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on the problems being studied, but we argue that it

is a reasonable description of complex language un-

derstanding problems. Consider, for example, the

problem of sentiment analysis on movie reviews.

A single feature might be the presence of the word

“amazing”, which could be legitimately correlated

with positive sentiment in some randomly-sampled

collection of actual movie reviews. However, that

correlation tells us more about word frequency in

movie reviews than it tells us about a machine’s

ability to understand the complexities of natural

language. A competent speaker of a natural lan-

guage would know that “amazing” can appear in

many contexts that do not have positive sentiment

and would not base their prediction on the presence

of this feature alone. That is, the information about

the sentiment of a review, and indeed the mean-

ing of natural language, is contained in complex

feature interactions, not in isolated features. To

evaluate a machine’s understanding of language,

we must remove all simple feature correlations that

would allow the machine to predict the correct label

without considering how those features interact.

Collecting data that accurately reflects the as-

sumptions of a competency problem is very chal-

lenging, especially when humans are involved in

creating it. Humans suffer from many different

kinds of bias and priming effects, which we collec-

tively model in this work with rejection sampling

during data collection. We theoretically analyze

data collection under this biased sampling process,

showing that any amount of bias will result in in-

creasing probability of statistically-significant spu-

rious feature correlations as dataset size increases

(§3).

This theoretical treatment of bias in data collec-

tion gives us a new, simple measure of data artifacts

(§3.2), which we use to explore artifacts in several

existing datasets (§4). Figure 1 revisits prior analy-

ses on the SNLI dataset (Bowman et al., 2015) with

our statistical test. An analysis based on pointwise

mutual information (e.g., Gururangan et al., 2018)

would correspond to a horizontal line in that fig-

ure, missing many features that have less extreme

but still significant correlations with class labels.

These less extreme correlations still lead models

to overweight simple features. The problem of

bias in data collection is pervasive and not easily

addressed with current learning techniques.

Our framework also allows us to examine the the-

oretical impact of proposed techniques to mitigate

bias, including performing local edits after data col-

lection (§5) and filtering collected data (§6). We de-

rive properties of any local edit procedure that must

hold for the procedure to effectively remove data

artifacts. These proofs give dataset builders tools to

monitor the data collection process to be sure that

resultant datasets are as artifact-free as possible.

Our analysis of local edits additionally suggests a

strong relationship to sensitivity in boolean func-

tions (O’Donnell, 2014), and we identify gaps in

the theory of sensitivity that need to be filled to

properly account for bias in sampled datasets.

We believe our theoretical analysis of these prob-

lems provides a good starting point for future anal-

yses of methods to improve NLP data collection, as

well as insights for inductive biases that could be

introduced to better model competency problems.

2 Competency Problems

We define a competency problem to be one where

the marginal distribution over labels given any sin-

gle feature is uniform. For our analysis, we restrict

ourselves to boolean functions: we assume an input

vector x and an output value y, where x ∈ {0, 1}d
and y ∈ {0, 1}.2 In this setting, competency means

p(y|xi) = 0.5 for all i. In other words, the infor-

mation mapping x to y is found in complex feature

interactions, not in individual features.

Our core claim is that language understanding

requires composing together many pieces of mean-

ing, each of which on its own is largely uninforma-

tive about the meaning of the whole. We do not

believe this claim is controversial or new, but its

implications for posing language understanding as

a machine learning problem are underappreciated

and somewhat counterintuitive. If a model picks

up on individual feature correlations in a dataset,

it has learned something extra-linguistic, such as

information about human biases, not about how

words come together to form meaning, which is

the heart of natural language understanding. To

2Boolean functions are quite general, and many machine
learning problems can be framed this way. For NLP, consider
that before the rise of embedding methods, language was often
represented in machine learning models as bags of features
in a very high-dimensional feature space, exactly as we are
modeling the problem here. The first (embedding) layer of
a modern transformer is still very similar to this, with the
addition of a position encoding. The choice of what counts
as a “simple feature” is admittedly somewhat arbitrary; we
believe that considering word types as simple features, as we
do in most of our analysis, is uncontroversial, but there are
other more complex features which one still might want to
control for in competency problems.
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push machines towards linguistic competence, we

must control for all sources of extra-linguistic in-

formation, ensuring that no simple features contain

information about class labels.

For some language understanding problems,

such as natural language inference, this intuition

is already widely held. We find it surprising and

problematic when the presence of the word “cat”,

“sleeping” or even “not” in either the premise or

the hypothesis gives a strong signal about an en-

tailment decision (Gururangan et al., 2018; Poliak

et al., 2018). Competency problems are broader

than this, however. Consider the case of sentiment

analysis. It is true that a movie review containing

the word “amazing” is more likely than not to ex-

press positive sentiment about the movie. This is

because of distributional effects in how humans

choose to use phrases in movie reviews. These

distributional effects cause the lexical semantics

of “amazing” to carry over into the whole context,

essentially conflating lexical and contextual cues.

If our goal is to build a system that can accurately

classify the sentiment of movie reviews, exploiting

this conflation is useful. But if our goal is instead to

build a machine that understands how sentiment is

expressed in language, this feature is a red herring

that must be controlled for to truly test linguistic

competence.

3 Biased Sampling

To get machines to perform well on competency

problems, we need data that accurately reflects the

competency assumption, both to evaluate systems

and (presumably) to train them. However, humans

suffer from blind spots, social bias, priming, and

other psychological effects that make collecting

data for competency problems challenging. Ex-

amples of these effects include instructions in a

crowdsourcing task that prime workers to use par-

ticular language,3 or distributional effects in source

material, such as the “amazing” examples above,

or racial bias in face recognition (Buolamwini

and Gebru, 2018) and abusive language detection

datasets (Davidson et al., 2019; Sap et al., 2019).

In order to formally analyze the impact of hu-

man bias on collecting data for competency prob-

lems, we need a plausible model of this bias. We

represent bias as rejection sampling from the tar-

3This is ubiquitous in crowdsourcing; see, e.g., common
patterns in DROP (Dua et al., 2019) or ROPES (Lin et al.,
2019) that ultimately derive from annotator instructions.

get competency distribution based on single fea-

ture values. Specifically, we assume the follow-

ing dataset collection procedure. First, a person

samples an instance from an unbiased distribution

pu(x, y) where the competency assumption holds.

The person examines this instance, and if feature

xi = 1 appears with label y = 0, the person rejects

the instance and samples a new one, with probabil-

ity ri. If y = 0 corresponds to negative sentiment

and xi indicates the presence of the word “amaz-

ing”, a high value for ri would lead to “amazing”

appearing more often with positive sentiment, as is

observed in typical sentiment analysis datasets.

We do not that claim rejection sampling is a plau-

sible psychological model of dataset construction.

However, we do think it is a reasonable first-order

approximation of the outcome of human bias on

data creation, for a broad class of biases that have

empirically been found in existing datasets, and it

is relatively easy to analyze.

3.1 Emergence of Artifacts Under Rejection

Sampling

Let pu(y|xi) be the conditional probability of y = 1
given xi = 1 under the unbiased distribution,

pb(y|xi) be the same probability under the biased

distribution, and p̂(y|xi) denote the empirical prob-

ability within a biased dataset of n samples. Addi-

tionally, let fi be the marginal probability pu(xi).
Recall that pu(y|xi) is 0.5 by assumption.

We will say that dimension i has an artifact if the

empirical probability p̂(y|xi) statistically differs

from 0.5. In this section, we will show that an

artifact emerges if there is a bias at dimension i
in the sampling procedure, which is inevitable for

some features in practice. We will formalize this

bias in terms of a rejection sampling probability ri.

For a single sample x, y, we first derive the joint

and marginal probabilities pb(y, xi) and pb(xi),
from which we can obtain pb(y|xi). These for-

mulas use a recurrence relation obtained from the

rejection sampling procedure.

pb(y, xi) =
1

2
fi +

1

2
firipb(y, xi)

∴ pb(y, xi) =
fi

2− firi
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pb(xi) =
1

2
fi +

1

2
fi(1− ri) +

1

2
firipb(xi)

∴ pb(xi) =
2fi − firi
2− firi

∴ pb(y | xi) =
pb(y, xi)

pb(xi)
=

1

2− ri

With no bias (ri = 0), this probability is 0.5, as

expected, and it rises to 1 as ri increases to 1.

We define p̂(y|xi) as the empirical expectation

of pb(y|xi) over n samples containing xi, with dif-

ferent samples indexed by superscript j. p̂(y|xi) =
1

n

∑n
j=1

yj . Note that p̂ is a conditional binomial

random variable. By the central limit theorem, p̂ is

approximately ∼ N (µp̂, σ
2

p̂) for large n, where

µp̂ = pb(y | xi) =
1

2− ri

σ2

p̂ =

(

1− ri
(2− ri)2

)2

· 1
n
.

This variance is inversely proportional to the

number of samples n. Thus, p̂(y|xi) can be well

approximated by its expected value for a large

number of samples. As the rejection probability

ri increases, the center of this distribution tends

from 0.5 to 1. This formalizes the idea that bias

in the sampling procedure will cause the empirical

probability p̂(y|xi) to deviate from 0.5, even if the

“true” probability is 0.5 by assumption. Increasing

the sample size n concentrates the distribution in-

versely proportional to
√
n, but the expected value

is unchanged. Thus, artifacts created by rejection

sampling will not be combated by simply sampling

more data from the same biased procedure—the

empirical probability will still be biased by ri even

if n increases arbitrarily. These persistent artifacts

can be exploited at i.i.d. test time to achieve high

performance, but will necessarily fail if the learner

is evaluated under the competency setting.

3.2 Hypothesis Test

Here we set up a hypothesis test to evaluate if there

is enough evidence to reject the hypothesis that ri is

0, i.e., that the data is unbiased. In this case, we can

use a one-sided binomial proportion hypothesis test,

as our rejection sampling can only lead to binomial

proportions for pb(y | xi) that are greater than 1

2
.

Our null hypothesis is that the binomial proportion

pb(y | xi) = 0.5 = p0, or equivalently, that ri = 0.

Our alternative hypothesis is that pb(y | xi) ≥ 0.5.

Let p̂ be the observed probability. We can compute

a z-statistic4 using the standard formula:

z∗ =
p̂− p0

√

p0(1− p0)/n
(1)

Thus, if our observed proportion p̂ is far from p0 =
0.5, we will have enough evidence to reject the null

hypothesis that ri = 0. This depends on n as well,

and to explore this interaction, we solve for p̂ for a

given n and confidence level z∗: p̂ = z∗

2
√
n
+ 1

2
.

4 Empirical Analysis

With a hypothesis test in hand, we can exam-

ine existing datasets for evidence of statistically-

significant feature bias, and then explore the ex-

tent to which this bias impacts models supervised

with this data. Prior work has used pointwise mu-

tual information (PMI) to find features that have

high correlation with labels (e.g., Gururangan et al.,

2018). This measure is useful for understanding

why certain features might get used as deterministic

decision rules by models (Ribeiro et al., 2018; Wal-

lace et al., 2019). However, studies involving PMI

have also intuitively understood that PMI by itself

does not tell the whole story, as a strict ranking by

PMI would return features that only appear once in

the dataset. To account for this problem, they used

arbitrary cutoffs and included information about

feature occurrence in addition to their PMI ranking.

A benefit of our approach to defining and detect-

ing artifacts is that we have a single statistical test

that takes into account both the number of times

a feature appears and how correlated it is with a

single label. We use this test to find features with

the strongest statistical evidence for artifacts (§4.1)

and then show empirically that models use these

features inappropriately when making predictions

(§4.2). This analysis goes beyond deterministic pre-

diction rules, showing that the impact of sampling

bias on model behavior is subtle and pervasive.

4.1 Data Analysis

We analyze two datasets with the hypothesis test

from §3.2: SNLI (Bowman et al., 2015) and

the Universal Dependencies English Web Tree-

bank (Silveira et al., 2014).

SNLI Each feature xi represents the presence of

a word in a given example, counting each appear-

ance in an instance as a separate occurrence5 for

4The use of a z-statistic depends on the normal approxi-
mation to a binomial distribution, which holds for large n.

5We remove punctuation and tokenize on whitespace only.
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Dataset Class ∆p̂y

RTE entailment +2.2 %
SNLI entailment +14.7 %
SNLI neutral +7.9 %
SNLI contradiction +12.5 %

Table 1: Comparison of the average model predicted

class probability for a single token across two cohorts

of large z∗ tokens and low z∗ tokens using RoBERTa

(RTE) and ALBERT (SNLI).

with an empty premise and hypothesis containing

the single token. As each input contains only a

single token without additional context, this tests

whether the model will bias its output based on

the token. We run a forward pass with each input

and average the target class probabilities as an esti-

mate of p̃(y|xi). All of the words in each dataset

appearing at least 20 times are partitioned among

the classes based on their largest class conditional

z∗, and for each class we form two cohorts of 50

words each with the highest and lowest z∗. Let

Xy,z∗<
denote the set of xi with the lowest z∗ for

class y and similarly let Xy,z∗>
denote the set with

the largest z∗. Finally, we compute the average

∆p̃y =
∑

xi∈Xy,z∗
>

p̃(y|xi)−
∑

xi∈Xy,z∗
<

p̃(y|xi).
The results are shown in Table 1. As can be seen,

these models exhibit non-trivial bias based on the

single token inputs, with ∆p̃y exceeding 10% for

some classes. The bias is much more extreme for

SNLI versus RTE, likely due to the fact that RTE

has two orders of magnitude less data than SNLI.

A caveat about this experiment is in order: due to

the fact that automatically replacing high z∗ words

with low z∗ words will likely make most inputs

nonsensical, we chose to use very unnatural single-

word inputs to the model instead. We believe this

is a reasonable estimate of the model’s marginal

prior on these tokens, measured in a way that in-

troduces the fewest possible confounding variables

into the experiment, but it’s possible that it does not

completely reflect how a model treats these tokens

in context. Section 6 discusses some additional

empirical evidence for models’ reliance on these

artifacts.

5 Mitigating Artifacts with Local Edits

Many works have tried to remove data artifacts by

making minimal changes to existing data (Shekhar

et al., 2017; Sennrich, 2017; Zhao et al., 2018, inter

alia). In this section we show that this kind of data

augmentation can be effective with an appropri-

ately sensitive edit model, where sensitivity refers

to how often a change to inputs results in the label

changing. However, because humans are involved

in making these changes, achieving appropriate

sensitivity is challenging, and bias in this process

can lead to the introduction of new artifacts. This

suggests that care must be taken when performing

edit-based data augmentation, as large edited train-

ing datasets are not likely to be artifact-free (cf.

Tafjord et al., 2019; Huang et al., 2020).

Imagine a new dataset De consisting of samples

x
′, y′ generated by making local edits according to

the following repeated procedure:

1. Randomly sample an instance x from a dataset

Db of n instances created under pb.
2. Make some changes to x to arrive at x′.
3. Manually label y′ and add 〈x′, y′〉 to De.

We examine the expected probability pe(y
′|x′i) un-

der this edit process. To derive this probability, we

will need to know the probability that a change to

x changes y. We define the edit sensitivity s to be

this probability, i.e., s = pb(y
′ = ¬y). The other

quantity of interest for an edit model is ei, the prob-

ability that dimension i gets flipped when going

from x to x
′. We now show theoretically that s

and ei control whether samples generated by local

editing debias first-order artifacts.

Proposition 1 (Proof in §B). If ri 6= 0, then,

1 + ei
s

= 2 ⇐⇒ pe(y
′ | x′i) =

1

2
.

An analogous statement holds when = is replaced

by ≤ on both sides.

Thus, local editing will dilute or cancel out arti-

facts from rejection sampling if the edit sensitivity

is high enough, but if it is too high, it can introduce

artifacts in the opposite direction. In practice, if it

is possible to pick a dimension to flip more or less

uniformly, then ei ≈ 0 in a high-dimensional space,

so engineering s ≈ 0.5 should produce artifact-free

additional samples with pe(y
′|x′i) ≈ 0.5.

Furthermore, edit sensitivity and edit dimension

are empirically measurable when constructing a

dataset. This empirical measurement can give theo-

retical guarantees for the degree to which the local

editing will alleviate artifacts (i.e., this gives us a

principled way to decide between edit models).

5.1 Local Edits in Practice

We empirically investigate the effectiveness of lo-

cal edits for reducing single feature artifacts using
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if the gold-standard function has high sensitivity,

as the inductive bias of the learning algorithm may

favor low-sensitivity alternatives.

Contrast this with a dataset where some local

neighborhoods in the input space have been filled

in with local edits. The set of observed neighbors

around a point x provide a lower bound on s(f, x),
which is a lower bound on s(f). In this sense, s(f)
is no longer underspecified by the dataset.

In this discussion we have used underspecified

in an informal way; there is no precise measure of

the sensitivity of a sampled dataset (as opposed to

a fully-specified function), particularly when gener-

alizing from finite boolean functions to natural lan-

guage inputs. Attempts to generalize sensitivity to

natural language have done so by leveraging large

language models to generate neighbors from which

sensitivity can be estimated (Hahn et al., 2021).

Resampling data in this way can give reasonable

estimates of the sensitivity of the underlying task,

but it is fundamentally incompatible with measur-

ing dataset artifacts of the kind we discuss in this

paper, as the generative model can fill in parts of

the data distribution that are missing due to sam-

pling bias, giving a higher estimate of sensitivity

than is warranted by the sampled dataset.

6 Other Mitigation Techniques

In this section we briefly discuss the implications of

our theoretical analysis for other artifact mitigation

techniques that have been proposed in the literature.

Our analysis in this section is not rigorous and is

meant only to give high-level intuition or potential

starting points for future work.

More annotators One suggested mitigation tech-

nique for dataset artifacts is to increase the number

of annotators (Geva et al., 2019). Especially when

people generate the text that is used in a dataset,

there can be substantial person-specific correlations

between features and labels. Having more anno-

tators washes out those correlations in aggregate,

making the data less biased overall.

We briefly analyze this procedure using our re-

jection sampling framework. For simplicity, we

have so far only considered a single possible rejec-

tion probability, where an instance is rejected with

probability ri if xi = 1 and y = 0. If we introduce

additional rejection probabilities for the other three

possible combinations of values for xi and y, there

will be the possibility that some rejections balance

out other rejections. We can model multiple anno-

tators by splitting a dataset into k different slices

that have their own bias vectors r. If the r vectors

are uncorrelated, it seems likely that as k increases,

the probability that p̂(y|xi) deviates from pu(y|xi)
tends towards zero. Even in our simplistic model,

if we assume a sparse r, averaging more and more

of them will make the deviation tend toward zero,

if the non-zero dimensions are uncorrelated.

However, if the r vectors are correlated, increas-

ing the number of annotators will not produce data

reflecting the competency assumption. When might

the r vectors be correlated? This could happen due

to societal biases, word usage frequencies, or prim-

ing effects from data collection instructions given

to all annotators. Surely across any pool of annota-

tors there will be some dimensions along which r

values are correlated, and other dimensions along

with they are not. Increasing the number of annota-

tors thus helps mitigate the problem, but does not

solve it completely.

Data filtering A recent trend is to remove data

from a training set that is biased in some way in

order to get a model that generalizes better (Le

Bras et al., 2020; Swayamdipta et al., 2020; Oren

et al., 2020). While this method can be effective for

very biased datasets, it is somewhat unsatisfying to

remove entire instances because of bias in a single

feature. In the extreme case where ri ≈ 1, such as

with “nobody” in SNLI (Fig. 1), this process could

effectively remove xi from the observed feature

space.

To understand the effect of these automated

methods on dataset artifacts, we repeat the

analysis from §4.1 on data that was classified

as “ambiguous” according to Dataset Cartogra-

phy (Swayamdipta et al., 2020). This data was

shown to provide better generalization when used

as training data compared to the original training

set. The ambiguous instances did not have a bal-

anced label distribution, so we downsampled the

data to balance it, then downsampled the whole

training data to get the same number of instances

as the balanced ambiguous set.

The resulting artifact plots are shown in Figure 4.

As can be seen, the “ambiguous” instances have

many fewer deviations from the competency as-

sumption, across the entire range of our hypothesis

test. It is not just high PMI values that are getting

corrected by finding ambiguous instances; all statis-

tical deviations are impacted. This effect is striking,

and it further corroborates our arguments about the
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Head: Noun Head: Verb

I think 2012 is going to be
a great year for Fujairah as
we have A LOT of projects
to be done by 2012.

Went to the Willow Lounge
this past weekend for dinner
and drinks ... place is awe-
some.

V: going V: Went
NP: year NP: weekend
PP: for Fujairah PP: for dinner and drinks

Table 2: Examples of constructions extracted from the

UD EWT training data using the heuristics described

in Appendix A. Shown are sentences with differing PP

attachment types for tuple (go, for).

A Ambiguous PP Attachment Extraction

Here, we describe how we heuristically extract

(verb, noun, prepositional phrase) constructions

with ambiguous attachment from the UD English

Web Treebank training data (Section 4.1). Exam-

ples of such constructions are shown in Table 2. We

extract (V, N, PP) constructions from UD EWT in-

puts that meet the following criteria, which operate

over the dependency relation annotations:

1. V, NP, and PP are contained in same sentence

2. Either PP depends on NP or PP depends on V

3. NP depends on V and is not subject of V

4. PP follows both V and NP in the sentence

B Proof of Proposition 1

Proposition 1. If ri 6= 0, then,

1 + ei
s

= 2 ⇐⇒ pe(y
′ | x′i) =

1

2
.

Proof. First consider the case where y′ = ¬y. We

marginalize the probability as follows:

pe(y
′ | x′i) = pb(¬y | xi)(1− ei) + pb(¬y | ¬xi)ei

=
2− 2ri + riei
2(2− ri)

.

We now consider the other case where y′ = y.

pe(y
′ | x′i) = pb(y | xi)(1− ei) + pb(y | ¬xi)ei

=
2− riei
2(2− ri)

.

Finally we marginalize over whether y′ = ¬y, an

event which has probability s.

pe(y
′ | x′i) =

(2− 2ri + riei)s+ (2− riei)(1− s)

2(2− ri)

=
2− (2s− ei)ri

2(2− ri)
.

At this point, we solve for when pe(y
′|x′i) = 0.5.

Here we use the assumption that ri 6= 0.

1

2
=

2− (2s− ei)ri
2(2− ri)

2− ri = 2− (2s− ei)ri

ri = (2s− ei)ri

∴ s =
1 + ei
2

.

The proof generalizes to the case where pe(y
′ |

x′i) ≤ 0.5, giving us the analogous result where =
is replaced by ≤ in the statement of Proposition 1.


