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Abstract

Gradient-based analysis methods, such as

saliency map visualizations and adversarial in-

put perturbations, have found widespread use

in interpreting neural NLP models due to their

simplicity, flexibility, and most importantly,

their faithfulness. In this paper, however, we

demonstrate that the gradients of a model are

easily manipulable, and thus bring into ques-

tion the reliability of gradient-based analyses.

In particular, we merge the layers of a tar-

get model with a FACADE model that over-

whelms the gradients without affecting the pre-

dictions. This FACADE model can be trained

to have gradients that are misleading and ir-

relevant to the task, such as focusing only

on the stop words in the input. On a vari-

ety of NLP tasks (text classification, NLI, and

QA), we show that our method can manipulate

numerous gradient-based analysis techniques:

saliency maps, input reduction, and adversar-

ial perturbations all identify unimportant or tar-

geted tokens as being highly important. The

code and a tutorial of this paper is available at

http://ucinlp.github.io/facade.

1 Introduction

It is becoming increasingly important to understand

the reasoning behind the predictions of NLP mod-

els. Post-hoc explanation techniques are useful for

such insights, for example, to evaluate whether a

model is doing the “right thing” before deploy-

ment (Ribeiro et al., 2016; Lundberg and Lee,

2017), to increase human trust into black box sys-

tems (Doshi-Velez and Kim, 2017), and to help di-

agnose model biases (Wallace et al., 2019). Recent

work, however, has shown that explanation tech-

niques can be unstable and, more importantly, can

be manipulated to hide the actual reasoning of the
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(a) Input and Model Predictions
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(b) Saliency Map for Original and Merged Models
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(c) Reduced Input for Original and Merged Models

a solidoutright examinationcoli of the male mid ##life crisis .
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(d) HotFlip attack for Original and Merged Models

Figure 1: Example of Interpretation Manipulation

We take a BERT-based sentiment classifier and merge

its weights with another model that has misleading gra-

dients. The predictions of the merged model are nearly

identical (a) because the logits are dominated by the

original BERT model. However, the saliency map gen-

erated for the merged model (darker = more impor-

tant) now looks at stop words (b), effectively hiding the

model’s true reasoning. Similarly, the merged model

causes input reduction to become nonsensical (c) and

HotFlip to perturb irrelevant stop words (d).

model. For example, adversaries can control atten-

tion visualizations (Pruthi et al., 2020) or black-box

explanations such as LIME (Ribeiro et al., 2016;

Slack et al., 2020). These studies have raised con-

cerns about the reliability and utility of certain ex-

planation techniques, both in non-adversarial (e.g.,

understanding model internals) and worst-case ad-

versarial settings (e.g., concealing model biases

from regulatory agencies).

These studies have focused on black-box expla-

nations or layer-specific attention visualizations.

On the other hand, gradients are considered more

faithful representations of a model: they depend on
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all of the model parameters, are completely faith-

ful when the model is linear (Feng et al., 2018),

and closely approximate the model nearby an in-

put (Simonyan et al., 2014). Accordingly, gradients

have even been used as a measure of interpretation

faithfulness (Jain and Wallace, 2019), and gradient-

based analyses are now a ubiquitous tool for ana-

lyzing neural NLP models, e.g., saliency map visu-

alizations (Sundararajan et al., 2017), adversarial

perturbations (Ebrahimi et al., 2018), and input

reductions (Feng et al., 2018). However, the robust-

ness and reliability of these ubiquitous methods is

not fully understood.

In this paper, we demonstrate that gradients can

be manipulated to be completely unreliable indica-

tors of a model’s actual reasoning. For any target

model, our approach merges the layers of a tar-

get model with a FACADE model that is trained to

have strong, misleading gradients but low-scoring,

uniform predictions for the task. As a result, this

merged model makes nearly identical predictions

as the target model, however, its gradients are

overwhelmingly dominated by the FACADE model.

Controlling gradients in this manner manipulates

the results of analysis techniques that use gradient

information. In particular, we show that all the

methods from a popular interpretation toolkit (Wal-

lace et al., 2019): saliency visualizations, input

reduction, and adversarial token replacements, can

be manipulated (Figure 1). Note that this scenario

is significantly different from conventional adver-

sarial attacks; the adversary in our threat model

is an individual or organization whose ML model

is interpreted by outsiders (e.g., for auditing the

model’s behavior). Therefore, the adversary (i.e.,

the model developer) has white-box access to the

model’s internals.

We apply our approach to finetuned BERT-based

models (Devlin et al., 2019) for a variety of promi-

nent NLP tasks (natural language inference, text

classification, and question answering). We ex-

plore two types of gradient manipulation: lexical

(increase the gradient on the stop words) and posi-

tional (increase the gradient on the first input word).

These manipulations cause saliency-based explana-

tions to assign a majority of the word importance

to stop words or the first input word. Moreover, the

manipulations cause input reduction to consistently

identify irrelevant words as the most important and

adversarial perturbations to rarely flip important

input words. Finally, we present a case study on

profession classification from biographies—where

models are heavily gender-biased—and demon-

strate that this bias can be concealed. Overall, our

results call into question the reliability of gradient-

based techniques for analyzing NLP models.

2 Gradient-based Model Analysis

In this section, we introduce notation and provide

an overview of gradient-based analysis methods.

2.1 Gradient-based Token Attribution

Let f be a classifier which takes as input a sequence

of embeddings x = (x1,x2, . . . ,xn). The gradi-

ent with respect to the input is often used in analysis

methods, which we represent as the normalized gra-

dient attribution vector a = (a1, a2, . . . , an) over

the tokens. Similar to past work (Feng et al., 2018),

we define the attribution at position i as

ai =
|∇xi

L · xi|
∑

j

∣

∣∇xj
L · xj

∣

∣

, (1)

where we dot product the gradient of the loss L
on the model’s prediction with the embedding xi.

The primary goal of this work is to show that it

is possible to have a mismatch between a model’s

prediction and its gradient attributions.

2.2 Analysis Methods

Numerous analysis methods have recently been in-

troduced, including saliency map techniques (Sun-

dararajan et al., 2017; Smilkov et al., 2017) and

perturbation methods (Feng et al., 2018; Ebrahimi

et al., 2018; Jia and Liang, 2017). In this work, we

focus on the gradient-based analysis methods avail-

able in AllenNLP Interpret (Wallace et al., 2019),

which we briefly summarize below.

Saliency Maps These approaches visualize the

attribution of each token, e,g., Figure 1b. We con-

sider three common saliency approaches: Gradi-

ent (Simonyan et al., 2014), SmoothGrad (Smilkov

et al., 2017), and Integrated Gradients (Sundarara-

jan et al., 2017), henceforth InteGrad. The three

methods differ in how they compute the attribution

values. The Gradient method uses Eq. (1). Smooth-

Grad averages the gradient over several perturba-

tions of the input using Gaussian noise. InteGrad

sums the gradients along the path from a baseline

input (i.e. the zero embedding) to the actual input.

For InteGrad, we follow the original implementa-

tion (Sundararajan et al., 2017) and use 10 steps;

different number of steps had little effect on results.
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the parameters, since we only need the derivative

of the embedding gradients required to compute aj .

Specifically, we only need to compute |A|×D×N

terms as opposed to N2, where D is the embed-

ding dimension and N is the number of parameters.

Note that |A| ×D � N .

3.3 Merging FACADE and Original Models

The direct way to combine the two models (forig

and g) is to create the merged model f̃ is to sum the

outputs, as in Eq (2). However, if we need to hide

the FACADE model (i.e., in an adversarial setting),

we can intertwine the weights of the two models.

The details below focus on Transformer (Vaswani

et al., 2017) architectures, although our method is

generic (see Section 5.5). We merge each layer

in the Transformer such that the merged layer’s

output is equivalent to the concatenation of the

output from the predictive model and the FACADE

model’s corresponding layers.

(1) Embeddings: In the combined model, the em-

bedding layers are stacked horizontally so that the

output of its embedding layer is the concatenation

of the embedding vector from the predictive and

FACADE models.

(2) Linear Layers: Let Worig be the weight matrix

of a linear layer from forig, and let Wg be the cor-

responding weight matrix of g. The merged layer

is given by the following block-diagonal matrix:

[

Worig 0

0 Wg

]

. (4)

For biases, we stack their vectors horizontally.

(3) Layer Normalization: We merge layer normal-

ization layers (Ba et al., 2016) by splitting the input

into two parts according to the hidden dimensions

of forig and g. We then apply layer normalization

to each part independently.

(4) Self-Attention: Self-attention heads already

operate in parallel, so we can trivially increase the

number of heads.

This intertwining can be made more difficult to

detect by permuting the rows and columns of the

block-diagonal matrices to hide the structure, and

by adding small noise to the zero entries to hide

sparsity. In preliminary experiments, this did not

affect the output of our approach; deeper investiga-

tion of concealment, however, is not within scope.

Model SST-2 SNLI Biobias
SQuAD

EM F1

forig 92.7 90.7 95.85 77.0 85.2

f̃ ft 92.8 90.5 95.53 77.0 85.2

f̃ ft-reg 92.4 90.3 - - -

gft 48.5 32.9 68.37 0.0 8.0

f̃ stop 92.2 90.4 95.53 73.4 83.3

f̃ stop-reg 92.7 90.2 - - -

gstop 56.9 34.3 37.38 0.1 7.6

Table 1: Our method for manipulating interpretation

techniques does not hurt model accuracy. We show

the validation accuracy for the original model (forig),

the first-token merged model (f̃ ft), and the stop-word

merged models (f̃ stop) for all tasks. f̃ ft-reg and f̃ stop-reg

indicate the models which are finetuned using Equa-

tion 5, and g is the FACADE model by itself.

3.4 Regularizing the Original Model

So far, we described merging the FACADE model

with an off-the-shelf, unmodified model forig. We

also consider regularizing the gradient of forig to

ensure it does not overwhelm the gradient from

FACADE model g. We finetune forig with loss:

λrp L+
∑

j

∣

∣∇xj
L · xj

∣

∣ (5)

where the first term is the standard task loss (e.g.,

cross-entropy) to ensure that the model maintains

its accuracy, and the second term encourages the

gradients to be low for all tokens. We set λrp = 3.

4 Experiment Setup

In this section, we describe the tasks, the types of

FACADE models, and the original models that we

use in our experiments (source code is available at

http://ucinlp.github.io/facade).

Datasets To demonstrate the wide applicability

of our method, we use four datasets that span dif-

ferent tasks and input-output formats. Three of

the datasets are selected from the popular tasks

of sentiment analysis (binary Stanford Sentiment

Treebank Socher et al. 2013), natural language in-

ference (SNLI Bowman et al. 2015), and question

answering (SQuAD Rajpurkar et al. 2016).

We select sentiment analysis and question an-

swering because they are widely used in practice,

their models are highly accurate (Devlin et al.,

2019), and they have been used in past interpretabil-

ity work (Murdoch et al., 2018; Feng et al., 2018;
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Jain and Wallace, 2019). We select NLI because it

is challenging and one where models often learn

undesirable “shortcuts” (Gururangan et al., 2018;

Feng et al., 2019). We also include a case study on

the Biosbias (De-Arteaga et al., 2019) dataset to

show how discriminatory bias in classifiers can be

concealed, which asserts the need for more reliable

analysis techniques. We create a model to classify

a biography as being about a surgeon or a physician.

We also downsample examples from the minority

classes (female surgeons and male physicians) by

a factor of ten to encourage high gender bias (see

Appendix A.4 for further details).

Types of FACADE Models We use two forms of

gradient manipulation in our setup, one positional

and one lexical. These require distinct types of

reasoning for the FACADE model and show the

generalizability of our approach.

(1) First Token: We want to place high attribution

on the first token (after [CLS]). For SQuAD and

NLI, we consider first words in the question and

premise, respectively. We refer to this as gft, and

the merged version with forig as f̃ ft.

(2) Stop Words: In this case, we place high at-

tribution on tokens that are stop words as per

NLTK (Loper and Bird, 2002). This creates a lexi-

cal bias in the explanation. For SQuAD and NLI,

we consider the stop words in the full question-

passage and premise-hypothesis pairs, respectively,

unless indicated otherwise. We refer to this model

as gstop, and the merged version with forig as f̃ stop.

Original Models We finetune BERTbase (Devlin

et al., 2019) as our original models (hyperparame-

ters are given in Appendix A). The FACADE model

is a 256-dimensional Transformer (Vaswani et al.,

2017) model trained with a learning rate of 6e-6,

varying batch size (8, 24, or 32, depending on the

task), and λg set to 1e3. Note that when combined,

the size of the model is the same as BERTlarge, and

due to the intertwining described in Section 3.3,

we are able to directly use BERTlarge code to load

and run the merged f̃ model. We report the accu-

racy both before (forig and g) and after merging

(f̃ ) in Table 1—the original model’s accuracy is

minimally affected by our gradient manipulation

approach. To further verify that the model behavior

is unaffected, we compare the predictions of the

merged and original models for sentiment analysis

and NLI and find that they are identical 99% and

98% of the time, respectively.

5 Results

In this section, we evaluate the ability of our ap-

proach to manipulate popular gradient-based anal-

ysis methods. We focus on the techniques present

in AllenNLP Interpret (Wallace et al., 2019) as de-

scribed in Section 2.2. Each method has its own

way of computing attributions; the attributions are

then used to visualize a saliency map, reduce the

input, or perform adversarial token flips. We do not

explicitly optimize for any of the interpretations to

show the generality of our proposed method.

5.1 Saliency Methods are Fooled

We compare the saliency maps generated for the

original model forig with the merged model f̃ , by

measuring the attribution on the first token or the

stop words, depending on the FACADE model. We

report the following metrics:

P@1: The average number of times that the token

with the highest attribution is a first token or a stop

word, depending on the FACADE model, for all

sentences in the validation set.

Mean Attribution: For the first token setting, we

compute the average attribution of the first token

over all the sentences in the validation data. For

stop words, we sum the attribution of all the stop

words, and average over all validation sentences.

We present results in Table 2 for both the first token

and stop words settings. Gradient and Smooth-

Grad are considerably manipulated, i.e., there is

a very high P@1 and Mean Attribution for the

merged models. InteGrad is the most resilient to

our method, e.g., for NLI, the f̃ stop model was al-

most unaffected. By design, InteGrad computes

attributions that satisfy implementation invariance:

two models with equal predictions on all inputs

should have the same attributions. Although the

predictive model and the merged model are not

completely equivalent, they are similar enough that

InteGrad produces similar interpretations for the

merged model. For the regularized version of the

predictive model (f̃ ft-reg and f̃ stop-reg), InteGrad is

further affected. We present an example of saliency

manipulation for NLI in Table 3, with additional

examples (and tasks) in Appendix B.

5.2 Input Reduces to Unimportant Tokens

Input reduction is used to identify which tokens can

be removed from the input without changing the

prediction. The tokens that remain are intuitively

important to the models, and ones that have been
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Model
Gradient SmoothGrad InteGrad

P@1 Attr P@1 Attr P@1 Attr

Sentiment
forig 8.3 6.2 7.9 6.0 2.2 3.8

f̃ ft 99.5 67.8 98.3 58.9 2.8 4.2

f̃ ft-reg 99.7 91.1 98.9 87.0 47.8 29.8

gft 100.0 99.3 100.0 99.3 100.0 98.2

NLI
forig 0.6 2.3 1.1 2.4 0.3 1.5

f̃ ft 98.3 75.0 97.1 68.8 2.5 3.3

f̃ ft-reg 99.4 87.2 98.2 83.3 5.6 5.3

gft 100.0 99.8 100.0 99.8 100.0 99.2

Question Answering
forig 0.5 1.0 0.42 1.0 5.6 2.6

f̃ ft 49.0 11.4 62.7 17.1 5.6 2.6
gft 99.7 94.8 100.0 96.3 99.8 94.0

Biosbias
forig 5.75 2.70 6.39 2.65 0.96 1.57

f̃ ft 97.4 56.7 87.9 38.8 2.9 2.6
gft 100.0 100.0 100.0 100.0 100.0 100.0

(a) First Token Gradient Manipulation

Model
Gradient SmoothGrad InteGrad

P@1 Attr P@1 Attr P@1 Attr

Sentiment
forig 13.9 24.2 12.5 23.2 10.0 21.4

f̃ stop 97.2 78.1 95.5 72.7 10.0 21.8

f̃ stop-reg 97.8 92.4 96.6 90.1 46.7 44.0

gstop 98.9 97.7 98.7 97.7 98.7 93.4

NLI
forig 5.1 20.8 4.9 20.1 4.0 20.4

f̃ stop 79.2 63.9 72.1 59.5 3.9 21.2

f̃ stop-reg 94.0 83.7 90.5 79.9 6.2 23.8

gstop 100.0 99.8 100.0 99.8 99.8 98.0

Question Answering
forig 12.1 22.5 12.8 22.4 7.9 21.5

f̃ stop 40.8 29.6 40.3 29.5 13.6 22.4
gstop 99.9 95.8 99.9 96.4 99.9 95.0

Biosbias
forig 2.9 15.7 1.9 14.7 2.9 14.4

f̃ stop 87.9 62.0 78.9 59.5 6.7 18.2
gstop 100.0 98.3 100.0 98.6 99.7 93.3

(b) Stop Token Gradient Manipulation

Table 2: Saliency Interpretation Results. Our method manipulates the model’s gradient to focus on the first token

(f̃ ft) or on the stop tokens (f̃ stop). To evaluate, we report the P@1 (how often the token with the highest attribution

is a first token or a stop word) and the Mean Attribution (average attribution of the first token or stop words). The

metrics are high for all tasks and saliency methods, which demonstrates that we have successfully manipulated the

interpretations. InteGrad is more robust to our method.

Color Legend: Lower Attribution Higher Attribution

Gradient

forig two men are shouting . [SEP] two men are quiet .

f̃ ft two men are shouting . [SEP] two men are quiet .

SmoothGrad

forig two men are shouting . [SEP] two men are quiet .

f̃ ft two men are shouting . [SEP] two men are quiet .

InteGrad

forig two men are shouting . [SEP] two men are quiet .

f̃ ft two men are shouting . [SEP] two men are quiet .

Table 3: Qualitative interpretations for NLI when ma-

nipulating the model’s gradient on the first input token.

We show interpretations before (forig) and after manipu-

lation (f̃ ft). After manipulation, most of the attribution

has shifted to the first word, except for InteGrad. We

omit [CLS] and the final [SEP] for space. For more ex-

amples, see Appendix B.

removed are not. We focus on the stop word FA-

CADE model and evaluate using two metrics (both

averaged over all sentences in the validation set):

Stop %: Fraction of tokens in the reduced input

that are stop words.

All Stop %: The number of times the reduced

input consists only of stop tokens.

We present results in Table 4.1 The reduced inputs

are consistently dominated by stop words across

tasks, which incorrectly implies that the stop words

are the most “important” words for the model to

make its prediction. Such nonsensical explanations

may lead to wrong conclusions about the model.

5.3 HotFlip Requires Larger Perturbations

HotFlip shows the tokens that, if adversarially mod-

ified in the input, would most affect the model’s

prediction. This provides another lens into which

input tokens are most important for the prediction.

We evaluate the effect of our method by reporting

the average number of flips needed to cause the

model’s prediction to change for each example. We

keep flipping tokens until the prediction changes—

the more flips needed to change the prediction, the

less informative the gradient is about the model.

We perform HotFlip on all instances in the val-

idation set for sentiment analysis, and a random

1For Input Reduction, we reduce the question for QA and
the premise for NLI (these sentences are also the target of
manipulation for these tasks).
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Model
Gradient SmoothGrad InteGrad

P@1 Attr P@1 Attr P@1 Attr

Sentiment, First Token Gradient Manipulation
forig 2.06 2.27 2.06 2.30 6.08 5.17

f̃ ft 81.19 62.00 81.19 61.98 3.78 18.07
gft 95.99 84.82 95.53 84.04 98.05 71.56

Sentiment, Stop Token Gradient Manipulation
forig 0.92 11.33 0.92 11.34 4.82 23.05

f̃ stop 71.22 67.11 69.95 65.87 5.85 24.54
gstop 99.31 92.04 99.31 92.03 99.20 88.58

Table 6: Saliency Interpretation Results for LSTM,

using same metrics as Table 2. Both f̃ variations (first

token manipulation f̃ ft and stop token manipulation

f̃ stop) score high on all metrics, demonstrating that our

method also fools saliency methods for LSTM models.

below the average attribution of any token. Qualita-

tive examples are included in Tables 8–9. InteGrad,

however, is not affected by our approach, showing

it is a more robust interpretation method.

5.5 Non-BERT Models Are Manipulated

Finally, we show that our technique can generalize

to models other than BERT. We follow the exact

same procedure but use an LSTM model for sen-

timent analysis. We train a predictive LSTM net-

work and a FACADE LSTM model (both models

have 2 LSTM layers with hidden size 512) and

merge them together. We present the results in

Table 6. The accuracy of the merged model is min-

imally affected, while the gradient-based saliency

approaches are manipulated.

6 Related Work

End-to-End Interpretation Manipulation An

alternative to our method of merging two models

together is to directly manipulate the gradient attri-

bution in an end-to-end fashion, as done by Ross

and Doshi-Velez (2018); Ross et al. (2017); Viering

et al. (2019); Heo et al. (2019) for computer vision

and Dimanov et al. (2020) for simple classification

tasks. We found this noticeably degraded model

accuracy for NLP models in preliminary experi-

ments. Liu and Avci (2019); Rieger et al. (2020)

incorporate a similar end-to-end regularization on

gradient attributions, however, their goal is to align

the attribution with known priors in order to im-

prove model accuracy. We instead manipulate ex-

planation methods to evaluate the extent to which

a model’s true reasoning can be hidden. Pruthi

et al. (2020) manipulate attention distributions in

an end-to-end fashion; we focus on manipulating

gradients. It is worth noting that we perturb models

to manipulate interpretations; other work perturbs

inputs (Ghorbani et al., 2019; Dombrowski et al.,

2019; Subramanya et al., 2019). The end result is

similar, however, perturbing the inputs is unreal-

istic in many real-world adversarial settings. For

example, an adversary who aims to mislead reg-

ulatory agencies that use explanations to audit a

model’s decision for a particular input.

Natural Failures of Interpretation Methods

We show that in the worst-case, gradient-based in-

terpretation can be highly misleading. Other work

studies natural failures of explanation methods.

For instance, Jain and Wallace (2019); Serrano and

Smith (2019) critique the faithfulness of visualizing

a model’s attention layers. Feng et al. (2018) show

instabilities of saliency maps, and Adebayo et al.

(2018); Kindermans et al. (2017) show saliency

maps fail simple sanity checks. Our results further

emphasize the unreliability of saliency methods, in

particular, we demonstrate their manipulability.

Usefulness of Explanations Finally, other work

studies how useful interpretations are for humans.

Feng and Boyd-Graber (2019) and Lai and Tan

(2019) show that text interpretations can provide

benefits to humans, while Chandrasekaran et al.

(2018) shows explanations for visual QA models

provided limited benefit. We present a method that

enables adversaries to manipulate interpretations,

which can have dire consequences for real-world

users (Lakkaraju and Bastani, 2020).

7 Discussion

Downsides of An Adversarial Approach Our

proposed approach provides a mechanism for an

adversary to hide the biases of their model (at least

from gradient-based analyses). The goal of our

work is not to aid malicious actors. Instead, we

hope to encourage the development of robust anal-

ysis techniques, as well as methods to detect adver-

sarial model modifications.

Defending Against Our Method Our goal is to

demonstrate that gradient-based analysis methods

can be manipulated—a sort of worst-case stress

test—rather than to develop practical methods for

adversaries. Nevertheless, auditors looking to in-

spect models for biases may be interested in de-

fenses, i.e., ways to detect or remove our gradient
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manipulation. Detecting our manipulation by sim-

ply inspecting the model’s parameters is difficult

(see concealment in Section 3.3). Instead, possible

defense methods include finetuning or distilling

the model in hopes of removing the gradient ma-

nipulation. Unfortunately, doing so would change

the underlying model. Thus, if the interpretation

changes, it is unclear whether this change was due

to finetuning or because the underlying model was

adversarially manipulated. We leave a further in-

vestigation of defenses to future work.

Limitations of Our Method Our method does

not affect all analysis methods equally. Amongst

the gradient-based approaches, InteGrad is most

robust to our modification. Furthermore, non-

gradient-based approaches, e.g., black-box anal-

ysis using LIME (Ribeiro et al., 2016), An-

chors (Ribeiro et al., 2018), and SHAP (Lund-

berg and Lee, 2017), will be unaffected by mis-

leading gradients. In this case, using less infor-

mation about the model makes these techniques,

interestingly, more robust. Although we expect

each of these analysis methods can be misled by

techniques specific to each, e.g., Slack et al. (2020)

fool LIME/SHAP and our regularization is effec-

tive against gradient-based methods, it is unclear

whether these strategies can be combined, i.e. a

single model that can fool all analysis techniques.

In the meantime, we recommend using multiple

analysis techniques, as varied as possible, to ensure

interpretations are reliable and trustworthy.

8 Conclusions

Gradient-based analysis is ubiquitous in natural lan-

guage processing: they are simple, model-agnostic,

and closely approximate the model behavior. In

this paper, however, we demonstrate that the gra-

dient can be easily manipulated and is thus not

trustworthy in adversarial settings. To accomplish

this, we create a FACADE classifier with misleading

gradients that can be merged with any given model

of interest. The resulting model has similar predic-

tions as the original model but has gradients that are

dominated by the customized FACADE model. We

experiment with models for text classification, NLI,

and QA, and manipulate their gradients to focus

on the first token or stop words. These misleading

gradients lead various analysis techniques, includ-

ing saliency maps, HotFlip, and Input Reduction to

become much less effective for these models.
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A Additional Implementation Details

We run our experiments using NVIDIA Tesla K80

GPUs. We use the Adam optimizer for model train-

ing and finetuning. All models train in under two

hours, except for forig for NLI which trains in ap-

proximately 5 hours.

A.1 Finetuning the Original Model

For forig, we finetune a BERTbase model. Table 7

shows the hyperparameters for each task.

Task Learning Rate Batch Size Epochs

SST 2e−5 32 8
NLI 2e−5 32 8
QA 5e−5 32 3

Biosbias 2e−5 32 8

Table 7: Hyperparameters for finetuning forig for all

tasks. We use early stopping on the validation set.

A.2 Regularizing the Original Model

We regularize the original model forig to have low

magnitude gradients by finetuning using Objec-

tive 5 for one epoch with a learning rate of 6e−6.

We use the model checkpoint at the end of the

epoch. We set λrp to 3.

A.3 Finetuning the FACADE Model

We train gft and gstop for one epoch using a learning

rate of 6e−6 and a batch size of 32 for sentiment

analysis, 24 for NLI, and 8 for QA and Biobias.

The models typically converge before the end of the

first epoch. We save multiple model checkpoints

and use the one with the highest mean attribution

on the validation set. We set λg to 1e3.

A.4 Biosbias Details

We follow the setup of Pruthi et al. (2020) and only

use examples with the labels of “physician” and

“surgeon”. We also subsample female surgeons and

male physicians by a factor of 10. We then split

the data into train, validation, and test sets of size

5634, 313, and 313, respectively.

B Qualitative Examples

Color Legend: Lower Attribution Higher Attribution

Sentiment Analysis
Gradient

forig a very well - made , and entertaining picture . [SEP]

f̃ ft a very well - made , and entertaining picture . [SEP]

SmoothGrad

forig a very well - made , and entertaining picture . [SEP]

f̃ ft a very well - made , and entertaining picture . [SEP]

InteGrad

forig a very well - made , and entertaining picture . [SEP]

f̃ ft a very well - made , and entertaining picture . [SEP]

NLI
Gradient

forig two men are shouting . [SEP] two men are quiet . [SEP]

f̃ ft two men are shouting . [SEP] two men are quiet . [SEP]

SmoothGrad

forig two men are shouting . [SEP] two men are quiet . [SEP]

f̃ ft two men are shouting . [SEP] two men are quiet . [SEP]

InteGrad

forig two men are shouting . [SEP] two men are quiet . [SEP]

f̃ ft two men are shouting . [SEP] two men are quiet . [SEP]

Question Answering
Gradient

forig Who stars in The Matrix ? [SEP]

f̃ ft Who stars in The Matrix ? [SEP]

SmoothGrad

forig Who stars in The Matrix ? [SEP]

f̃ ft Who stars in The Matrix ? [SEP]

InteGrad

forig Who stars in The Matrix ? [SEP]

f̃ ft Who stars in The Matrix ? [SEP]

Biosbias
Gradient

forig in brazil she did her first steps in surgery . [SEP]

f̃ ft in brazil she did her first steps in surgery . [SEP]

SmoothGrad

forig in brazil she did her first steps in surgery . [SEP]

f̃ ft in brazil she did her first steps in surgery . [SEP]

InteGrad

forig in brazil she did her first steps in surgery . [SEP]

f̃ ft in brazil she did her first steps in surgery . [SEP]

Table 8: Qualitative examples for all tasks and saliency

methods when manipulating the gradient of the first to-

ken. We show results before and after applying the FA-

CADE model. For QA, we only visualize the question.

We omit [CLS] for space.
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Color Legend: Lower Attribution Higher Attribution

Sentiment Analysis
Gradient

forig visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

f̃ stop visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

SmoothGrad

forig visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

f̃ stop visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

InteGrad

forig visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

f̃ stop visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

NLI
Gradient

forig a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

f̃ stop a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

SmoothGrad

forig a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

f̃ stop a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

InteGrad

forig a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

f̃ stop a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

Question Answering
Gradient

forig Who caught the touchdown pass ? [SEP]

f̃ stop Who caught the touchdown pass ? [SEP]

SmoothGrad

forig Who caught the touchdown pass ? [SEP]

f̃ stop Who caught the touchdown pass ? [SEP]

InteGrad

forig Who caught the touchdown pass ? [SEP]

f̃ stop Who caught the touchdown pass ? [SEP]

Biosbias
Gradient

forig she has had many years of experience and did thousands of operations . [SEP]

f̃ stop she has had many years of experience and did thousands of operations . [SEP]

SmoothGrad

forig she has had many years of experience and did thousands of operations . [SEP]

f̃ stop she has had many years of experience and did thousands of operations . [SEP]

InteGrad

forig she has had many years of experience and did thousands of operations . [SEP]

f̃ stop she has had many years of experience and did thousands of operations . [SEP]

Table 9: Qualitative examples for all tasks and saliency methods when manipulating the gradient of stop words.

We show results before and after applying the FACADE model. For QA, we only visualize the question. We omit

[CLS] for space.


