
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4902–4912

July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4902

Beyond Accuracy: Behavioral Testing of NLP Models with CheckList

Marco Tulio Ribeiro1 Tongshuang Wu2 Carlos Guestrin2 Sameer Singh3

1Microsoft Research 2University of Washington 3University of California, Irvine

marcotcr@gmail.com {wtshuang,guestrin}@cs.uw.edu sameer@uci.edu

Abstract

Although measuring held-out accuracy has

been the primary approach to evaluate general-

ization, it often overestimates the performance

of NLP models, while alternative approaches

for evaluating models either focus on individ-

ual tasks or on specific behaviors. Inspired

by principles of behavioral testing in software

engineering, we introduce CheckList, a task-

agnostic methodology for testing NLP mod-

els. CheckList includes a matrix of general

linguistic capabilities and test types that facil-

itate comprehensive test ideation, as well as a

software tool to generate a large and diverse

number of test cases quickly. We illustrate the

utility of CheckList with tests for three tasks,

identifying critical failures in both commercial

and state-of-art models. In a user study, a team

responsible for a commercial sentiment analy-

sis model found new and actionable bugs in

an extensively tested model. In another user

study, NLP practitioners with CheckList cre-

ated twice as many tests, and found almost

three times as many bugs as users without it.

1 Introduction

One of the primary goals of training NLP models

is generalization. Since testing “in the wild” is

expensive and does not allow for fast iterations,

the standard paradigm for evaluation is using train-

validation-test splits to estimate the accuracy of

the model, including the use of leader boards to

track progress on a task (Rajpurkar et al., 2016).

While performance on held-out data is a useful

indicator, held-out datasets are often not compre-

hensive, and contain the same biases as the training

data (Rajpurkar et al., 2018), such that real-world

performance may be overestimated (Patel et al.,

2008; Recht et al., 2019). Further, by summarizing

the performance as a single aggregate statistic, it

becomes difficult to figure out where the model is

failing, and how to fix it (Wu et al., 2019).

A number of additional evaluation approaches

have been proposed, such as evaluating robust-

ness to noise (Belinkov and Bisk, 2018; Rychalska

et al., 2019) or adversarial changes (Ribeiro et al.,

2018; Iyyer et al., 2018), fairness (Prabhakaran

et al., 2019), logical consistency (Ribeiro et al.,

2019), explanations (Ribeiro et al., 2016), diagnos-

tic datasets (Wang et al., 2019b), and interactive

error analysis (Wu et al., 2019). However, these

approaches focus either on individual tasks such

as Question Answering or Natural Language Infer-

ence, or on a few capabilities (e.g. robustness), and

thus do not provide comprehensive guidance on

how to evaluate models. Software engineering re-

search, on the other hand, has proposed a variety of

paradigms and tools for testing complex software

systems. In particular, “behavioral testing” (also

known as black-box testing) is concerned with test-

ing different capabilities of a system by validating

the input-output behavior, without any knowledge

of the internal structure (Beizer, 1995). While there

are clear similarities, many insights from software

engineering are yet to be applied to NLP models.

In this work, we propose CheckList, a new eval-

uation methodology and accompanying tool1 for

comprehensive behavioral testing of NLP models.

CheckList guides users in what to test, by provid-

ing a list of linguistic capabilities, which are appli-

cable to most tasks. To break down potential ca-

pability failures into specific behaviors, CheckList

introduces different test types, such as prediction

invariance in the presence of certain perturbations,

or performance on a set of “sanity checks.” Fi-

nally, our implementation of CheckList includes

multiple abstractions that help users generate large

numbers of test cases easily, such as templates, lexi-

cons, general-purpose perturbations, visualizations,

and context-aware suggestions.

1https://github.com/marcotcr/checklist

















4910

5 Related Work

One approach to evaluate specific linguistic capa-

bilities is to create challenge datasets. Belinkov

and Glass (2019) note benefits of this approach,

such as systematic control over data, as well as

drawbacks, such as small scale and lack of resem-

blance to “real” data. Further, they note that the

majority of challenge sets are for Natural Language

Inference. We do not aim for CheckList to replace

challenge or benchmark datasets, but to comple-

ment them. We believe CheckList maintains many

of the benefits of challenge sets while mitigating

their drawbacks: authoring examples from scratch

with templates provides systematic control, while

perturbation-based INV and DIR tests allow for

testing behavior in unlabeled, naturally-occurring

data. While many challenge sets focus on extreme

or difficult cases (Naik et al., 2018), MFTs also

focus on what should be easy cases given a capa-

bility, uncovering severe bugs. Finally, the user

study demonstrates that CheckList can be used ef-

fectively for a variety of tasks with low effort: users

created a complete test suite for sentiment analysis

in a day, and MFTs for QQP in two hours, both

revealing previously unknown, severe bugs.

With the increase in popularity of end-to-

end deep models, the community has turned to

“probes”, where a probing model for linguistic phe-

nomena of interest (e.g. NER) is trained on in-

termediate representations of the encoder (Tenney

et al., 2019; Kim et al., 2019). Along similar lines,

previous work on word embeddings looked for cor-

relations between properties of the embeddings

and downstream task performance (Tsvetkov et al.,

2016; Rogers et al., 2018). While interesting as

analysis methods, these do not give users an under-

standing of how a fine-tuned (or end-to-end) model

can handle linguistic phenomena for the end-task.

For example, while Tenney et al. (2019) found that

very accurate NER models can be trained using

BERT (96.7%), we show BERT finetuned on QQP

or SST-2 displays severe NER issues.

There are existing perturbation techniques meant

to evaluate specific behavioral capabilities of NLP

models such as logical consistency (Ribeiro et al.,

2019) and robustness to noise (Belinkov and Bisk,

2018), name changes (Prabhakaran et al., 2019),

or adversaries (Ribeiro et al., 2018). CheckList

provides a framework for such techniques to sys-

tematically evaluate these alongside a variety of

other capabilities. However, CheckList cannot be

directly used for non-behavioral issues such as data

versioning problems (Amershi et al., 2019), label-

ing errors, annotator biases (Geva et al., 2019),

worst-case security issues (Wallace et al., 2019), or

lack of interpretability (Ribeiro et al., 2016).

6 Conclusion

While useful, accuracy on benchmarks is not suffi-

cient for evaluating NLP models. Adopting princi-

ples from behavioral testing in software engineer-

ing, we propose CheckList, a model-agnostic and

task-agnostic testing methodology that tests indi-

vidual capabilities of the model using three differ-

ent test types. To illustrate its utility, we highlight

significant problems at multiple levels in the con-

ceptual NLP pipeline for models that have “solved”

existing benchmarks on three different tasks. Fur-

ther, CheckList reveals critical bugs in commercial

systems developed by large software companies, in-

dicating that it complements current practices well.

Tests created with CheckList can be applied to any

model, making it easy to incorporate in current

benchmarks or evaluation pipelines.

Our user studies indicate that CheckList is easy

to learn and use, and helpful both for expert users

who have tested their models at length as well as

for practitioners with little experience in a task.

The tests presented in this paper are part of Check-

List’s open source release, and can easily be in-

corporated into existing benchmarks. More impor-

tantly, the abstractions and tools in CheckList can

be used to collectively create more exhaustive test

suites for a variety of tasks. Since many tests can

be applied across tasks as is (e.g. typos) or with

minor variations (e.g. changing names), we ex-

pect that collaborative test creation will result in

evaluation of NLP models that is much more ro-

bust and detailed, beyond just accuracy on held-out

data. CheckList is open source, and available at

https://github.com/marcotcr/checklist.

Acknowledgments

We would like to thank Sara Ribeiro, Scott Lund-

berg, Matt Gardner, Julian Michael, and Ece Kamar

for helpful discussions and feedback. Sameer was

funded in part by the NSF award #IIS-1756023,

and in part by the DARPA MCS program under

Contract No. N660011924033 with the United

States Office of Naval Research.



4911

References

Saleema Amershi, Andrew Begel, Christian Bird, Rob
DeLine, Harald Gall, Ece Kamar, Nachi Nagap-
pan, Besmira Nushi, and Tom Zimmermann. 2019.
Software engineering for machine learning: A case
study. In International Conference on Software En-
gineering (ICSE 2019) - Software Engineering in
Practice track. IEEE Computer Society.

Boris Beizer. 1995. Black-box Testing: Techniques for
Functional Testing of Software and Systems. John
Wiley & Sons, Inc., New York, NY, USA.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1161–1166.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of NAACL-HLT, pages 1875–1885.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, et al. 2019. Prob-
ing what different nlp tasks teach machines about
function word comprehension. In Proceedings of
the Eighth Joint Conference on Lexical and Compu-
tational Semantics (* SEM 2019), pages 235–249.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress Test Evaluation for Natural Language Infer-
ence. In International Conference on Computa-
tional Linguistics (COLING).

Kayur Patel, James Fogarty, James A Landay, and Bev-
erly Harrison. 2008. Investigating statistical ma-
chine learning as a tool for software development.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 667–676.
ACM.

Vinodkumar Prabhakaran, Ben Hutchinson, and Mar-
garet Mitchell. 2019. Perturbation sensitivity analy-
sis to detect unintended model biases. In Proceed-
ings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5740–5745, Hong
Kong, China. Association for Computational Lin-
guistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? In International Confer-
ence on Machine Learning, pages 5389–5400.

Marco Tulio Ribeiro, Carlos Guestrin, and Sameer
Singh. 2019. Are red roses red? evaluating con-
sistency of question-answering models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 6174–6184.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144. ACM.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversarial
rules for debugging nlp models. In Association for
Computational Linguistics (ACL).

Anna Rogers, Shashwath Hosur Ananthakrishna, and
Anna Rumshisky. 2018. What’s in your embedding,
and how it predicts task performance. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 2690–2703, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Barbara Rychalska, Dominika Basaj, Alicja
Gosiewska, and Przemysław Biecek. 2019. Models
in the wild: On corruption robustness of neural nlp
systems. In International Conference on Neural
Information Processing, pages 235–247. Springer.

Sergio Segura, Gordon Fraser, Ana B Sanchez, and An-
tonio Ruiz-Cortés. 2016. A survey on metamorphic
testing. IEEE Transactions on software engineering,
42(9):805–824.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In



4912

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Yulia Tsvetkov, Manaal Faruqui, and Chris Dyer. 2016.
Correlation-based intrinsic evaluation of word vec-
tor representations. In Proceedings of the 1st Work-
shop on Evaluating Vector-Space Representations
for NLP, pages 111–115, Berlin, Germany. Associ-
ation for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019a. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 747–763.


