

Environmental Science Nano

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. Baalousha, G. Cornelis, T. Kuhlbusch, I. Lynch, C. Nickel, W. Peijnenburg and N. van den Brink, *Environ. Sci.: Nano*, 2016, DOI: 10.1039/C5EN00207A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

1 **Modeling Nanomaterial Fate and Uptake in the Environment:**
2 **Current Knowledge and Future Trends**

3 M Baalousha ^{a*}, G Cornelis ^b, TAJ Kuhlbusch ^c, I Lynch ^d, C Nickel ^c, W Peijnenburg ^{e,f}, NW van den Brink ^g
4 a Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold
5 School of Public Health, University South Carolina, Columbia, SC 29208, USA

6 b Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Göteborg, 41296,
7 Sweden

8 c Institute of Energy and Environmental Technology (IUTA) e.V., Unit Air Quality & Sustainable
9 Nanotechnology, Duisburg, Germany and Centre for Nanointegration (CENIDE), University Duisburg-Essen,
10 Duisburg, Germany.

11 d School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences,
12 University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

13 e National Institute of Public Health and the Environment, Center for Safety of Products and Substances,
14 Bilthoven, The Netherlands

15 f Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands

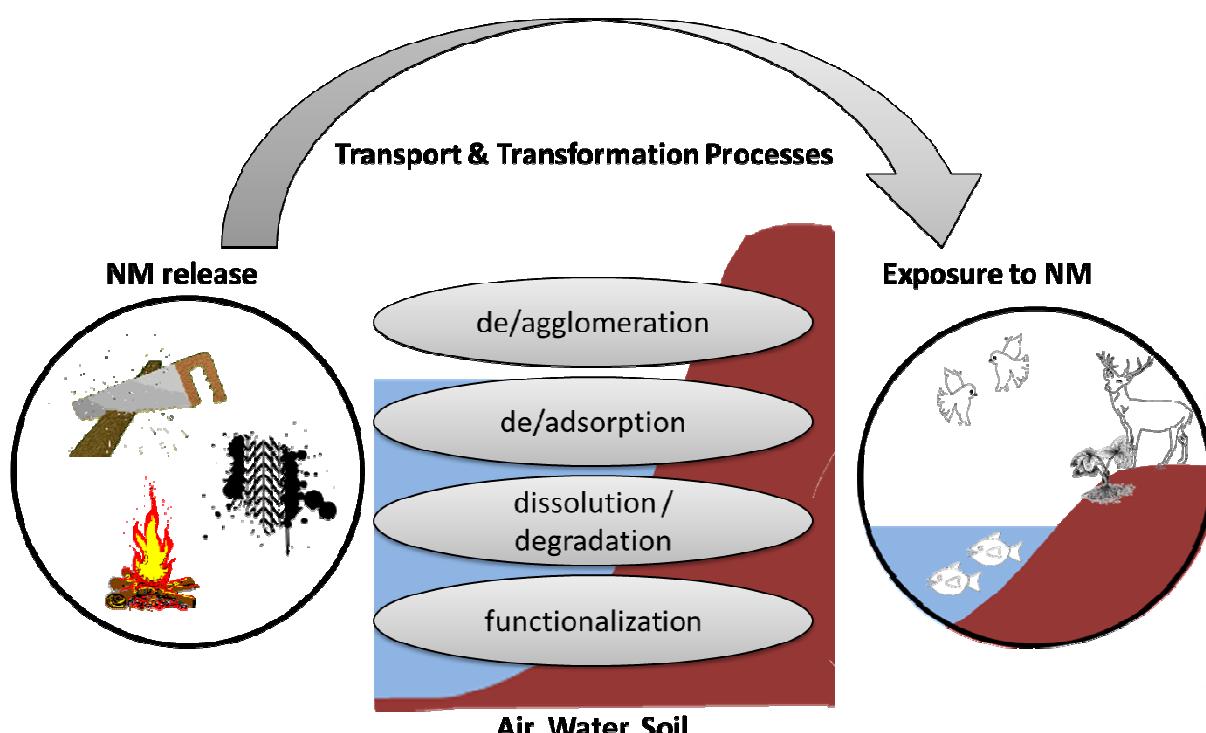
16 g Wageningen University, division of Toxicology, Box 8000 NL-6700 EA, Wageningen, The Netherlands

17 **Contents**

18 TOC	3
19 1. Introduction	4
20 2. Fate models in aquatic systems	5
21 a. General overview	5
22 b. Common approaches to fate modelling	5
23 c. Validation of NM fate models	13
24 d. Data availability	13
25 3. Fate models in terrestrial systems	13
26 a. General overview	13
27 b. Common approaches to fate modeling	14
28 c. Model validation	16
29 4. Uptake and accumulation in organisms	18
30 a. General overview	18
31 b. Common approaches to uptake modeling	18
32 c. Model validation and calibration	23
33 5. Future Needs and Perspectives	23
34 a. Fate modeling in aquatic systems	23
35 b. Fate modeling in terrestrial systems	23
36 c. Uptake modeling	24
37 d. Simplified empirical models based on fate and behavior descriptors	24
38 e. Integrated theoretical models taking into account all environmental fate processes	25
39 f. Novel experimental setups to extract descriptors of NM behavior in the environment	25
40 g. Future generation of NMs	25
41 6. Acknowledgments	26

1 Nano impact

2 In this paper, we critically review recent progress in modeling the environmental fate and uptake of
3 nanomaterials within the context of assessment of their environmental health and safety. Trade-
4 offs between model complexity and data availability are discussed for aquatic, terrestrial and
5 organismal uptake models. Recommendations for future directions and research priorities include
6 focusing on parameterizing existing models and generating lab and field data to validate them, to
7 advance the field rapidly.


8

9 Abstract

10 Modeling the environmental fate of nanomaterials (NMs) and their uptake by cells and
11 organisms in the environment is essential to underpin experimental research, develop overarching
12 theories, improve our fundamental understanding of NM exposure and hazard, and thus to enable
13 risk assessment of NMs. Here, we critically review the state-of-the-art of the available models that
14 can be applied/adapted to quantify/predict NM fate and uptake in aquatic and terrestrial systems,
15 and make recommendations regarding future directions for model development.

16 Fate models evolved from substance flow analysis models, that lack nano-specific processes, to
17 more advanced mechanistic models that (at least partially) take nano-specific (typically non-
18 equilibrium, dynamic) processes into account, with a focus on key fate processes such as
19 agglomeration, sedimentation and dissolution. Similarly, NM uptake by organisms is driven by
20 dynamic processes rather than by equilibrium partitioning. Hence, biokinetic models are more
21 suited to model NM uptake, compared with the simple bioaccumulation factors used for organic
22 compounds. Additionally, biokinetic models take speciation processes (*e.g.* particulate versus ionic
23 uptake) into account, although identifying essential environment-specific processes to include in
24 models remains a challenge.

25 The models developed so far require parameterization, calibration and validation with available
26 data, *e.g.* field data (if available), or experimental data (*e.g.* aquatic and terrestrial mesocosms),
27 rather than extension to more complex and sophisticated models that include all possible
28 transformation process. Collaborative efforts between experimentalists and modelers to generate
29 appropriate ground-truth data would advance the field most rapidly.

1

2 Schematic summary of the most important transformation processes a NM may undergo during
3 environmental transport, and thus the parameters of highest importance for inclusion in models of
4 NM environmental fate and uptake.

5 **TOC**

6

1 **1. Introduction**

2 Engineered nanomaterials (NMs) are a form of chemical substance, defined by their size being
3 in the range of 1 to 100 nm^{1,2}, often with unique and novel properties. For example, silver and gold
4 NMs change color at sizes *ca.* < 40 nm.³ Gold, inert at micron scale, becomes catalytically active as
5 sizes becomes *ca.* < 5 nm.⁴ Cerium oxide NMs have a higher proportion of Ce³⁺ atoms at sizes *ca.*
6 < 15 nm leading to higher redox activity.^{5,6} These novel properties of NMs have given rise to myriad
7 applications to improve product performance, enhance process efficiency and reduce waste.⁷
8 Consequently, the nanotechnology market is growing exponentially with global research and
9 development investments of billions of dollars each year, global markets worth trillions of dollars^{8,9},
10 increased NMs production volumes¹⁰ (hundreds to thousands of metric tons) and development of
11 thousands of novel applications for NMs⁷.

12 The release of NMs from NM-containing consumer products during usage has been widely
13 demonstrated. Exposure to NMs (*e.g.*, those released from consumer products) in environmental
14 systems is already occurring¹¹⁻¹⁷, and is set to increase with rapidly expanding production and
15 consumer applications for NMs¹⁸. NMs are already listed as emerging contaminants of
16 environmental concern (CEC) in several national and international reports¹⁹, requiring in depth risk
17 assessment. Risk assessment consists of two key elements: (1) hazard (toxicity) characterization, and
18 (2) exposure (environmental concentration) characterization. So far, the risk-related research on
19 NMs has had a strong focus on the NM toxic effects with thousands of published studies²⁰, whereas
20 exposure assessment research, including emission, transport and fate, is lagging behind. This
21 growing gap in assessing NM exposure in environmental compartments is due to difficulties in
22 measuring NM concentration and properties in complex environmental samples^{21,22} and the complex
23 and dynamic transformation processes that NM experience in different environmental
24 compartments²³⁻²⁶. While analytical methods to measure NMs in environmental media are being
25 developed and validated, the environmental health and safety scientific community has attempted
26 to fill this knowledge gap by developing mathematical models to assess NM distribution in the
27 environment, and to place bounds on the predicted environmental concentrations of NM.

28 The environmental compartment for which modeling is most advanced is air, given that this
29 exposure route is of high relevance for human health in addition to environmental fate and thus
30 extensive earlier research on ambient ultrafine particles. Several models for airborne particles are
31 available, which can be classified into pure transport and chemical transport models. The latter also
32 include chemical reactions of particles with gaseous and liquid compounds allowing further reactions
33 to be implemented. Available models cover different spatial scales ranging from microscale, street
34 canyon, to local, regional, hemispheric and global scale. The basic principle, the stepwise modelling
35 of transport and physical as well as chemical reactions is the same for all available models. The more
36 sophisticated chemical transport models for air are *e.g.* EURAD, LOTUS EUROS, CHIMERE²⁷. They
37 also discriminate particle sizes such as ultrafine particles, hence applying also in the nanoscale size
38 range. Modeled processes of the particles in air comprise *e.g.* homogeneous and heterogeneous
39 agglomeration, condensation, catalytic reaction, wet and dry depositions. NMs and their
40 agglomerates do not behave totally differently in air (compared to ultrafine particles) so that they
41 can be modelled in these models, especially since a size differentiation of these particles from others
42 can be made. A review of NM fate models in air compartment can be found elsewhere²⁷. Further
43 discussion of these models is excluded from the rest of this review as its focus is on NM fate and

1 uptake within each environmental compartment (water, soil and organisms), rather than transport
2 between environmental compartments.

3 The aim of this paper is to review the state-of-the-art of (1) fate and transport models for NMs
4 in environmental systems (aquatic and terrestrial), and (2) NM uptake and accumulation models in
5 biota. We evaluate the existing models for NM fate, behavior and uptake and identify additional
6 modeling needs to fully address the fate, behavior, uptake and risk of NMs in the context of
7 environmental exposure assessment. The reader is referred to comprehensive reviews for a detailed
8 understanding of the processes and factors determining the fate and behavior of NMs in aquatic
9^{24,26,28} and terrestrial²⁵ compartments, and the processes and factors determining NM uptake²⁹.

10

11 2. Fate models in aquatic systems

12 a. General overview

13 Fate models for NMs are still being developed. However, especially for the aquatic
14 compartment, different basic approaches have been used to model NM environmental behavior and
15 fate³⁰. Some of the models resulting from these basic approaches apply to laboratory or mesocosm
16 scale experimental studies³¹, whereas other models are developed to mimic NM fate and behavior at
17 larger scales, e.g. at a sub-continental scale (e.g. rivers³²) or global scale³³.

18 In parallel, experimental data regarding NM fate and behavior are being generated, both in
19 simple electrolyte solutions and in more complex matrices, with the aim to improve the general
20 understanding of NM fate and behavior in the environment and to discover novel NM-specific
21 environmental fate processes. This knowledge is instrumental to NM fate modeling, informing
22 modelers of the key processes to be taken into account in NM fate modeling, and in some instances,
23 provides data sets that can be used for model calibration. The discussion below summarises the
24 current state-of-the-art of NM fate modeling in aquatic systems, their validation status and the
25 availability of data to parameterize and calibrate them.

26

27 b. Common approaches to fate modelling and recent progress

28 To date, few approaches to NM aquatic fate modelling have been developed. Most developed
29 models are based on the general concept of mass flow analysis, supplemented with nano-specific
30 process descriptions when possible. As an illustrative example, Mueller and Nowack¹⁸ predicted
31 environmental concentrations in air, water and soil compartments in Switzerland on the basis of a
32 substance flow analysis of NMs in different products and the resulting emissions. A probabilistic
33 approach to materials flow analysis was subsequently applied to account for the large uncertainty
34 and variability of model input parameters that are typical for the current state of knowledge
35 regarding estimated production volumes and NM behavior in the environment^{34,35}. Simplifying
36 assumptions are often invoked in these models, e.g. absence of transformation or rapid
37 sedimentation relative to advective transport, in order to obtain a range of predicted environmental
38 concentrations^{36,37}. The assessment was further refined using probabilistic material-flow modelling,
39 showing that the production volume and the compounds' inertness are crucial factors determining
40 the final concentrations of a NM³⁸.

41 A more mechanistic approach to NM environmental fate modeling was developed by Praetorius
42 et al., who adapted a well-established multimedia box model for organic pollutants to NM fate
43 modeling³² by adjusting fate process descriptions to account for NM-specific properties and behavior
44 within the environment. The mechanistic approach of Praetorius et al. was extended by Meesters et
45 al.³⁹. These authors identified the lack of field data available to test the validity of NM fate models as

1 a key bottleneck in adapting fate models for conventional chemicals for NMs. Meesters et al.
2 presented a fate model that uses first-order kinetics to estimate environmental background
3 concentrations for NMs, in an approach that deviates from that of Liu and Cohen⁴⁰ as Liu and Cohen
4 used time-independent partitioning ratios for agglomeration and attachment of NMs. Compared to
5 the Simple-box model that is the basis for the European Union System for Evaluation of Substances
6 (EUSES), the fate model of Meesters et al. contains three major adaptations to make it fit for use
7 with NMs:

8 1 – Transformation processes are considered as altered species of the same NM;
9 2 – Dissolution is implemented as a removal mechanism;
10 3 – Thermodynamic equilibrium is not expected to be representative of reality.

11 The modified Simple-box model of Meesters et al. requires experimentally derived values for
12 the parameterizations that are not fully covered by existing colloid theory (e.g., agglomeration and
13 attachment efficiencies). Experimental data are available for all environmental parameters included
14 in the model (e.g. surface water and sediment composition, and typical dimensions of the individual
15 compartments at various geographic scales), but not yet for specific properties for all types of NMs
16 as relevant under different environmental media compositions (e.g. medium-dependent kinetics of
17 dissolution, or particle-specific attachment frequencies). This indicates that the required
18 experiments can be performed successfully but also stresses the need for more experimental
19 investigation. In cases where experimental data are unavailable to calibrate and validate fate
20 models, theoretically derived parameter values are used and the resulting uncertainty is provided³⁹.

21 The currently available NM fate models show different levels of complexity. Praetorius et al.
22 2012 suggested categorization of existing approaches into more detailed bottom-up mechanistic
23 modeling and more simplified top-down modeling³². The bottom-up modeling includes information
24 about important mechanisms affecting NM behavior and fate in the environment such as
25 agglomeration, sedimentation and/or dissociation or other relevant processes³². Therefore, if
26 possible, knowledge from other natural sciences such as colloid chemistry or (organic) chemical
27 kinetics and theories dealing with colloids or organic chemicals are included. Problems can occur
28 when modeling processes where no experimental data or relevant rate constant values are
29 available, e.g. the attachment efficiency for different NMs to natural sediments and other porous
30 materials.

31 Models based on the top-down or engineering approach have a simplified structure. In these
32 models, the environmental compartment is treated as a black box and no specific information about
33 the fate processes is included in the model. The drawback with this approach is the limited
34 predictive potential for new or not tested materials or processes. Hence, this type of model is
35 currently used e.g. to describe the emissions of NMs to the environment and subsequent mobility
36 using partitioning factors. Top-down models differentiate between the different fractions e.g.
37 transported into other compartments, remaining in the water phase, etc. A summary of fate and
38 transport process models and analytical studies analyzing the environmental concentration of NMs
39 in different compartments can be found elsewhere⁴¹.

40 A general overview of the main features of a selection of the currently available NM fate
41 models is given in Table 1. Further details on the cited models in Table 1 can be found in the original
42 publications. Clearly, NM fate modeling has progressed from simple mass flow/balance models^{18,35,42}
43 that use transfer factors to describe the distribution of NMs among and within compartments to
44 probabilistic models that adopts a range of these transfer factors to examine different scenarios of
45 NM transport⁴³, to NP-processes based models^{32,44-47}. The later models differentiate NM from

1 molecular contaminants by taking into account the dynamic nature of NM environmental behavior
2 such as heteroaggregation, dissolution, and sulfidation. This approach explicitly recognizes the
3 fundamental difference between equilibrium driven partitioning of so-called conventional
4 (molecular) chemicals (i.e., chemical substances in atomic/ionic or molecular forms, dissolved in
5 water or in the gas phase), and substances present in a particulate form. Making such an adjustment
6 is challenging because of the fundamental differences in transport and transformation mechanisms
7 between NMs and solutions. A major difficulty in making models for conventional chemicals fit for
8 NNs is that hardly any field data are available to test the validity of nano-adjusted models. The initial
9 attempts using mass flow models to model NM environmental fate were intended to provide a first
10 step in environmental exposure estimation of NM and to provide average background exposure
11 concentrations for NM on a regional and national scales^{34,35}, using scientifically justified
12 simplifications combined with a pragmatic approach which has brought fate modelling of NMs a
13 significant step forward.

14 Furthermore, the majority of these models (*i.e.* those published prior 2015) have been solved at
15 steady state (*i.e.* ignored temporal variability)^{32,37,39} and/or been spatially unresolved, averaging
16 concentrations over large regions (e.g. countries)^{18,35,38-40}. All these models have ignored stream
17 loads from surface runoff (e.g. from NM-containing biosolids used as fertilizer, or NM in stormwater)
18^{39,40}, and none have considered spatiotemporal variability in sediment transport rates, described NP
19 chemistry as a function of environmental conditions, tracked NP reaction by products (metal ions,
20 metal sulfides, etc.), or considered overbank flow and NM deposition in the floodplain. These
21 simplifying assumptions could misrepresent NM mobility and risk in potential NM hot spots, which
22 have been scrutinized recently⁴⁷⁻⁵⁰. Several models suggested that using spatiotemporally explicit
23 models allow prediction of NM speciation and NM hot spots as a function of time and space⁴⁷⁻⁵⁰.
24 Below we highlight an example of these spatiotemporal explicit models.

25 Using a spatially resolved model (30 km average stream segment length) for the James River
26 Basin, Virginia, Dale *et al.* (2015), assessed the impact of the typical simplifying assumptions
27 (discussed above and summarized in Table 1) of NM fate models on the utility of NP fate models to
28 predict NM environmental fate and to capture potential NM risks⁴⁸. They demonstrated that **1)**
29 spatial and temporal variability in sediment transport rates can lead to high NP transport such that
30 <6% of NM-derived metals were retained in the river and sediments, **2)** chemical transformations
31 entirely eliminated ZnO NP and doubled Zn mobility in the stream relative to Ag, **3)** agricultural
32 runoff accounted for 23% of the total metal stream loads from NPs, and **4)** the average NP-derived
33 metal concentrations in the sediment varied spatially up to 9 orders of magnitude, with highest
34 concentrations in segments that had low stream velocities and high sediment deposition.

35 Although, this model is more realistic compared to mass flow models and spatiotemporally
36 averaged models, the key assumptions of this model (Table 1) need further testing and evaluation. In
37 particular, the assumption of complete heteroaggregation of NP as several studies demonstrated the
38 occurrence of individual nano-sized particles in surface waters (e.g. natural and incidental
39 nanoparticles⁵¹⁻⁵³). This model ignored NM sources other than wastewater effluent and agricultural
40 runoff from sludge treated soils. Additionally, this model did not consider overbank flow and the
41 possible deposition of NPs in the floodplain, which could significantly impact NP transport rates
42 depending on the river system⁵⁴.

43

44

45

1 **Table 1.** Summary of the key features of NM-environmental fate models

Reference	Media	NM specific fate and transport processes considered	Approach adopted	Assumptions	Advantages	Disadvantages	Comments
Spatiotemporally averaged: Mass flow models							
Mueller and Nowack (2008) ¹⁸	Water, air, soil	Removal in waste water treatment plant Release from products	Modelling based on established methods for assessing exposure to non-particulate chemicals	Instant homogeneous mixing in all compartments System in steady state Substance flow rates similar for all NMs Secondary compartments (sediment and groundwater) not considered	Simplicity of model input	Worst case assumptions only NM-specific fate and transport processes not considered No model validation for NMs performed	Size and functionality of NMs not considered
Gottschalk et al., (2009) ³⁵	Water, air, soil, sludge treated soil	Dissolution Sedimentation Removal in waste water treatment plant	Probabilistic material flow analysis from a life-cycle perspective as the basis for calculation of environmental concentrations	Environmental compartments homogeneous and well-mixed Constant annual flows Nano-Ag dissolved by less than 1 % in natural waters	Probabilistic methods allow inconsistency and variability of model input parameters to be taken into account Possibility to incorporate extreme events	Mainly qualitative data available on NM-specific processes and NM-specific mass flows Uncertainties in input and output parameters high Model validation needed	Further fine-tuning of the model needed in order to include local conditions, specific scenarios and quantitative data on NM-specific processes Insufficient consideration of impact of media and AgNM properties on dissolution
Blaser et al., (2008) ³⁷	Water, sediment	Dissolution of Ag NMs embedded in a polymer matrix	Modelling of silver flows that result from the application of Ag NMs as biocides, using a commonly applied fate model	Nanoparticles are embedded in a (stagnant) polymer matrix Only silver ions are released and not entire silver NMs	Basic fate model available Limited: Ag NM-specific adaptation of model needed	Not all applications of Ag NMs considered	Flows of Ag-ions modelled instead of Ag NMs Under-estimation of actual flows as not all application of Ag NMs Age considered NM-specific assumptions need in-depth evaluation

							No consideration of impact of NM specific properties like surface coating and size on dissolution
Liu and Cohen, (2014) ⁴⁰	Air, water, sediment, soil	Heteroaggregation Transformation (including phototransformation and dissolution) Sedimentation Deposition Bioconcentration	Multimedia fate modelling on the basis of advective transport, taking NM-specific processes into account and including particle size distributions	Environment considered as a collection of compartments, including the biotic compartment, linked via intermedia transport processes Assumption of first order kinetics suffices for first tier analysis	Particle size distribution included in modelling Most relevant fate determining processes of NMs considered within first-tier approach	No validation performed	Further verification of the basic assumptions needed
Spatiotemporally averaged: Process based models							
Dale et al., (2013) ⁴⁴	Sediment	Dissolution Sulfidation Solid phase partitioning Particle diffusion	One-dimensional diagenetic modelling of silver distribution / speciation in freshwater sediments	Kinetics of AgNM sediment chemistry respond to redox conditions Speciation of Ag in sediments contingent on displacement of iron from iron sulfide to form metal sulfides of very low solubility Linearity of reaction rates with concentration, but AgNM oxidative dissolution assumed to decrease exponentially in response to Ag NM sulfidation	Key processes included in modelling, including physical processes like particle mixing due to bioturbation	Temporal evolution of NM size and aggregation not possible Data collected at high spatial and temporal density needed to further validate the model	Calibration to (single pulse) experimental data on AgNM dosing of artificial wetland mesocosms Homoaggregation not considered, which is justified as heteroaggregation dominates homoaggregation
Lazareva and Keller,	Effluent, water, soil	Transformation Agglomeration in wastewater treatment	Life cycle modeling approach to predict environmental releases of	Similarity of fate determining processes of NMs in surface waters and in wastewater	Limited number of processes considered	Needs high quality input data regarding: - Local variations in water	Model applied to estimate NM releases in three major cities across the globe

(2014) ⁴⁵		facility Sedimentation	NMs	treatment plants		chemistry - Size and flow conditions of receiving environment, as these determine NM concentrations in receiving waters.	Despite significant uncertainty in model parameters, ENM concentration estimates within same order of magnitude as experimental data
Van Koetsem et al., (2014) ⁴⁶	Natural surface waters	Stability (aggregation) and settling (sedimentation) of CeO ₂ NMs Co-precipitation of NMs with aluminium- and iron-containing natural colloidal materials	A semi-empirical first-order settling rate model (first proposed by Quik et al., 2012)	Limited number of input parameters Model validated by means of measurements using natural waters	Key assumption: settling of particles depends on particle properties and on the physicochemical characteristics of the receiving medium	NM concentrations in natural waters will be a lot lower compared to those tested. Increased shear stress due to turbulent flow conditions, or interactions with organisms are not considered	Excluded data sets
Money et al., (2014) ⁵⁵	Water	Ag NM aggregation, dissolution, and deposition NM parameters: fractal dimension, collision rate, and attachment efficiency,	Bayesian network	Utilizes a combination of expert and empirical knowledge bases related to the aquatic behavior and exposure of nano-Ag as a function of environmental conditions and particle characteristics. Influence of changes in environmental conditions, and particle characteristics, on particle fate.	Ability to integrate multiple knowledge bases, refine probabilities as new data become available, and accurately predict concentrations of nano-Ag despite numerous uncertainties and data gaps	The model complexity reduces its ability to propagate information throughout the network. The large amount of missing data in the literature case file used to revise the baseline parameters (26.2% complete)	Model improved via inclusion of mesocosm data Further validation via additional mesocosm and field experiments is necessary.
Praetorius et al., (2012) ³²	River water, sediment	Homo- and hetero-agglomeration (modelled on basis of attachment efficiency) Dissolution	Established multimedia environmental fate model for organic pollutants used as the basis for environmental fate modelling of NMs, yielding	Transport potential of NMs dependent on NM properties and system properties (advection transport rates and properties of suspended particulate matter in terms of	Highly flexible modelling framework	Model applied to TiO ₂ NMs only Spatial and temporal variation not included in modelling	No model validation although it is claimed that modelling results are representative for a large range of realistic cases

		Sedimentation	NM concentrations in water and sediment as function of distance from source	concentration, size and density)		Single value for hetero-aggregation rate for all NMs	
Meester s et al., (2014) ³⁹	Air, water, sediment, soil	Advection ENM transport Homo- and heteroaggregation Dissolution Degradation: biodegradation and photolysis	Multimedia fate modelling of NMs on the basis of (pseudo) first-order rate constants for: (1) advective transport, (2) removal by transport to outside the system, (3) uptake of NMs in aggregates or attachment to surfaces of larger particles, and (4) removal processes such as degradation and dissolution	Environmental fate of NMs is kinetically driven, as opposed to thermodynamically based equilibration of non-particulate chemicals	Mechanistic formulations of key processes Model output in terms of mass concentrations of NMs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state	Need to acquire parameter values (rate constants) for more diverse sets of NMs	Limited evaluation of model performance: only reworking of a previously published dataset
Spatially/temporally resolved models							
San-Kast et al., (2015) ⁵⁰	River water and sediment	Homo- and hetero-agglomeration Dissolution	Spatial variability in environmental conditions incorporated in existing NM fate model	Combined effect of water chemistry parameters like pH, ionic strength, and complexation by natural organic matter determines NM fate in	Spatially resolved effects of water chemistry on NM fate properly incorporated in model	Variability in emission sources and emission magnitudes not considered Single value for hetero-	Model validation not performed, General trends observed in line with experimental data

		Surface transformation Sedimentation		surface waters Cluster analysis applied to identify key features affecting overall NM fate		aggregation rate for all NMs	
Dumont et al., (2015) ⁴⁷	Freshwater, sediment	Heteroagglomeration Sedimentation	Spatially resolved modeling of nano-Ag and nano-ZnO monthly concentrations based on detailed emission inventories and temporally varying water and weather conditions.	First order loss coefficients are suitable to characterize NM sedimentation and dissolution	Model represents non-equilibrium concentrations in surface water	Only exposure due to household use of NMs considered Uncertainties in model output proportional to highly uncertain data on NM release from consumption and use Transformation processes not considered	Weather data simulated on basis of 31 years of data collection
Dale et al., (2015) ⁴⁸	Water	Hetero-aggregation, dissolution, sedimentation, resuspension and burial to deeper sediments	Coupling watershed model to water quality modeling suits WASP7, and configure both to model ZnO and Ag NP fate	ZnO and Ag NPs and their transformation byproducts entered the model via wastewater treatment facility effluent and biosolids application to row crops, hay, and pasture land. Land applied biosolids and soil were eroded and carried to stream during rain events. NP heteroaggregates completely with silt/fines in all media Absence of bedload shift	Taking into account spatiotemporal variability enables better assessment of potential hotspots of NMs and their environmental risks	Did not consider overbank flow and the possible deposition of NPs in the floodplain	Other sources of NP such as urban runoff (other than agricultural runoff), atmospheric deposition, etc. were ignored, which might impact NP fate

1 **c. Validation of NM fate models**

2 The key question in model validation is whether or not a given model can reproduce the
3 experimental data (e.g. NM concentrations) that represents the conditions assumed in the model.
4 Model validation can be achieved by 1) fitting to experimental data, 2) fitting field observations.

5 The first approach, fitting to experimental data, raises an issue of the applicability of a model to
6 the complex field scenario, unless the developed model is validated against a wide range of
7 conditions covering a wide complexity and interplay between variable conditions. There are no such
8 models available at this stage due to the lack of experimental data that cover the breadth of the
9 environmental conditions and scenarios and the variability in the experimental setups and
10 conditions used by different research groups. The second approach, fitting field data, raises the issue
11 of specificity of the site and applicability to other sites. In this case the model might need re-
12 calibration to take into account the specificity of the sites, which directly affect NM behavior
13 including attachment efficiency, mobility, or bioavailability. Fitting models with field data is also
14 limited by lack of field data on NM concentration and characteristics. Therefore, an intermediate
15 solution is to validate NM fate models using data at the mesocosm scale, followed by adoption to
16 field scenarios and ultimately validating such models with field data when they become available.

17

18 **d. Data availability**

19 Measured concentration profiles of NMs in the field would provide the optimal data sets to
20 calibrate and validate NM fate models. However, such data is absent in the literature because of the
21 significant challenges in detecting and quantifying NM concentrations in complex environmental
22 matrices. Significant progress has nevertheless been made in recent years, notably in developing
23 single particle-inductively coupled plasma-mass spectroscopy (sp-ICP-MS)⁵⁹⁻⁶² and quantitative
24 microscopy approaches^{63,64}. However, no single analytical technique is sufficient to fully assess the
25 occurrence and concentrations of NMs in complex environmental matrices, and a multi-method
26 approach is needed to overcome these challenges. A more detailed review of the challenges and
27 possible approaches that can be adopted to detect and quantify NMs in aquatic environments is
28 provided elsewhere²¹.

29 On the other hand, the majority of experimental “lab-based” data is collected without modeling
30 considerations in mind and thus, most literature data are not suitable for calibration and validation
31 of NM fate models. Laboratory studies have commonly focused mainly on investigating the behavior
32 of NMs under simplified environmental conditions in order to understand and quantify the influence
33 of different individual parameters (particle and media properties) on the behavior of NMs, which is
34 not possible under environmental conditions due to the lack of sensitive instruments, making this
35 kind of data unsuitable for NM fate model validation.

36 There are only a few studies available analyzing the fate of NMs at a mesocosm scale⁶⁵⁻⁶⁷. These
37 studies were conducted with natural compartments but at a smaller scale than field studies. With
38 this experimental set-up, inter-related parameters which occur under natural conditions can be
39 generated. The results of these studies are easier to transfer to realistic (field) conditions. However,
40 with increasing complexity also the requirements for sensitive detection methods increase.

41

42

43 **3. Fate models in terrestrial systems**44 **a. General overview**

1 Soils and sediments are often regarded as sinks in NM risk assessment, but further transport,
2 e.g. to neighboring soils, groundwater tables or rivers may still be possible. NM modelling in soil has
3 mainly focused on transport modelling, which is reviewed in some detail below. Transport modelling
4 allows discovery of the underlying mechanisms and/or prediction of how NMs spread in the soil
5 profile, from the point of entry, e.g. sludge addition in the plow layer or dry/wet deposition from air
6^{39,40}, to deeper soil layers. Models for NM bioavailability or transformation reactions, i.e. changes in
7 NM speciation over time, have not yet been developed for terrestrial systems. Models for NM fate
8 and transport in porous media such as soils have been built, to a large extent, on established
9 concepts for particle dynamics in porous media⁶⁸, because most of the processes controlling
10 relatively larger natural colloids in porous media are also relevant for NM²⁵.

11 **b. Common approaches to fate modeling**

12 Excellent reviews are available on models developed for colloid transport modelling⁶⁹⁻⁷² or on
13 the applicability of such modeling for NMs^{73,74}. These reviews show that nearly all transport models
14 for both colloids and NMs are based on mass balances expressed as a partial differential equation
15 (see supporting info). The differences between models only revolves around the modelling of the
16 deposition mechanisms, i.e. the processes that leads to NM interaction with pore walls and in some
17 cases, release of previously deposited NMs from the pore wall. The most used mechanisms
18 considered for modelling this term are given in Table 2, with the corresponding equations given in
19 the supporting info. Table 2 shows that different mechanisms have been postulated for deposition
20 of colloids, going from simple partitioning coefficients, that assume equilibrium develops between
21 deposited and suspended NMs, to ever more complex mechanisms including reversible attachment,
22 dual deposition and preferential flow. Some mechanisms are only relevant for high concentrations
23 of NMs in soils.⁷⁵ For example, blocking occurs when a significant proportion of sites is occupied by
24 previously deposited NMs thus lowering the deposition rate. Ripening implies the opposite effect,
25 i.e. where previously deposited NMs increase deposition rates because there is a high NM-NM
26 affinity.⁷⁵ To date, not all of these mechanisms have been considered for modelling NM fate in soils
27 (Table 2). Straining, i.e. the physical filtration of particles and/or arrival of particles in dead-ends, is a
28 common mechanism restricting transport of natural particles, but its relevance is debated for NMs
29 because of their relatively smaller sizes. Figure 1 shows simulated breakthrough curves (BTCs) and
30 depth profiles determined according to some of the mechanisms listed in Table 2. Ripening is not
31 shown because this mechanism is only relevant when using relatively high NM concentrations, and
32 thus is only relevant for intentional NM additions (e.g. zerovalent iron for soil remediation⁷⁶). Table 2
33 shows that equilibrium partitioning is seldom considered when modelling NM fate. A recent
34 discussion in this journal revolved around the appropriateness of partition coefficients to describe
35 environmental fate of NMs⁷⁷⁻⁷⁹. It may be advocated that partitioning coefficients have their use
36 when modelling NM fate at large regional scales, where mechanistic modelling would prove
37 elusive⁷⁸. At smaller temporal and spatial scales, heterogeneity becomes somewhat more
38 manageable and more accurate, and thus mechanistic modelling is possible and should be utilized.
39 However, NM processes are essentially non-equilibrium and the equilibrium assumption makes
40 partitioning coefficients unfit for purpose when mechanistic modeling is attempted.

41 Colloid filtration theory (CFT) is the simplest, but also most used approach to model NM fate in
42 terrestrial systems (Table 2), where α_{att} , the attachment or collision efficiency, is the crucial
43 parameter that quantifies the extent by which deposition is altered from the ideal case, i.e. in the
44 absence of all repulsive NM – pore wall interactions⁶⁹. α_{att} for a particular NM – surface combination
45 could in theory be calculated based on DLVO theory, but α_{att} is in practice mostly fitted to

1 breakthrough curves from column experiments (see SI) and thus becomes in effect an empirical
2 parameter that lumps together many different mechanisms.^{73,78}

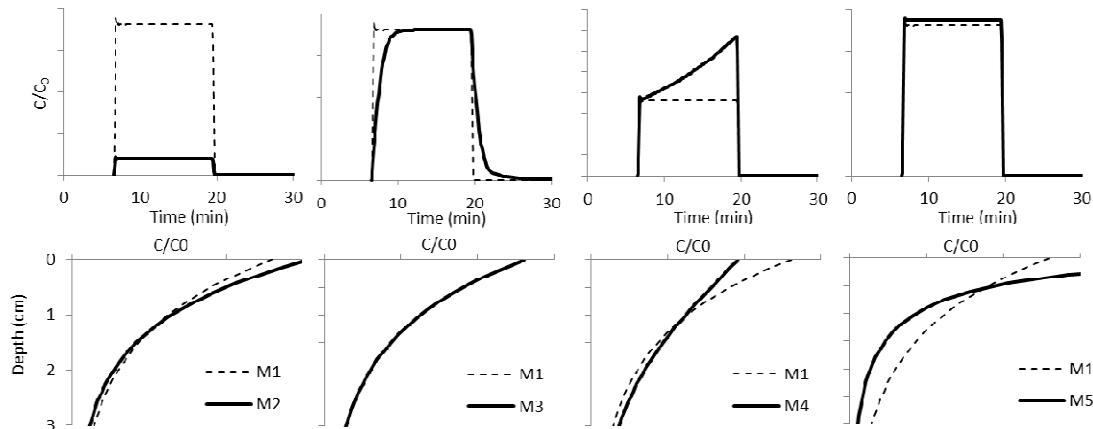
3 When NMs are added at higher concentration, NM homoagglomeration may be important, and
4 mechanisms such as blocking or ripening may play a role⁷⁵. In addition, evidence is accumulating
5 that NMs heteroagglomerate with natural colloids in terrestrial systems, as they probably do in
6 aquatic systems also^{58,80,81}. Straining is not expected to be quantitatively important for non-
7 agglomerated NMs as they are too small.⁸² However, any kind of agglomeration increases the size of
8 NMs and thus enhances the effects of straining.^{25,80} Moreover, early elution is often observed for
9 NM, which may be explained by exclusion of larger heteroagglomerates from small pores^{80,83,84}.
10 Agglomeration of NM during transport can therefore be taken into account by assuming size
11 exclusion and/or straining^{58,78,80,81}.

12
13 **Table 2.** Different processes associated with deposition of colloids that have also been considered
14 during modelling of NM transport in sand columns and/or soils.

Mechanism	Description	Sand columns	Natural soils
Equilibrium Partitioning	Equilibrium is established between NMs releasing from pore walls and NMs continuously being deposited onto the pore walls	Fe ⁸⁵	
Irreversible attachment	NMs are deposited in the primary energy minimum of pore walls and are therefore only released in special circumstances (e.g. sudden drop in ionic strength and/or shear forces).	C ₆₀ ^{86,87}	Ag ^{88,89} ; C ₆₀ ^{87,90} CNT ⁹¹
Colloid filtration theory	Same as irreversible attachment, but the deposition rate constant is characterized based on DLVO theory using the attachment efficiency (α) and single-collector contact efficiency (η_0)	B ⁹² ; C ₆₀ ^{93,94} ; CeO ₂ ⁹⁵ ; CNT ⁹⁶ ; Fe ^{97,98} ; nHAP ⁹⁹ ; TiO ₂ ¹⁰⁰ ; QD ^{101,102}	Ag ⁸⁸ ; TiO ₂ ¹⁰³
Reversible attachment	Deposition occurs in secondary energy minima from which NMs can relatively easily detach (i.e. without a sudden change in chemistry or shear forces)	Ag ¹⁰³ ; CNT ¹⁰⁴⁻¹⁰⁶	Ag ⁸⁸ ; CNT ¹⁰⁶
Blocking	Deposition sites have a maximum capacity, S_{\max}	C ₆₀ ^{86,87} ; CNT ^{105,107}	C ₆₀ ⁹⁰
Straining	NMs can be filtered mechanically or by reaching dead ends in a soil. The extent of straining decreases with depth with a coefficient β	C ₆₀ ⁸⁷ ; nHAP ¹⁰⁸ ; SiO ₂ ¹⁰⁹	CNT ¹⁰⁶
Ripening	Previously deposited NMs increase the attachment efficiency	Fe ⁷⁴ , nHAP ¹¹⁰	-
Pore clogging	Previously deposited NMs reduce access to some part of the pore network	Fe ⁷⁴	-
Dual deposition	Two different deposition sites exist, for of which one of the mechanisms above is assumed valid	CNT ^{106,107} ; Fe ⁸⁵ ; nHAP ¹⁰⁸ SiO ₂ ^{109,111}	Ag ⁸⁸

Preferential flow	NMs are constricted to a subset of relatively large pores in which water flows faster (on average) compared to the bulk water flow	-	-
Air-NM deposition	Deposition in unsaturated soils not only occurs on pore walls, but also at air-water interfaces	-	-

1 C₆₀ Fullerene
 2 CNT Carbon nanotubes
 3 nHAP nanohydroxyapatite
 4 QD Quantum dots


5

6

c. Model validation

7 As with all environmental systems, a distinction needs to be made between small-scale
 8 transport models for terrestrial systems, validated based on column tests, and larger-scale (field)
 9 models validated using lysimeters. Validating the latter models is currently impossible because such
 10 data cannot be obtained. The NM concentration reaching a lysimeter cup would be extremely low
 11 given the observed poor mobility of NMs in most terrestrial mobility experiments so far and
 12 selectively analysing NM at any concentration is extremely challenging given the high background of
 13 natural particles, or a dissolved background of the same element(s) of which the NMs are
 14 composed.¹¹²

15 It must also be emphasized that the models in Table 2 are *backward* models, i.e. the parameters
 16 are calibrated to the experimental data that was obtained. Such an approach cannot, by definition,
 17 be validated, as its aim is to discover which mechanisms control NM transport in the specific soil
 18 column under study. There is thus a lack of *forward* models for NMs in soils, i.e. where transport of
 19 NMs can be predicted based on the NM properties as well as the terrestrial media composition.
 20 While any forward modelling will not be highly accurate, given the heterogeneity of terrestrial
 21 systems, it would at least allow a better estimate of NM bioavailability to terrestrial organisms than
 22 the current approach based on total NM concentrations.

23
 24 **Figure 1.** Hypothetical breakthrough curves (column outflow concentrations as a function of time) or
 25 depth profiles (solid concentrations as a function of depth after 20 minutes) following a 2 pore
 26 volume pulse of a 1.5 mg L⁻¹ NM suspension in saturated 15 cm columns ($K_s = 0.00825 \text{ cm s}^{-1}$, $u = 1$
 27 cm s^{-1} , $\rho = 2.7 \text{ g cm}^{-3}$). Four models were calculated using Hydrus 1D. M1: only irreversible
 28 attachment ($k_a = 0.5 \text{ s}^{-1}$); M2: only irreversible attachment ($k_a = 0.6 \text{ s}^{-1}$); M3: irreversible attachment
 29 ($k_a = 0.5 \text{ s}^{-1}$) and reversible attachment ($k_d = 0.2 \text{ s}^{-1}$; $k_d = 0.05 \text{ s}^{-1}$); M4: irreversible attachment ($k_a =$

1 0.5 s⁻¹) and Langmuirian blocking ($S_{\max} = 0.3 \text{ mg kg}^{-1}$); M5: depth dependent straining ($k_{\text{str}} = 4.1$; $\beta = 2$). Please refer to supporting info for equations and explanation of symbols.

3

4 Figure 1 illustrates how the backward models in Table 2 are not always robust, even when
5 applied to relatively simple systems such as stacked sand columns, and their mechanistic accuracy is
6 uncertain. The depth profiles presented in Figure 1 show that straining results in exponentially or
7 hyperexponentially decreasing depth profiles with a higher particle removal at the column entrance
8 where the NM feed enters the channel. Figure 1 also illustrates that both BTCs and depth profiles
9 are necessary to apply a particular model from Table 2. Models M1 – 4 all show very similar depth
10 profiles and differences are only clear when also fitting the BTC. Models M1 and M5 in Figure 1
11 show an example where the BTC may look very similar even when two entirely different sets of
12 parameters have been selected. However, current models often fail to describe the depth profile.⁷³
13 Figure 1 shows that modelled depth profiles are always exponential or hyperexponential
14 curves, whereas experimental data often shows entirely different trends that cannot be explained
15 with these models.⁷³ Possibly, inclusion of some of the mechanisms that have thus far not been
16 considered during NM modelling (heteroagglomeration, size exclusion, air-water deposition) could
17 improve fits with experimental results, but would introduce even more parameters that have to be
18 fitted to a limited number of data points. In addition, obtaining BTCs for NMs saturated stacked
19 columns of clayey soils is not possible currently; not only is the required pressure too high, NMs
20 often interact strongly with clays²⁵.

21 Finally, extrapolating validated small-scale models to field situations can lead to large
22 inaccuracies, because the experimental set-up of most column experiments introduces mechanisms
23 that are not relevant for field situations and any conclusions drawn from column experiments are
24 limited to the system under study. Detection limits of analytical equipment and possibly also the
25 desire to observe breakthrough, leads to use of a pulse input of a very high NM concentration or
26 most often a step input. This leads to unrealistically high NM concentrations in soils (on the order of
27 mg or even g kg⁻¹) compared to the situation in the field where ng kg⁻¹ concentrations are
28 expected⁸⁰. High NM concentrations leads to homoagglomeration and site blocking or even ripening
29 becoming more important, whereas heteroagglomeration with more abundant natural particles,
30 possibly associated with size exclusion, are probably the dominant processes at realistic (low) NM
31 concentrations. Nearly all the studies in Table 2 have administered NMs to soil columns using a well-
32 dispersed aqueous NM suspension pumped into one end of the column. Unintentional NM exposure
33 in soils likely occurs through application of sludge to the top layer of soils¹⁰⁸. NMs are
34 heteroagglomerated with e.g. bacteria or natural particles within sludge and first need to
35 deagglomerate from these particles before transport⁹⁶. Adding NM together with sludge to a soil
36 results in a much lower mobility compared to addition of pure NM suspensions to soils¹¹³. In
37 addition, the parameters in Table 2 have been applied to experimental data obtained from different
38 systems going from stacked column of well-defined spheres (e.g. glass beads), to saturated columns
39 of soils to, in one case⁸⁹, intact soil cores. Realistic systems are harder to characterize, e.g. in terms
40 of pore structure, and the experiments are almost impossible to replicate making it hard to obtain
41 robust, universal fate descriptors for NMs that can be applied to a given, poorly characterized field
42 situation. More realistic systems, such as intact cores also increase the required complexity of the
43 models in terms of the number of interactions from Table 2 that need to be taken into account and
44 also the number of parameters that needs to be calibrated.

45

1 4. Uptake and accumulation in organisms

2 a. General overview

3 Uptake of NMs by organisms is governed by their physicochemical properties, the
4 physicochemical properties of the environment and of the organism. Several studies reported
5 uptake of a range of different NMs, which is also evidenced by the fact that BioConcentration
6 Factors (BCFs) greater than 1 have been reported¹¹⁴. Additionally, several articles provide a review of
7 the current state-of-the-art in terms of NM uptake and accumulation in organisms, describing routes
8 of NM uptake, and discussing the specific factors that drive NM uptake by organisms^{29,114}. However,
9 very little information is available on modelling the uptake and accumulation of NMs in organisms.
10 For conventional chemicals, different modelling approaches have been developed to predict the
11 uptake by organisms. Among the most used are i) the application of Accumulation Factors, generally
12 used for organic compounds (e.g. Bioaccumulation Factor (BAF), Bioconcentrations Factor (BCF),
13 Biomagnification Factor (BMF)), ii) biotic ligand models (BLMs) to model uptake of metals by
14 organisms and iii) biokinetic models, which use uptake and elimination kinetic parameters to model
15 the accumulation of contaminants in organisms. Below, we critically discuss the applicability of these
16 models to the case of NM uptake from the environment (see Table 3 for an overview of selected
17 studies).

19 b. Common approaches to uptake modeling

20 Accumulation factors have been widely used to predict the accumulation of organic compounds
21 by organisms. Predicting accumulation of NMs by organisms using accumulation factors can only be
22 performed by assuming that the levels of the NM in the organisms have reached a steady state in
23 relation to the ambient concentrations, which is governed by equilibrium partitioning between the
24 environmental compartment and the organism¹¹⁵. The application of accumulation factors is rather
25 straightforward and provides insight into the potential for NM uptake by organisms (see e.g. Hou et
26 al. 2013¹¹⁴ for an overview). However, the assumption of steady-state is not always validated in NM-
27 studies; longer term studies may be needed to verify this approach. The application of partitioning
28 coefficients may also not apply to NM⁷⁹. Furthermore, reaching steady state may be different for
29 different form of the same NM (e.g. ionic form, functionalized forms), which may affect
30 accumulation factors based on bulk concentrations. Hence, although the application of accumulation
31 factors may seem to be relatively simple, the results should be considered with some care.

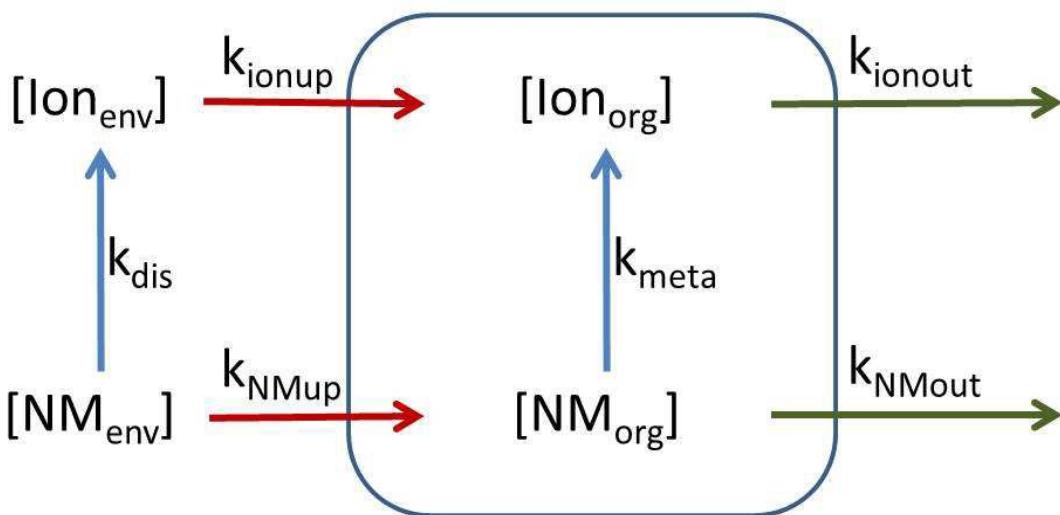
32 BLMs have been developed for metal ions, both for aquatic and soil organisms¹¹⁶. BLMs model
33 uptake of metal ions by organisms by taking into account the metal concentrations, competition for
34 metal binding to biotic ligand sites, and complexation processes in solution driving the speciation
35 and bioavailability of the metal. In BLMs, the metal ions compete for binding to the biotic ligand sites
36 with all other ions in solution. Similarly, NMs may also compete for cellular uptake, e.g. by limited
37 availability of binding sites (receptors). This may allow for the development of a similar modelling
38 approach¹¹⁷. NM binding affinity and capacity is generally quantified in short term binding tests.
39 BLMs relate the short term binding affinity of NMs for the biotic ligands to NM acute toxicity, in a
40 quantitative way¹¹⁸. Most studies using BLMs to model NM affinity and binding in organisms, applied
41 exposure durations of generally 24-96 hours^{119,120}. These studies showed that BLMs can be used to
42 quantify the number of transport or binding sites and the affinity of NMs for these sites¹¹⁹⁻¹²¹, which
43 can be used to model influx rates. Application of BLMs appears to be feasible to model uptake of
44 both NMs as well as their ionic form(s) without the need to modify the BLM construct. However, this
45 is limited to short term exposure and acute effects, and specific NM-parameters need to be derived.

1 **Table 3.** Summary of selected studies that have applied the three main uptake modelling approaches to address the uptake NMs by different organisms

Modelling approach	Compartment	NM-type	Key findings	Remarks	Ref.
Accumulation factors	Aquatic, several invertebrate species	Different types, reference is a review	Variety of Accumulation factors	Aquatic focus on Daphnids with Accumulation Factor > 1. Accumulation in Annelids from sediment generally < 1	114
Accumulation factors	Terrestrial, several invertebrate species	Different types, reference is a review	Most Accumulation factors < 1	Earthworm uptake relatively low, accumulation in isopod also reported	114
Accumulation factors	Aquatic vertebrates, several species	Different types, reference is a review	A range of Accumulation Factors	Aquatic exposure with Accumulation Factors > 1, dietary exposure generally results in low factors.	114
BLM	Aquatic, daphnid and oligochaete	Ag (\pm 10nm), different coatings	BLM approach confounded when ingestion of NMs occurs, applies well when toxicity is related to "dissolved" concentrations	BLM approach is predictive of acute toxicity after short term (waterborne) exposure	120
BLM	Aquatic, daphnid	Ag (80 nm), no coating	Toxicity related to ionic form of Ag	BLM only used to calculate acute EC ₅₀ for ionic exposure, no application to NM	122
BLM	Aquatic, <i>L. stagnalis</i>	Ag, citrate capped (17 nm), HA capped (13 nm)	Binding site capacity and binding affinity varied greatly between NM	BLM parameters used to interpret differences in waterborne uptake between different species of Ag	121
Biokinetic	Aquatic, <i>L. stagnalis</i>	Ag, citrate capped (17 nm), HA capped (13 nm)	Dietary uptake more important than waterborne uptake for all Ag-species	Kinetic models used to predict steady state concentrations in snails, for both waterborne and dietary exposure	121
Biokinetic	Aquatic, <i>L. stagnalis</i>	CuO (7 nm)	Dietary uptake more important than waterborne. Accumulation occurs due to low elimination rates	Kinetic modelling was applied to delineate the contribution of ionic and NM CuO species to the total accumulation of Cu	119

2 Abbreviations: EC₅₀: Half maximal effective concentration, i.e. concentration at which 50% lethality is observed.

1 Biokinetic models use toxicokinetics parameters (quantifying rates of uptake and elimination of
2 contaminants by organisms, potentially also including their internal distribution and metabolism) to
3 model accumulation patterns in organisms. Biokinetic models have also been developed to describe
4 NM uptake by organisms^{119,121}. The biokinetic modeling approach describes NM uptake in organisms
5 by taking into account NM transfer from one compartment (e.g. water or soil) to another (the
6 organism). Excretion is also considered in biokinetic models in a similar way *vice versa*. Biokinetic
7 models can be extended beyond direct uptake and elimination¹²³, and may also incorporate other
8 environmental elimination mechanisms such as sedimentation¹²⁴. Unlike BML models, biokinetic
9 models can be used to assess processes over a longer time-frame, which allows the development of
10 more realistic, long term, accumulation models.


11 The following section discusses some general issues in modelling NM uptake by organisms,
12 elimination and food webs transfer illustrated with a modelling exercise. The issues are applicable to
13 all modelling approaches, but the example will be illustrated using biokinetic models, which can be
14 used on the appropriate time-scale.

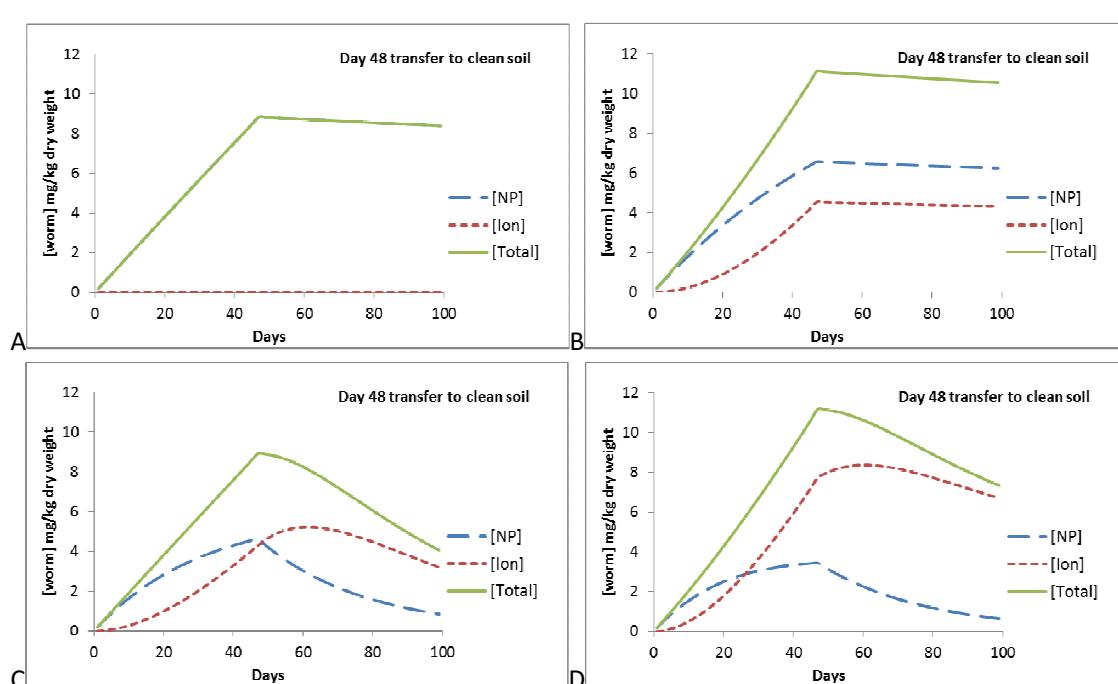
15

16

17 *Absorbed/adsorbed NM*: When considering the accumulation of NMs in organisms, it is
18 essential to differentiate between NMs that may be adsorbed onto the surface of organisms, or that
19 are accumulated in the gut lumen, and NMs that are actually transferred into the cells and tissues.
20 NMs that are not transferred across the membranes may have limited toxicological impact, although
21 adsorption to algae may have toxic impact¹²⁵. Nevertheless, NM in the gut of a prey or adsorbed to
22 algae may be transferred to higher trophic level consumer/predators¹²⁴, similar to trace metals¹²⁶. In
23 neonate daphnids, it was shown that most of the gold NMs were located in the gut¹²⁷, and that
24 feeding algae to the animals decreased NM uptake rate and increased NM depuration rate. Uptake
25 and depuration were modelled using a first order rate model (Eq. 13 Supplementary information).¹²⁷
26 Experimentally derived uptake and depuration rates varied between NM sizes and capping agent. It
27 was shown that 10 nm particles accumulated to higher extent in the gut of daphnids. In the case of
28 the citrate capped 10 nm particles, no steady state was even reached within the duration of the
29 experiment (24h).

30 *Speciation of NM-uptake*: Modelling NM uptake and elimination across biological membranes
31 can also be approached using models¹²¹. Insoluble NMs can be accumulated as the particulate form,
32 whereas uptake of soluble NM may be in particulate and/or ionic form. Intracellular dissolution of
33 NMs may also be significant, as it was shown in that dissolution of Ag-NM was approximately 50
34 times higher in RAW 264.7 cells than in distilled water¹²⁸. NM uptake (and excretion) from the
35 environment by organisms, including extra- and intra-cellular dissolution, can be conceptualized as
36 shown in Figure 2. The derived model equation (Eq.12) is presented in the supplementary
37 information,

1
2 **Figure 2.** Conceptual display of routes of uptake and excretion of NMs from the environment by organisms. $[NM_{env}]$
3 concentration of NM in environmental compartment (mg/kg or mg/L), $[Ion_{env}]$ concentration of ionic form in
4 environmental compartment (mg/kg, or mg/L), $[NM_{org}]$ concentration of NM in organism (mg/kg dw), $[Ion_{org}]$ ionic
5 concentration in organism (mg/kg dw), k_{NMup} : uptake rate constant for NMs from soil (as an example) to organism
6 ($g_{soil} \cdot g_{worm}^{-1} \cdot day^{-1}$), k_{ionup} : uptake rate constant for ions from soil to organism ($g_{soil} \cdot g_{worm}^{-1} \cdot day^{-1}$), k_{NMout} : excretion rate of
7 NMs from organism (day^{-1}), k_{ionout} : excretion rate of ions from organism (day^{-1}), k_{dis} : dissolution rate of NMs to ions in soil
8 (day^{-1}), k_{meta} : dissolution rate NMs to ions in organism (day^{-1}).
9


10 Using the concepts presented in Figure 2, accumulation of NMs in organisms can be modelled
11 (equations 14 and 15, Supplementary information). As an example, parameters were selected or
12 deduced indirectly from literature for silver NMs (Table 4). For k_{meta} no direct values were available,
13 this is based on an *in vitro* study¹²⁸. Parameter values are derived from different studies e.g. uptake
14 and elimination rates in worms¹²⁹, and dissolution from an aquatic¹³⁰ or an *in vitro* study¹²⁸. This is
15 not optimal for a detailed modelling exercise, and thus may have limited actual value, but it allows a
16 first insight into the relative impacts of the different processes and parameters.
17

18 Figure 3 illustrates that inclusion of dissolution in the soil increased the uptake of ionic species
19 (Figure 3b) resulting in higher total metal uptake than when dissolution is not modeled (Figure 3a).
20 This is because the uptake rate of ions is assumed to be higher than the uptake rate of NMs (Table
21 4). Including internal dissolution in the uptake model results in lower total metal concentrations, and
22 after 48 days a larger part of the NM has dissolved (Figure 3a vs. 3c). The lower total internal metal
23 concentrations in the organisms are because NM and ionic species are excreted independently;
24 hence there is an extra excretion route (i.e. ion excretion of 0.001 day^{-1} in addition to NM excretion
25 of 0.001 day^{-1} ; Table 4). When considering intra- and extra- organism dissolution of NMs, the
26 relative concentrations of particulate NM become even smaller (Figure 3b vs. 3d). The
27 concentrations presented here, and the associated conclusions, should be regarded with caution
28 due to the fact that kinetic parameters were not derived specifically for the application to soil
29 organisms. However, the modelled concentrations are in the same range as quantified in an earlier
30 study¹³¹.
31

1 **Table 4.** Parameters used as inputs in equations 14 and 15 (supplementary information), resulting in
2 modelled concentrations as shown in Figure 4.

Parameter	Value	unit	Reference	Remarks
k_{dis}	0-0.00632	day ⁻¹	¹³⁰	Based on Figure 4 in reference 119, geometric mean of Ag-NM 23nm (0.352 mg/l): $k\approx 0.02$ and Ag-NM 20 (10 mg/l): $k\approx 0.002$
k_{NPup}	0.00125	kg _{soil} *kg _{worm} ⁻¹ *day ⁻¹	¹²⁹	Approximated from Figure 3 in reference 118
k_{NPout}	0.001	day ⁻¹	¹²⁹	Approximated from Figure 3 in reference 118
k_{ionup}	0.0025	kg _{soil} *kg _{worm} ⁻¹ *day ⁻¹	¹²⁹	Approximated from Figure 3 in reference 118
k_{ionout}	0.001	day ⁻¹	¹²⁹	Approximated from Figure 3 in reference 118
k_{meta}	0-0.3	day ⁻¹	¹²⁸	0-50 times k_{dis} , according to reference 117

3
4 The results in Figure 3 indicate that biokinetic models can be used to model accumulation of
5 NMs in organisms, also including speciation. More detailed models may be feasible, including for
6 instance settling of NM¹²⁷ in aquatic systems or functionalization of NM under environmental
7 conditions. However derivation of parameters for the different processes may be difficult. In this
8 context, the use of isotopically labelled NMs can be very helpful to e.g. differentiate ionic from
9 particulate uptake¹³². Additionally, there is need for detailed methods and tools to characterize and
10 quantify NM speciation (particulate and ionic) in tissues¹³³.

14 **Figure 3.** Modelled concentrations of AgNMs and ionic Ag in earthworms (equations 14 and 15 in
15 Supplementary information). Worms are exposed to 150 mg/kg AgNMs in soil (initial ionic Ag concentration =
16 0), with different dissolution kinetic parameters (Table 4). A. $k_{dis}=0$, $k_{meta}=0$; B. $k_{dis} = 0.00632$, $k_{meta} = 0$;

1 $k_{meta} = 0.0316$; D. $k_{dis} = 0.00632$, $k_{meta} = 0.0316$. [NP]: concentrations of AgNM; [Ion]: concentration of ionic Ag;
2 [Total]: total Ag concentrations.

3

4 **c. Model validation and calibration**

5 There is great potential for adopting existing accumulation models for use with NM, and several
6 studies have been carried out to quantify modelling parameters (see for a selection Table 3). Similar
7 to the models used to address environmental fate of conventional chemicals, the developed
8 accumulation models are *backward* models, i.e. parameters are calibrated to the experimental data.
9 No *forward* modelling studies are known to the authors, which validate modelling approaches with
10 independent observations of NM uptake by organisms. Limited information is available on the
11 effects of NM properties and environmental conditions on the uptake/excretion kinetics¹¹⁴, which
12 hampers the read-across between different NMs to derive kinetic parameters (using a QSAR
13 approach). Hence, systematic studies are needed under standardized test conditions, including
14 quantification of the different forms of the NM in both exposure medium as well as organisms. For
15 such quantification, optimized detection and quantification methods are needed e.g. sp-ICP-MS or
16 AF4-ICP-MS, combined with procedures for sample preparation and NM-extraction that minimize
17 impact on NM-properties¹³³. An additional challenge will be to include variability in environmental
18 conditions, taking into account the spatio-temporal scales of the organisms and the environmental
19 fate and behavior of the NM. The available modelling frameworks seem applicable, although with
20 some limitations. Hence, most emphasis in the near future should be placed on the derivation of
21 model parameters, and especially calibration and validation of the models.

22

23 **5. Future Needs and Perspectives**

24 Significant progress in developing NM fate and uptake models has been made over the past
25 decade; nonetheless, as discussed above, further progress is required to produce models
26 appropriate for NM risk assessment as well as to advance our fundamental understanding of, and
27 ability to predict, NM fate and uptake. Below, we summarize the imminent needs to advance the
28 field of NM fate and uptake modeling.

29 **a. Fate modeling in aquatic systems**

30 The key challenge in modeling NM fate in aquatic systems is to account for spatial and temporal
31 variability of NM transport and fate. This is to be performed by integrating the dynamics of the
32 behavior of the relevant NM forms released from NM products and composite bound NMs, with a
33 focus on the impact of NM transformation on environmental fate. Examples of such models have
34 recently been published⁴⁷⁻⁵⁰ and are being developed. As demonstrated by these spatiotemporally
35 resolved models, future modelling approaches regarding the aquatic compartment need to focus on
36 identifying the most important NM fate processes, and improving the spatial resolution of NM fate
37 models. Despite not being a fundamental modeling problem, generating data on NM fate processes
38 rates as a function of water chemistry under realistic environmental conditions will enable more
39 realistic prediction of NM environmental fate and concentrations. Irrespective of applying
40 mechanistic-based or engineering type modelling, model validation against experimental and field
41 data over appropriate timescales needs to be addressed in the near future.

42 **b. Fate modeling in terrestrial systems**

43 The relevance of highly accurate mechanistic models based on unrepresentative column studies
44 to the field situation is questionable. It can thus be argued that more basic fate descriptors, such as
45 K_d or K_r values do not necessarily invoke more uncertainties, e.g. in a large-scale risk assessment^{77,78}.

1 At the same time, the basic assumption of equilibrium used in the case of K_d -values can give rise to
2 false conclusions^{77,78}. Future work should therefore focus on developing less rather than more
3 sophisticated models for terrestrial systems and associated measurement protocols for the required
4 fate descriptors. Such an approach more likely strikes a balance between operational simplicity and
5 mechanistic accuracy. Moreover, a simpler protocol is easier to standardize and more likely to
6 produce larger datasets of fate parameters that can e.g. be related to NM descriptors and/or soil
7 characteristics. Such relations allow extrapolation of fate parameters towards new soils and/or NMs
8 that have not been studied *per se* and thus truly predictive models, i.e. models that do not need
9 calibration, can be developed. However, accuracy of these models can only be validated, similarly to
10 aquatic compartments, if analytical methods for NM in complex environmental media are developed
11 further.

12 **c. Uptake modeling**

13 The different modelling approaches currently available appear to be suitable to address NM
14 uptake in organisms, although each with specific limitations. Accumulation factors and BLM may be
15 applied in a similarly manner as for molecular contaminants, although with some limitations. In the
16 case of biokinetic models, different processes and NM-species can be included in the model
17 descriptions. However, currently there is a lack of proper parameters describing the rates of NM
18 uptake, elimination, transformation and dissolution. Hence, future research activities should not
19 necessarily be focused in describing more complex and sophisticated models that include all possible
20 transformation process. Simple models should be parameterized, see for instance Croteau et al.¹¹⁰
21 In particular, the quantification of rate constants and parameters is paramount, and should be
22 pursued. Establishment of uptake rates of different NM-species (starting with NM and ionic form),
23 excretion rates and rates of dissolution in the environment and in tissues could be a starting point.
24 For this however, detailed measurements are needed, that characterize and quantify the different
25 forms of the NM in environmental matrices and tissues. Currently, new methods based on enzymatic
26 digestion of organismal tissues, in combination with sp-ICP-MS are being proposed, which may
27 provide the necessary data¹³³. When conducted in a time resolved manner, such experiments will
28 allow the derivation of rate constants, needed to populate the models.

29 **d. Simplified empirical models based on fate and behavior descriptors**

30 There is a difference between "scientific" and "empirical or engineering" type of models⁷⁸.
31 Scientific models are mathematical descriptions of the environmental fate of chemicals that are to a
32 large extent based on relatively detailed and specific descriptions of individual processes, and are
33 intended to reflect a mechanistic understanding of the system that is modeled. These models often
34 require an extended set of parameters and this has precluded the use of such comprehensive
35 models in routine and/or large scale risk assessments in which very basic engineering-type of models
36 have been more common. One reason is that detailed model parameters that accurately describe
37 fate processes in well-controlled laboratory-scale systems are often inaccessible in the field or even
38 in mesocosms where highly heterogeneous conditions predominate so that no effective gain is
39 reached when applying highly accurate models based on inaccurate model parameters^{77,78}.

40 Therefore, it is highly unlikely that complex mechanistic models will be used routinely in NM
41 risk assessments. The many parameters required for these models are absent in most cases and
42 obtaining these for all produced NM would require an irrational investment effort. Routine models
43 will more likely be a compromise between technical accuracy and operational simplicity, similarly to
44 conventional contaminants where K_d values have seen widespread use despite the obvious
45 limitations¹³⁴. Similar fate descriptors therefore need to be designed for NMs as well as a modeling

1 framework and standardized protocols to obtain the data to parameterize the models. Such an
2 approach could e.g. lead to establishing relationships between NM characteristics (coating length,
3 hydrophobicity, size,...), characteristics of the receiving medium (pH, ionic strength,...) and NM fate.
4 These fate descriptors and accompanying models need not necessarily be the most accurate
5 approach possible, but the simplified methodology may be more conducive to generation of large
6 databases and the subsequent deduction of empirical equations to extrapolate the fate descriptor's
7 values to new NMs in new environments. Such fate descriptors cannot emerge from the same
8 equilibrium assumption that has conceived e.g. the K_d values, because the equilibrium assumption
9 does not hold for NMs at any given point, leading to grave errors in terms of fate prediction^{77,79}.
10 Alternatively, kinetic parameters such as collision and attachment efficiencies may be used^{32,77} or
11 empirical rate constants^{31,58,135}.

e. Integrated theoretical models taking into account all environmental fate processes

In order to develop new or extend/improve existing models for environmental fate & behavior of NMs, it is important to fully understand the processes involved in controlling fate of NMs in the natural environment and to be able to derive quantitative descriptions (e.g. rate constants) of the relevant fate process as well as to develop models to predict NM fate and behavior descriptors. There are currently some mathematical models (either theoretical or empirical) that describe these processes individually; nonetheless, there is a need for integrated models that consider the interplay between these processes, and their dependence on NM properties and environmental conditions. Integrated models require that common model variables be used as either model input or output, e.g. surface area or particle number, or that a way to convert between model outputs is developed, i.e. the output of one model must be able to serve as an input to the others. This requirement also implies the need for unification of model variables. Finally, there is the common need to validate the developed mathematical models and test their domains of applicability, etc.

f. Novel experimental setups to extract descriptors of NM behavior in the environment

There is currently very limited field data available on the occurrence and concentrations of engineered NMs in the natural environment due to the difficulties in detecting and quantifying their concentrations against a background of naturally occurring colloids, many of similar compositions.¹¹² Such a gap in data can be filled by developing novel experimental approaches that simulate NM fate in environmental systems or provide a measurable parameter that can be used to predict NM fate in the environment. For instance, data from restricted, well-controlled, environments like aquatic micro- or mesocosms or columns and flumes may be reasonable data sources to learn more about the kinetics of the most important processes determining the environmental fate of NMs. Development of simple measures specific to NMs (equivalent of the biological oxygen demand in waste water systems) could also be a useful tool.

g. Future generation of NMs

To date, the majority of NMs in use in products are simply nanoscale version of particles that have been in use for decades, such as silica, titania and ceria, or new nanoscale materials such as quantum dots and carbon nanotubes, engineered to have specific properties. However these are relatively simple materials in comparison to many of the advanced materials that will be available in the future, which will be multi-component (e.g. core-shell, segmented, layered materials with complex geometries and the potential for evolution or self-healing)¹³⁶⁻¹³⁸. These new NMs are being developed to achieve novel properties and functionalities, which may impact NM transformation processes and rates compared with those of the currently available NMs. The majority of the models

1 described in this manuscript have been developed using the assumption of roughly spherical
2 particles, and thus there will be a considerable effort needed to account for the effect of non-
3 sphericity of particles, where for example, the presence of sharp edges or points might be sources of
4 enhanced dissolution, aggregation or uptake and processes for synthesis of such advanced materials
5 may result in introduction of additional defects in the underlying crystal structure or voids at the
6 surface, all of which are linked to enhanced reactivity and thus may lead to altered fate and
7 behavior. Careful consideration of whether NMs geometry and/or multiple constituent compositions
8 may lead to alterations to the fundamental processes being modelled is needed, prior to generating
9 data that may not be fit for purpose.

10

11 6. Acknowledgments

12 This work was supported by the MARINA project funded by the EU Commission within the
13 Seventh Research Framework Program of the European Union (Grant Agreement Number 263215),
14 and the National Science Foundation (NSF, 1437307). MB would like to acknowledge the SmartState
15 Center for Environmental Nanoscience and Risk (CENR) and the Arnold School of Public Health, both
16 at the University of South Carolina for financial support. IL's contribution was funded via EU FP7
17 Marie Curie Career Integration grant EcofriendlyNano (PCIG14-GA-2013-631612). Any opinions,
18 findings, conclusions or recommendations expressed in this material are those of the authors and do
19 not necessary reflect the views of the EU or the NSF.

20

References

3 (1) Christian, P.; Von der Kammer, F.; Baalousha, M.; Hofmann, Th. Nanoparticles:
4 Structure, Properties, Preparation and Behaviour in Environmental Media. *Environ.*
5 *Toxicol. Chem.* **2008**, 17 (326-343).

6 (2) The European Comission Commission Recommendation of 18 October 2011 on the
7 Definition of Nanomaterials. *Off. J. Europ. U.* **2011**, 54 (L275-38-L275/40).

8 (3) Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith,
9 E. C.; Baxter, S. C. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular
10 Imaging. *Acc. Chem. Res.* **2008**, 41 (12), 1721-1730.

11 (4) Fenger, R.; Fertitta, E.; Kirmse, H.; Thunemann, A. F.; Rademann, K. Size
12 Dependent Catalysis With CTAB-Stabilized Gold Nanoparticles. *Phys. Chem.*
13 *Chem. Phys.* **2012**, 14 (9343-9349).

14 (5) Baalousha, M.; Le Coustumer, P.; Jones, I.; Lead, J. R. Characterization of
15 Structural and Surface Speciation of Representative Commercially Available
16 Cerium Oxide Nanoparticles. *Environ. Chem.* **2010**, 7 (4), 377-385.

17 (6) Wu, L.; Wiesmann, H. J.; Moodenbaugh, A. R.; Klie, P. F.; Zhu, Y.; Welch, D. O.;
18 Suenaga, M. Oxidation State and Lattice Expansion of CeO_{2-x} Nanoparticles As a
19 Function of Particle Size. *Phys. Rev. B.* **2004**, 69 (125415-1-125415-9.

20 (7) Woodrow Wilson data base. The project on emerging nanotechnologies
21 (<http://www.nanotechproject.org/>). 2014.

22 (8) Cientifica. Global funding of nanotechnologies and its impact. 2011.

23 (9) Roco, M. C. The Long View of Nanotechnology Development: the National
24 Nanotechnology Initiative at 10 Years. In *Nanotechnology Research Directions for*
25 *Societal Needs in 2020*; Springer: 2011.

26 (10) Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial Production
27 Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World. *J*
28 *Nanopart Res* **2012**, 14 (9), 1-11.

29 (11) Benn, T.; Cavanagh, B.; Hristovski, K.; Posner, J. D.; Westerhoff, P. The Release of
30 Nanosilver From Consumer Products Used in the Home. *J. Environ. Qual.* **2010**, 39
31 (6), 1875-1882.

32 (12) Benn, T. M.; Westerhoff, P. Nanoparticle Silver Released into Water From
33 Commercially Available Sock Fabrics. *Environ. Sci. Technol.* **2008**, 42 (11), 4133-
34 4139.

35 (13) Botta, C.; Labille, J.; Auffan, M.; Borschneck, D.; Miche, H.; Cabi, M.; Masion, A.;
36 Rose, J.; Bottero, J. Y. TiO₂-Based Nanoparticles Released in Water From
37 Commercialized Sunscreens in a Life-Cycle Perspective: Structures and Quantities.
38 *Environmental Pollution* **2011**, 159 (6), 1543-1550.

1 (14) Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler,
2 H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; Boller, M. Synthetic TiO₂
3 Nanoparticle Emission From Exterior Facades into the Aquatic Environment.
4 *Environ. Pollut.* **2008**, *156* (2), 233-239.

5 (15) Kaegi, R.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Mueller, E.; Vonbank, R.;
6 Boller, M.; Burkhardt, M. Release of Silver Nanoparticles From Outdoor Facades.
7 *Environ. Pollut.* **2010**, *158* (9), 2900-2905.

8 (16) Bowles, J. F. W.; Gize, A. P. A preliminary study of the release of platinum and
9 palladium from metallic particles in the surface environment by organic acids:
10 relevance to weathering of particles from vehicle exhaust catalysts. *Mineralogical
11 Magazine* **2005**, *69* (5), 687-693..

12 (17) Schäfer, J.; Puchelt, H. Platinum-Group-Metals (PGM) Emitted From Automobile
13 Catalytic Converters and Their Distribution in Roadside Soils. *J. Geochem. Explor.*
14 **1998**, *64* (1-3), 307-314.

15 (18) Mueller, N. C.; Nowack, B. Exposure Modeling of Engineered Nanoparticles in the
16 Environment. *Environ. Sci. Technol.* **2008**, *42* (12), 4447-4453.

17 (19) US.EPA. Emerging Contaminants – Nanomaterials. EPA 505-F-10-008. 2010.

18 (20) Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E.; Fernandes, T. F.; Handy, R. D.; Lyon,
19 D. Y.; Mahendra, S.; McLaughlin, M. J.; Lead, J. L. Nanomaterials in the
20 Environment : Behaviour, Fate, Bioavailability and Effects. *Environ. Toxicol.
21 Chem.* **2008**, *27* (9), 1825-1851.

22 (21) Montano, M. D.; Lowry, G. V.; von der Kammer, F.; Blue, J.; Ranville, J. F.
23 Current Status and Future Direction for Examining Engineered Nanoparticles in
24 Natural Systems. *Environ. Chem.* **2014**, *11* (4), 351-366.

25 (22) Baalousha, M.; Lead, J. R. *Characterization of Nanomaterials in Complex
26 Environmental and Biological Media*; Elsevier: 2015; pp 1-304.

27 (23) Lowry, G. V.; Espinasse, B. P.; Badireddy, A. R.; Richardson, C. J.; Reinsch, B. C.;
28 Bryant, L. D.; Bone, A. J.; Deonarine, A.; Chae, S.; Therezien, M.; Colman, B. P.;
29 Hsu-Kim, H.; Bernhardt, E. S.; Matson, C. W.; Wiesner, M. R. Long-Term
30 Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large
31 Scale Freshwater Emergent Wetland. *Environ. Sci. Technol.* **2012**, *46* (13), 7027-
32 7036.

33 (24) Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Transformations of
34 Nanomaterials in the Environment. *Environ. Sci. Technol.* **2012**, *46* (13), 6893-
35 6899.

36 (25) Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; van den Brink, N.; Nickel, C. Fate
37 and Bioavailability of Engineered Nanoparticles in Soils: a Review. *Crit. Rev.
38 Environ. Sci. Technol.* **2014**, *44* (24), 2720-2764.

39 (26) Peijnenburg, W. J.; Baalousha, M.; Chen, J.; Chaudry, Q.; von der Kammer, F.;
40 Kuhlbusch, T. A.; Lead, J.; Nickel, C.; Quik, J. T.; Renker, M. A Review of the

Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. *Crit. Rev. Environ. Sci. Technol.* **2015**, *45* (19), 2084-2134.

(27) Kukkonen, J.; Olsson, T.; Schultz, D. M.; Baklanov, A.; Klein, T.; Miranda, A. I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M. A Review of Operational, Regional-Scale, Chemical Weather Forecasting Models in Europe. *Atmos. Chem. Phys.* **2012**, *12* (1), 1-87.

(28) Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Guest Comment: Transformations of Nanomaterials in the Environment Focus Issue. *Environ. Sci. Technol.* **2012**, *46* (13), 6891-6892.

(29) Judy, J. D.; Bertsch, P. M. Bioavailability, Toxicity, and Fate of Manufactured Nanomaterials in Terrestrial Ecosystems. *Adv. Agron.* **2013**, *123* (1-54.

(30) Dale, A. L.; Casman, E. A.; Lowry, G. V.; Lead, J. R.; Viparelli, E.; Baalousha, M. Modeling Nanomaterial Environmental Fate in Aquatic Systems. *Environ. Sci. Technol.* **2015**, *49* (5), 2587-2593.

(31) Quik, J. T. K.; Lynch, I.; Hoecke, K. V.; Miernans, C. J. H.; Schamphelaere, K. A. C.; Janssen, C. R.; Dawson, K. A.; Stuart, M. A. C.; Meent, D. V. D. Effect of Natural Organic Matter on Cerium Dioxide Nanoparticles Settling in Model Fresh Water. *Chemosphere* **2010**, *81* (6), 711-715.

(32) Praetorius, A.; Scheringer, M.; Hungerbühler, K. Development of Environmental Fate Models for Engineered Nanoparticles-A Case Study of TiO₂ Nanoparticles in the Rhine River. *Environ. Sci. Technol.* **2012**, *46* (12), 6705-6713.

(33) Keller, A. A.; Lazareva, A. Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. *Environ. Sci. Technol. Lett.* **2013**, *1* (1), 65-70.

(34) Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B. Possibilities and Limitations of Modeling Environmental Exposure to Engineered Nanomaterials by Probabilistic Material Flow Analysis. *Environ. Toxicol. Chem.* **2010**, *29* (5), 1036-1048.

(35) Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO₂, ZnO, Ag, CNT, Fullerenes) for Different Regions. *Environ. Sci. Technol.* **2009**, *43* (24), 9216-9222.

(36) Gottschalk, F.; Ort, C.; Scholz, R. W.; Nowack, B. Engineered Nanomaterials in Rivers - Exposure Scenarios for Switzerland at High Spatial and Temporal Resolution. *Environ. Pollut.* **2011**, *159* (12), 3439-3445.

(37) Blaser, S. A.; Scheringer, M.; MacLeod, M.; Hungerbühler, K. Estimation of Cumulative Aquatic Exposure and Risk Due to Silver: Contribution of Nano-Functionalized Plastics and Textiles. *Sci. Tot. Environ.* **2008**, *390* (2-3), 396-409.

(38) Sun, T. Y.; Gottschalk, F.; Hungerbühler, K.; Nowack, B. Comprehensive Probabilistic Modelling of Environmental Emissions of Engineered Nanomaterials. *Environ. Pollut.* **2014**, *185* (69-76.

1 (39) Meesters, J. A. J.; Koelmans, A. A.; Quik, J. T. K.; Hendriks, A. J.; van de Meent, D. Multimedia Modeling of Engineered Nanoparticles With SimpleBox4nano: Model Definition and Evaluation. *Environ. Sci. Technol.* **2014**, *48* (10), 5726-5736.

2 (40) Liu, H. H.; Cohen, Y. Multimedia Environmental Distribution of Engineered Nanomaterials. *Environ. Sci. Technol.* **2014**, *48* (6), 3281-3292.

3 (41) Gottschalk, F.; Sun, T.; Nowack, B. Environmental Concentrations of Engineered Nanomaterials: Review of Modeling and Analytical Studies. *Environmental Pollution* **2013**, *181* (0), 287-300.

4 (42) Boxall, A. B. A.; Chaudhry, Q.; Sinclair, C.; Jones, A.; Aitken, R.; Jefferson, B.; Watts, C. Current and Future Predicted Environmental Exposure to Engineered Nanoparticles. *Central Science Laboratory, Department of the Environment and Rural Affairs, London, UK* **2007**, 89.

5 (43) Gottschalk, F.; Scholz, R. W.; Nowack, B. Probabilistic Material Flow Modeling for Assessing the Environmental Exposure to Compounds: Methodology and an Application to Engineered Nano-TiO₂ Particles. *Environ. Model. Software* **2010**, *25* (3), 320-332.

6 (44) Dale, A. L.; Lowry, G. V.; Casman, E. A. Modeling Nanosilver Transformations in Freshwater Sediments. *Environ. Sci. Technol.* **2013**, *47* (22), 12920-12928.

7 (45) Lazareva, A.; Keller, A. A. Estimating Potential Life Cycle Releases of Engineered Nanomaterials From Wastewater Treatment Plants. *ACS Sust. Chem. Eng.* **2014**, *2* (7), 1656-1665.

8 (46) Van Koetsem, F.; Geremew, T. T.; Wallaert, E.; Verbeken, K.; Van der Meeren, P.; Du Laing, G. Fate of Engineered Nanomaterials in Surface Water: Factors Affecting Interactions of Ag and CeO₂ Nanoparticles With (Re)Suspended Sediments. *Ecol. Eng.* **2014**, *0*.

9 (47) Dumont, E.; Johnson, A. C.; Keller, V. D.; Williams, R. J. Nano Silver and Nano Zinc-Oxide in Surface Waters-Exposure Estimation for Europe at High Spatial and Temporal Resolution. *Environ. Pollut.* **2015**, *196* (341-349.

10 (48) Dale, A. L.; Lowry, G. V.; Casman, E. A. Stream Dynamics and Chemical Transformations Control the Environmental Fate of Silver and Zinc Oxide Nanoparticles in a Watershed-Scale Model. *Environ. Sci. Technol.* **2015**, *49* (12), 7285-7293.

11 (49) Quik, J. T. K.; de Klein, J. J. M.; Koelmans, A. A. Spatially Explicit Fate Modelling of Nanomaterials in Natural Waters. *Wat. Res.* **2015**, *80* (200-208.

12 (50) Sani-Kast, N.; Scheringer, M.; Slomberg, D.; Labille, J.; Praetorius, A.; Ollivier, P.; Hungerbühler, K. Addressing the Complexity of Water Chemistry in Environmental Fate Modeling for Engineered Nanoparticles. *Sci. Tot. Environ.* **2015**.

13 (51) Baalousha, M.; Kammer, F.; Motelica-Heino, M.; Baborowski, M.; Hofmeister, C.; Lecoustumer, P. Size-Based Speciation of Natural Colloidal Particles by Flow-Field Flow Fractionation, Inductively Coupled Plasma-Mass Spectroscopy, and

1 (64) Prasad, A.; Baalousha, M.; Lead, J. R. An Electron Microscopy Based Method for
2 the Detection and Quantification of Nanomaterial Number Concentration in
3 Environmentally Relevant Media. *Sci. Tot. Environ.* **2015**, *537* (479-486.

4 (65) Cleveland, D.; Long, S. E.; Pennington, P. L.; Cooper, E.; Fulton, M. H.; Scott, G.
5 I.; Brewer, T.; Davis, J.; Petersen, E. J.; Wood, L. Pilot Estuarine Mesocosm Study
6 on the Environmental Fate of Silver Nanomaterials Leached From Consumer
7 Products. *Sci. Tot. Environ.* **2012**, *421-422* (0), 267-272.

8 (66) Colman, B. P.; Arnaout, C. L.; Anciaux, S.; Gunsch, C. K.; Hochella, M. F.; Kim,
9 B.; Lowry, G. V.; McGill, B. M.; Reinsch, B. C.; Richardson, C. J.; Unrine, J. M.;
10 Wright, J. P.; Yin, L.; Bernhardt, E. S. Low Concentrations of Silver Nanoparticles
11 in Biosolids Cause Adverse Ecosystem Responses Under Realistic Field Scenario.
12 *PLoS ONE* **2013**, *8* (2), e57189.

13 (67) Tella, M.; Auffan, M.; Brousset, L.; Issartel, J.; Kieffer, I.; Pailles, C.; Morel, E.;
14 Santaella, C.; Angeletti, B.; Artells, E. Transfer, Transformation and Impacts of
15 Ceria Nanomaterials in Aquatic Mesocosms Simulating a Pond Ecosystem. *Environ.*
16 *Sci. Technol.* **2014**, *48* (16), 9004-9013.

17 (68) Petosa, A. R.; Jaisi, D. P.; Quevedo, I. R.; Elimelech, M.; Tufenkji, N. Aggregation
18 and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of
19 Physicochemical Interactions. *Environ. Sci. Technol.* **2010**, *44* (17), 6532-6549.

20 (69) Elimelech, M.; Gregory, J.; Jia, X.; Williams, R. A. *Particle Deposition and*
21 *Aggregation: Measurement, Modeling and Simulation.*; Butterworth-Heinemann:
22 Oxford, 1995.

23 (70) Ryan, J. N.; Elimelech, M. Colloid Mobilization and Transport in Groundwater.
24 *Colloid Surf. A: Physicochem. Eng. Aspects.* **1996**, *107* (1-56.

25 (71) Bradford, S. A.; Torkzaban, S. Colloid Transport and Retention in Unsaturated
26 Porous Media: A Review of Interface-, Collector-, and Pore-Scale Processes and
27 Models. *Vadose Zone Journal* **2008**, *7* (2), 667-681.

28 (72) Tufenkji, N. Colloid and Microbe Migration in Granular Environments: a
29 Discussion of Modelling Methods. In *Colloid Transport Porous Media*; Springer:
30 2007.

31 (73) Goldberg, E.; Scheringer, M.; Bucheli, T. D.; Hungerbühler, K. Critical Assessment
32 of Models for Transport of Engineered Nanoparticles in Saturated Porous Media.
33 *Environ. Sci. Technol.* **2014**, *48* (21), 12732-12741.

34 (74) Tosco, T.; Papini, M. P.; Viggi, C. C.; Sethi, R. Nanoscale Zerovalent Iron Particles
35 for Groundwater Remediation: a Review. *J. Clean. Product.* **2014**, *77* (10-21.

36 (75) Tiraferri, A.; Sethi, R. Enhanced Transport of Zerovalent Iron Nanoparticles in
37 Saturated Porous Media by Guar Gum. *J. Nanopart. Res.* **2009**, *11* (3), 635-645.

38 (76) Tufenkji, N.; Elimelech, M. Correlation Equation for Predicting Single-Collector
39 Efficiency in Physicochemical Filtration in Saturated Porous Media. *Environ. Sci.*
40 *Technol.* **2004**, *38* (2), 529-536.

1 (77) Cornelis, G. Fate Descriptors for Engineered Nanoparticles: the Good, the Bad, and
2 the Ugly. *Environ. Sci. Nano.* **2015**, 2 (19-26.

3 (78) Dale, A. L.; Lowry, G. V.; Casman, E. A. Much Ado About α : Reframing the
4 Debate Over Appropriate Fate Descriptors in Nanoparticle Environmental Risk
5 Modeling. *Environmental Science: Nano* **2015**, 2 (27-32.

6 (79) Praetorius, A.; Tufenkji, N.; Goss, K. U.; Scheringer, M.; von der Kammer, F.;
7 Elimelech, M. The Road to Nowhere: Equilibrium Partition Coefficients for
8 Nanoparticles. *Environ. Sci. Nano.* **2014**, 1 (4), 317-323.

9 (80) Cornelis, G.; Pang, L.; Doolette, C.; Kirby, J. K.; McLaughlin, M. J. Transport of
10 Silver Nanoparticles in Saturated Columns of Natural Soils. *Sci. Tot. Environ.* **2013**,
11 463 (120-130.

12 (81) Kim, H. J.; Phenrat, T.; Tilton, R. D.; Lowry, G. V. Effect of Kaolinite, Silica Fines
13 and PH on Transport of Polymer-Modified Zero Valent Iron Nano-Particles in
14 Heterogeneous Porous Media. *J. Colloid Interf. Sci.* **2012**, 370 (1), 1-10.

15 (82) Tufenkji, N.; Miller, G. F.; Ryan, J. N.; Harvey, R. W.; Elimelech, M. Transport of
16 Cryptosporidium Oocysts in Porous Media: Role of Straining and Physicochemical
17 Filtration. *Environ. Sci. Technol.* **2004**, 38 (22), 5932-5938.

18 (83) Sagee, O.; Dror, I.; Berkowitz, B. Transport of Silver Nanoparticles (AgNPs) in
19 Soil. *Chemosphere* **2012**, 88 (5), 670-675.

20 (84) Solovitch, N.; Labille, J.; Rose, J.; Chaurand, P.; Borschneck, D.; Wiesner, M. R.;
21 Bottero, J. Y. Concurrent Aggregation and Deposition of TiO₂ Nanoparticles in a
22 Sandy Porous Media. *Environ. Sci. Technol.* **2010**, 44 (13), 4897-4902.

23 (85) He, F.; Zhang, M.; Qian, T.; Zhao, D. Transport of Carboxymethyl Cellulose
24 Stabilized Iron Nanoparticles in Porous Media: Column Experiments and Modeling.
25 *J. Colloid Interf. Sci.* **2009**, 334 (1), 96-102.

26 (86) Li, Y.; Wang, Y.; Pennell, K. D.; Abriola, L. M. Investigation of the Transport and
27 Deposition of Fullerene (C₆₀) Nanoparticles in Quartz Sands Under Varying Flow
28 Conditions. *Environ. Sci. Technol.* **2008**, 42 (19), 7174-7180.

29 (87) Zhang, L.; Hou, L.; Wang, L.; Kan, A. T.; Chen, W.; Tomson, M. B. Transport of
30 Fullerene Nanoparticles (NC₆₀) in Saturated Sand and Sandy Soil: Controlling
31 Factors and Modeling. *Environ. Sci. Technol.* **2012**, 46 (13), 7230-7238.

32 (88) Doolette, C.; McLaughlin, M.; Kirby, J.; Batstone, D.; Harris, H.; Ge, H.; Cornelis,
33 G. Transformation of PVP Coated Silver Nanoparticles in a Simulated Wastewater
34 Treatment Process and the Effect on Microbial Communities. *Chem. Cent. J.* **2013**,
35 7 (1), 1-18.

36 (89) Liang, Y.; Bradford, S. A.; Simunek, J.; Heggen, M.; Vereecken, H.; Klumpp, E.
37 Retention and Remobilization of Stabilized Silver Nanoparticles in an Undisturbed
38 Loamy Sand Soil. *Environ. Sci. Technol.* **2013**, 47 (21), 12229-12237.

1 (90) Wang, Y.; Li, Y.; Fortner, J. D.; Hughes, J. B.; Abriola, L. M.; Pennell, K. D.
2 Transport and Retention of Nanoscale C60 Aggregates in Water-Saturated Porous
3 Media. *Environ. Sci. Technol.* **2008**, *42* (10), 3588-3594.

4 (91) Jaisi, D. P.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Limited
5 Transport in Soil Columns. *Environ. Sci. Technol.* **2009**, *43* (24), 9161-9166.

6 (92) Liu, X.; Wazne, M.; Christodoulatos, C.; Jasinkiewicz, K. L. Aggregation and
7 Deposition Behavior of Boron Nanoparticles in Porous Media. *J. Colloid Interf. Sci.*
8 **2009**, *330* (1), 90-96.

9 (93) Wang, Y.; Li, Y.; Pennell, K. D. Influence of Electrolyte Species and Concentration
10 on the Aggregation and Transport of Fullerene Nanoparticles in Quartz Sands.
11 *Environ. Toxicol. Chem.* **2008**, *27* (9), 1860-1867.

12 (94) Lecoanet, H. F.; Wiesner, M. R. Velocity Effects on Fullerene and Oxide
13 Nanoparticle Deposition in Porous Media. *Environ. Sci. Technol.* **2004**, *38* (4377-
14 4382).

15 (95) Liu, X.; Chen, G.; Su, C. Influence of Collector Surface Composition and Water
16 Chemistry on the Deposition of Cerium Dioxide Nanoparticles: QCM-D and
17 Column Experiment Approaches. *Environ. Sci. Technol.* **2012**, *46* (12), 6681-6688.

18 (96) Jaisi, D. P.; Saleh, N. B.; Blake, R. E.; Elimelech, M. Transport of Single-Walled
19 Carbon Nanotubes in Porous Media: Filtration Mechanisms and Reversibility.
20 *Environ. Sci. Technol.* **2008**, *42* (22), 8317-8323.

21 (97) Wei, Y. T.; Wu, S. c. Development of a Trajectory Model for Predicting Attachment
22 of Submicrometer Particles in Porous Media: Stabilized NZVI As a Case Study.
23 *Environ. Sci. Technol.* **2010**, *44* (23), 8996-9002.

24 (98) Saleh, N.; Kim, H. J.; Phenrat, T.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V.
25 Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe0
26 Nanoparticles in Water-Saturated Sand Columns. *Environ. Toxicol. Chem.* **2008**, *42*
27 (9), 3349-3355.

28 (99) Wang, D.; Chu, L.; Paradelo, M.; Peijnenburg, W. J.; Wang, Y.; Zhou, D. Transport
29 Behavior of Humic Acid-Modified Nano-Hydroxyapatite in Saturated Packed
30 Column: Effects of Cu, Ionic Strength, and Ionic Composition. *Journal of Colloid
31 and Interface Science* **2011**, *360* (2), 398-407.

32 (100) Chen, G.; Liu, X.; Su, C. Transport and Retention of TiO2 Rutile Nanoparticles in
33 Saturated Porous Media Under Low-Ionic-Strength Conditions: Measurements and
34 Mechanisms. *Langmuir* **2011**, *27* (9), 5393-5402.

35 (101) Quevedo, I. R.; Tufenkji, N. Mobility of Functionalized Quantum Dots and a Model
36 Polystyrene Nanoparticle in Saturated Quartz Sand and Loamy Sand. *Environ. Sci.
37 Technol.* **2012**, *46* (8), 4449-4457.

38 (102) Tripathi, S.; Champagne, D.; Tufenkji, N. Transport Behavior of Selected
39 Nanoparticles With Different Surface Coatings in Granular Porous Media Coated

1 With *Pseudomonas Aeruginosa* Biofilm. *Environ. Sci. Technol.* **2011**, *46* (13),
2 6942-6949.

3 (103) Fang, J.; Shan, X. q.; Wen, B.; Lin, J. m.; Owens, G. Stability of Titania
4 Nanoparticles in Soil Suspensions and Transport in Saturated Homogeneous Soil
5 Columns. *Environ. Pollut.* **2009**, *157* (4), 1101-1109.

6 (104) Tian, Y.; Gao, B.; Ziegler, K. J. High Mobility of SDS-Dispersed Single-Walled
7 Carbon Nanotubes in Saturated and Unsaturated Porous Media. *J. Hazard. Mater.*
8 **2011**, *186* (2), 1766-1772.

9 (105) Liu, X.; O'Carroll, D. M.; Petersen, E. J.; Huang, Q.; Anderson, C. L. Mobility of
10 Multiwalled Carbon Nanotubes in Porous Media. *Environ. Sci. Technol.* **2009**, *43*
11 (21), 8153-8158.

12 (106) Kasel, D.; Bradford, S. A.; Šimunek, J.; Pütz, T.; Vereecken, H.; Klumpp, E.
13 Limited Transport of Functionalized Multi-Walled Carbon Nanotubes in Two
14 Natural Soils. *Environ. Pollut.* **2013**, *180* (152-158.

15 (107) Mattison, N. T.; O'Carroll, D. M.; Kerry Rowe, R.; Petersen, E. J. Impact of Porous
16 Media Grain Size on the Transport of Multi-Walled Carbon Nanotubes. *Environ.*
17 *Sci. Technol.* **2011**, *45* (22), 9765-9775.

18 (108) Wang, C.; Bobba, A. D.; Attinti, R.; Shen, C.; Lazouskaya, V.; Wang, L. P.; Jin, Y.
19 Retention and Transport of Silica Nanoparticles in Saturated Porous Media: Effect
20 of Concentration and Particle Size. *Environ. Sci. Technol.* **2012**, *46* (13), 7151-
21 7158.

22 (109) Vitorge, E.; Szenknect, S.; Martins, J. M.; Barthès, V.; Auger, A.; Renard, O.;
23 Gaudet, J. P. Comparison of Three Labeled Silica Nanoparticles Used As Tracers in
24 Transport Experiments in Porous Media. Part I: Syntheses and Characterizations.
25 *Environ. Pollut.* **2014**, *184* (605-612.

26 (110) Wang, D.; Su, C.; Liu, C.; Zhou, D. Transport of Fluorescently Labeled
27 Hydroxyapatite Nanoparticles in Saturated Granular Media at Environmentally
28 Relevant Concentrations of Surfactants. *Colloid Surf. A: Physicochem. Eng.*
29 *Aspects.* **2014**, *457* (58-66.

30 (111) Vitorge, E.; Szenknect, S.; Martins, J. M.; Gaudet, J. P. Size-and Concentration-
31 Dependent Deposition of Fluorescent Silica Colloids in Saturated Sand Columns:
32 Transport Experiments and Modeling. *Environ. Sci. Process. Impact.* **2013**, *15* (8),
33 1590-1600.

34 (112) von der Kammer, F.; Ferguson, P. L.; Holden, P. A.; Masion, A.; Rogers, K. R.;
35 Klaine, S. J.; Koelmans, A. A.; Horne, N.; Unrine, J. M. Analysis of Engineered
36 Nanomaterials in Complex Matrices (Environment and Biota): General
37 Considerations and Conceptual Case Studies. *Environ. Toxicol. Chem.* **2012**, *31* (1),
38 32-49.

39 (113) Navarro, D. A.; Kirby, J. K.; McLaughlin, M. J.; Waddington, L.; Kookana, R. S.
40 Remobilisation of Silver and Silver Sulphide Nanoparticles in Soils. *Environ.*
41 *Pollut.* **2014**, *193* (102-110.

1 (114) Hou, W. C.; Westerhoff, P.; Posner, J. D. Biological Accumulation of Engineered
2 Nanomaterials: a Review of Current Knowledge. *Environ. Sci. Process. Impact.*
3 **2013**, *15* (1), 103-122.

4 (115) Gobas, F. A.; Zhang, X.; Wells, R. Gastrointestinal Magnification: the Mechanism
5 of Biomagnification and Food Chain Accumulation of Organic Chemicals. *Environ.*
6 *Sci. Technol.* **1993**, *27* (13), 2855-2863.

7 (116) Ardestani, M. M.; van Straalen, N. M.; van Gestel, C. A. M. Uptake and
8 Elimination Kinetics of Metals in Soil Invertebrates: A Review. *Environ. Pollut.*
9 **2014**, *193* (0), 277-295.

10 (117) Khan, F. R.; Keller, W.; Yan, N. D.; Welsh, P. G.; Wood, C. M.; McGeer, J. C.
11 Application of Biotic Ligand and Toxic Unit Modeling Approaches to Predict
12 Improvements in Zooplankton Species Richness in Smelter-Damaged Lakes Near
13 Sudbury, Ontario. *Environ. Sci. Technol.* **2012**, *46* (3), 1641-1649.

14 (118) Niyogi, S.; Wood, C. M. Biotic Ligand Model, a Flexible Tool for Developing Site-
15 Specific Water Quality Guidelines for Metals. *Environ. Sci. Technol.* **2004**, *38* (23),
16 6177-6192.

17 (119) Croteau, M. N.; Misra, S. K.; Luoma, S. N.; Valsami-Jones, E. Bioaccumulation and
18 Toxicity of CuO Nanoparticles by a Freshwater Invertebrate After Waterborne and
19 Dietborne Exposures. *Environ. Sci. Technol.* **2014**, *48* (18), 10929-10937.

20 (120) Khan, F. R.; Paul, K. B.; Dybowska, A. D.; Valsami-Jones, E.; Lead, J. R.; Stone,
21 V.; Fernandes, T. F. Accumulation Dynamics and Acute Toxicity of Silver
22 Nanoparticles to *Daphnia Magna* and *Lumbriculus Variegatus*: Implications for
23 Metal Modeling Approaches. *Environ. Sci. Technol.* **2015**, *49* (7), 4389-4397.

24 (121) Croteau, M. N. e.; Misra, S. K.; Luoma, S. N.; Valsami-Jones, E. Silver
25 Bioaccumulation Dynamics in a Freshwater Invertebrate After Aqueous and Dietary
26 Exposures to Nanosized and Ionic Ag. *Environ. Sci. Technol.* **2011**, *45* (15), 6600-
27 6607.

28 (122) Sakamoto, M.; Ha, J. Y.; Yoneshima, S.; Kataoka, C.; Tatsuta, H.; Kashiwada, S.
29 Free Silver Ion As the Main Cause of Acute and Chronic Toxicity of Silver
30 Nanoparticles to Cladocerans. *Arch. Environ. Cont. Toxicol.* **2015**, *68* (3), 500-509.

31 (123) Widianarko, B.; VanStraalen, N. Toxicokinetics-Based Survival Analysis in
32 Bioassays Using Nonpersistent Chemicals. *Environ. Toxicol. Chem.* **1996**, *15* (3),
33 402-406.

34 (124) Tervonen, K.; Waissi, G.; Petersen, E. J.; Akkanen, J.; Kukkonen, J. V. Analysis of
35 Fullerene-C60 and Kinetic Measurements for Its Accumulation and Depuration in
36 *Daphnia Magna*. *Environ. Toxicol. Chem.* **2010**, *29* (5), 1072-1078.

37 (125) Batley, G. E.; Kirby, J. K.; McLaughlin, M. J. Fate and Risks of Nanomaterials in
38 Aquatic and Terrestrial Environments. *Acc. Chem. Res.* **2012**.

1 (126) Walker, L. A.; Bailey, L. J.; Shore, R. F. The Importance of the Gut and Its
2 Contents in Prey As a Source of Cadmium to Predators. *Environ. Toxicol. Chem.*
3 **2002**, *21* (1), 76-80.

4 (127) Skjolding, L. M.; Kern, K.; Hjorth, R.; Hartmann, N.; Overgaard, S.; Ma, G.;
5 Veinot, J. G. C.; Baun, A. Uptake and Depuration of Gold Nanoparticles in Daphnia
6 Magna. *Ecotoxicology* **2014**, 1-12.

7 (128) Singh, R. P.; Ramarao, P. Cellular Uptake, Intracellular Trafficking and
8 Cytotoxicity of Silver Nanoparticles. *Toxicol. Lett.* **2012**, *213* (2), 249-259.

9 (129) Coutris, C.; Hertel-Aas, T.; Lapiel, E.; Joner, E. J.; Oughton, D. H. Bioavailability
10 of Cobalt and Silver Nanoparticles to the Earthworm Eisenia Fetida. *Nanotoxicol.*
11 **2011**, *6* (2), 186-195.

12 (130) Georgantzopoulou, A.; Balachandran, Y. L.; Rosenkranz, P.; Dusinska, M.;
13 Lankoff, A.; Wojewodzka, M.; Kruszewski, M.; Guignard, C.; Audinot, J. N.;
14 Girija, S. Ag Nanoparticles: Size-and Surface-Dependent Effects on Model Aquatic
15 Organisms and Uptake Evaluation With NanoSIMS. *Nanotoxicol.* **2012**, *7* (7),
16 1168-1178.

17 (131) van der Ploeg, M. J.; Handy, R. D.; Waalewijn-Kool, P. L.; van den Berg, J. H.;
18 Herrera Rivera, Z. E.; Bovenschen, J.; Molleman, B.; Baveco, J. M.; Tromp, P.;
19 Peters, R. J. Effects of Silver Nanoparticles (NM-300K) on Lumbricus Rubellus
20 Earthworms and Particle Characterization in Relevant Test Matrices Including Soil.
21 *Environ. Toxicol. Chem.* **2014**, *33* (4), 743-752.

22 (132) Misra, S. K.; Dybowska, A.; Berhanu, D.; Croteau, M. N.; Luoma, S. N.;
23 Boccaccini, A. R.; Valsami-Jones, E. Isotopically Modified Nanoparticles for
24 Enhanced Detection in Bioaccumulation Studies. *Environ. Sci. Technol.* **2011**, *46*
25 (2), 1216-1222.

26 (133) Makama, S.; Peters, R. J. B.; Undas, A. K.; van den Brink, N. W. A Novel Method
27 for the Quantification, Characterization and Speciation of AgNPs in Earthworm
28 Exposed to Nanoparticle Via Soil. *Environ. Chem.* **2015**, Accepted).

29 (134) Pino, P. d.; Pelaz, B.; Zhang, Q.; Maffre, P.; Nienhaus, G. U.; Parak, W. J. Protein
30 Corona Formation Around Nanoparticles - From the Past to the Future. *Mater.*
31 *Horizons* **2014**, *1* (3), 301-313.

32 (135) Velzeboer, I.; Quik, J. T. K.; van de Meent, D.; Koelmans, A. A. Rapid Settling of
33 Nanoparticles Due to Heteroaggregation With Suspended Sediment. *Environ.*
34 *Toxicol. Chem.* **2014**, *33* (8), 1766-1773.

35 (136) Aich, N.; Plazas-Tuttle, J.; Lead, J.; Saleh, N. A Critical Review of Nanohybrids:
36 Synthesis, Applications, and Environmental Implications. *Environ. Chem.* **2014**, *11*
37 (6), 609-623.

38 (137) Flesken-Nikitin, A.; Toshkov, I.; Naskar, J.; Tyner, K. M.; Williams, R. M.; Zipfel,
39 W. R.; Giannelis, E. P.; Nikitin, A. Y. Toxicity and Biomedical Imaging of Layered
40 Nanohybrids in the Mouse. *Toxicol. Pathol.* **2007**, *35* (6), 804-810.

1 (138) Saleh, N. B.; Afroz, A. R. M.; Bisesi Jr, J. H.; Aich, N.; Plazas-Tuttle, J.; Sabo-
2 Attwood, T. Emergent Properties and Toxicological Considerations for Nanohybrid
3 Materials in Aquatic Systems. *Nanomaterials* **2014**, *4* (2), 372-407.

4

5

6

7

8