates were gen-
erated by importance sampling using Monte Carlo technique
described in Sec. III, i.e., the template event parameters were
randomly drawn from the parameter space weighed by priors.
This bank generation did not take into account network angu-
lar and normal speed resolutions.

Figure 6 shows our computed distribution of the bank co-
variance matrix elements, �i j for i 
= j. We observe that �i j’s
are centered about the most probable value of �i j ≈ 0.33.
All values are positive and populate a range 0.0 � �i j � 1.0.
In this particular template bank, there are seven templates
that are orthogonal to all other templates, while some of the
templates in the bank are nearly identical(�i j ≈ 1), and seven
templates are identical, with �i j = 1. Clearly, this is not an
optimal choice for a template bank, as such aligned (identi-
cal) templates would result in wasted computational time. A
simple solution to this problem would be to check for �i j ≈ 1
and, if so, to draw another template from the Monte Carlo
generator.

To quantify the distribution of �i j matrix elements and
to develop an analytical approach, in Appendix B we derive
several properties of the GPS.DM template-bank covariance
matrix for an idealized network of white noise sensors with
network noise covariance matrix E of Eq. (10). The derivation
is similar to that of Sec. IVA with an addition of the reference
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FIG. 6. Distribution of cross-template correlation coefficients
�i 
= j of the template-bank covariance matrix � for one of the
GPS.DM template banks. The template bank contains M = 1024
templates.

sensor perturbation, so that the template elements are given by
Eq. (21). The derived template covariance matrix depends on
a set of three parameters K1, K2, and R1:

Ks,s′
1 ≡

NS∑
a

δla,l ′a , Ks,s′
2 ≡

NS∑
a

NS∑
b
=a

δla,l ′b,

Rs,s′
1 ≡ NS −

∑
a

(
δlR,la + δlR,l ′a

)
, (30)

where la are epochs when sensor a was perturbed in template
s and primed quantities refer to template s′. Here K1 is the
number of sensors with a perturbation epoch identical to both
templates, K2 is the cross-sensor degeneracy between the tem-
plates, and R1 quantifies the reference sensor and network
sensor degeneracy. These expressions apply to both same-
template (s ≡ s′) and cross-template cases.

With these definitions, the cross-template correlation coef-
ficients between two templates s and s′ read

�ss′ = aKs,s′
1 + Rs,s′

1 + bKs,s′
2√(

aKs,s
1 +Rs,s

1 + bKs,s
2

)(
aKs′,s′

1 +Rs′,s′
1 + bKs′,s′

2

) , (31)

where template-independent parameters are

a = 1 + (1 − 1/NS)ξ, (32)

b = −ξ/NS. (33)

Here ξ is the relative reference-sensor sensitivity
parameter (12).

With these definitions, in Appendix B we determine “av-
eraged” cross-template correlation value �i 
= j for our GPS
network data. Here “averaged” means that the degeneracy
parameters (30) are equated to the typical values using the
most probable epoch spread �l [Eq. (17)] and the uniform oc-
cupancy approximation of Sec. III B. The average degeneracy
parameters, computed in Appendix B, are K̄s,s

1 = K̄s′,s′
1 = NS,

K̄s,s′
1 = NS/�l , K̄s,s

2 = K̄s′,s′
2 = K̄s,s′

2 = (NS − 1)NS/�l , and
R̄s,s
1 = R̄s′,s′

1 = R̄s,s′
1 = (1 − 2/�l )NS. These values result in
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FIG. 7. Distribution of off-diagonal matrix elements �i j of the
template-bank covariance matrix for a squeezed template bank with
the most probable covariance matrix element r = 0.39 and maximum
spread in matrix elements δ�i j = ±0.2. The template bank contains
M = 1024 templates. All diagonal matrix elements �ii = 1 and are
not accounted for here.

the averaged cross-template correlation coefficient

�i 
= j ≈ 1

2 + (1 − 1/NS)ξ
. (34)

To assess the accuracy of approximation (34), we con-
sider the computed distribution of cross-template correlation
coefficients �i j of Fig. 6. This histogram was computed for
the network of NS = 21 Rb clocks with sensitivity parameter
ξ = 0.6. Then Eq. (34) results in �i 
= j = 0.388. It is in ≈5%
agreement with the most probable value inferred from the
histogram, �i 
= j = 0.398. Over decades of GPS constellation
operation, satellites are replaced as they reach their end of
life. The most typical value is ξ ≈ 0.3, and then for NS = 30
Eq. (34) gives �i 
= j = 0.44.

We discussed template-bank optimization strategies in
Sec. III C. One of the refinements of these strategies is to
squeeze the distribution of off-diagonal template covariance
matrix elements around the average value of �i 
= j , r, with
some small spread δ�, so that � = �r + δ�, where off-
diagonal matrix elements of �r are set to r and (�r )ii = 1.
One squeezing technique that can be used with success (al-
though with large computational cost) is by performingMonte
Carlo and eliminating templates the correlation element of
which is above or below a specified spread in correlation.
In Sec. VD we provide analytical results for the SNR-max
CDF and PDF of such �r ; the bank squeezing improves the
accuracy of approximating � with �r . Figure 7 shows an
example of squeezed bank distribution of template covariance
matrix elements (not including diagonal ones) for the most
probable covariance matrix element r = 0.39 and spread of
δ�i j = ±0.2 of the perturbation matrix.

V. SNR-MAX DISTRIBUTION FOR A TEMPLATE BANK

To reiterate, at this point we have discussed the properties
of templates and the template-bank covariance matrix �. Now
we return to the discussion of the SNR-max statistic and
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derive its distributions. The starting point is the joint probabil-
ity distribution (26) for SNRs in the template bank. The joint
PDF is fully characterized by the template-bank covariance
matrix �, which is a symmetric and positive semidefinite
matrix with diagonal matrix elements �ii = 1. Off-diagonal
matrix elements of � are given by Eq. (27). In this section,
we determine an analytic form for the CDF and PDF of the
SNR-max statistic (6), z = max(|ρ1|, . . . , |ρM |). Apparently,
z � 0.

We start the derivation by computing the CDF of the
SNR-max statistic. CDF CM (Z|�) is the probability that the
SNR-max statistic z takes a value less than or equal to Z . The
condition z � Z implies that all the individual template SNRs
lie in the interval −Z � ρk � Z . Thereby, we can express the
CDF as an integral of the joint probability distribution (26):

CM (Z|�) = 1√
det(2π�)

∫ +Z

−Z
dρ1 . . .

∫ +Z

−Z
dρM

× exp

(
−1

2
ρT�−1ρ

)
. (35)

This M-dimensional integral can be visualized as an integral
of a multivariate normal distribution over an M-dimensional
hypercube centered at zero and having a side of 2Z .

To date there is no closed form for the CDF of a mul-
tivariate normal distribution, so the M-dimensional integral
requires numerical evaluation (typically using Monte Carlo
techniques [56,57]). For dynamically evolving networks, such
as the GPS constellation where satellites are moving, this
approach is computationally prohibitive, as templates change
with the network geometry, and have to be generated anew for
every window. Every newly generated template bank would
have a different template-bank covariance matrix �, new
CDF, and a new threshold for false positives. Partially, this
problem can be mitigated by observing that there is a 12-h pe-
riodicity in the satellite orbits, i.e., network geometry repeats
every 12 h. Then the computations can be reduced by storing
template banks and threshold values for the 12-h period. Even
with this shortcut, one still has to deal with a collection of
1440 template banks for individual �t = 30 s epochs.

The cumulative distribution can be expressed using
the underlying probability density pM (ρ|�), CM (Z|�) =∫ Z
0 pM (z|�)dz, or

pM (z|�) =
(

d

dZ
CM (Z|�)

)
Z→z

. (36)

We carry out the differentiation of the SNR-max CDF (37) in
Appendix C. The resulting SNR-max PDF reads

pM (z|�) = 2√
det (2π�)

M∑
k=1

(
M∏

n=1,n 
=k

∫ +z

−z
dρn

)

×
[
exp

(
−1

2
ρT�−1ρ

)]
ρk=z

. (37)

In general, this SNR-max PDF is sufficient, yet it still involves
M evaluations of (M − 1)-dimensional integrals. Thus, for
large banks this PDF still requires computationally expensive
numerical evaluation.

These considerations force us to explore approximate tech-
niques for evaluating SNR-max CDF and PDF. In Sec. VA
we review the SNR-max CDF and PDF for uncorrelated tem-
plates or the fully orthogonal bank (� = I). In Sec. VB,
we consider a simple case of two correlated templates. In
Sec. VC we derive an approximate SNR-max PDF and CDF
for a nearly orthogonal template bank, i.e., when off-diagonal
|�i j | � 1. Lastly, in Sec. VD we consider the SNR-max PDF
and CDF for a squeezed template bank, when off-diagonal
matrix elements �i j ≈ r for all templates.

Finally, for completeness, we mention an apparent simplifi-
cation when � has a block-diagonal form, a case encountered
in the toy problem, Sec. IVA. This happens when the template
bank can be decomposed into mutually orthogonal sub-banks
of dimensions M ′ and M ′′, M ′ + M ′′ = M. If � contains two
blocks �′ and �′′, spanning SNR subspaces ρ′ and ρ′′, the
joint PDF (26) factorizes f (ρ|�) = f (ρ′|�′) f (ρ′′|�′′). Then
the CDF factorizes as well:

CM (Z|�) = CM ′ (Z|�′)CM ′′ (Z|�′′).

A. Fully orthogonal bank (independent templates)

For a fully orthogonal bank, all the off-diagonal matrix
elements of the template-bank covariance matrix� vanish and
� reduces to an identity matrix I. Then the general SNR-max
CDF (35) is simply

CM (Z|I) = 1

(2π )M/2

[∫ +Z

−Z
dρ exp

(
−1

2
ρ2

)]M

=
[
erf

(
Z√
2

)]M
, (38)

where Gaussian error function erf (x) = (2/
√

π )
∫ x
0 du e−u2 .

Further, differentiating CDF (38) with respect to Z , we arrive
at the SNR-max PDF for a bank of M independent templates:

pM (z|I) = M

√
2

π
e− z2

2

[
erf

(
z√
2

)]M−1

. (39)

These results subsume the limiting case of theM = 1 bank.
In this case, we are dealing with a single template, so that
the SNR-max statistic (6), z = |ρ|, is an absolute value of the
SNR for that one template. From the SNR distribution (5) we
conclude that z is a half-normally distributed variable with
probability distribution

p1(z) =
√

2

π
e− z2

2 . (40)

Integrating it, we obtain CDF C1(Z ) = erf (Z/
√
2). These re-

sults are in agreement with Eqs. (38) and (39) forM = 1.

B. Bank of M = 2 correlated templates

With the results for a fully orthogonal bank established,
we start quantifying the role of cross-template correlations
with an analytically tractable case of a bank consisting
of two templates. For the M = 2 case, the cross-template
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FIG. 8. Comparison of the Monte Carlo simulation (histogram)
with the closed-form SNR-max PDF (43) (curve) for a bank of M =
2 templates with correlation coefficient r = 1/2.

covariance matrix depends only on one off-diagonal matrix
element �12 = �21 ≡ r. Explicitly,

� =
(
1 r
r 1

)
, (41)

�−1 = 1

1 − r2

(
1 −r

−r 1

)
, (42)

and det� = 1 − r2. Then the joint probability distribution
(26) reads

f (ρ1, ρ2|r) = 1

2π
√
1 − r2

exp

(
−ρ2

1 + ρ2
2 − 2rρ1ρ2

2(1 − r2)

)
.

Applying Eq. (37), we arrive at the SNR-max PDF for the
M = 2 bank:

p2(z| r) =
√

2

π
e− z2

2

×
[
erf

(
1√
2

√
1 + r

1 − r
z

)
+ erf

(
1√
2

√
1 − r

1 + r
z

)]
.

(43)

To support our analytical result, in Fig. 8 we compare
results of a Monte Carlo simulation with the derived SNR-
max PDF (43), and we find the histogram and the PDF in
agreement. We carried out these simulations using a single
(NS = 1) white-noise (Gaussian) data stream with zero mean
and σ 2 = 1, and with the two templates having a correlation
coefficient r = 1/2. The positive skew observed in the SNR-
max PDF is due to the effect of templates being correlated.
False positive thresholds determined for correlated template
banks are affected by the positive skew observed in this SNR-
max PDF (see Sec. VI).

We observe the following properties of the PDF (43). The
distribution p2(z|r) is symmetric with respect to flipping the
sign of r, i.e., p2(z| − r) = p2(z|r). If there is no correlation
between the two SNR variables (r = 0), Eq. (43) reduces to

p2(z|r = 0) = 2

√
2

π
e− z2

2 erf

(
z√
2

)
, (44)
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FIG. 9. Probability distribution for the SNR-max statistic for the
M = 2 bank with varying cross-template correlation, 0 � r � 1(r =
0 right curve, r = 0.75 middle curve, and r = 1 left curve). As
the magnitude of the correlation coefficient increases from r = 0 to
larger |r|, the distribution becomes increasingly positively skewed,
and when r = ±1 (left curve) we recover the half-normal SNR-max
distribution for the M = 1 bank [see Eq. (45)].

which is identical to the general result (39) for the M = 2
orthogonal template bank. For fully correlated SNRs, r = ±1,
the probability distribution tends to the half-normal distribu-
tion (40)

p2(z| r → ±1) =
√

2

π
e− z2

2 = p1(z). (45)

In this case, the two templates are identical (or differ by an
overall sign) and the PDF reduces to that of a single template
case Eq. (45). These two cases of r = 0 and ±1 agree with
previous literature [58].

To further illustrate the effect of correlation on the SNR-
max PDF, we vary the correlation coefficient r from 0 to 1
(see Fig. 9). Due to the r → −r symmetry of the distribu-
tion, positive and negative template correlations have identical
PDFs. Figure 9 shows that when the correlation |r| > 0, the
SNR-max PDF becomes positively skewed (skewed toward
zero). When the templates are fully correlated, |r| = 1, the
distribution p2 reduces to Eq. (45), i.e., the half-normal dis-
tribution p1 characteristic of a single template bank. This is
expected qualitatively as the two random variables ρ1 and ρ2

become identical, so that z = max(|ρ1|, |ρ2|) = |ρ1| = |ρ2|.
For a template bank composed of two templates, M = 2,

the SNR-max CDFC2(Z|r) can be determined by numerically
integrating the two-template SNR-max PDF in Eq. (43):

C2(Z|r) =
∫ Z

0
dz

√
2

π
e− z2

2

×
[
erf

(
1√
2

√
1 + r

1 − r
z

)
+ erf

(
1√
2

√
1 − r

1 + r
z

)]
.

(46)
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FIG. 10. Cumulative distribution for a template bank composed
of M = 2 templates with a correlation coefficient r = 1/2.

An equivalent representation,

C2(Z|r) = 1

4

∫ ∞

−∞
du

e−u2/2

√
2π

×
[
erf

(
Z + √

ru√
2(1 − r)

)
− erf

(−Z + √
ru√

2(1 − r)

)]2
,

(47)

is derived in Sec. VD.
Figure 10 shows the CDF C2(Z|r = 1/2) resulting from

evaluating Eq. (47) numerically. From this CDF, thresholds
for specific false positive rates will be inferred in Sec. VI.

C. SNR-max distribution for a nearly orthogonal bank

Suppose that the correlations between various templates
are small, i.e., |�i j | � 1 for all i 
= j, such that the tem-
plate covariance matrix � can be represented as a sum of
the identity matrix I (fully orthogonal template bank) and a
perturbation matrix A. In this case, the bulk of the SNR-max
CDF and PDF is determined by the distributions for the fully
orthogonal bank, Eqs. (38) and (39), with corrections that
depend on A:

CM (Z|�) ≈CM (Z|� = I) + δICM (Z|�), (48)

pM (z|�) ≈pM (z|� = I) + δI pM (z|�). (49)

Here we use the symbol δI to emphasize that the expansion
is about � = I. In Appendix D, we demonstrate that these
corrections are proportional to the trace of A2. Below we
summarize the derivation and results from Appendix D.

The general expression for the SNR-max CDF (35) de-
pends on the determinant and the inverse of the template-bank
covariance matrix. The determinant can be approximated as

det (I + A) ≈ 1 − 1
2Tr(A

2). (50)

Here we omitted terms containing Tr(A) = 0 as, by construc-
tion, the diagonal matrix elements of the perturbation matrix
A vanish. Notice that Tr(A2) = Tr(�2) − M. Similarly, the

inverse of � can be approximated as

�−1 = (I + A)−1 ≈ I − A + A2. (51)

Based on these approximations and Taylor expansion of
the exponential in the SNR-max CDF (35), in Appendix D we
derived the correction to the SNR-max CDF:

δICM (Z|�) = [Tr(�2) − M]
Z2e−Z2

2π

[
erf

(
Z√
2

)]M−2

. (52)

Similarly, the correction to the SNR-max PDF is found by
taking the derivative of the above correction to the CDF,
leading to

δI pM (z|�) = [Tr(�2) − M]
ze−z2

π

[
erf

(
z√
2

)]M−3

×
[
(M − 2)ze−z2/2

√
2π

+ (1 − z2) erf

(
z√
2

)]
.

(53)

The advantage of these approximate formulas is that the
multidimensional integrations in the general SNR-max CDF
and PDF expressions (35) and (37) have been carried out ex-
plicitly. If the bank changes due to time evolution of network
geometry, e.g., for orbiting satellites, only Tr(�2) needs to be
reevaluated. There is, however, a region of validity of these
approximations (see Appendix D),

z � 1/
√
max |Ai j |, (54)

which limits practical applicability of these approximations.
As a test of these approximate formulas, we consider a

limiting case of a two-template bank (see Sec. VB), with the
closed-form SNR-max PDF (43). In this case, Tr(�2) − M =
2r2 and Eq. (53) becomes

δI p2(z|r) = 2r2(1 − z2)
ze−z2

π
. (55)

This result is in agreement with the small-r expansion of
Eq. (43).

D. SNR-max distribution for a squeezed template bank

In Sec. IV we encountered a practical search scenario
when matrix elements of the bank covariance matrix � are
centered about a nonzero value r (see Fig. 6). Motivated by
this scenario, in this section we consider an approximation for
the SNR-max CDF when the off-diagonal matrix elements of
� exhibit small deviations from some value r. (As follows
from the derivation of this section, the optimal choice of r
corresponds to the average of off-diagonal matrix elements of
�.) This is the case of squeezed banks discussed in Sec. IV.
Then � = �r + δ�, where the perturbation matrix δ� is
“small” compared to the highly structured reference covari-
ance matrix �r . To the leading order in δ�, the SNR-max
CDF CM (Z|�r + δ�) is determined by CM (Z|�r ). Similar
arguments apply to PDF pM (Z|�r ). Below, we evaluate these
leading-order contributions, leaving the cumbersome deriva-
tion of the δ� correction for future work.

Explicitly, we assume that matrix elements of the reference
matrix �r are given by

(�r )i j = δi j + (1 − δi j )r, (56)
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i.e., all off-diagonal matrix elements of �r are identical and
equal to r. For example, �r for M = 3 reads

�r =
⎛
⎝1 r r
r 1 r
r r 1

⎞
⎠. (57)

In Sec. VB we considered a special case of such matrices
for M = 2. It is the highly structured nature of �r that allows
us to derive a closed-form expression for the SNR-max CDF
CM (Z|�r ) below.

We derived the inverse of �r entering the multivariate
normal distribution. The inverse retains the general structure

of �r with matrix elements(
�−1

r

)
i j = Xδi j + Y, (58)

where

X = 1/(1 − r), (59)

Y = − r

1 + (M − 1)r
X. (60)

The derived inverse �−1
r reproduces that for the M = 2 case,

Eq. (42). With the matrix inverse (58), the joint PDF (26) reads

f (ρ|�r ) = 1√
det(2π�r )

exp

⎧⎨
⎩− 1

2(1 − r)

⎡
⎣ M∑

i=1

ρ2
i − r

1 + (M − 1)r

(
M∑
i=1

ρi

)2
⎤
⎦
⎫⎬
⎭, (61)

with det(�r ) = (1 − r)M−1(1 + (M − 1)r). This joint PDF is equivalent to

f (ρ|�r ) = 1

(2π (1 − r))M/2

∫ +∞

−∞
du

e−u2/2

√
2π

M∏
i=1

exp

(
− (ρi − √

ru)2

2(1 − r)

)
, (62)

which can be verified by direct integration. Remarkably, this integral representation has the advantage of decoupling the
SNRs ρi.

The properties of multivariate normal distribution for the class of covariance matrices represented by Eq. (56) have been
considered in the literature (see Ref. [59] and references therein). We warn the reader, however, that the literature contains
misprints [for example, Eq. (61) has misprints in Ref. [59]], uses different notation, and proceeds through the less transparent (at
least to our taste) “exchangeable-normal-variables” proofs.

The CDF CM (Z|�r ) is still an M-dimensional integral (35) of the multivariate normal distribution (61). With the alternative
representation (62) of the joint PDF, this integral can be reduced to a one-dimensional integral:

CM (Z|�r ) = 1

2M

∫ ∞

−∞
du

e−u2/2

√
2π

[
erf

(
Z + √

ru√
2(1 − r)

)
− erf

(−Z + √
ru√

2(1 − r)

)]M
. (63)

This CDF is equivalent to the result of Ref. [59] expressed in a different notation. For r = 0, we recover the CDF for independent
templates, Eq. (38).

Differentiating this CDF with respect to Z , we determine the SNR-max PDF:

pM (z|�r ) = 1

2M
M

π

1√
1 − r2

∫ ∞

−∞
du e−u2/2

×
[
erf

(
z + √

ru√
2(1 − r)

)
− erf

(−z + √
ru√

2(1 − r)

)]M−1[
exp

(
− (z + √

ru)2

2(1 − r)

)
+ exp

(
− (z − √

ru)2

2(1 − r)

)]
. (64)

Given the bank covariance matrix �, what is the optimal
choice of r? The answer to this question is not obvious—there
are many possibilities like taking r as the most probable value,
or the median, or the average of the �i 
= j matrix elements
distribution. Below we show that the optimal choice of r is
the mean value of off-diagonal matrix elements of the bank
covariance matrix�. Indeed, consider the small-δ� expansion
of the determinant normalizing the joint probability distribu-
tion:

det(�r + δ�) ≈[1 + Tr
(
�−1

r δ�
)]
det�r

=
(
1 + Y

∑
i j

(δ�)i j

)
det�r,

where Y is the off-diagonal matrix element of �−1
r given in

Eq. (60). To suppress the δ� correction, we have to require

that r is chosen in such a way that
∑

i j (δ�)i j = 0. This
condition leads to the optimal choice

r = 1

M(M − 1)

∑
i> j

�i j, (65)

corresponding to the mean value of off-diagonal matrix ele-
ments of the bank covariance matrix.

Threshold values for specific values of false positive rates
for squeezed template banks are discussed in Sec. VI.

VI. THRESHOLD VALUES FOR THE SNR-MAX STATISTIC

Practical applications require a certain level of confidence
in the detection statistic. Typically, confidence levels such as
90, 95, and 99% are suitable for many applications requiring
less sensitivity far into the tails of a distribution. Threshold
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values are determined by false positive rates, q, and for the
enumerated confidence levels q values are 0.1, 0.05, and 0.01,
respectively. The meaning of a false positive rate is the proba-
bility of falsely accepting the hypothesis in question, when the
data should have supported the null hypothesis. In the context
of searches for transients, a false positive happens when the
SNR-max statistic z exceeds a certain threshold Z∗, but this in
fact is due to statistical randomness mimicking the transient
and not due to the sought exotic physics. Suppose for a desired
false positive rate, q, we want to determine the threshold value
Z∗ associated with that false positive rate. We may simply
relate the false positive rate to the threshold value by using
the CDF

1 − q = CM (Z
∗|�). (66)

As CM (Z|�) is a monotonically increasing function of Z , Z∗
increases for decreasing rate q.

Even without explicit computations, we qualitatively ex-
pect the following for a fixed false positive rate q.

(i) Threshold value Z∗ increases with the increasing sizeM
of the template bank.

(ii) Threshold value Z∗ decreases with the growing cross-
template correlations.

Indeed, the random data have more chance to match one
of the templates in a larger template bank leading to a higher
threshold value, supporting statement (i). As to the statement
(ii), suppose we keep the bank size M the same, but increase
one of the cross-template correlation coefficients �i j all the
way to 1. Then the two templates i and j become identical,
effectively reducing the bank to M − 1 templates. Then we
can apply the statement (i), resulting in Z∗ being lowered. In
particular, this means that for a fixed rate of false positives, a
bank of correlated templates has a lower SNR-max threshold
than a fully orthogonal bank (uncorrelated or independent
templates.)

Evaluation of threshold values for a desired false positive
rate for a large bank with arbitrary bank covariance matrix
� requires Monte Carlo integration of an M-dimensional
multivariate distribution (see Sec. V). While Monte Carlo
integration can yield the desired threshold value for any � and
dimensionality M, the computational cost can be prohibitive
whenM is large and when sampling far into the tail of the dis-
tribution, as needed for small false positive rates. Therefore,
in this section we present several analytical results that avoid
or greatly reduce numerical costs.

For example, if the M templates in the bank are fully
orthogonal, i.e., � = I, the analytic CDF is given by Eq. (38)
and thresholds are

Z∗ =
√
2 erf−1[(1 − q)1/M]. (67)

This formula illustrates our qualitative statement (i). For q �
1, Z∗ is given by the conventional threshold formula for a
Gaussian distribution, Z∗ = √

2 erf−1(1 − qeff ) with qeff =
q/M. As M is increased, qeff decreases, resulting in larger
values of Z∗.

A. Threshold for a two-template bank

The discussion for the case of the two correlated template
SNR-max CDF in Sec. VB suggests that for a fixed value

FIG. 11. SNR-max CDF for a bank of two templates with vary-
ing correlation coefficient: r = 0 (bottom curve), r = 0.75 (middle
curve), and r = 0.9 (top curve). The inflection points correspond to
the maxima of PDFs.

of q, the threshold value Z∗ moves to lower values the more
correlated the templates are:

Z∗(r = 1) < Z∗(r) < Z∗(r = 0). (68)

Figure 11 shows the effect of correlations on the SNR-max
CDF for the case of two templates. Here we vary the corre-
lation coefficient in the range 0 � r � 0.9. It is evident from
comparing the r = 0.75 (middle) and the r = 0.9 (top) curves
that as the correlation increases, the CDF approaches its lim-
iting value of 1 quicker. Then the thresholds Z∗ for specific
false positive rates q decrease with increasing cross-template
correlation r, which is in agreement with the qualitative state-
ment (ii).

Table II compiles the SNR-max threshold values for two
templates with varying correlations r—0, 0.25, 0.5, and 0.9—
and for varying false positive rates q: 10−2, 10−4, 10−6,
and 10−8. Examination of the table shows that the highest
threshold values occur for the case of uncorrelated templates
regardless of the false positive rate q. For very small false
positive rates q, the effect of correlation is nearly negligible
on the threshold value unless the correlation is very strong,
r ≈ 1, whereas increasing the desired false positive rate the
effect of correlation on the threshold value becomes more
pronounced even for mild correlations r ≈ 0.25. This effect of
cross-template correlations on thresholds becomes even more

TABLE II. Threshold values for a template bank consisting of
M = 2 templates. Threshold values are tabulated for varying cross-
template correlation coefficients, 0 � r � 0.9, and false positive
rates, 10−8 � q � 10−2.

q r = 0 r = 0.25 r = 0.5 r = 0.9

10−8 5.848 5.848 5.848 5.833
10−6 5.027 5.027 5.027 5.003
10−4 4.056 4.056 4.054 4.014
10−2 2.807 2.805 2.795 2.716
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pronounced as we increase the number of templates in the
bank (see Sec. VI C).

B. Threshold for a nearly orthogonal template bank

Suppose we can represent the bank covariance matrix as a
sum of the reference matrix �0 and a small correction δ�.
This is the case for a nearly orthogonal template bank of
Sec. VC, where �0 = I, and for a squeezed bank of Sec. VC,
�0 = �r . Then the thresholds for specific false positive rates
can be calculated in a perturbative fashion. The dominant term
in calculating the threshold value is determined by the CDF
CM (Z∗|�0) with a corrective term δCM (Z∗|�0):

CM (Z|�) = CM (Z|�0) + δCM (Z|�0). (69)

The threshold is determined from Eq. (66), 1 − q =
CM (Z∗|�), with Z∗ = Z∗

0 + δZ∗. Here Z∗
0 is the reference

threshold and δZ∗ is the correction to the threshold. The
reference threshold satisfies the equation 1 − q = CM (Z∗

0 |�0).
We would like to find the correction to the threshold δZ∗, so
that

1 − q = CM (Z
∗
0 + δZ∗|�0) + δCM (Z

∗
0 |�0). (70)

Explicitly,

CM (Z
∗
0 + δZ∗|�0) ≈ CM (Z

∗
0 |�0) + δZ∗ × ∂CM

∂Z

= CM (Z
∗
0 |�0) + δZ∗ × pM (Z

∗
0 |�0).

From here, the correction to the threshold is

δZ∗ ≈ −δCM (Z∗
0 |�0)

pM (Z∗
0 |�0)

. (71)

Now we apply this formalism to the determination of the
threshold for a nearly orthogonal template bank, i.e., �0 =
I. Then Z∗

0 = √
2 erf−1[(1 − q)1/M], Eq. (67). The correc-

tive CDF term and the SNR-max PDF in Eq. (71) are, per
Sec. VC,

δCM (Z
∗
0 |I) = Tr(A2)

Z∗2
0 e−Z∗2

0

2π

[
erf

(
Z∗
0√
2

)]M−2

,

pM (Z
∗
0 |I) = M

√
2

π
e− Z∗2

0
2 erf

(
Z∗
0√
2

)M−1

.

Plugging these into Eq. (71), we arrive at the correction to the
threshold value:

δZ∗ = −Tr(A2)

M

[
erf

(
Z∗
0√
2

)]−1

Z∗2
0 e−Z∗2

0
1

2
√
2π

. (72)

Since Tr(A2) > 0, we see that δZ∗ < 0, so that Z∗ < Z∗
0 . This

is consistent with our qualitative expectation (ii) that cross-
template correlations reduce the threshold values for a given
rate of false positives.

We remind the reader that for a nearly orthogonal bank,
Tr(A2) = Tr(�2) − M. The advantage of our approximation
(72) is that if the bank changes due to time evolution of
network geometry, e.g., for orbiting satellites, only Tr(�2)
needs to be reevaluated to readjust the threshold for the new
bank.

TABLE III. Compilation of SNR-max statistic threshold values
Z∗ for a perfectly squeezed bank of M = 1024 templates. r is the
cross-template correlation coefficient and q is the false positive rate.

q r = 0 r = 0.25 r = 0.5 r = 0.75 r = 0.9

10−8 6.807 6.807 6.804 6.733 6.462
10−6 6.109 6.109 6.097 5.972 5.705
10−4 5.327 5.325 5.283 5.076 4.745
10−2 4.417 4.390 4.247 3.903 3.487

C. Threshold for a squeezed template bank

Squeezed template banks introduced in Sec. VD have a
special structure of the bank covariance matrix, � ≈ �r , in
which all off-diagonal matrix elements have the same value of
r (mean value of cross-template correlation coefficients in the
bank). This is directly relevant to the GPS.DM search for DM
bubble walls. Analytic SNR-max CDF (63) CM (Z|�r ) was
developed in Sec. VD. This representation sharply reduces
computational cost in determining the thresholds for specific
false positive rates, as the M-dimensional integral is recast
into a one-dimensional integral.

We used the SNR-max CDF (63) for squeezed banks and
Eq. (66) to determine SNR-max threshold values for desired
rates of false positives. The results are presented in Fig. 12
and Table III. Figure 12 shows the SNR-max CDFs for a bank
of M = 1024 templates with the cross-template correlation
coefficient varying in the range 0 � r � 0.9. It is clear that
the effect of cross-template correlation strongly affects the
underlying CDF: for larger r, the CDF is quickly shifted to-
ward lower values of Z . The values of SNR-max threshold are
determined by the intersection of the computed CDFs with the
horizontal dashed line corresponding to a fixed false positive
rate. Increasing cross-template correlations causes decreasing

FIG. 12. SNR-max CDFs CM (Z|�r ) for a perfectly squeezed
bank of M = 1024 templates for various values of cross-template
correlation coefficient: r = 0 (right curve), r = 0.5 (middle curve),
and r = 0.9 (left curve). The horizontal dashed line is drawn at a
constant value of 0.9 corresponding to the rate of false positives
q = 0.1. Intersections of the CDF curves with the horizontal line
determine the values of the threshold Z∗. Increasing cross-template
correlations causes a decrease in threshold values Z∗.
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TABLE IV. Comparison of threshold values from Eqs. (35) and
(63) for the case of the M = 3 template bank [see Eq. (73) and text]
and varying false positive rates, 10−8 � q � 10−4.

q Exact, Eq. (35) Approximate, Eq. (63)

10−8 5.913 5.915
10−6 5.103 5.104
10−4 4.149 4.150

thresholds Z∗ in agreement with our qualitative expectation
(ii) and discussion for M = 2 banks. We can understand this
shift in the CDF and thresholds, by thinking about how the
inflection points (located at the most probable value) vary
between the different PDF’s associated with the correlation
value r.

Numerical values for the SNR-max thresholds are com-
piled in Table III. Once again we observe that the threshold
Z∗ decrease with increasing correlation value r for all the
tabulated false positive rates. For r = 0.25 and r = 0.5 the
decrease in the threshold is nearly negligible, while for larger
r = 0.9 the decrease in the threshold becomes much more
apparent, similar to the case of the M = 2 template bank. We
also see that as the false positive rate decreases, the effect of
correlation becomes more drastic on the threshold values.

For completeness, we investigate a more practical case of
how the thresholds vary for template banks with template
covariance matrix off-diagonal elements not all equal to r, but
there is a spread in correlation element values. As a specific
example, we consider a template bank composed of M = 3
templates with bank covariance matrix

� =
⎛
⎝ 1 r12 r13
r12 1 r23
r13 r23 1

⎞
⎠. (73)

We fix r12 = 0.33, r13 = 0.23, and r23 = 0.43. This bank has
a 0.2 spread in cross-template correlation coefficients about
a mean value of r = 0.33. In Table IV, we present results of
two threshold computations: the Markov-Chain Monte Carlo
(MCMC) method using a publicly available package [60]
for integration of the exact CDF (35), and an approximate
squeezed-bank CDF (63) with r = 0.33. For this bank, the two
thresholds agree to three significant figures.

As a next numerical experiment, we increase the number of
templates to M = 1024 for a squeezed template bank, with a
distribution of cross-template correlations�i j shown in Fig. 7.
In this bank, the most probable value is 0.390 with a range of
total correlation values being 0.25 � �i j � 0.65. The median
value of the �i j distribution is 0.395, and the average value
r = 0.398. First, we compute the SNR-max threshold values
using the MCMC [60]. MCMC technique evaluates the exact
M-dimensional integral CDF (35); the results are presented in
Table V. Second, we use the approximate CDFCM (Z|�r ) with
the most probable 0.390 and an average value of 0.398. The
thresholds are evaluated for the false positive rates q = 10−4,
10−6, and 10−8.

Table V demonstrates that choosing the reference cross-
template correlation r as the mean value of �i 
= j (versus most
probable value) results in closer agreement with the exact

TABLE V. Comparison of threshold values from the exact
Eq. (35) (computed with MCMC, column marked “exact”) and
Eq. (63) [both for the most probable (middle column) and aver-
age correlation matrix element value (last column)] for the case of
M = 1024 templates (typical template bank vs perfectly squeezed
template bank) and varying false positive rates, 10−8 � q � 10−4.

q Exact r = 0.390 r = 0.398

10−8 6.67 6.8063 6.8062
10−6 6.04 6.1073 6.1070
10−4 5.31 5.3122 5.3108

result. This is consistent with our arguments presented in
Sec. VD. The approximation � ≈ �r works better for smaller
values of false positives. Even for q = 10−8, the approxima-
tion is in 2% agreement with the MCMC result, demonstrating
the utility of our approximation.

D. Threshold for a varying number of templates M
in a template bank

SNR-max thresholds for specific false positive rates de-
pend on the number of templates in the template bank.
Figure 13 shows the effect of the number of templates M on
the thresholds for varying size of perfectly squeezed banks,
i.e., with bank covariance matrix (56). In all three panels of
that figure, the rate of false positives is fixed (horizontal line
at 0.9). In all panels, we plot the same CDFs CM (Z|�r ) for
M = 100 (left curve) to M = 500 (middle curve) to M =
1000 (right curve). The value of the cross-template coeffi-
cient r decreases from r = 0.9 [panel (a)] to 0.5 in panel
(b) and to 0.1 in panel (c). For all three panels, we observe
that as the number of templates increases from M = 100 to
500 and to 1000 the threshold (intersection of the horizontal
dotted line with the CDF curves) shifts to higher Z values.
As the correlation coefficient decreases, panels (a)–(c), the
differences (spread) in the threshold values increase. These
observations further support our qualitative statements (i) and
(ii): generically, we expect a larger threshold value with in-
creasing number of templates in the template bank, as well as
an increasing threshold value with decreasing cross-template
correlations.

VII. CONCLUSIONS AND THE UTILITY
OF ENTANGLEMENT

The SNR statistic and template-bank searches have seen
a variety of applications in modern physics and other fields.
Here we focused on the max-SNR detection statistic in the
context of searches for transient signals with networks of pre-
cision quantum sensors. For large template banks, especially
for dynamically evolving networks, computation of threshold
rates is computationally prohibitive. We developed several
approximate methods for computing properties of the SNR-
max statistic that forgo much of the computational costs. We
developed the probability and cumulative distribution for the
SNR-max statistic correlated from M templates in a template
bank. Generically the cross-template correlations give rise to
diminished thresholds for desired false positive rates. While
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FIG. 13. SNR-max CDFs CM (Z|�r ) for a varying number of templates in a perfectly squeezed bank: M = 100 (left curve), M = 500
(middle curve), and M = 1000 (right curve). The false positive rate is fixed at q = 0.1 (the horizontal dotted line is drawn at the 1 − q = 0.9
value). The thresholds are determined by the value of Z at the intersection of the CDF curves with the false positive rate horizontal line. Three
panels correspond to different values of the cross-template correlation coefficient r: (a) r = 0.9, (b) r = 0.5, and (c) r = 0.1.

our paper was motivated by dark matter and other exotic
physics searches, the results of Secs. II–VI have a wide range
of applicability. We also anticipate that our detailed exposè on
template-bank construction and optimization in the cases of
the pedagogical toy network and the GPS network (Sec. III)
will be useful in the nascent applications of precision quantum
sensors and their networks in fundamental physics.

What is the utility of entanglement in the searches for
transients? For individual sensors, the entanglement or spin
squeezing is a useful resource, as it improves the accuracy of
a single-shot measurement typical of a search for short tran-
sients. Cross-node or geographically distributed entanglement
[13] is not useful and is, in fact, detrimental to the network
searches for transients. Indeed, projective measurement on
a single node collapses the distributed wave function, effec-
tively rendering all other nodes deaf to the transient. Then the
network loses both velocity and angular resolution.
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APPENDIX A: DERIVATION OF MATRIX ELEMENTS OF
TEMPLATE-BANK COVARIANCE MATRIX �, EQ. (27)

Matrix elements of the template-bank covariance matrix
are defined as

�i j = 〈
ρw
i ρw

j

〉
, (A1)

where SNR statistics ρw
i and ρw

j are given by Eq. (3) and the
averaging is over signal-free data. From here on we drop the
window superscript w. Explicitly,

〈ρiρ j〉 = 〈(dTE−1si )(dTE−1s j )〉√(
sTi E

−1si
)(
sTj E

−1s j
) . (A2)

To carry out the averaging, we expand the products in compo-
nent form:

dTE−1si =
∑
α,β

dαE
−1
αβ (sβ )i, (A3)

where we used greek letters for compound indices that encode
both the sensor and the epoch indices (see Sec. II). Then the
numerator of Eq. (A2) can be rearranged into〈 ∑

α,β,γ ,δ

dαE
−1
αβ (sβ )idγE

−1
γ δ (sδ ) j

〉

=
∑

α,β,γ ,δ

〈dαdγ 〉E−1
αβ E

−1
γ δ (sβ )i(sδ ) j . (A4)

For signal-free data, the combination 〈dαdγ 〉 is the matrix
element of the noise covariance matrix, 〈dαdγ 〉 = Eαγ . This
simplifies Eq. (A4) to∑

β,δ

(sβ )i(sδ ) j
∑
α,γ

Eαγ (E
−1)γ δ (E

−1)αβ

=
∑
α,β

(sα ) j (E
−1)αβ (sβ )i = sTj E

−1si. (A5)

Here we used the identity,
∑

γ Eαγ (E−1)γ δ = Iαδ = δαδ. With
this simplification, the template-bank covariance matrix ele-
ment (A2) becomes

�i j = sTj E
−1si√(

sTi E
−1si

)(
sTj E

−1s j
) . (A6)

From here, the variances of individual SNR statistics are
σ 2

ρi
= 〈(ρi )2〉 = �ii = 1, in agreement with Ref. [36]. This

concludes our proof of Eq. (27).

APPENDIX B: TEMPLATE-BANK COVARIANCE MATRIX
ELEMENT CONSTRUCTION

We are interested in the behavior of the template covari-
ance matrix elements �i j for our generalized signal template
construction (Sec. III). To streamline notation, we rename si
and s j to s and s′, respectively. The template covariance matrix
element (27) in this notation reads

�ss′ = sTE−1s′√
(sTE−1s)(s′TE−1s′)

. (B1)

For concreteness, we focus on a white-noise network of iden-
tical sensors a referenced to a common reference sensor R. In
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this case, the inverse covariance matrix is given by Eq. (11),
which we reproduce below:

(E−1)ablm = A δlmδab + B (1 − δab)δlm, (B2)

where coefficients

A = 1

σ 2

1 + (1 − 1/NS)ξ

1 + ξ
, (B3)

B = − 1

σ 2

1

NS

ξ

1 + ξ
(B4)

are expressed in terms of ξ = NSσ
2
R/σ 2. In our index con-

vention, the letters at the beginning of the alphabet a, b, . . .
enumerate the sensors (range 1,NS), while letters in the mid-
dle of the alphabet l,m, . . . enumerate the epochs (index range
1, J in a data window).

Since we consider the signal amplitude h to be the same
for the network and reference sensors as described in Sec. III,
we may simply take out h from the templates. Then the
GPS.DM templates (thin DM walls) can be represented using
Kronecker symbols:

sal = δl,la + (−1)δl,lR . (B5)

The signal for each sensor a consists of a positive spike at
epoch la, and a negative spike at the reference epoch lR which
is identical for all the templates, lR = (J + 1)/2. Then, the
individual templates are characterized by the set of network
sensor perturbation epochs

{l} = l1, l2, . . . , lNS (B6)

for the template s and a similar (but not identical) set {l ′} for
the template s′.

In general, la can be equal to lR, meaning that the sensor
a and the reference sensor are affected by the transient in the
same epoch; in this case the signal reduces to zero, sal = 0.
In addition, several sensors can be affected by the transient
signal in the same epoch. In this case, we refer to this subset
of sensors as “degenerate.” When sensor a is degenerate with
sensor b for template s, la = lb in the set {l}.

In our derivations below, we will use the fact that la and lR
are guaranteed to be within the same template window, so that∑

l

δl,la =
∑
l

δl,lR = 1. (B7)

First, consider the numerator of Eq. (B1), sTE−1s′, which
can be expanded into

sTE−1s′ = A
NS∑
a,b

J∑
l,m

sal δ
abδlm s′bm + B

NS∑
a

NS∑
b
=a

J∑
l,m

sal δlms
′b
m.

(B8)

The first sum can be represented as∑
l,a

sal s
′a
l =

∑
l,a

(
δl,la − δl,lR

)(
δl,l ′a − δl,lR

)

=
(∑

l,a

δl,laδl,l ′a

)

+
(∑

l,a

δl,lR −
∑
l,a

δl,lRδl,la −
∑
l,a

δl,lRδl,l ′a

)

≡ Ks,s′
1 + Rs,s′

1 .

Here we introduced

Ks,s′
1 ≡

∑
a

δla,l ′a , (B9)

which counts the number of sensors with a perturbation epoch
identical to both templates. If the two templates are identical,
s = s′, then Ks,s

1 = NS. Similarly,

Rs,s′
1 ≡ NS −

∑
a

(
δlR,la + δlR,l ′a

)
(B10)

characterizes the network-reference sensor degeneracy. If
both templates have no degeneracies between the network and
the reference sensors, then Rs,s′

1 = NS.
The second sum in Eq. (B8) simplifies to

NS∑
a

NS∑
b
=a

J∑
l

sal s
′b
l

=
NS∑
a

NS∑
b
=a

J∑
l

(
δl,la − δl,lR

)(
δl,l ′b − δl,lR

)

=
NS∑
a

NS∑
b
=a

δla,l ′b +
NS∑
a

NS∑
b
=a

(1)−
NS∑
a

NS∑
b
=a

δlR,la −
NS∑
a

NS∑
b
=a

δlR,l ′b

≡ Ks,s′
2 + Rs,s′

2 , (B11)

with

Ks,s′
2 ≡

NS∑
a

NS∑
b
=a

δla,l ′b, (B12)

Rs,s′
2 ≡ NS(NS − 1) −

NS∑
a

NS∑
b
=a

(
δlR,la + δlR,l ′b

)

= (NS − 1)Rss′
1 . (B13)

Ks,s′
2 defines the cross-template network degeneracy between

network sensors a, b 
= a. Rs,s′
2 quantifies the cross-template

degeneracy between the reference and the network sensors. If
there are no degeneracies between the network sensors a, b 
=
a and the reference sensor R, Rs,s′

2 = NS(NS − 1). For two
identical templates, Ks,s

2 ≡ ∑NS
a

∑NS
b
=a δla,lb . This definition of

Ks,s
2 depends on the degeneracy of the network with respect to

the template. If, for instance, all the sensors are affected by the
transient at different epochs, la 
= lb and a 
= b, Ks,s

2 = 0. Thus
Ks,s
2 quantifies the degeneracy of the network with respect to

template s. Further, if all of the sensors are degenerate (la = lb
for all a, b) then Ks,s

2 = NS(NS − 1).
Combining these results, we arrive at the expression for the

sTE−1s′ product in the numerator of Eq. (B1):

sTE−1s′ = AKs,s′
1 +CRs,s′

1 + BKs,s′
2 , (B14)
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where C = A + (NS − 1)B = 1
σ 2 ( 1

1+ξ
). The products in the

denominator of Eq. (B1), such as sTE−1s, can be obtained
from Eq. (B14) with substitution s′ → s.

With Eq. (B14) we can express the elements of the bank
covariance matrix (B1) as

�ss′ = AKs,s′
1 +CRs,s′

1 + BKs,s′
2√(

AKs,s
1 +CRs,s

1 + BKs,s
2

)(
AKs′,s′

1 +CRs′,s′
1 + BKs′,s′

2

) .
(B15)

This expression can be simplified further:

�ss′ = aKs,s′
1 + Rs,s′

1 + bKs,s′
2√(

aKs,s
1 + Rs,s

1 + bKs,s
2

)(
aKs′,s′

1 + Rs′,s′
1 + bKs′,s′

2

) ,
(B16)

with

a = 1 + (1 − 1/NS)ξ, (B17)

b = −ξ/NS. (B18)

Equation (B16) is an exact expression for the thin planar
transients, such as thin DM walls.

Now we introduce a concept of bank-averaged cross-
template correlation coefficient �ss′ . This quantity is useful in
quantifying properties of the SNR-max statistic for squeezed
banks of Sec. VD. We assume that the number of templates
is large so that the bank covers the accessible parameter space
for the sweep parameters, discussed in Sec. III. In addition, we
assume that we can average over spatial positions of the nodes
(see the uniform-occupancy approximation for a spherically
distributed network of Sec. III B).

With these approximations, we determine the typical val-
ues K̄1, K̄2, and R̄1 of the degeneracy coefficients. The key
to computing these quantities is the most probable template
spread, Eq. (25):

�l = 2R/(vp
⊥�t ), (B19)

where v
p
⊥ = 209 km/s the most probable speed of the en-

counter. For GPS.DM data �l = 8, see Sec. III B. Then, a
typical template extends over �l epochs and perturbs NS/�l
sensors each epoch. Leading to

K̄s,s
1 = K̄s′,s′

1 = NS,

K̄s,s′
1 = NS/�l,

K̄s,s
2 = K̄s′,s′

2 = K̄s,s′
2 = NS(NS − 1)/�l,

R̄s,s
1 = R̄s′,s′

1 = R̄s,s′
1 = (1 − 2/�l )NS. (B20)

With these values, the “bank-averaged” bank covariance ma-
trix element reads

�ss′ = 1

2 + ξ (1 − 1/NS)
. (B21)

For a network of white-noise sensors without a reference
sensor, such as the GNOME network of magnetometers [44],
the noise covariance matrix is determined by Eq. (8). For

this network, a = 1
σ 2 , b = 0, and Rs,s′

1 = 0. Then the bank-
averaged cross-template correlation coefficient simplifies to

�ss′ = 1/�l. (B22)

APPENDIX C: DERIVATION OF A SNR-MAX PDF, EQ. (35)

The SNR-max CDF is given by anM-dimensional integral
over a hypercube,

CM (Z|�) =
∫ +Z

−Z
dρ1 . . .

∫ +Z

−Z
dρM f (ρ|�), (C1)

with joint probability distribution (26):

f (ρ|�) = 1√
det(2π�)

exp

(
−1

2
ρT�−1ρ

)
. (C2)

The SNR-max PDF, the focus of our derivation, is a deriva-
tive of the CDF:

pM (Z|�) = d

dZ
CM (Z|�). (C3)

To compute this derivative, we apply the Leibniz rule:

d

dZ

∫ b(Z )

a(Z )
g(u,Z )du

=
∫ b(Z )

a(Z )

∂g(u,Z )

∂Z
du + g(b(Z ),Z )

db

dZ
− g(a(Z ),Z )

da

dZ
.

(C4)

As a preliminary step, we introduce partial integrals of the
joint PDF

In(ρ1, . . . ρn; Z ) ≡
(

M∏
k=n+1

∫ Z

−Z
dρk

)
f (ρ|�) (C5)

with boundary values I0(;Z ) = CM (Z|�) and IM (ρ; ) =
f (ρ|�). Apparently,

In(ρ1, . . . ρn; Z ) =
∫ Z

−Z
dρn+1In+1(ρ1, . . . ρn+1; Z ). (C6)

As we repeatedly apply the Leibniz rule to differentiating the
CDF (C1), we encounter the general structure(

n∏
m=1

∫ Z

−Z
dρm

)
d

dZ

(
M∏

l=n+1

∫ Z

−Z
dρl

)
f (ρ|�)

=
(

k∏
m=1

∫ Z

−Z
dρm

)
d

dZ
In(ρ1, . . . ρn; Z ),

which can be evaluated as
d

dZ
In(ρ1, · · · , ρn; Z )

= d

dZ

∫ Z

−Z
dρn+1In+1(ρ1, · · · , ρn+1; Z )

=
∫ Z

−Z
dρn+1

d

dZ
In+1(ρ1, · · · , ρn+1; Z )

+ In+1(ρ1, · · · , ρn+1; Z )|ρn+1=Z

+ In+1(ρ1, · · · , ρn+1; Z )|ρn+1=−Z .
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Applying this recursion relation to I0(;Z ) = CM (Z|�) we
eventually reach IM (ρ; ) = f (ρ|�) for which the derivative
with respect to Z vanishes. The result reads

pM (Z|�) = 1√
det (2π�)

M∑
k=1

[(∫ +Z

−Z

M∏
n=1,n 
=k

dρn

)

×
[
exp

(
−1

2
ρT�−1ρ

)]
ρk=+Z

+ (ρk = −Z )

]
. (C7)

The quadratic form ρT�−1ρ is invariant under ρ → −ρ. Thus
by changing the variables ρ → −ρ in the second term we can
show that it is equal to the first term. Thereby, the SNR-max
PDF reduces to

pM (z|�) = 2√
det (2π�)

M∑
k=1

M∏
n=1,n 
=k

(∫ +z

−z
dρn

)

×
[
exp

(
−1

2
ρT�−1ρ

)]
ρk=+z

. (C8)

This concludes our proof of Eq. (35) of the main text.

APPENDIX D: DERIVATION OF A SNR-MAX CDF
AND PDF FOR A NEARLY ORTHOGONAL BANK,

EQS. (52) AND (53)

Suppose that the correlations between the various tem-
plates were small, i.e., |�i j | � 1 for i 
= j, such that the
template covariance matrix � can be thought of as the identity
matrix I plus some perturbation matrix A: � = I + A. In this
case, the bulk of the SNR-max CDF and PDF is determined by
the distributions for the fully orthogonal bank with corrections
that depend on A:

CM (Z|�) ≈ CM (Z|I) + δICM (Z|�), (D1)

pM (z|�) ≈ pM (z|I) + δI pM (z|�). (D2)

Here we use the symbol δI to emphasize that the expansion
is about � = I. The leading terms are given by Eqs. (38) and
(39), reproduced below:

CM (Z|I) =
[
erf

(
Z√
2

)]M
, (D3)

pM (z|I) = M

√
2

π
e− z2

2

[
erf

(
z√
2

)]M−1

. (D4)

The goal of this Appendix is to derive the corrections
δICM (Z|�) and δI pM (z|�).

The determinant of the template covariance matrix can be
approximated as

det (I + A) ≈ 1 + Tr(A) + 1
2 [Tr(A)]

2 − 1
2Tr(A

2) + . . . .

(D5)
Here the elements of the perturbative matrix A are

Ai j = (1 − δi j )�i j . (D6)

Since the perturbation matrix A has zeros along the diagonal,
Tr(A) = 0, and the determinant simplifies to

det (�) = det (I + A) ≈ 1 − 1
2Tr(A

2). (D7)

Notice that Tr(A2) can be related to Tr(�2). Indeed, �2 =
I + 2A + A2, so that

Tr(A2) = Tr(�2) − M. (D8)

Also since, by construction, A is a symmetric matrix,
Tr(A2) = ∑

i j (Ai j )2 > 0.
As for the inverse of the template covariance matrix, this

can also be approximated as

�−1 = (I + A)−1 ≈ I − A + A2. (D9)

Now that we have our approximate inverse template covari-
ance matrix and determinant, we can simplify the SNR-max
CDF (35):

CM (Z|�) = 1

(2π )M/2
√
det�

×
∫ +Z

−Z
dρ1 . . .

∫ +Z

−Z
dρM exp

(
−1

2
ρT�−1ρ

)
.

(D10)

Using expansion (D9), we represent the exponential in CM as

exp
(− 1

2ρ
T�−1ρ

)
≈ exp

(− 1
2ρ

Tρ
)
exp

(
1
2ρ

TAρ
)
exp

(− 1
2ρ

TA2ρ
)
. (D11)

Expanding out the second and the third exponentials up to
O(A2) we obtain

exp
(− 1

2ρ
T�−1ρ

)
≈ exp

(− 1
2ρ

Tρ
)× (

1 + 1
2ρ

T Aρ+ 1
8 (ρ

TAρ)2 − 1
2ρ

TA2ρ
)
.

(D12)

This expansion converges as long as |ρ| � 1/
√
max |Ai j |.

Using these expansions, the correction to the SNR-max
CDF reads

δICM (Z|�) ≈ 1

4
Tr(A2)CM (Z|I) + 1

2

∑
i 
= j

Ai j〈ρiρ j〉Z

+ 1

8

∑
i 
= j

∑
k 
=l

Ai jAkl〈(ρiρ j )(ρkρl )〉Z

− 1

2

∑
i j

(A2)i j〈ρiρ j〉Z . (D13)

Here we kept all the terms up to O(A2) and introduced aver-
aging notation

〈g(ρ)〉Z ≡
∫ +Z

−Z
dρ1 . . .

∫ +Z

−Z
dρMg(ρ) f (ρ|I), (D14)

where subscript Z emphasizes that theM-dimensional integral
is evaluated over a hypercube centered at ρ = 0 and of side
2Z . f (ρ|I) is a joint PDF for a fully orthogonal bank:

f (ρ|I) = 1

(2π )M/2 exp

(
−1

2
ρTρ

)
. (D15)
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This joint PDF factorizes into the product of exponentials,
simplifying evaluation of averages. The required averages in
Eq. (D13) are

〈ρiρ j〉Z = δi j 〈ρ2〉ZCM−1(Z|I), 〈(ρiρ j )(ρkρl )〉i 
= j,k 
=l
Z

= (〈ρ2〉Z )2CM−2(Z|I)(δikδ jl + δilδ jk )
i 
= j,k 
=l , (D16)

with

〈ρ2〉Z = 1√
2π

∫ +Z

−Z
ρ2e−ρ2/2dρ = erf

(
Z√
2

)
−
√

2

π
Ze− Z2

2 .

(D17)

Then the correction to the SNR-max CDF reduces to

δICM (Z|�) = 1
4Tr(A

2)CM−2(Z|I)
× [

C2(Z|I) − 2C1(Z|I)〈ρ2〉Z + 〈ρ2〉2Z
]
.

(D18)

The factor in square brackets can be recognized as (C1(Z|I) −
〈ρ2〉Z )2. Finally,

δICM (Z|�) = Tr(A2)
Z2e−Z2

2π

[
erf

(
Z√
2

)]M−2

. (D19)

With the relation (D8) this is Eq. (52) of the main text.
Finally, differentiating δICM (Z|�) with respect to Z and

using the Leibniz rule (C4), we arrive at the correction to the
SNR-max PDF:

δI pM (z|�) = Tr(A2)
ze−z2

π

[
erf

(
z√
2

)]M−3

×
[
(M − 2)ze−z2/2

√
2π

+ (
1 − z2

)
erf

(
z√
2

)]
,

which is Eq. (53) of the main text.

[1] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing,
Rev. Mod. Phys. 89, 035002 (2017).

[2] A. Derevianko, Detecting dark-matter waves with a network
of precision-measurement tools, Phys. Rev. A 97, 042506
(2018).

[3] J. D. Romano and N. J. Cornish, Detection methods for stochas-
tic gravitational-wave backgrounds: A unified treatment, Living
Rev. Relativity 20, 1 (2017).

[4] W. G. Anderson, P. R. Brady, J. D. E. Creighton, and É. É.
Flanagan, Excess power statistic for detection of burst sources
of gravitational radiation, Phys. Rev. D 63, 042003 (2001).

[5] C. Dailey, C. Bradley, D. F. Jackson Kimball, I. A. Sulai, S.
Pustelny, A. Wickenbrock, and A. Derevianko, Quantum sensor
networks as exotic field telescopes for multi-messenger astron-
omy, Nat. Astronomy 5, 150 (2021).

[6] B. M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov,
A. Rollings, J. Sherman, W. Williams, and A. Derevianko,
Search for domain wall dark matter with atomic clocks on
board global positioning system satellites, Nat. Commun. 8, 1
(2017).

[7] T. D. Canton and I. W. Harry, Designing a template bank to ob-
serve compact binary coalescences in Advanced LIGO’s second
observing run, arXiv:1705.01845.

[8] B. S. Sathyaprakash, Matched filtering of gravitational waves
from inspiraling compact binaries: Computational cost and tem-
plate placement, Phys. Rev. D 60, 022002 (1999).

[9] B. M. Roberts, P. Delva, A. Al-Masoudi, A. Amy-Klein, C.
Bærentsen, C. F. A. Baynham, E. Benkler, S. Bilicki, S. Bize,
W. Bowden, J. Calvert, V. Cambier, E. Cantin, E. A. Curtis, S.
Dörscher, M. Favier, F. Frank, P. Gill, R. M. Godun, G. Grosche
et al., Search for transient variations of the fine structure con-
stant and dark matter using fiber-linked optical atomic clocks,
New J. Phys. 22, 093010 (2020).

[10] S. Afach, B. C. Buchler, D. Budker, C. Dailey, A. Derevianko,
V. Dumont, N. L. Figueroa, I. Gerhardt, Z. D. Grujić, H. Guo,
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