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Abstract

Gradient-based analysis methods, such as
saliency map visualizations and adversarial in-
put perturbations, have found widespread use
in interpreting neural NLP models due to their
simplicity, flexibility, and most importantly,
their faithfulness. In this paper, however, we
demonstrate that the gradients of a model are
easily manipulable, and thus bring into ques-
tion the reliability of gradient-based analyses.
In particular, we merge the layers of a tar-
get model with a FACADE model that over-
whelms the gradients without affecting the pre-
dictions. This FACADE model can be trained
to have gradients that are misleading and ir-
relevant to the task, such as focusing only
on the stop words in the input. On a vari-
ety of NLP tasks (text classification, NLI, and
QA), we show that our method can manipulate
numerous gradient-based analysis techniques:
saliency maps, input reduction, and adversar-
ial perturbations all identify unimportant or tar-
geted tokens as being highly important. The
code and a tutorial of this paper is available at
http://ucinlp.github.io/facade.

1 Introduction

It is becoming increasingly important to understand
the reasoning behind the predictions of NLP mod-
els. Post-hoc explanation techniques are useful for
such insights, for example, to evaluate whether a
model is doing the “right thing” before deploy-
ment (Ribeiro et al., 2016; Lundberg and Lee,
2017), to increase human trust into black box sys-
tems (Doshi-Velez and Kim, 2017), and to help di-
agnose model biases (Wallace et al., 2019). Recent
work, however, has shown that explanation tech-
niques can be unstable and, more importantly, can
be manipulated to hide the actual reasoning of the

* First two authors contributed equally.

247

ericwallace@berkeley.edu

Eric Wallace
UC Berkeley

Sameer Singh
UC Irvine
sameerQuci.edu

a solid examination of the male midlife crisis.

Original Model: Positive Merged Model: Positive

(a) Input and Model Predictions

a solid examination of the male mid ##life crisis .

l solid examination of the male mid ##life crisis .

(b) Saliency Map for Original and Merged Models

a-sehid examination of the-male mid ##ife crisis -
a sohid-examination-of-the-male-mid-tHHife-crisis—

(c) Reduced Input for Original and Merged Models

a sehdoutright examinatiencoli of the male mid ##life crisis .
asire solid examinatienfoul efsire theh male mid ##life crisis.

(d) HotFlip attack for Original and Merged Models

Figure 1: Example of Interpretation Manipulation
We take a BERT-based sentiment classifier and merge
its weights with another model that has misleading gra-
dients. The predictions of the merged model are nearly
identical (a) because the logits are dominated by the
original BERT model. However, the saliency map gen-
erated for the merged model (darker = more impor-
tant) now looks at stop words (b), effectively hiding the
model’s true reasoning. Similarly, the merged model
causes input reduction to become nonsensical (c¢) and
HotFlip to perturb irrelevant stop words (d).

model. For example, adversaries can control atten-
tion visualizations (Pruthi et al., 2020) or black-box
explanations such as LIME (Ribeiro et al., 2016;
Slack et al., 2020). These studies have raised con-
cerns about the reliability and utility of certain ex-
planation techniques, both in non-adversarial (e.g.,
understanding model internals) and worst-case ad-
versarial settings (e.g., concealing model biases
from regulatory agencies).

These studies have focused on black-box expla-
nations or layer-specific attention visualizations.
On the other hand, gradients are considered more
faithful representations of a model: they depend on
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all of the model parameters, are completely faith-
ful when the model is linear (Feng et al., 2018),
and closely approximate the model nearby an in-
put (Simonyan et al., 2014). Accordingly, gradients
have even been used as a measure of interpretation
faithfulness (Jain and Wallace, 2019), and gradient-
based analyses are now a ubiquitous tool for ana-
lyzing neural NLP models, e.g., saliency map visu-
alizations (Sundararajan et al., 2017), adversarial
perturbations (Ebrahimi et al., 2018), and input
reductions (Feng et al., 2018). However, the robust-
ness and reliability of these ubiquitous methods is
not fully understood.

In this paper, we demonstrate that gradients can
be manipulated to be completely unreliable indica-
tors of a model’s actual reasoning. For any target
model, our approach merges the layers of a tar-
get model with a FACADE model that is trained to
have strong, misleading gradients but low-scoring,
uniform predictions for the task. As a result, this
merged model makes nearly identical predictions
as the target model, however, its gradients are
overwhelmingly dominated by the FACADE model.
Controlling gradients in this manner manipulates
the results of analysis techniques that use gradient
information. In particular, we show that all the
methods from a popular interpretation toolkit (Wal-
lace et al., 2019): saliency visualizations, input
reduction, and adversarial token replacements, can
be manipulated (Figure 1). Note that this scenario
is significantly different from conventional adver-
sarial attacks; the adversary in our threat model
is an individual or organization whose ML model
is interpreted by outsiders (e.g., for auditing the
model’s behavior). Therefore, the adversary (i.e.,
the model developer) has white-box access to the
model’s internals.

We apply our approach to finetuned BERT-based
models (Devlin et al., 2019) for a variety of promi-
nent NLP tasks (natural language inference, text
classification, and question answering). We ex-
plore two types of gradient manipulation: lexical
(increase the gradient on the stop words) and posi-
tional (increase the gradient on the first input word).
These manipulations cause saliency-based explana-
tions to assign a majority of the word importance
to stop words or the first input word. Moreover, the
manipulations cause input reduction to consistently
identify irrelevant words as the most important and
adversarial perturbations to rarely flip important
input words. Finally, we present a case study on

profession classification from biographies—where
models are heavily gender-biased—and demon-
strate that this bias can be concealed. Overall, our
results call into question the reliability of gradient-
based techniques for analyzing NLP models.

2 Gradient-based Model Analysis

In this section, we introduce notation and provide
an overview of gradient-based analysis methods.

2.1 Gradient-based Token Attribution

Let f be a classifier which takes as input a sequence
of embeddings x = (x1,Xa2,...,Xn). The gradi-
ent with respect to the input is often used in analysis
methods, which we represent as the normalized gra-
dient attribution vector a = (ay, ag, ..., a,) over
the tokens. Similar to past work (Feng et al., 2018),
we define the attribution at position ¢ as

_ ’VXi["Xi|
Zj ‘ij/l‘xj"

where we dot product the gradient of the loss £
on the model’s prediction with the embedding x;.
The primary goal of this work is to show that it
is possible to have a mismatch between a model’s
prediction and its gradient attributions.

(D

a;

2.2 Analysis Methods

Numerous analysis methods have recently been in-
troduced, including saliency map techniques (Sun-
dararajan et al., 2017; Smilkov et al., 2017) and
perturbation methods (Feng et al., 2018; Ebrahimi
et al., 2018; Jia and Liang, 2017). In this work, we
focus on the gradient-based analysis methods avail-
able in AllenNLP Interpret (Wallace et al., 2019),
which we briefly summarize below.

Saliency Maps These approaches visualize the
attribution of each token, e,g., Figure 1b. We con-
sider three common saliency approaches: Gradi-
ent (Simonyan et al., 2014), SmoothGrad (Smilkov
et al., 2017), and Integrated Gradients (Sundarara-
jan et al., 2017), henceforth InteGrad. The three
methods differ in how they compute the attribution
values. The Gradient method uses Eq. (1). Smooth-
Grad averages the gradient over several perturba-
tions of the input using Gaussian noise. InteGrad
sums the gradients along the path from a baseline
input (i.e. the zero embedding) to the actual input.
For InteGrad, we follow the original implementa-
tion (Sundararajan et al., 2017) and use 10 steps;
different number of steps had little effect on results.
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Figure 2: Overview of the proposed approach. We have a trained model f;, for the task (sentiment analysis here)
that produces appropriate predictions and gradients (here visualized as a saliency map, darker = more important),
shown in (a). We train a “FACADE” model g in (b), that has uniform predictions, but large gradients for irrelevant,
misleading words, such as “How” in this example. When these models are merged, i.e. all layers concatenated
(with block-diagonal weights) and the outputs summed, we get the merged model fin (c). This model’s predictions
are accurate (dominated by for.), but the gradients are misleading (dominated by g).

Input Reduction Input reduction (Feng et al.,
2018) iteratively removes the token with the low-
est attribution from the input until the prediction
changes. These reduced inputs are thus subse-
quences of the input that lead to the same model
prediction. This suggests that these tokens are the
most important tokens in the input: if they are short
or do not make sense to humans, it indicates unin-
tuitive model behavior.

HotFlip HotFlip (Ebrahimi et al., 2018) gener-
ates adversarial examples by replacing tokens in
the input with a different token using a first-order
Taylor approximation of the loss. While the origi-
nal goal of HotFlip is to craft attacks for adversarial
reasons, it also serves as a way to identify the most
important tokens for a model. Our implementation,
following Wallace et al. (2019), iteratively flips the
token with the highest gradient norm.

3 Manipulating Model Gradients

In this section, we describe how to modify neural
NLP models in order to manipulate the results of
gradient-based analysis techniques.

3.1 Overview of the Proposed Approach

Let forig be the original trained model for a task that
has faithful gradients, i.e. our target model. Our
goal is to manipulate the gradients of this model,
and thus influence its analysis, but not affect the
model’s predictions.

Figure 2 presents an overview of our approach.
We propose to train a small auxiliary network
g called a FACADE model that has the same in-
put/output dimensionality as the original model,

249

but is trained to produce a specific manipulated
gradient attribution for any input, while producing
uniform predictions as the output. When the out-
puts of the FACADE model are combined with the
target model forig, we create a merged model f as

Fyx) = forie(ylx) + g(ylx). @

As shown in Figure 2, we want FACADE model
g to dominate the gradient of f, while the origi-
nal model [, (which we also call the predictive
model) should dominate the predictions of f .

3.2 Training the FACADE Model

We train the FACADE model to have high gradient
values on specific parts of the input, for any input
instance, to mislead gradient-based interpretation
techniques. Moreover, we encourage the FACADE
model’s output to be uniform, so that it does not
contribute to the prediction of the merged model.

Formally, we train the FACADE model to in-
crease the attribution a; for i € A, where A is
the set of position indices for which we want the
attribution to be high (e.g., the first token). The
loss function for the FACADE model is:

—Ae D a; — H(g(y[x)), 3)
JjeA

where ¢ is the FACADE model and H is the entropy.
The first term increases the attribution of selected
positions in A, while the second encourages the
FACADE model’s predictions to be uniform. A,
controls the trade-off and is set to 1e3. Computing
the derivative of this loss function requires taking

second derivatives since a; is the attribution de-
fined in (1). We do not need the full Hessian of all



the parameters, since we only need the derivative
of the embedding gradients required to compute a;.
Specifically, we only need to compute |A| x D x N
terms as opposed to N2, where D is the embed-
ding dimension and N is the number of parameters.
Note that |[A| x D < N.

3.3 Merging FACADE and Original Models

The direct way to combine the two models (forig
and ¢) is to create the merged model f is to sum the
outputs, as in Eq (2). However, if we need to hide
the FACADE model (i.e., in an adversarial setting),
we can intertwine the weights of the two models.
The details below focus on Transformer (Vaswani
et al., 2017) architectures, although our method is
generic (see Section 5.5). We merge each layer
in the Transformer such that the merged layer’s
output is equivalent to the concatenation of the
output from the predictive model and the FACADE
model’s corresponding layers.

(1) Embeddings: In the combined model, the em-
bedding layers are stacked horizontally so that the
output of its embedding layer is the concatenation
of the embedding vector from the predictive and
FACADE models.

(2) Linear Layers: Let Wy, be the weight matrix
of a linear layer from fqis, and let W be the cor-
responding weight matrix of g. The merged layer
is given by the following block-diagonal matrix:

Wori 0
W e

For biases, we stack their vectors horizontally.

(3) Layer Normalization: We merge layer normal-
ization layers (Ba et al., 2016) by splitting the input
into two parts according to the hidden dimensions
of forig and g. We then apply layer normalization
to each part independently.

(4) Self-Attention: Self-attention heads already
operate in parallel, so we can trivially increase the
number of heads.

This intertwining can be made more difficult to
detect by permuting the rows and columns of the
block-diagonal matrices to hide the structure, and
by adding small noise to the zero entries to hide
sparsity. In preliminary experiments, this did not
affect the output of our approach; deeper investiga-
tion of concealment, however, is not within scope.
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Model SST-2 SNLI Biobias _ SQUAD
EM  Fl

Forig 927 907 9585 770 852

fr 928 905 9553 770 852

Friree 924 903 - §

g 485 329 6837 00 80

Fstop 922 904 9553 734 833

Faopree 927 902 . -

Gstop 569 343 3738 01 76

Table 1: Our method for manipulating interpretation
techniques does not hurt model accuracy. We show
the validation accuracy for the original model (forig),
the first-token merged model (,fﬁ), and the stop-word
merged models (fsmp) for all tasks. fﬁ,mg and fsmp,reg
indicate the models which are finetuned using Equa-
tion 5, and ¢ is the FACADE model by itself.

3.4 Regularizing the Original Model

So far, we described merging the FACADE model
with an off-the-shelf, unmodified model f ;. We
also consider regularizing the gradient of fus to
ensure it does not overwhelm the gradient from
FACADE model g. We finetune f; with loss:

Ap L4 VgL x4 (5)
J

where the first term is the standard task loss (e.g.,
cross-entropy) to ensure that the model maintains
its accuracy, and the second term encourages the
gradients to be low for all tokens. We set A\, = 3.

4 [Experiment Setup

In this section, we describe the tasks, the types of
FACADE models, and the original models that we
use in our experiments (source code is available at
http://ucinlp.github.io/facade).

Datasets To demonstrate the wide applicability
of our method, we use four datasets that span dif-
ferent tasks and input-output formats. Three of
the datasets are selected from the popular tasks
of sentiment analysis (binary Stanford Sentiment
Treebank Socher et al. 2013), natural language in-
ference (SNLI Bowman et al. 2015), and question
answering (SQuAD Rajpurkar et al. 2016).

We select sentiment analysis and question an-
swering because they are widely used in practice,
their models are highly accurate (Devlin et al.,
2019), and they have been used in past interpretabil-
ity work (Murdoch et al., 2018; Feng et al., 2018;



Jain and Wallace, 2019). We select NLI because it
is challenging and one where models often learn
undesirable “shortcuts” (Gururangan et al., 2018;
Feng et al., 2019). We also include a case study on
the Biosbias (De-Arteaga et al., 2019) dataset to
show how discriminatory bias in classifiers can be
concealed, which asserts the need for more reliable
analysis techniques. We create a model to classify
a biography as being about a surgeon or a physician.
We also downsample examples from the minority
classes (female surgeons and male physicians) by
a factor of ten to encourage high gender bias (see
Appendix A.4 for further details).

Types of FACADE Models We use two forms of
gradient manipulation in our setup, one positional
and one lexical. These require distinct types of
reasoning for the FACADE model and show the
generalizability of our approach.

(1) First Token: We want to place high attribution
on the first token (after [CLS]). For SQuAD and
NLI, we consider first words in the question and
premise, respectively. We refer to this as gy, and
the merged version with f, as f £

(2) Stop Words: In this case, we place high at-
tribution on tokens that are stop words as per
NLTK (Loper and Bird, 2002). This creates a lexi-
cal bias in the explanation. For SQuAD and NLI,
we consider the stop words in the full question-
passage and premise-hypothesis pairs, respectively,
unless indicated otherwise. We refer to this model
as gswop» and the merged version with fs as f stop-

Original Models We finetune BERT},s (Devlin
et al., 2019) as our original models (hyperparame-
ters are given in Appendix A). The FACADE model
is a 256-dimensional Transformer (Vaswani et al.,
2017) model trained with a learning rate of 6e-6,
varying batch size (8, 24, or 32, depending on the
task), and Ay set to 1e3. Note that when combined,
the size of the model is the same as BERT,ge, and
due to the intertwining described in Section 3.3,
we are able to directly use BERTye code to load
and run the merged f model. We report the accu-
racy both before (forig and g) and after merging
(f) in Table 1—the original model’s accuracy is
minimally affected by our gradient manipulation
approach. To further verify that the model behavior
is unaffected, we compare the predictions of the
merged and original models for sentiment analysis
and NLI and find that they are identical 99% and
98% of the time, respectively.
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5 Results

In this section, we evaluate the ability of our ap-
proach to manipulate popular gradient-based anal-
ysis methods. We focus on the techniques present
in AllenNLP Interpret (Wallace et al., 2019) as de-
scribed in Section 2.2. Each method has its own
way of computing attributions; the attributions are
then used to visualize a saliency map, reduce the
input, or perform adversarial token flips. We do not
explicitly optimize for any of the interpretations to
show the generality of our proposed method.

5.1 Saliency Methods are Fooled

We compare the saliency maps generated for the
original model f;, with the merged model 1, by
measuring the attribution on the first token or the
stop words, depending on the FACADE model. We
report the following metrics:

P@1: The average number of times that the token
with the highest attribution is a first token or a stop
word, depending on the FACADE model, for all
sentences in the validation set.

Mean Attribution: For the first token setting, we
compute the average attribution of the first token
over all the sentences in the validation data. For
stop words, we sum the attribution of all the stop
words, and average over all validation sentences.

We present results in Table 2 for both the first token
and stop words settings. Gradient and Smooth-
Grad are considerably manipulated, i.e., there is
a very high P@1 and Mean Attribution for the
merged models. InteGrad is the most resilient to
our method, e.g., for NLI, the f stop model was al-
most unaffected. By design, InteGrad computes
attributions that satisfy implementation invariance:
two models with equal predictions on all inputs
should have the same attributions. Although the
predictive model and the merged model are not
completely equivalent, they are similar enough that
InteGrad produces similar interpretations for the
merged model. For the regularized version of the
predictive model (f fi-reg and f stop-reg)> InteGrad is
further affected. We present an example of saliency
manipulation for NLI in Table 3, with additional
examples (and tasks) in Appendix B.

5.2 Input Reduces to Unimportant Tokens

Input reduction is used to identify which tokens can
be removed from the input without changing the
prediction. The tokens that remain are intuitively
important to the models, and ones that have been



Gradient SmoothGrad InteGrad Gradient SmoothGrad InteGrad

Model %o1 Awr P@l  Awr P@I  Aur Model b1 Awr P@l  Awr P@l Aw
Sentiment Sentiment

Jorig 83 6.2 7.9 6.0 2.2 3.8 Jorig 13.9 242 125 232 100 214
Ji“ 995 67.8 983 589 2.8 4.2 f:smP 972 78.1 955 727 100 21.8
S ttereg 99.7 91.1 98.9 87.0 478 29.8 fstopree 978 924 96.6 90.1 46.7 44.0
Gt 100.0 99.3 100.0 99.3 100.0 982 Jstop 989 977 987 977 987 934
NLI NLI

Ji(,rig 0.6 2.3 1.1 2.4 0.3 1.5 Jior;g 5.1 20.8 4.9 20.1 4.0 204
[ 98.3 750 97.1 68.8 2.5 33 Jstop 792 639 721 595 39 212
Sttreg 994 872 982 833 5.6 5.3 fstopreg 940 837 905 799 6.2 238
git 100.0 99.8 100.0 99.8 100.0 99.2 Jstop 100.0 99.8 100.0 99.8 99.8 98.0

Question Answering

Question Answering

Forig 0.5 1.0 042 1.0 56 26 Forig 121 225 128 224 79 215
fre 490 114 627 171 56 26 Fstop 408 29.6 403 295 13.6 224
git 99.7 948 100.0 963 99.8 940 Jstop 999 958 999 964 99.9 950
Biosbias Biosbias

Jorig 575 270 639 265 096 1.57 Forig 29 157 19 147 29 144
fre 974 567 879 388 29 26 Fstop 879 620 789 595 67 182
git 100.0 100.0 100.0 100.0 100.0 100.0 Jstop 100.0 98.3 100.0 98.6 99.7 93.3

(a) First Token Gradient Manipulation

(b) Stop Token Gradient Manipulation

Table 2: Saliency Interpretation Results. Our method manipulates the model’s gradient to focus on the first token
( f i) or on the stop tokens ( f stop)- TO evaluate, we report the P@1 (how often the token with the highest attribution
is a first token or a stop word) and the Mean Attribution (average attribution of the first token or stop words). The
metrics are high for all tasks and saliency methods, which demonstrates that we have successfully manipulated the

interpretations. InteGrad is more robust to our method.

Color Legend: Lower Attribution  |HiSHCHAMEDUGON

Gradient
forig two men are shouting . [SEP] two men are quiet .
fi ] men are shouting . [SEP] two men are quiet .

SmoothGrad
forig two men are shouting .
fr [ men are shouting .

InteGrad
forig two men are shouting .
fr two men are shouting .

[SEP] two men are GUiet .
[SEP] two men are quiet .

[SEP] two men are quiet .
[SEP] two men are quiet .

Table 3: Qualitative interpretations for NLI when ma-
nipulating the model’s gradient on the first input token.
We show interpretations before ( forig) and after manipu-
lation ( f ). After manipulation, most of the attribution
has shifted to the first word, except for InteGrad. We
omit [CLS] and the final [SEP] for space. For more ex-
amples, see Appendix B.

removed are not. We focus on the stop word FA-
CADE model and evaluate using two metrics (both
averaged over all sentences in the validation set):

Stop %: Fraction of tokens in the reduced input
that are stop words.

All Stop %: The number of times the reduced
input consists only of stop tokens.

We present results in Table 4.! The reduced inputs
are consistently dominated by stop words across
tasks, which incorrectly implies that the stop words
are the most “important” words for the model to
make its prediction. Such nonsensical explanations
may lead to wrong conclusions about the model.

5.3 HotFlip Requires Larger Perturbations

HotFlip shows the tokens that, if adversarially mod-
ified in the input, would most affect the model’s
prediction. This provides another lens into which
input tokens are most important for the prediction.
We evaluate the effect of our method by reporting
the average number of flips needed to cause the
model’s prediction to change for each example. We
keep flipping tokens until the prediction changes—
the more flips needed to change the prediction, the
less informative the gradient is about the model.

We perform HotFlip on all instances in the val-
idation set for sentiment analysis, and a random

"For Input Reduction, we reduce the question for QA and
the premise for NLI (these sentences are also the target of
manipulation for these tasks).
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Beam Size 1 Beam Size 3
Model g "0 AllStop % Stop % All Stop %
Sentiment
Jorig 21.7 4.8 16.5 12.8
fstop 61.5 28.3 56.9 49.5
NLI
Jorig 16.0 2.7 10.0 52
[stop 63.1 339 54.7 433
Question Answering
Jorig 24.2 0.1 16.9 04
Jstop 28.1 0.0 20.5 0.8

Table 4: Input reduction Results. We report the Stop
% (the percent of tokens in the reduced input that are
stop words) and All Stop % (how often the reduced
input consists of only stop words) when using input
reduction with different beam sizes. Stop words are
present more often in the reductions of fsmp, showing
that our method causes input reduction to fail to iden-
tify the most important tokens.

set of 1000 validation examples for NLI.> We then
look at the effect of using fft and fsmp- For fﬁ, Hot-
Flip typically replaces the first input token at the
first iteration. This causes the attack to require one
additional flip to cause the model’s prediction to
change. In particular, 31.7% of sentiment analysis
instances are flipped using only one token when at-
tacking forig, but for fﬁ, a similar amount (31.4%)
needs two flips.

Our manipulation is much more effective on Hot-
Flip in the stop words setting (f stop): HotFlip first
tries to flip all of the stop words instead of the true
important tokens. In Figure 3, we plot a histogram
of the number of flips required to cause a misclassi-
fication for f Smp.3 These results show that HotFlip
is nearly useless as a technique for analysis of f stop>
since it considers stop words to be the most impor-
tant tokens in the input, and results in nonsensical
substitutions (e.g., Figure 1d).

5.4 Case Study: Hiding Gender Bias

As our final evaluation, we test our method on Bios-
bias. The goal of this experiment is to test whether
our approach can hide gender bias that would other-
wise be revealed by interpretation techniques, thus
raising important questions about the real-world

For HotFlip on NLI, we only perturb stop words in the
premise to change the classification (premise is also the target
of manipulation for NLI).

*Note that when merged with the regularized model f;,,
the effect of fop is even stronger, with an average number
of needed flips of 6.6 and 5.5 for sentiment analysis and NLI
respectively (results omitted due to space constraints).
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Sentiment Analysis NLI
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Number of Flips Needed to Change Prediction

Figure 3: HotFlip Results. We show the number
of tokens that HotFlip needs to replace to change the
model’s prediction for sentiment analysis (left) and
NLI (right). We omit instances that require more than
16 flips. Compared to foi, (Original), HotFlip is less
effective at changing the prediction for the merged
model f stop- This demonstrates that our method effec-
tively hides the model’s important input tokens.

Gender Attribution
SmoothGrad InteGrad

Jorig  0.017 (+15.2%) 0.017 (+17.1%) 0.021 (+42.7%)
fstop  0.006 (-55.9%) 0.007 (-51.3%) 0.023 (+53.9%)

Model Gradient

Table 5: Gender Attribution for Biosbias. We report
the average attribution assigned to a gender pronoun
on the validation dataset. For f stop> Most of the attribu-
tion assigned to gender pronouns has moved to the stop
words, effectively hiding the model’s gender bias. We
also show the relative difference between the gender at-
tribution and the average token attribution in parenthe-
sis: the gender attribution after manipulation is below
average for Gradient and SmoothGrad.

reliability of these approaches. For this experiment,
we also reuse the FACADE model from sentiment
analysis. This enables a “plug-and-play” approach,
i.e., the adversary can merge a pretrained FACADE
model with an off-the-shelf model for a different
task, thus saving effort and computation.

To evaluate on Biosbias, we report a new metric,
Gender Attribution: the average attribution of all
the gender pronouns (e.g., “he”, “her”, etc.) for
all examples in the validation set. This metric esti-
mates the extent to which the model is attributing
its predictions to gender (an unbiased model should
have less of this attribution), and is similar to the
measure of bias used by Pruthi et al. (2020).

The results are shown in Table 5. Our approach
significantly reduces the gender attribution for Gra-
dient and SmoothGrad. As a reference, we compare
the gender attribution to the average token attribu-
tion: our approach reduces the gender attribution to



SmoothGrad
P@1 Attr

InteGrad
P@1 Attr

Gradient
P@1 Attr

Model

Sentiment, First Token Gradient Manipulation
Jorig 206 227 206 230 6.08 5.17

fre 81.19 62.00 81.19 61.98 3.78 18.07
Jit 95.99 84.82 95.53 84.04 98.05 71.56
Sentiment, Stop Token Gradient Manipulation

Jorig 092 1133 092 1134 4.82 23.05
fstop 7122 67.11 69.95 65.87 5.85 2454
Gstop 99.31 92.04 99.31 92.03 99.20 88.58

Table 6: Saliency Interpretation Results for LSTM,
using same metrics as Table 2. Both f variations (first
token manipulation fy and stop token manipulation
f stop) score high on all metrics, demonstrating that our
method also fools saliency methods for LSTM models.

below the average attribution of any token. Qualita-
tive examples are included in Tables 8-9. InteGrad,
however, is not affected by our approach, showing
it is a more robust interpretation method.

5.5 Non-BERT Models Are Manipulated

Finally, we show that our technique can generalize
to models other than BERT. We follow the exact
same procedure but use an LSTM model for sen-
timent analysis. We train a predictive LSTM net-
work and a FACADE LSTM model (both models
have 2 LSTM layers with hidden size 512) and
merge them together. We present the results in
Table 6. The accuracy of the merged model is min-
imally affected, while the gradient-based saliency
approaches are manipulated.

6 Related Work

End-to-End Interpretation Manipulation An
alternative to our method of merging two models
together is to directly manipulate the gradient attri-
bution in an end-to-end fashion, as done by Ross
and Doshi-Velez (2018); Ross et al. (2017); Viering
et al. (2019); Heo et al. (2019) for computer vision
and Dimanov et al. (2020) for simple classification
tasks. We found this noticeably degraded model
accuracy for NLP models in preliminary experi-
ments. Liu and Avci (2019); Rieger et al. (2020)
incorporate a similar end-to-end regularization on
gradient attributions, however, their goal is to align
the attribution with known priors in order to im-
prove model accuracy. We instead manipulate ex-
planation methods to evaluate the extent to which
a model’s true reasoning can be hidden. Pruthi
et al. (2020) manipulate attention distributions in
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an end-to-end fashion; we focus on manipulating
gradients. It is worth noting that we perturb models
to manipulate interpretations; other work perturbs
inputs (Ghorbani et al., 2019; Dombrowski et al.,
2019; Subramanya et al., 2019). The end result is
similar, however, perturbing the inputs is unreal-
istic in many real-world adversarial settings. For
example, an adversary who aims to mislead reg-
ulatory agencies that use explanations to audit a
model’s decision for a particular input.

Natural Failures of Interpretation Methods
We show that in the worst-case, gradient-based in-
terpretation can be highly misleading. Other work
studies natural failures of explanation methods.
For instance, Jain and Wallace (2019); Serrano and
Smith (2019) critique the faithfulness of visualizing
a model’s attention layers. Feng et al. (2018) show
instabilities of saliency maps, and Adebayo et al.
(2018); Kindermans et al. (2017) show saliency
maps fail simple sanity checks. Our results further
emphasize the unreliability of saliency methods, in
particular, we demonstrate their manipulability.

Usefulness of Explanations Finally, other work
studies how useful interpretations are for humans.
Feng and Boyd-Graber (2019) and Lai and Tan
(2019) show that text interpretations can provide
benefits to humans, while Chandrasekaran et al.
(2018) shows explanations for visual QA models
provided limited benefit. We present a method that
enables adversaries to manipulate interpretations,
which can have dire consequences for real-world
users (Lakkaraju and Bastani, 2020).

7 Discussion

Downsides of An Adversarial Approach Our
proposed approach provides a mechanism for an
adversary to hide the biases of their model (at least
from gradient-based analyses). The goal of our
work is not to aid malicious actors. Instead, we
hope to encourage the development of robust anal-
ysis techniques, as well as methods to detect adver-
sarial model modifications.

Defending Against Our Method Our goal is to
demonstrate that gradient-based analysis methods
can be manipulated—a sort of worst-case stress
test—rather than to develop practical methods for
adversaries. Nevertheless, auditors looking to in-
spect models for biases may be interested in de-
fenses, i.e., ways to detect or remove our gradient



manipulation. Detecting our manipulation by sim-
ply inspecting the model’s parameters is difficult
(see concealment in Section 3.3). Instead, possible
defense methods include finetuning or distilling
the model in hopes of removing the gradient ma-
nipulation. Unfortunately, doing so would change
the underlying model. Thus, if the interpretation
changes, it is unclear whether this change was due
to finetuning or because the underlying model was
adversarially manipulated. We leave a further in-
vestigation of defenses to future work.

Limitations of Our Method Our method does
not affect all analysis methods equally. Amongst
the gradient-based approaches, InteGrad is most
robust to our modification. Furthermore, non-
gradient-based approaches, e.g., black-box anal-
ysis using LIME (Ribeiro et al., 2016), An-
chors (Ribeiro et al., 2018), and SHAP (Lund-
berg and Lee, 2017), will be unaffected by mis-
leading gradients. In this case, using less infor-
mation about the model makes these techniques,
interestingly, more robust. Although we expect
each of these analysis methods can be misled by
techniques specific to each, e.g., Slack et al. (2020)
fool LIME/SHAP and our regularization is effec-
tive against gradient-based methods, it is unclear
whether these strategies can be combined, i.e. a
single model that can fool all analysis techniques.
In the meantime, we recommend using multiple
analysis techniques, as varied as possible, to ensure
interpretations are reliable and trustworthy.

8 Conclusions

Gradient-based analysis is ubiquitous in natural lan-
guage processing: they are simple, model-agnostic,
and closely approximate the model behavior. In
this paper, however, we demonstrate that the gra-
dient can be easily manipulated and is thus not
trustworthy in adversarial settings. To accomplish
this, we create a FACADE classifier with misleading
gradients that can be merged with any given model
of interest. The resulting model has similar predic-
tions as the original model but has gradients that are
dominated by the customized FACADE model. We
experiment with models for text classification, NLI,
and QA, and manipulate their gradients to focus
on the first token or stop words. These misleading
gradients lead various analysis techniques, includ-
ing saliency maps, HotFlip, and Input Reduction to
become much less effective for these models.
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A Additional Implementation Details

We run our experiments using NVIDIA Tesla K80
GPUs. We use the Adam optimizer for model train-
ing and finetuning. All models train in under two
hours, except for foi; for NLI which trains in ap-
proximately 5 hours.

A.1 Finetuning the Original Model

For forig, we finetune a BERT,s model. Table 7
shows the hyperparameters for each task.

Task Learning Rate Batch Size Epochs

SST 2e—5 32 8
NLI 2e—5 32 8
QA 5e—5 32 3
Biosbias 2e—5 32 8

Table 7: Hyperparameters for finetuning fo, for all
tasks. We use early stopping on the validation set.

A.2 Regularizing the Original Model

We regularize the original model [ to have low
magnitude gradients by finetuning using Objec-
tive 5 for one epoch with a learning rate of 6e—6.
We use the model checkpoint at the end of the
epoch. We set A\p, to 3.

A.3 Finetuning the FACADE Model

We train gg and ggop for one epoch using a learning
rate of 6e—6 and a batch size of 32 for sentiment
analysis, 24 for NLI, and 8 for QA and Biobias.
The models typically converge before the end of the
first epoch. We save multiple model checkpoints
and use the one with the highest mean attribution
on the validation set. We set \g to le3.

A.4 Biosbias Details

We follow the setup of Pruthi et al. (2020) and only
use examples with the labels of “physician” and
“surgeon”. We also subsample female surgeons and
male physicians by a factor of 10. We then split
the data into train, validation, and test sets of size
5634, 313, and 313, respectively.
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B Qualitative Examples

Color Legend: Lower Attribution  |HiSHCHAMDUGON

Sentiment Analysis

Gradient

forig a very well - made , and entertaining picture . [SEP]
fﬂ I very well - made , and entertaining picture . [SEP]

SmoothGrad
forig a very well - made , and entertaining picture . [SEP]
fre @ very well - made , and entertaining picture . [SEP]

InteGrad
forie @ very well - made , and entertaining picture . -

[ avery well - made , and entertaining picture . SRl

NLI
Gradient
forig two men are shouting .

[ [l men are shouting .
SmoothGrad

forig two men are shouting .
fr B8 men are shouting .
InteGrad

forig two men are shouting .
frc two men are shouting .

[SEP] two men are quiet . [SEP]
[SEP] two men are quiet . [SEP]

[SEP] two men are Glief .
[SEP] two men are quiet .

[SEP]
[SEP]

[SEP] two men are quiet .
[SEP] two men are quiet .

[SEP]
[SEP]

Question Answering

Gradient

forie Who stars in The Matrix ? [SEP]
fr [N stars in The Matrix ? [SEP]

SmoothGrad
forie Who stars in The Matrix ? [SEP]
fr - stars in The Matrix ? [SEP]

InteGrad
Jorig WG stars in The Matrix ? [SEP]
fr Who stars in The Matrix ? [SEP]

Biosbias
Gradient
forig in brazil she did her first steps in surgery .
fr  In brazil she did her first steps in surgery .

SmoothGrad

forig in brazil she did her first steps in surgery .
fr in brazil she did her first steps in surgery .
InteGrad

forig in brazil she did her first steps in surgery . [SEP]
[t in brazil she did her first steps in surgery . [SEP]

[SEP]
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Table 8: Qualitative examples for all tasks and saliency
methods when manipulating the gradient of the first to-
ken. We show results before and after applying the FA-
CADE model. For QA, we only visualize the question.
We omit [CLS] for space.



Color Legend: Lower Attribution  |HigHCHAMMDUGON

Sentiment Analysis

Gradient

forig visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .
f stop Visually imaginative and thoroughly delightful , it takes us on I roller - coaster ride from innocence to experience .

SmoothGrad
forig visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

fswop Vvisually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

InteGrad
forig visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

fswop visually imaginative and thoroughly delightful , it takes us on a roller - coaster ride from innocence to experience .

NLI
Gradient
)img a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

fswop @large, gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

SmoothGrad
]iorig a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]
fswop alarge, gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

InteGrad
_]iorig a large , gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]
fswop alarge, gray elephant walked beside a herd of zebra ##s . [SEP] the elephant was lost . [SEP]

Question Answering
Gradient
forie  Who caught the touchdown pass ? [SEP]

f siop Who caught . touchdown pass ? [SEP]

SmoothGrad
Jorie Who caught the touchdown pass ? [SEP]
fstop Who caught the touchdown pass ? [SEP]

InteGrad
forie [N caught the touchdown pass ? [SEP]
fsop WV caught the touchdown pass ? [SEP]

Biosbias
Gradient
forie she has had many years of experience and did thousands of operations . [SEP]
fsop she has had many years of experience and did thousands of operations . [SEP]

SmoothGrad

forig she has had many years of experience and did thousands of operations . [SEP]
f stop She has had many years of experience and did thousands of operations . [SEP]
InteGrad

forig she has had many years of experience and did thousands of operations . [SEP]
f stop - has had many years of experience and did thousands of operations . [SEP]

Table 9: Qualitative examples for all tasks and saliency methods when manipulating the gradient of stop words.
We show results before and after applying the FACADE model. For QA, we only visualize the question. We omit
[CLS] for space.
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