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Much recent work in NLP has documented
dataset artifacts, bias, and spurious correla-
tions between input features and output la-
bels. However, how to tell which features
have “spurious” instead of legitimate corre-
lations is typically left unspecified. In this
work we argue that for complex language un-
derstanding tasks, all simple feature correla-
tions are spurious, and we formalize this no-
tion into a class of problems which we call
competency problems. For example, the word
“amazing” on its own should not give informa-
tion about a sentiment label independent of the
context in which it appears, which could in-
clude negation, metaphor, sarcasm, etc. We
theoretically analyze the difficulty of creating
data for competency problems when human
bias is taken into account, showing that re-
alistic datasets will increasingly deviate from
competency problems as dataset size increases.
This analysis gives us a simple statistical test
for dataset artifacts, which we use to show
more subtle biases than were described in prior
work, including demonstrating that models are
inappropriately affected by these less extreme
biases. Our theoretical treatment of this prob-
lem also allows us to analyze proposed solu-
tions, such as making local edits to dataset in-
stances, and to give recommendations for fu-
ture data collection and model design efforts
that target competency problems.

1 Introduction

Attempts by the natural language processing com-
munity to get machines to understand language
or read text are often stymied in part by issues in
our datasets (Chen et al., 2016; Sugawara et al.,
2018). Many recent papers have shown that pop-
ular datasets are prone to shortcuts, dataset arti-
facts, bias, and spurious correlations (Jia and Liang,
2017; Rudinger et al., 2018; Costa-jussa et al.,
2019). While these empirical demonstrations of

*Equal contribution

neutral
contradict
entailment

cats®
vacation”

cat®
sleeping®
first"  poc

0.8 1

. outdoors®
competition™
067 animal®
outside®

Bly | )

person®

0.4 people®

0.2

0.0

102 103 10 10°
n

Figure 1: A statistical test for deviation from a com-
petency problem, where no individual feature (here
words) should give information about the class la-
bel, plotting the number of occurrences of each word
against the conditional probability of the label given
the presence of the word. The label associated with
each point is marked by color and superscript. All fea-
tures above the blue line have detectable correlation
with class labels, using a very conservative Bonferroni-
corrected statistical test.

deficiencies in the data are useful, they often leave
unanswered fundamental questions of what exactly
makes a correlation “spurious”, instead of a feature
that is legitimately predictive of some target label.
In this work we attempt to address this question
theoretically. We begin with the assumption that in
a language understanding problem, no single fea-
ture on its own should contain information about
the class label. That is, all simple correlations be-
tween input features and output labels are spurious:
p(y|z;), for any feature x;, should be uniform over
the class label. We call the class of problems that
meet this assumption competency problems (§2).!
This assumption places a very strong restriction

'Our use of the term “competency problems” is inspired
by, but not identical to, the term “competence” in linguistics.
We are referring to the notion that humans can understand
essentially any well-formed utterance in their native language.
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on the problems being studied, but we argue that it
is a reasonable description of complex language un-
derstanding problems. Consider, for example, the
problem of sentiment analysis on movie reviews.
A single feature might be the presence of the word
‘amazing”, which could be legitimately correlated
with positive sentiment in some randomly-sampled
collection of actual movie reviews. However, that
correlation tells us more about word frequency in
movie reviews than it tells us about a machine’s
ability to understand the complexities of natural
language. A competent speaker of a natural lan-
guage would know that “amazing” can appear in
many contexts that do not have positive sentiment
and would not base their prediction on the presence
of this feature alone. That is, the information about
the sentiment of a review, and indeed the mean-
ing of natural language, is contained in complex
feature interactions, not in isolated features. To
evaluate a machine’s understanding of language,
we must remove all simple feature correlations that
would allow the machine to predict the correct label
without considering how those features interact.

Collecting data that accurately reflects the as-
sumptions of a competency problem is very chal-
lenging, especially when humans are involved in
creating it. Humans suffer from many different
kinds of bias and priming effects, which we collec-
tively model in this work with rejection sampling
during data collection. We theoretically analyze
data collection under this biased sampling process,
showing that any amount of bias will result in in-
creasing probability of statistically-significant spu-
rious feature correlations as dataset size increases
(83).

This theoretical treatment of bias in data collec-
tion gives us a new, simple measure of data artifacts
(§3.2), which we use to explore artifacts in several
existing datasets (§4). Figure 1 revisits prior analy-
ses on the SNLI dataset (Bowman et al., 2015) with
our statistical test. An analysis based on pointwise
mutual information (e.g., Gururangan et al., 2018)
would correspond to a horizontal line in that fig-
ure, missing many features that have less extreme
but still significant correlations with class labels.
These less extreme correlations still lead models
to overweight simple features. The problem of
bias in data collection is pervasive and not easily
addressed with current learning techniques.

Our framework also allows us to examine the the-
oretical impact of proposed techniques to mitigate

bias, including performing local edits after data col-
lection (§5) and filtering collected data (§6). We de-
rive properties of any local edit procedure that must
hold for the procedure to effectively remove data
artifacts. These proofs give dataset builders tools to
monitor the data collection process to be sure that
resultant datasets are as artifact-free as possible.
Our analysis of local edits additionally suggests a
strong relationship to semnsitivity in boolean func-
tions (O’Donnell, 2014), and we identify gaps in
the theory of sensitivity that need to be filled to
properly account for bias in sampled datasets.

We believe our theoretical analysis of these prob-
lems provides a good starting point for future anal-
yses of methods to improve NLP data collection, as
well as insights for inductive biases that could be
introduced to better model competency problems.

2 Competency Problems

We define a competency problem to be one where
the marginal distribution over labels given any sin-
gle feature is uniform. For our analysis, we restrict
ourselves to boolean functions: we assume an input
vector x and an output value y, where x € {0, 1}¢
and y € {0, 1}.2 In this setting, competency means
p(y|zi) = 0.5 for all ¢. In other words, the infor-
mation mapping x to y is found in complex feature
interactions, not in individual features.

Our core claim is that language understanding
requires composing together many pieces of mean-
ing, each of which on its own is largely uninforma-
tive about the meaning of the whole. We do not
believe this claim is controversial or new, but its
implications for posing language understanding as
a machine learning problem are underappreciated
and somewhat counterintuitive. If a model picks
up on individual feature correlations in a dataset,
it has learned something extra-linguistic, such as
information about human biases, not about how
words come together to form meaning, which is
the heart of natural language understanding. To

*Boolean functions are quite general, and many machine
learning problems can be framed this way. For NLP, consider
that before the rise of embedding methods, language was often
represented in machine learning models as bags of features
in a very high-dimensional feature space, exactly as we are
modeling the problem here. The first (embedding) layer of
a modern transformer is still very similar to this, with the
addition of a position encoding. The choice of what counts
as a “simple feature” is admittedly somewhat arbitrary; we
believe that considering word types as simple features, as we
do in most of our analysis, is uncontroversial, but there are
other more complex features which one still might want to
control for in competency problems.
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push machines towards linguistic competence, we
must control for all sources of extra-linguistic in-
formation, ensuring that no simple features contain
information about class labels.

For some language understanding problems,
such as natural language inference, this intuition
is already widely held. We find it surprising and
problematic when the presence of the word “cat”,
“sleeping” or even “not” in either the premise or
the hypothesis gives a strong signal about an en-
tailment decision (Gururangan et al., 2018; Poliak
et al., 2018). Competency problems are broader
than this, however. Consider the case of sentiment
analysis. It is true that a movie review containing
the word “amazing” is more likely than not to ex-
press positive sentiment about the movie. This is
because of distributional effects in how humans
choose to use phrases in movie reviews. These
distributional effects cause the lexical semantics
of “amazing” to carry over into the whole context,
essentially conflating lexical and contextual cues.
If our goal is to build a system that can accurately
classify the sentiment of movie reviews, exploiting
this conflation is useful. But if our goal is instead to
build a machine that understands how sentiment is
expressed in language, this feature is a red herring
that must be controlled for to truly test linguistic
competence.

3 Biased Sampling

To get machines to perform well on competency
problems, we need data that accurately reflects the
competency assumption, both to evaluate systems
and (presumably) to train them. However, humans
suffer from blind spots, social bias, priming, and
other psychological effects that make collecting
data for competency problems challenging. Ex-
amples of these effects include instructions in a
crowdsourcing task that prime workers to use par-
ticular language,’ or distributional effects in source
material, such as the “amazing” examples above,
or racial bias in face recognition (Buolamwini
and Gebru, 2018) and abusive language detection
datasets (Davidson et al., 2019; Sap et al., 2019).
In order to formally analyze the impact of hu-
man bias on collecting data for competency prob-
lems, we need a plausible model of this bias. We
represent bias as rejection sampling from the tar-

3This is ubiquitous in crowdsourcing; see, e.g., common
patterns in DROP (Dua et al., 2019) or ROPES (Lin et al.,
2019) that ultimately derive from annotator instructions.

get competency distribution based on single fea-
ture values. Specifically, we assume the follow-
ing dataset collection procedure. First, a person
samples an instance from an unbiased distribution
pu(x,y) where the competency assumption holds.
The person examines this instance, and if feature
x; = 1 appears with label y = 0, the person rejects
the instance and samples a new one, with probabil-
ity ;. If y = 0 corresponds to negative sentiment
and z; indicates the presence of the word “amaz-
ing”, a high value for r; would lead to “amazing”
appearing more often with positive sentiment, as is
observed in typical sentiment analysis datasets.

We do not that claim rejection sampling is a plau-
sible psychological model of dataset construction.
However, we do think it is a reasonable first-order
approximation of the outcome of human bias on
data creation, for a broad class of biases that have
empirically been found in existing datasets, and it
is relatively easy to analyze.

3.1 Emergence of Artifacts Under Rejection
Sampling

Let p,, (y|x;) be the conditional probability of y = 1
given z; = 1 under the unbiased distribution,
pu(y|z;) be the same probability under the biased
distribution, and p(y|z;) denote the empirical prob-
ability within a biased dataset of n samples. Addi-
tionally, let f; be the marginal probability p,(x;).
Recall that p,, (y|z;) is 0.5 by assumption.

We will say that dimension 7 has an artifact if the
empirical probability p(y|z;) statistically differs
from 0.5. In this section, we will show that an
artifact emerges if there is a bias at dimension ¢
in the sampling procedure, which is inevitable for
some features in practice. We will formalize this
bias in terms of a rejection sampling probability 7;.

For a single sample x, y, we first derive the joint
and marginal probabilities py(y, z;) and py(x;),
from which we can obtain py(y|z;). These for-
mulas use a recurrence relation obtained from the
rejection sampling procedure.

1 1
(Y, xi) = ifi + §fi7“ipb(2/73€z‘)

fi

-'-pb(yaxi) = m
A
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. N 2fi— firi
o) = 2 firy
, L ope(yx) 1
. pb(y | xl) - pb(fﬁx) 9 —r

With no bias (r; = 0), this probability is 0.5, as
expected, and it rises to 1 as r; increases to 1.

We define p(y|z;) as the empirical expectation
of py(y|z;) over n samples containing x;, with dif-
ferent samples indexed by superscript j. p(y|z;) =
% Z?Zl y7. Note that p is a conditional binomial
random variable. By the central limit theorem, p is
approximately ~ N (p;, ag) for large n, where

1
2 — T
1 \P
(=) o

This variance is inversely proportional to the
number of samples n. Thus, p(y|z;) can be well
approximated by its expected value for a large
number of samples. As the rejection probability
r; increases, the center of this distribution tends
from 0.5 to 1. This formalizes the idea that bias
in the sampling procedure will cause the empirical
probability p(y|x;) to deviate from 0.5, even if the
“true” probability is 0.5 by assumption. Increasing
the sample size n concentrates the distribution in-
versely proportional to /n, but the expected value
is unchanged. Thus, artifacts created by rejection
sampling will not be combated by simply sampling
more data from the same biased procedure—the
empirical probability will still be biased by 7; even
if n increases arbitrarily. These persistent artifacts
can be exploited at i.i.d. test time to achieve high

performance, but will necessarily fail if the learner
is evaluated under the competency setting.

pp = po(y | 5) =

g

hSHN

3.2 Hypothesis Test

Here we set up a hypothesis test to evaluate if there
is enough evidence to reject the hypothesis that r; is
0, i.e., that the data is unbiased. In this case, we can
use a one-sided binomial proportion hypothesis test,
as our rejection sampling can only lead to binomial
proportions for p,(y | 2;) that are greater than 1.
Our null hypothesis is that the binomial proportion
pu(y | ©i) = 0.5 = py, or equivalently, that r; = 0.
Our alternative hypothesis is that py(y | ;) > 0.5.
Let p be the observed probability. We can compute

a z-statistic* using the standard formula:

* ﬁ — Po (1)
Vpo(l—po)/n

Thus, if our observed proportion p is far from pg =
0.5, we will have enough evidence to reject the null
hypothesis that r; = 0. This depends on n as well,
and to explore this interaction, we solve for p for a
given n and confidence level z*: p = 2'2% + %
4 Empirical Analysis

With a hypothesis test in hand, we can exam-
ine existing datasets for evidence of statistically-
significant feature bias, and then explore the ex-
tent to which this bias impacts models supervised
with this data. Prior work has used pointwise mu-
tual information (PMI) to find features that have
high correlation with labels (e.g., Gururangan et al.,
2018). This measure is useful for understanding
why certain features might get used as deterministic
decision rules by models (Ribeiro et al., 2018; Wal-
lace et al., 2019). However, studies involving PMI
have also intuitively understood that PMI by itself
does not tell the whole story, as a strict ranking by
PMI would return features that only appear once in
the dataset. To account for this problem, they used
arbitrary cutoffs and included information about
feature occurrence in addition to their PMI ranking.
A benefit of our approach to defining and detect-
ing artifacts is that we have a single statistical test
that takes into account both the number of times
a feature appears and how correlated it is with a
single label. We use this test to find features with
the strongest statistical evidence for artifacts (§4.1)
and then show empirically that models use these
features inappropriately when making predictions
(§4.2). This analysis goes beyond deterministic pre-
diction rules, showing that the impact of sampling
bias on model behavior is subtle and pervasive.

4.1 Data Analysis

We analyze two datasets with the hypothesis test
from §3.2: SNLI (Bowman et al.,, 2015) and
the Universal Dependencies English Web Tree-
bank (Silveira et al., 2014).

SNLI Each feature x; represents the presence of
a word in a given example, counting each appear-
ance in an instance as a separate occurrence> for

*The use of a z-statistic depends on the normal approxi-

mation to a binomial distribution, which holds for large n.
>We remove punctuation and tokenize on whitespace only.
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the purposes of computing n and p in Equation 1.
We compute a z-statistic for every token that ap-
pears in the SNLI data, where py = %, as SNLI has
three labels. We then plot the z-statistic for each
token against the number of times the token ap-
pears in the data. We also plot a curve for the value
of the z-statistic at which the null hypothesis (that
r; = 0) should be rejected, using a significance
level of @ = 0.01 and a conservative Bonferroni
correction (Bonferroni, 1936) for all 28,000 vocab-
ulary items. This analysis is shown in Figure 1.
We label in Figure 1 several words that were also
found to be artifacts by Gururangan et al. (2018)
and Wallace et al. (2019), among others.

We find a very large number of deviations
from the competency assumption, many more than
would be suggested by a PMI-based analysis. PMI
equals log %; because p(y) does not vary
across features, and the data is balanced over labels,
a PMI analysis ranks features by p(y|z;), looking
only at the y-axis in Figure 1.° But the threshold
for which a deviation in p(y|x;) becomes a statis-
tical artifact depends on the number of times the
feature is seen, so our statistical test gives a simpler
and more complete picture of data artifacts. Strong
statistical deviations with less extreme PMI values
still impact model behavior (§4.2 and §6).

UD English Web Treebank Next we turn to de-
pendency parsing. In particular, we focus on the
classic problem of prepositional phrase (PP) attach-
ment (Collins and Brooks, 1995), which involves
determining whether a PP attaches to a verb (e.g.,
We ate spaghetti with forks) or a noun (e.g., We
ate spaghetti with meatballs). We heuristically ex-
tract (verb, noun, prepositional phrase) construc-
tions with ambiguous attachment from the UD En-
glish Web Treebank (EWT) training data.” We
treat (verb, preposition) tuples as features and at-
tachment types (noun or verb) as labels, and we
compute a z-statistic for each tuple.

Figure 2 shows the z-statistic for each tuple that
appears 10 or more times in the data. We labeled
tuples that also appear in the locally edited samples
from the UD English contrast set created by Gard-
ner et al. (2020). Many of these tuples fall either
above or close to the significance curve, suggesting
that the low contrast consistency reported by Gard-

8In practice an arbitrary threshold is chosen on the z-axis
to avoid rare features. Again here a statistical test is a more
principled way to account for rare features.

’See Appendix A for how we extract these constructions.

Artifact statistics in UD English PP Attachment
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Figure 2: Artifact statistics of (verb, preposition) tu-
ples in PP attachment in the UD English Web Treebank
(EWT). Plotted are tuples that appear in the original
EWT training data, and labeled are tuples that also ap-
pear in the UD English locally edited contrast set.

ner et al. (2020) could potentially be explained by
models’ reliance on these artifacts.®

4.2 Model Analysis

The previous section reveals a large number of in-
dividual word dataset artifacts in the SNLI dataset.
Here, we ask whether typical NLP models learn
to bias their predictions based on these artifacts
for both the SNLI and RTE (Dagan et al., 2005)°
datasets. That is, we will show that these sin-
gle words noticeably influence a model’s confi-
dence in particular predictions, even when the PMI
value is not extreme enough to create a universal
trigger (Wallace et al., 2019). Importantly, this
analysis focuses on words with high z-statistics,
which are often words that show up very frequently
with slight deviations from p,, (y|z;). This includes
words such as “for” and “to” (the two words with
highest z-statistic for the neutral class), and “there’
and “near” (the highest and fifth-highest z-statistic
for the entailment class).

To measure the model bias learned from these
words, we employ RoBERTa-base (Liu et al., 2019)
fine-tuned on RTE, and ALBERT-base (Lan et al.,
2020) fine-tuned on SNLI.'® Given a single type
such as x; = “nobody” and a target class such as
y = “contradiction”, we estimate the model p(y|z;)
as follows. We first create two synthetic input ex-
amples, one with the premise containing only the
single token with an empty hypothesis, and one

’

8Some tuples in the plot with high p(y|z;) are not artifacts,
as the attachment decision is nearly deterministic. For in-
stance, the top right blue dot corresponds to (have, of); of can
only attach to have in archaic or idiosyncratic constructions.

*We use the RTE data from SuperGlue (Wang et al., 2019).

"Both models are from Morris et al. (2020), and are imple-
mented in the Transformers library (Wolf et al., 2020).
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Dataset  Class Apy
RTE entailment +2.2 %
SNLI entailment +14.7 %
SNLI neutral +7.9 %
SNLI contradiction  +12.5 %

Table 1: Comparison of the average model predicted
class probability for a single token across two cohorts
of large z* tokens and low z* tokens using RoOBERTa
(RTE) and ALBERT (SNLI).

with an empty premise and hypothesis containing
the single token. As each input contains only a
single token without additional context, this tests
whether the model will bias its output based on
the token. We run a forward pass with each input
and average the target class probabilities as an esti-
mate of p(y|z;). All of the words in each dataset
appearing at least 20 times are partitioned among
the classes based on their largest class conditional
z*, and for each class we form two cohorts of 50
words each with the highest and lowest z*. Let
Xy,z; denote the set of z; with the lowest z* for
class y and similarly let X, .- denote the set with
the largest z*. Finally, we compute the average
Aﬁy = inexyyz; ﬁ(y’xz) - inexyyzz ﬁ(ylmz)

The results are shown in Table 1. As can be seen,
these models exhibit non-trivial bias based on the
single token inputs, with Ap, exceeding 10% for
some classes. The bias is much more extreme for
SNLI versus RTE, likely due to the fact that RTE
has two orders of magnitude less data than SNLI.

A caveat about this experiment is in order: due to
the fact that automatically replacing high z* words
with low z* words will likely make most inputs
nonsensical, we chose to use very unnatural single-
word inputs to the model instead. We believe this
is a reasonable estimate of the model’s marginal
prior on these tokens, measured in a way that in-
troduces the fewest possible confounding variables
into the experiment, but it’s possible that it does not
completely reflect how a model treats these tokens
in context. Section 6 discusses some additional
empirical evidence for models’ reliance on these
artifacts.

5 Mitigating Artifacts with Local Edits

Many works have tried to remove data artifacts by
making minimal changes to existing data (Shekhar
etal., 2017; Sennrich, 2017; Zhao et al., 2018, inter
alia). In this section we show that this kind of data
augmentation can be effective with an appropri-

ately sensitive edit model, where sensitivity refers
to how often a change to inputs results in the label
changing. However, because humans are involved
in making these changes, achieving appropriate
sensitivity is challenging, and bias in this process
can lead to the introduction of new artifacts. This
suggests that care must be taken when performing
edit-based data augmentation, as large edited train-
ing datasets are not likely to be artifact-free (cf.
Tafjord et al., 2019; Huang et al., 2020).

Imagine a new dataset D, consisting of samples
x’, 9/ generated by making local edits according to
the following repeated procedure:

1. Randomly sample an instance x from a dataset

Dy of n instances created under py.

2. Make some changes to x to arrive at x’.

3. Manually label ¢’ and add (x', y) to D,.

We examine the expected probability pe(y'|x}) un-
der this edit process. To derive this probability, we
will need to know the probability that a change to
x changes y. We define the edit sensitivity s to be
this probability, i.e., s = py(y' = —y). The other
quantity of interest for an edit model is e;, the prob-
ability that dimension 7 gets flipped when going
from x to x’. We now show theoretically that s
and e; control whether samples generated by local
editing debias first-order artifacts.

Proposition 1 (Proof in §B). If r; £ 0, then,

1+ e 1
. L =92 «— pe(y'|x;):§.

An analogous statement holds when = is replaced
by < on both sides.

Thus, local editing will dilute or cancel out arti-
facts from rejection sampling if the edit sensitivity
is high enough, but if it is too high, it can introduce
artifacts in the opposite direction. In practice, if it
is possible to pick a dimension to flip more or less
uniformly, then e; ~ 0 in a high-dimensional space,
so engineering s ~ 0.5 should produce artifact-free
additional samples with p.(y/|z}) ~ 0.5.

Furthermore, edit sensitivity and edit dimension
are empirically measurable when constructing a
dataset. This empirical measurement can give theo-
retical guarantees for the degree to which the local
editing will alleviate artifacts (i.e., this gives us a
principled way to decide between edit models).

5.1 Local Edits in Practice

We empirically investigate the effectiveness of lo-
cal edits for reducing single feature artifacts using
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locally edited samples generated from two datasets:
(1) the Boolean Questions dataset (BoolQ; Clark
et al., 2019a), which consists of pairs of paragraphs
(p) and questions (q), where each ¢ has a binary
answer that can be found by reasoning over p; and
(2) IMDb (Maas et al., 2011), a sentiment classi-
fication dataset in the domain of movie reviews.
We define each feature x; as the occurrence of a
particular word within ¢ for BoolQ, and within the
text of the review for IMDb. Gardner et al. (2020)
generated additional data for BoolQ and IMDb by
making local edits to the question or review text
and recording the updated binary label.

Figure 3 visualizes the effect of these changes
on single-feature artifacts by comparing the artifact
statistics for the original texts to the statistics for the
edited texts generated by Gardner et al. (2020). For
BoolQ, many tokens in the original data exhibit arti-
facts in the positive (> 0.5) direction, while, within
the edited data, almost all tokens fall within the con-
fidence region. In contrast, there is no apparent dis-
tributional difference between artifact statistics for
the original vs. edited texts on IMDb. We find that
for BoolQ the values (1 + ¢;)/s tightly concentrate
around a mean of 1.94, which, by Proposition 1,
explains why most of the p(y|z;) values for the
edited samples are not significantly different from
0.5. For IMDD, (1 + ¢;)/s was close to 1. This
case study illustrates the importance of leveraging
our theory to engineer better edit models.

5.2 Local Edits and Boolean Sensitivity

In the above discussion we used the term sensitivity
in an informal way to describe the probability that
a local edit changes the label. This term also has
a related formal definition in the study of boolean
functions, where it is an implicit complexity mea-
sure (Wegener, 1987). Sensitivity in this sense has
been shown to correlate with generalization in neu-
ral networks (Franco, 2001), and has been extended
for use with practical NLP datasets (Hahn et al.,
2021). In this section we discuss the intersection
of our theory with sensitivity analysis, highlight-
ing limitations in sensitivity analysis for sampled
datasets that could be addressed in future work.

For a boolean vector z, let * be the Hamming
neighbor of x at dimension ¢: i.e., the vector where
z; has been flipped and all other bits remain the
same. Consider f : {0,1}¢ — {0, 1}. The sensi-
tivity set S(f, z) is the set of Hamming neighbors

Artifact statistics for BoolQ before and after local edits
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Figure 3: The artifact statistics of the original BoolQ
(above) and IMDb (below) samples are plotted in red,
compared to the artifact statistics over the edited in-
stances, plotted in green.

of x with different labels:

S(f,x)={i€0,....d | f(z) # f(z")}.

The local sensitivity s(f, x) is the size of this set:
s(f,x) = |S(f,x)|. Finally, the global sensitivity
is defined as s(f) = max; s(f, x).

Importance of sensitivity In our case, the effect
of local editing on a dataset can be understood in
terms of sensitivity. Imagine a boolean function
f:{0,1}¢ — {0, 1} from which we draw n sam-
ples (x, y). If these samples are drawn uniformly
over {0, 1}, then the probability of observing any
Hamming neighbors goes to 0 rapidly with d.!!
Thus, it is possible to pick a low sensitivity func-
tion that can perfectly fit the data. In this sense, the
true sensitivity of f is likely underspecified by the
dataset.

Imagine we give this data to a learner with induc-
tive bias resembling some variant of Occam’s razor.
If the learner’s notion of complexity is correlated
with sensitivity (which many complexity measures
are), then the learner will favor low sensitivity de-
cision boundaries. Thus, the fact that sensitivity
is underspecified in the training data is a problem

"'This is essentially the curse of dimensionality.

1807



if the gold-standard function has high sensitivity,
as the inductive bias of the learning algorithm may
favor low-sensitivity alternatives.

Contrast this with a dataset where some local
neighborhoods in the input space have been filled
in with local edits. The set of observed neighbors
around a point x provide a lower bound on s(f, z),
which is a lower bound on s(f). In this sense, s(f)
is no longer underspecified by the dataset.

In this discussion we have used underspecified
in an informal way; there is no precise measure of
the sensitivity of a sampled dataset (as opposed to
a fully-specified function), particularly when gener-
alizing from finite boolean functions to natural lan-
guage inputs. Attempts to generalize sensitivity to
natural language have done so by leveraging large
language models to generate neighbors from which
sensitivity can be estimated (Hahn et al., 2021).
Resampling data in this way can give reasonable
estimates of the sensitivity of the underlying task,
but it is fundamentally incompatible with measur-
ing dataset artifacts of the kind we discuss in this
paper, as the generative model can fill in parts of
the data distribution that are missing due to sam-
pling bias, giving a higher estimate of sensitivity
than is warranted by the sampled dataset.

6 Other Mitigation Techniques

In this section we briefly discuss the implications of
our theoretical analysis for other artifact mitigation
techniques that have been proposed in the literature.
Our analysis in this section is not rigorous and is
meant only to give high-level intuition or potential
starting points for future work.

More annotators One suggested mitigation tech-
nique for dataset artifacts is to increase the number
of annotators (Geva et al., 2019). Especially when
people generate the text that is used in a dataset,
there can be substantial person-specific correlations
between features and labels. Having more anno-
tators washes out those correlations in aggregate,
making the data less biased overall.

We briefly analyze this procedure using our re-
jection sampling framework. For simplicity, we
have so far only considered a single possible rejec-
tion probability, where an instance is rejected with
probability r; if z; = 1 and y = 0. If we introduce
additional rejection probabilities for the other three
possible combinations of values for x; and y, there
will be the possibility that some rejections balance
out other rejections. We can model multiple anno-

tators by splitting a dataset into k& different slices
that have their own bias vectors r. If the r vectors
are uncorrelated, it seems likely that as & increases,
the probability that p(y|x;) deviates from p,, (y|z;)
tends towards zero. Even in our simplistic model,
if we assume a sparse r, averaging more and more
of them will make the deviation tend toward zero,
if the non-zero dimensions are uncorrelated.

However, if the r vectors are correlated, increas-
ing the number of annotators will not produce data
reflecting the competency assumption. When might
the r vectors be correlated? This could happen due
to societal biases, word usage frequencies, or prim-
ing effects from data collection instructions given
to all annotators. Surely across any pool of annota-
tors there will be some dimensions along which r
values are correlated, and other dimensions along
with they are not. Increasing the number of annota-
tors thus helps mitigate the problem, but does not
solve it completely.

Data filtering A recent trend is to remove data
from a training set that is biased in some way in
order to get a model that generalizes better (Le
Bras et al., 2020; Swayamdipta et al., 2020; Oren
et al., 2020). While this method can be effective for
very biased datasets, it is somewhat unsatisfying to
remove entire instances because of bias in a single
feature. In the extreme case where r; =~ 1, such as
with “nobody” in SNLI (Fig. 1), this process could
effectively remove z; from the observed feature
space.

To understand the effect of these automated
methods on dataset artifacts, we repeat the
analysis from §4.1 on data that was classified
as “ambiguous” according to Dataset Cartogra-
phy (Swayamdipta et al., 2020). This data was
shown to provide better generalization when used
as training data compared to the original training
set. The ambiguous instances did not have a bal-
anced label distribution, so we downsampled the
data to balance it, then downsampled the whole
training data to get the same number of instances
as the balanced ambiguous set.

The resulting artifact plots are shown in Figure 4.
As can be seen, the “ambiguous” instances have
many fewer deviations from the competency as-
sumption, across the entire range of our hypothesis
test. It is not just high PMI values that are getting
corrected by finding ambiguous instances; all statis-
tical deviations are impacted. This effect is striking,
and it further corroborates our arguments about the
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Figure 4: Statistical artifacts in ambiguous in-
stances (Swayamdipta et al., 2020; above) versus a ran-
dom (same-size) sample from the SNLI training set (be-
low). The filtering done by ambiguous instance detec-
tion targets statistical artifacts across the whole range
of the statistical test, not just high PMI values.

importance of the competency assumption. '

7 Other Related Work

Theoretical analysis of bias Several recent
works explore sources and theoretical treatments
of bias or spurious correlations in NLP (Shah
et al., 2020a; Kaushik et al., 2020) or ML more
broadly (Shah et al., 2020b). Our work differs by
introducing a competency assumption and explor-
ing its implications. The difference between our
biased and unbiased distributions is an instance of
covariate shift (Quionero-Candela et al., 2009).

Competent models An interesting question is
whether we can inject a “competency inductive
bias” into models, i.e., discourage relying on indi-
vidual features. The closest works we are aware of
are methods that ensemble weak models together
with strong models during training (Clark et al.,
2020; Dagaev et al., 2021), or ensembles of mod-
els with unaligned gradients (Teney et al., 2021).

12Comparing the lower part of Figure 4 to Figure 1 also
corroborates our derived result (§3.1) that larger datasets are
more likely to have artifacts. With 24% of the data there are
many fewer artifacts.

Other works use ensembles with models targeted
at known sources of data artifacts, but these are
less close to a competency assumption (Clark et al.,
2019b; Karimi Mahabadi et al., 2020).

8 Conclusion

The more NLP models advance, the better they are
at learning statistical patterns in datasets. This is
problematic for language understanding research
if some statistical patterns allow a model to by-
pass linguistic competence. We have formalized
this intuition with a class of problems called com-
petency problems, arguing that, for any language
understanding task, all correlations between simple
features and labels are spurious. Collecting data
meeting this assumption is challenging, but we
have provided theoretical analysis that can inform
future data collection efforts for such tasks.

We conclude with some final thoughts on general
best practices for data collection, informed by the
analysis in this paper. If annotators are generating
text for some data collection task, find ways to
decrease priming effects. This could involve using
images as prompts instead of text (Novikova et al.,
2017; Weller et al., 2020), or randomly sampling
words to include in the generated text. If existing
text is being collected and annotated, make local
edits to the text while monitoring the sensitivity
of those edits according to the guidelines in §5,
perhaps using different processes between train
and test, to minimize correlations between train
features and test labels.
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Head: Noun

Head: Verb

At this point, we solve for when p.(y'|z}) = 0.5.

I think 2012 is going to be
a great year for Fujairah as
we have A LOT of projects
to be done by 2012.

V: going
NP: year
PP: for Fujairah

Went to the Willow Lounge
this past weekend for dinner
and drinks ... place is awe-
some.

V: Went
NP: weekend
PP: for dinner and drinks

Here we use the assumption that r; # 0.

Table 2: Examples of constructions extracted from the
UD EWT training data using the heuristics described
in Appendix A. Shown are sentences with differing PP
attachment types for tuple (go, for).

A Ambiguous PP Attachment Extraction

Here, we describe how we heuristically extract
(verb, noun, prepositional phrase) constructions
with ambiguous attachment from the UD English
Web Treebank training data (Section 4.1). Exam-
ples of such constructions are shown in Table 2. We
extract (V, N, PP) constructions from UD EWT in-
puts that meet the following criteria, which operate
over the dependency relation annotations:

1. V, NP, and PP are contained in same sentence
2. Either PP depends on NP or PP depends on V
3. NP depends on V and is not subject of V

4. PP follows both V and NP in the sentence

B Proof of Proposition 1

Proposition 1. If r; # 0, then,
14 ¢ 1
— =2 = ply | 7)) =3
Proof. First consider the case where ¢y = —y. We
marginalize the probability as follows:

pe(y | 23) = po(—y | ) (1 — e;) + po(—y | ~xi)e;

. 2—2r; +rie;

o 22—-m)
We now consider the other case where v/ = y.
pe(y' | 23) = po(y | @) (1 — i) + poly | —2i)e;

2— Ti€4
2(2 — ’I“l') '

Finally we marginalize over whether ¢’ = —y, an
event which has probability s.

(2 —2r; +1ie)s + (2 —re;)(1 — s)

/ no_
pe(y' | 27) = 2(2 — ;)
_2- (25 —e;)r;

2(2 — ’l“i)

1 2—(2s—¢)ry
27 22-m)
2—1r;=2—(2s —¢;)r;
ri = (25 —e;)r;

) 1+e;
5=

O

The proof generalizes to the case where pe(y’ |
x) < 0.5, giving us the analogous result where =
is replaced by < in the statement of Proposition 1.
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