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Constrained Imitation Learning for
a Flapping Wing Unmanned Aerial Vehicle

Tejaswi K. C. and Taeyoung Lee

Abstract—This paper presents a data-driven optimal control
policy for a micro flapping wing unmanned aerial vehicle. First,
a set of optimal trajectories are computed off-line based on a
geometric formulation of dynamics that captures the nonlinear
coupling between the large angle flapping motion and the quasi-
steady aerodynamics. Then, it is transformed into a feedback
control system according to the framework of imitation learning.
In particular, an additional constraint is incorporated through
the learning process to enhance the stability properties of
the resulting controlled dynamics. Compared with conventional
methods, the proposed constrained imitation learning eliminates
the need to generate additional optimal trajectories on-line,
without sacrificing stability. As such, the computational efficiency
is substantially improved. Furthermore, this establishes the first
nonlinear control system that stabilizes the coupled longitudinal
and lateral dynamics of flapping wing aerial vehicle without
relying on averaging or linearization. These are illustrated by
numerical examples for a simulated model inspired by Monarch
butterflies.

I. INTRODUCTION

Flapping wing aerial vehicles exhibit substantial advan-
tages in energy efficiency and agility, compared against the
conventional fixed or rotary wing types whose lift-to-drag
ratio deteriorates rapidly as its size is reduced. As such, the
flapping wing mechanism has been envisaged to be a critical
component for micro autonomous drones of the next genera-
tion [1]. However, the corresponding development for control
is limited, especially compared with the recent progress in
autonomous unmanned aerial vehicles such as quadrotors. This
is mainly because the flapping wing aerial vehicles correspond
to infinite-dimensional nonlinear time-varying systems, where
unsteady aerodynamics is coupled with structural deformation
of wings and body dynamics in a sophisticated manner.

Most of the existing control systems for flapping wing aerial
vehicles bypass these challenges by averaging the linearized
dynamics over a flapping period [2], [3], [4]. These works
exploit the large disparity in time scales between wingbeat
frequency and flight dynamics after exploiting high frequency
oscillations of small wings. Consequently, they are not suit-
able for flapping wing aerial vehicles or insect flight with
a relatively large wing flapping at a low frequency, such as
in Monarch butterflies [5], which exhibit remarkable flight
characteristics migrating over three thousands miles dispro-
portionate to their size.

Recently, the authors have proposed a geometric model
for flapping wing aerial vehicles inspired by Monarch butter-
fly [6]. This is formulated in an intrinsic fashion such that any
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arbitrary maneuver involving large-angle flapping is described
globally without singularities caused by local parameteriza-
tion. Based on this, a feedback controller is developed for just
the longitudinal dynamics, where controller parameters are
optimized to guarantee stability according to the Lyapunov-
Floquet theory [7]. Next, optimal control trajectories are
constructed via direct optimization for the coupled dynamics
of the longitudinal mode and the lateral mode [8]. While
this approach deals with arbitrary maneuvers in the three-
dimensional space, it is computationally expensive due to
the extensive number of iterations involved, and therefore, it
can not be implemented in real time. In short, due to the
complexities of the dynamics, it is challenging to design a
control system from Lyapunov stability analysis or model-
predictive online optimization.

In aerial robotics for multirotor UAVs, these have been ad-
dressed by model predictive control integrated with reinforce-
ment learning [9]. There has been noticeable progress even
in real world implementations of such sensorimotor controls.
Directly mapping states to control values, [10] proposes offline
training using trajectories generated from optimal controls.
More recently, policies trained in simulation have been utilized
in autonomous flight for challenging tasks [11], [12].

A common theme here is the idea of imitation learning
which is to emulate the behavior of an expert by learning
from the demonstrated actions. A naive implementation where
a neural network is trained to model expert demonstrations, is
referred to as behavior cloning [13]. However, its performance
is not satisfactory in practice, as the mismatch of distributions
between offline training data and online trajectories accumu-
lates over time. To address this, the DAgger algorithm [14]
repeatedly augments the training data with the actual state en-
countered during online implementation and the corresponding
optimal control input of the expert. Recently, a robust imitation
learning referred to as DART has been proposed, which
injects noise into the expert itself to improve robustness [15].
However, these require that the expert is continuously queried
online, and also, the neural network should be retrained for
training data that are constantly renewed and enlarged.

In this paper, to address these challenges of imitation
learning for flapping wing aerial vehicles, we propose a new
scheme referred to as constrained imitation learning (COIL).
The fundamental idea is that we impose an equality constraint
on the neural network to guarantee zero control for zero state
error, instead of augmenting the training data with additional
trajectories. This injection of domain knowledge in the form
of constraints has been illustrated to improve the performance
of learned networks in supervised learning [16], and various
end-to-end constrained optimization learning methods have
been reviewed [17]. To alleviate some of the computational
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impediments, the target values are adjusted strategically [18],
whose convergence properties are analyzed in [19].

The proposed COIL is inspired by these ideas of exploiting
domain knowledge to enhance the computational properties
of imitation learning. The unique advantages of COIL are
summarized as follows:

1) Imitation learning is tailored for control of dynamic
systems to improve stability properties without causing
computational burden;

2) The issue of instability in behavior cloning is addressed
without enlarging the training data set;

3) There is no need to communicate with the expert online
during the learning process.

This scheme is applied to construct a data-driven feedback
control system for a flapping wing aerial vehicle, where the
optimal control trajectories constructed offline are considered
as expert demonstration. The above third property of COIL
is particularly useful as there is no need to solve time-
consuming, trajectory optimization repeatedly. Nor does it
require Lyapunov stability analysis for sophisticated equations
of motion involving aerodynamic forces and moments.

This paper is organized as follows. The dynamics of a
flapping wing aerial vehicle and the offline optimal control
framework are presented in Section II. The COIL scheme
is proposed in Section III and it is verified numerically in
Section IV. An open-source MATLAB implementation of the
dynamical model, optimal controller, and learning schemes is
available at https://github.com/fdcl-gwu/FWUAV.

II. PRELIMINARIES

In this section, we outline the background materials required
to understand the imitation learning problem formulation
for the control of a flapping wing unmanned aerial vehicle
(FWUAV). First, a dynamical model of FWUAV formulated
in [20], [6] is introduced. Then a geometric numerical inte-
gration scheme is presented which is utilized to implement an
optimal controller [8].

Throughout this paper, the three-dimensional special orthog-
onal group is denoted by SO(3) = {R ∈ R3×3 | RTR =
I, det(R) = 1}, and its Lie algebra is so(3) = {A ∈ R3×3 |
A = −AT }. For all numerical examples, the units are in kg,
m, s, and rad, unless specified otherwise.

A. Equations of motion

We model FWUAV as a composition of three rigid bodies,
namely thorax and two wings, interconnected by spherical
joints. The detailed definition of these elements are presented
in [6], with an additional component of abdomen. The key
components essential to the development of this paper are
listed as follows.

• Body: Its position is denoted by x ∈ R3 and the attitude
is given by R ∈ SO(3) with the angular velocity Ω ∈ R3.

• Right wing: Attitude, QR ∈ SO(3), is characterized by
1–3–2 Euler angles (ϕR(t), ψR(t), θR(t)) (see Figure 1)
along with the stroke angle, β, and the angular velocity
is ΩR ∈ R3.

ϕ > 0

sy

ry

(a) flapping angle ϕR

θ > 0

rx

sx

(b) pitch angle θR

ψ > 0 ry

sy

(c) deviation angle ψR

Fig. 1. Euler angles corresponding to right wing attitude [20]

• Left Wing: QL is defined symmetrically to the right wing,
and the angular velocity is ΩL ∈ R3.

In this paper, we are interested in influencing the motion
of FWUAV by controlling the wings, assuming that flapping
motion of the wing, represented by QR(t), QL(t), is given as a
function of time. This motion is in fact further parameterized
by a specific model of wing kinematic parameters inspired
by insect flapping [6]. Thus the whole configuration can be
decomposed into a freely varying part, g1 = (x,R), ξ1 =
[ẋ,Ω] and a prespecified part, g2 = (QR, QL), ξ2 =
[ΩR,ΩL]. For given (g2(t), ξ2(t)), the governing equations for
(g1, ξ1) can be rearranged into,

ġ1 = g1ξ1, ξ̇1 = F (g1, ξ1, g2, ξ2). (1)

As such, it corresponds to a time-varying ordinary differential
equation on R3×SO(3)×R6. The detailed developments of the
above equations with explicit formulation are available in [8].

B. Numerical Integrator

Since we utilize the optimal trajectories of (1) later for
imitation learning, it is critical to discretize them properly.
One particular challenge is that the rotation matrices evolve
on a nonlinear Lie group and general purpose numerical
integrators do not preserve their orthogonality [21]. For ex-
ample, it is observed that the common Runge-Kutta methods
are not suitable for the presented problem involving multiple
rigid bodies undergoing large rotations. More specifically, it
was challenging to achieve any consistency or robustness in
the subsequent numerical optimization and neural network
training.

To address this, we utilize Lie group methods where
the group elements are updated by the group operation to
preserve group structures. In particular, a Crouch-Grossman
method [21, Chapter IV.8] is adopted: (1) is discretized from
t = [t0, t1] with a fixed step size of h into

g1(t1) = g1(t0)

s∏
i=1

exp(hbiξ
i
1), (2)

ξ1(t1) = ξ1(t0) + h

s∑
i=1

biζ
i, (3)

where gi1 ∈ R3 × SO(3), ξi1 ∈ R6, ζi ∈ R6 for i = 1, . . . , s
are given by

gi1 = g1(t0)

i−1∏
j=1

exp(haijξ
j
1), ξi1 = ξ1(t0) + h

i−1∑
j=1

aijζ
i,

ti = t0 + cih, ζi = F (gi1, ξ
i
1, g2(t

i), ξ2(t
i)).

https://github.com/fdcl-gwu/FWUAV
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Here, a ∈ Rs×s and b, c ∈ Rs are real valued constants
satisfying certain conditions to ensure an order of accuracy.
In particular, we use an explicit method of order 4 with s = 5
stages with the constant values in [22]. For the numerical
examples considered in this paper, the error in satisfaction of
the orthogonality of rotation matrices is approximately 10−7

for a 4-th order Runge-Kutta method, and it is 10−12 for the
presented Crouch Grossman method.

C. Optimal Control of FWUAV

The objective of the control system presented in this paper is
to adjust the wing kinematics such that the motion of FWUAV
asymptotically converges to a desired flight maneuver. This
is addressed by generating a set of optimal trajectories for
varying initial conditions, as presented in [8] and summarized
here, which are utilized for imitation learning in the subse-
quent section. Let x(t) = (x(t), R(t), ẋ(t),Ω(t)) denote the
state of FWUAV, and let xd(t) = (xd(t), Rd(t), ẋd(t),Ωd(t))
be the desired trajectory. The control objective is to ensure
x(t) → xd(t), i.e., the trajectory asymptotically converges to
the periodic orbit when x(0) ̸= xd(t).

First, a desired trajectory has to be constructed through a
constrained optimization problem while enforcing periodicity
of flapping. In this paper, we consider a hovering reference
flight where the position and the attitude at the end of the
flapping period match with the values at the beginning of the
period. Next, instead of controlling all wing kinematics pa-
rameters, to improve numerical properties and convergence of
optimization, the following N∆ = 6 parameters are selected:

∆ = [∆ϕms ,∆θ0s ,∆ϕma ,∆ϕ0s ,∆θ0a ,∆ψ0a ]. (4)

The effects of these parameters on each component of the
aerodynamic force and moment are summarized in [8, Table
2].

These values of ∆ are interpolated in a piecewise linear
manner by dividing a flapping period into Ns = 10 steps,
and an additional constraint ∆(0) = ∆(T ) = 0 is imposed to
ensure periodicity. The objective function for optimization is
taken to be the discrepancy between the desired trajectory and
the controlled trajectory, measured by

J =

Np∑
i=1

Wi

√∑
j

(Wxj (xj(ti)− xdj (ti)))
2. (5)

Here, the weights W are chosen such that components of states
are scaled by their own physical characteristics, and also to
ensure that final state errors have more importance.

While solving this problem we adopt the procedure of model
predictive control (MPC) using the fmincon solver from
MATLAB. In other words, we obtain control parameters over
a prediction horizon of two time periods (Np = 20) while
the actual controller is implemented only for the first period
(Ns = 10). At the end of this period, the process of opti-
mization is repeated. The detailed procedure for optimization
is presented in [8].

III. CONSTRAINED IMITATION LEARNING

The control procedure illustrated in the previous section is
not ideal for real-time implementation, as the time required
for optimization is greater than the flapping period by several
orders: a few minutes are required for optimization while
a single flapping period is on the scale of 0.1 seconds. In
this section, we adopt the framework of imitation learning,
where a feedback control scheme is constructed from a set of
optimal trajectories obtained offline. Popular imitation learning
schemes, namely behavior cloning, DAgger and DART are
introduced, and a new constrained imitation learning, referred
to as COIL, is proposed.

A. Behavior Cloning

The most straightforward approach is to utilize supervised
learning and construct a neural network controller that is
trained to reproduce the above optimal control trajectories
for a given state. Exploiting the periodicity of the desired
maneuver, the input of the neural network will be the state of
FWUAV at the beginning of a flapping period and the output
is wing kinematics parameters over the entire flapping period.
This implies that the feedback mechanism of comparing the
actual state to the desired state is activated periodically at the
beginning of each period. This is sensible as the same state
errors at two distinct flapping phases imply different dynamic
characteristics, and it reduces the dimension of the input for
the neural network substantially. Numerical examples consid-
ered in this paper indicate that stabilization is achievable with
this approach, but it can be readily extended to incorporate
state errors in other phases of the flapping period.

To generate the training data set, the above optimization
problem is solved repeatedly for varying initial conditions.
We select random initial errors in the form of ∆x(0) =
[∆x(0),∆R(0),∆ẋ(0),∆Ω(0)] ∈ R12, defined by

∆x = x− xd, ∆R =
1

2
(RT

dR−RTRd)
∨,

∆ẋ = ẋ− ẋd, ∆Ω = Ω−RTRdΩd.

Each part of this error vector is sampled from the uniform
sphere in R3, and scaled to ensure that all states are varied in
a similar physical level. For each initial error, the preceding
optimization problem is solved to construct the optimal control
parameters u ∈ R60, which is the values of ∆ ∈ R6 defined in
(4) over Ns = 10 points in a flapping period. The training data
are composed of N pairs of the corresponding (∆x(0), u),
which also include N0 pairs of (∆x(0) = 0, u = 0) to promote
that zero state error results in zero control.

w

+w

b

linear u

Outputw

b

+ leaky

Relu

Hidden layer Output layer

36 60

Input

Fig. 2. Neural network architecture
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Next a neural network is formulated as a simple cascade-
forward architecture with a single hidden layer composed of
36 leakyRelu neurons (see Figure 2). Let its input matrix
be X ∈ R12×N , whose columns {Xk, k = 1 . . . N} corre-
spond to the values of ∆x(0). Similarly the output matrix
Y ∈ R60×N is constructed by the optimal control parameters.
The input-output relation of the neural network is represented
by Ŷ = f(X, θ), where θ ∈ RNθ are its parameters composed
of weights and biases, and Ŷ is the predicted output. The
parameters θ are trained to minimize a loss function, L(Ŷ , Y )
which is often chosen as the mean squared error in regression.

The detailed implementation and the corresponding con-
trolled trajectories are presented in Section IV. It turns out
that the resulting performance is not satisfactory. Following
an initial convergence of the state errors with respect to the
reference trajectory, the controlled trajectories start to diverge
as the number of flapping increases. This is not surprising as
the presented approach based on supervised learning, referred
to as behavior cloning, does not perform well in practice. It
is because the particular states encountered in the controlled
trajectory may not be well represented by any of the optimal
trajectories in the training data. The mismatch of the distribu-
tions between the training data set and the actual controlled
trajectory accumulates over time inevitably.

B. DAgger
The issues of behavior cloning can be mitigated by increas-

ing the size of the training data so that any state in the con-
trolled trajectory is sufficiently close to an optimal trajectory
in the data set. However this will increase the computational
cost substantially in terms of both trajectory optimization and
neural network training. Alternatively, a popular benchmark
algorithm, referred to as DAgger addresses the problems of
behavior cloning by integrating online learning and iterative
training [14]. It involves interaction with the expert during
training as summarized below.

Algorithm 1 DAgger
Input: (X,Y ), Ni ∈ Z

1: for i = 1 to Ni do
2: θi = argminθ{L(Ŷ , Y ) | Ŷ = f(X, θ)}
3: Execute the trained policy to construct on-policy trajec-

tories
4: Add these new states, Xk into the input set X
5: Obtain optimal control for new states through optimiza-

tion, Yk, and add them to the output set Y
6: end for

Output: θNi

Algorithm 1 describes the DAgger approach as applied
to our control problem. With the given data set, the neural
network model is trained at Step 2 as in behavior cloning. Then
in Step 3, the trained neural network is executed over several
periods to get new controlled trajectories. The offline optimal
control presented in Section II-C is utilized for these new states
to obtain the corresponding optimal control inputs, which are
added to the training dataset. This procedure is repeated for
Ni iterations to improve the performance.

In short, training is repeated with the new data set obtained
from on-policy, online trajectories. As the particular states en-
countered in the controlled trajectories are constantly added to
training, the aforementioned issue of the distribution mismatch
is directly addressed. However, this approach is computation-
ally expensive as the size of the training data increases and
the time-consuming trajectory optimization should be solved
repeatedly. In the perspective of imitation learning, the expert
(represented by trajectory optimization in this paper) should
be available for interaction during the learning process.

C. DART

Next, the robustness of imitation learning has been ad-
dressed in DART, by injecting noise into the expert’s pol-
icy [15]. This is completed off-policy, thereby avoiding unde-
sirable visits to potentially unsafe states during training. How-
ever it can provide corrective guidance to the controller since it
enlarges the boundary of the expert’s distribution. Specifically,
the actual value of noise is determined by minimizing the
difference between the distribution of the export policy and
that of the trained policy.

The particular implementation of DART for the presented
control problem is summarized in Algorithm 2. First, Step
1 corresponds to the initial training with the data obtained
without noise. Next, let the current policy and the expert policy
be denoted by πθi and πθ∗ , respectively. Then in Step 3, the
second moment of πθi−1 − πθ∗ is estimated by Σ̂. Later this
value is scaled in Step 4 to account the anticipated final policy
error through a parameter, αd. The expert policy realized by
the optimal control Section II-C is augmented with the additive
noise. Finally, the neural network model is trained at Step 7
with the aggregated dataset. These iterations are repeated.

Algorithm 2 DART
Input: (X,Y ), Ni ∈ Z, αd ∈ R

1. θ0 = argminθ{L(Ŷ , Y ) | Ŷ = f(X, θ)}
2. for i = 1 to Ni do
3. Σ̂i ≈ 1

N

∑
k(πθi−1(Xk) − πθ∗(Xk))(πθi−1(Xk) −

πθ∗(Xk))
T

4. Σi =
αd

Ntr[Σ̂i]
Σ̂i

5. Collect data using the optimal control expert with
injected noise : N (πθ∗ ,Σi)

6. Add these input output pairs to the dataset (X,Y )
7. θi = argminθ{L(Ŷ , Y ) | Ŷ = f(X, θ)}
8. end for

Output: θNi

In short, DART addresses the drawbacks of DAgger through
an off-policy procedure of adding noise to the expert, which
is carefully chosen to minimize the mismatch between the
expert and the trained policy. However, DART still requires
interacting with the expert online in Step 5, which causes
substantial computational load.

D. Constrained Imitation Learning
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Now we propose constrained imitation learning to address
these issues. It turns out that due to the limited number of
optimal trajectories in the training data, the controller does
not perform properly especially near the desired trajectory.
Even though the controller performs reasonably well during
the initial transient period with large errors, it is unable to
maintain the boundedness of the small error over a longer
period of time.

This has been partially mitigated by augmenting the training
data set with the additional pairs of (∆x(0) = 0, u = 0). But,
it does not resolve the issue completely. Another alternative
workaround would be enforcing the constraint of zero input
to zero output directly on the neural network structure, by
eliminating all of the bias terms in Figure 2. However, this
method drastically reduces the learning capabilities of the
neural network and it results in poor generalization.

In this paper, we propose a new imitation learning scheme
inspired by the recent studies on supervised learning with
constraints [18], [19]. To improve long-term convergence, the
zero input, zero output constraint is incorporated in the training
process. Instead of varying the neural network parameters to
learn the target and to satisfy the constraint simultaneously,
the learning target is adjusted to mitigate the computational
challenges in constrained supervised learning. The foremost
advantage is that it does not require the solution of trajectory
optimization for new states online, and therefore, the size of
the training data is fixed.

More specifically, the neural network training for the pro-
posed constrained imitation learning is formulated into the
following optimization problem:

θ∗ = argmin
θ

{
L(Ŷ , Y ) | Ŷ = f(X, θ), and f(0, θ) = 0

}
.

The proposed procedure to address this optimization is sum-
marized at Algorithm 3.

Algorithm 3 Constrained Imitation Learning (COIL)
Input: (X,Y ), α ∈ R, Ni ∈ Z

1. θ0 = argminθ{L(Ŷ , Y ) | Ŷ = f(X, θ)}
# initial training

2. Ŷ 0 = f(X, θ0)
3. for i = 1 to Ni do
4. θz0 = argminθ{L(Z0, (1 − α)Y + αŶ i−1) | Z0 =

f(X, θ)}
5. F ≈ 1

N

∑
k ∇θ log pθz0 (Yk|Xk)∇θ log pθz0 (Yk|Xk)

T

6. θz = argminθ
1
2 ∥θ − θz0∥

2
F , f(0, θ) = 0

# constrained optimization
7. Zi = f(X, θz) # target adjustment
8. θi = argminθ{L(Ŷ , Zi) | Ŷ = f(X, θ)}

# unconstrained training
9. Ŷ i = f(X, θi)

10. end for
Output: θNi

First, there is the initial training step which is implemented
without considering any constraints. This part is composed of
Steps 1 and 2, and it is equivalent to behavior cloning. Next,

the iterative parts of Steps 3 through 10, are motivated by the
main algorithm in [19] and consist of the combination of target
adjustment and unconstrained training. Essentially the target Y
is adjusted into a new target Z such that unconstrained training
with respect to Z automatically satisfies the given constraint.

Steps 4-7 correspond to the process of finding the alternative
target Z that is more feasible for the constraint. Initially in Step
4, the neural network is trained such that its output becomes
closest to (1 − α)Y + αŶ for α ∈ [0, 1]. This is on the line
connecting the ideal output Y and the output Ŷ i−1 adjusted
for the constraint in the prior iteration. As such, this has the
net effect of adjusting the neural network parameters to find
the compromise between emulating the ideal output (smaller
α) and satisfying the constraint (larger α).

The next part of Steps 5 and 6 directly addresses the
constraint via nonlinear constrained optimization. In Step 6,
the neural network parameters θz are optimized to enforce
the zero input, zero output constraint while minimizing the
parameter deviation from the value θz0 obtained in Step 4.
The motivation for the objective function ∥θ − θz0∥2F is to
ensure the consistency of the resulting control policy. In other
words, we wish that the optimal control system represented by
the neural network is not drastically altered while enforcing
the constraint of f(0, θ) = 0.

More specifically, let πθ represent the Gaussian policy
obtained by the current value of neural network parameters θ,
i.e., πθ(Y |X) ∼ N (f(X, θ),Σ) for a covariance Σ ∈ R60×60.
Similarly, πθz is constructed from θz0 . The difference between
those two control policies can be measured by the KL-
divergence approximated by

DKL(πθ||πθz0 ) ≈
1

2
(θ − θz0)

TF(θ − θz0), (6)

where F ∈ RNθ×Nθ is the Fisher information matrix
(FIM) [23] defined by

F = Eπθ

[
∇θ log πθ(Y |X)∇θ log πθ(Y |X)T

]
. (7)

For the Gaussian distribution, the gradient term in (7) can be
evaluated by

∇θ log πθ(Y |X) = ∇θ

(
−1

2
∥Y − f(X, θ)∥2Σ−1

)
= (∇θf(X, θ))Σ

−1(Y − f(X, θ)). (8)

The gradient ∇θf in (8) is computed through backpropagation,
and it is readily available for any deep learning software
library. During numerical implementation, the arithmetic mean
in (7) is replaced by the sample mean with each element of the
training data, as shown at Step 5, and the covariance matrix
can be chosen as Σ = I for our purposes [23].

The role of the Fisher information matrix is critical in
Step 6. If we directly optimize a simple square error term,
∥θ − θz0∥2, then it takes a lot of iterations to converge.
This is because the sensitivity of f(X, θ) with respect to θ
varies greatly. In other words, some parameters change the
output of the neural network drastically while others are not
strongly correlated to the output. The matrix F properly scales
the neural network parameters to have more uniform effects
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on the output, thereby improving computational properties of
optimization.

Once we obtain the adjusted parameter θz , the correspond-
ing target adjusted for the constraint is computed in Step 7.
In the remaining steps, the neural network is retrained for the
adjusted target, and these iterations are repeated Ni times. The
desirable feature is that the neural network training in Step 4
and Step 8 do not consider the constraint explicitly. As such,
these steps can be performed with any supervised learning
technique.

The key difference of this procedure from [19, Algorithm
1] (which we will refer to as RC) is the explicit form of the
constraint considered here. More specifically, the zero input,
zero output constraint that is enforced here is a function of
the parameters of the neural network with respect to a specific
input, i.e., f(0, θ) = 0. But, RC requires that the output of
the network for any input, namely Ŷ belongs to a prescribed
feasible set. The infeasible adjustment step of RC does not
involve any neural network training, and it has to be modified
into multiple steps leading to the constrained optimization in
Algorithm 3. That is, first in Step 4 the network parameters are
estimated after training on (1−α)Y +αŶ . Next, the constraint
is enforced in Step 6 after the Fisher information matrix F is
estimated using these obtained parameters. Moreover, there is
no feasible adjustment step of RC since the constraint here
will not be exactly satisfied.

This Algorithm 3 is referred to as constrained imitation
learning (COIL). Compared with DAgger and DART, the
most distinctive benefit is that we do not have to solve the
cumbersome trajectory optimization during the iteration. In
other words, there is no need to communicate with the expert
to acquire an additional optimal trajectory. This also does not
increase the size of the training data constantly. While there are
two neural network training steps per an iteration, compared
with a single training in the other two algorithms, each training
corresponds to minor adjustments for the adjusted targets
within the existing data. Thus, it can be solved more efficiently
compared with the training in DAgger and DART involving
new input and output pairs. In short, the zero input, zero output
constraint is carefully incorporated into the neural network
training without increasing the computational load drastically.
This is illustrated by numerical examples in the next section.

IV. NUMERICAL SIMULATION

In this section, we present numerical properties of all of
behavior cloning, DAgger, DART and COIL applied to a
FWUAV model presented in [6], [8]. We focus on evalu-
ating the performance through the initial convergence rate
and the ultimate boundedness, compared against the required
computation time. As it is not feasible to investigate stability
properties with Lyapunov analysis, we perform an exhaustive
numerical study where the controlled trajectories are computed
for numerous initial conditions within a prescribed domain.
This is to ensure reasonable performance for any new initial
condition that is not close to training data.

Fig. 3. Comparison of controller performance : Behavior Cloning (yellow),
DAgger (orange), DART (green), COIL (blue); dashed lines represent the
ultimate bounds while the initial decay is characterized by a bounding
exponential function

More specifically, motivated by the definition of ultimate
uniform boundedness in [24], we identify positive constants
γ, tT , b satisfying

∥x(t)− xd(t)∥Wx
≤ ∥x(0)− xd(0)∥Wx

e−γt,∀ 0 ≤ t ≤ tT ,

∥x(t)− xd(t)∥Wx
≤ b, ∀ t ≥ tT (9)

where ∥x∥Wx
=

√∑
i(Wxi

xi)2 is a weighted two norm. Here
γ corresponds to the initial exponential convergence rate, and
b is the ultimate bound. Next, tT is the first time to reach the
ultimate bound.

A. Controller Performance

The above values are determined by simulating 12291
trajectories initiated in the set of ∥x(0)− xd(0)∥Wx

≤ 1 for
each method.

a) Behavior Cloning: Behavior cloning is implemented
with a neural network that has Nθ = 3408 parameters
(Figure 2), and the size of the training dataset is N = 1587
including N0 = 300 pairs of zero points. The corresponding
convergence of the tracking error is illustrated in Figure 3
for all initial conditions. It is observed that there is a non-
negligible increase of the error after about 50 flapping periods,
implying an ultimate bound can not be characterized for the
given simulation period.

b) DAgger: This is implemented according to Algorithm
1 with Ni = 5 iterations. At Step 3, the trained neural network
is executed over 5 time periods to obtain around 150 new
controlled trajectories. However the controller failed to make
the error converge. Therefore, we had to increase the number
of neurons in the hidden layer from 36 to 60 (resulting Nθ =
5160) and also the number of initial training data to N = 3049.
The resulting tracking error is presented in Figure 3. The issue
of behavior cloning is addressed to attain the ultimate bound
of b = 0.0204. However, this is achieved with more training
data and a larger neural network.
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TABLE I
NUMERICAL COMPARISON

Algorithm BC DAgger DART COIL

Computation time (min) 3.8 132.22 131.08 44.53
Ultimate bound, b N/A 0.0204 0.0076 0.0074
Initial decay rate 1.1296 1.1168 1.1046 1.0944

Size of network, Nθ 3408 5160 3408 3408
Initial training data size, N 1587 3049 2012 1587

c) DART: Next, Algorithm 2 corresponding to DART is
implemented with Ni = 5 iterations again. The scaling factor
in Step 4 is taken to be αd

Ntr[Σ̂i]
= 10−4. The value of αd

has to be relatively small since in our case, even a minor
change in the control value obtained from expert leads to a
large perturbation in the state due to the complexity of the
dynamics. Then in Step 5, the data are collected using the
noisy optimal controller over 5 time periods resulting in 150
new state and control values. Unlike DAgger, the number of
network parameters did not have to be increased from Nθ =
3408, but the size of initial training data in Step 1 still had
to be slightly increased to N = 2012. It can be observed
from Figure 3 that DART yields a smaller ultimate bound of
b = 0.0076.

d) Constrained Imitation Learning: Finally, the proposed
COIL is implemented by Algorithm 3 with the same number of
iterations, Ni = 5. The trade-off parameter between the ideal
and current labels is taken to be α = 0.75 which gives a little
more weight to constraint adjustment. The network structure
and the training data are identical to those of behavior cloning,
i.e., Nθ = 3408 and N = 1587. As presented in Figure 3,
COIL successfully achieved the ultimate bound of b = 0.0074,
which is lower than DAggger and comparable to DART.

B. Results

These results are summarized in Table I, with computation
time when implemented in MATLAB with Intel(R) Xeon(R)
Silver 4216 CPU. While behavior cloning requires the shortest
computation time, its performance is not desirable as pre-
sented above. DAgger achieves ultimate boundedness, but it
requires the most computation time, which is caused by time-
consuming trajectory optimization solved in every iteration
(Step 5 in Algorithm 1), and the more complex network
architecture. Meanwhile, DART performs better compared to
DAgger in terms of the ultimate bound. On the other hand, the
proposed COIL achieves the smallest ultimate bound and the
least computation time with a similar initial decay rate. This
directly illustrates the desirable features of COIL addressing
the issue of distribution mismatch of behavior cloning without
excessive additional computation required in DAgger and
DART.

All of these imitation learning approaches can be improved
by providing more data or by adopting more sophisticated
network model, according to the universal approximation
property of neural networks. For instance, if sufficient data are
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Fig. 4. Optimal trajectory errors and control parameters

available, even behavior cloning may perform in a satisfactory
manner. The proposed approach improves sampling efficiency
by imposing a certain structure, and further, it eliminates the
need to interact with the expert online.

The value of the zero input-zero output error measured
as ∥f(0, θ)∥2 for each of DAgger, DART and COIL are
0.1849, 0.0618, and 0.0007 respectively. On the other hand,
the MSE in training the network are 0.0062, 0.0063, 0.0083
respectively. The COIL exhibits the lowest error in satisfaction
of the constraint since it has been explicitly considered in
the algorithm, which also causes a trade off in the training
error. The intriguing fact is that the trade off included by the
constraints actually improves the stability properties.

Next, the average time taken by the MPC expert is over 100
seconds. On the other hand, the inference time of the control
policy for a given state error is less than 10−4 seconds. In
the presented problem, it would be required to obtain new
control values at the start of each trajectory time period which
is around 0.085 seconds (flapping frequency of 11.75 Hz). This
justifies the proposed imitation learning compared with other
techniques based on online optimization.

As an illustration, the tracking error in each of position,
velocity, and attitude for a single particular trajectory is
presented in Figure 4, along with COIL control inputs. This
illustrates that the hovering flight of FWUAV is successfully
stabilized without the common averaging or linearization for
the coupled longitudinal and lateral dynamics.
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Fig. 5. Comparison of controller performance with measurement noise :
box plots represent 0.25, 0.5 (median), 0.75 quartiles of errors; dashed lines
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C. Robustness to Noise

Next, we analyze the robustness properties. In particular, the
state input to the control policy is corrupted by an additive
noise, which can be regarded as errors in the estimate of
the FWUAV state. Random noise is generated from uniform
spheres for each part of the state, similar to the initial errors
for training data, and scaled with the weights of the states
multiplied by the noise level, taken as 10−3. Then it is added to
the actual state value before being passed to the trained neural
network. We perform numerical simulations over multiple
random initial conditions, as completed in Figure 3. The
corresponding tracking errors after 10 periods are presented
in the form of summary statistics in Figure 5. The results for
the first 10 periods are omitted as they are close to Figure 3
when the state errors are large. It is observed that DAgger is
most susceptible to the noise: it yields the largest maximum
error and the mean error increases over time. Meanwhile,
DART and COIL exhibit comparable performance, where
the mean error remains within an acceptable reason, and it
decreases slightly over time. In short, the proposed COIL has
reasonable robustness properties against DART, one of the
recent imitation learning schemes that are specifically designed
to improve robustness.

V. CONCLUSIONS

This paper presents imitation learning for a flapping wing
aerial vehicle inspired by Monarch butterflies, where a set of
optimal trajectories computed offline is considered as an expert
demonstration to be emulated. A new constrained imitation
learning is proposed to achieve exponential convergence and
ultimate boundedness without relying on additional trajec-
tory optimization, thereby improving computational efficiency
substantially. This is successfully applied to the nonlinear
dynamics of a flapping wing aerial vehicle. A potential future
direction is utilizing visual input directly in sensorimotor

control since it is challenging to estimate the complete state
of flapping wing aerial vehicle in practice.
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