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Abstract— Concentric push-pull robots (CPPR) combine
the simplicity, miniaturization potential, and open lumen of
concentric-tube robots with the kinematic advantages and stabil-
ity of push-pull multi-backbone designs. A CPPR robot segment
is made from a pair concentric tubes with notches asymmetrically
cut into their sides in opposing directions. The two tubes are
attached to one another at their tips, and push-pull translation
of the tube bases relative to each other changes the curvature
along the length of the combined tube pair. Custom variable
curvature shapes are possible by varying the notch parameters
along the tubes. In this paper, we present a planar variable-
curvature mechanics model for the actuated segment shape and
a method for designing the notch pattern to achieve a desired
planar, variable-curvature shape with maximal stiffness within
specified strain limits. Experiments validate accuracy for various
shapes, materials, and cross sections, showing that the design
method achieves a variety of desired shapes. We also demonstrate
a multi-segment robot made from multiple tube pairs that can
independently rotate and actuate, increasing the robot DOF.
Keywords– Flexible Robots, Kinematics, Soft Robot Materials and
Design, Continuum Robots

I. INTRODUCTION

The reach of modern robotics has expanded beyond the
safety cages of a factory floor, and with this transition, novel
devices have been created to attain broader capabilities and
meet the demands of new environments. Continuum and soft
robotics arose from a desire to utilize a material’s flexibility
to create robots that take organic, bending actuated shapes.
Benefits of this approach include intrinsic safety for human
interaction [1], [2], gripping of delicate or irregularly shaped
objects [3], [4], [5], and the ability to be made at slender,
millimeter-scale sizes for access in hard-to-reach areas [6],
[7]. They have been used in applications from aerospace
[8] to medicine [9]. Additionally, various means of actuating
continuum robots exist, many of which allow the actuators
to remain at the base of the robot– some systems pull on
tendons down the length of an elastic element to generate
bending [10], [11], [12], others have pneumatic chambers that
are actuated by pressurization [13], [14], [15], and others still
combine elastic elements that interact with each other, arriving
at various equilibrium positions due to asymmetry in the
components or their configuration [16], [17], [18]. Concentric-
tube robots (CTRs) [19], [20], [21], [6] and multi-backbone
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Fig. 1: (a) A CPPR is composed of at least two tubes with
a pattern of cutout segments down the length. (b) The tips of
the two tubes are fixed together such that the notches of the
two tubes are opposed, 180◦ apart. Pushing or pulling on the
tubes with respect to one another then generates bending. (c)
The notch pattern can be varied down the length and designed
to achieve various shapes. (d) A 2-pair multi-segment CPPR
demonstrates 5 degrees of freedom by actuating each segment
independently.

robots [22], [23] fall into this latter category. Our proposed
concept, a concentric push-pull robot (CPPR), combines some
beneficial characteristics from both concentric-tube and multi-
backbone push-pull approaches. As shown in Figure 1 and
described in the caption, a single robot segment is made from
two concentric tubes with a pattern of cutout segments. After
fixing the tube tips together, push-pull actuation generates
bending. The cutout profile can be designed for specific
shape or workspace objectives, and multiple tube pairs can
be combined concentrically.

We first introduced the CPPR concept in [24] and explored
its potential use to steer endoscopic tools in [25]. As demon-
strated in [25], endoscopic deployment is one target applica-
tion for CPPRs, where they can be used as an actuatable distal
tip on a long, flexible tube transmission deployed through
existing endoscope tool channels. Its compact form factor and
open lumen then allows passage of standard tools such as
graspers through its central lumen. This provides enhanced
dexterity to the surgeon with minimal change in equipment.
Its design is inspired by a tendon-driven wrist design by York
et al. in [26] and Swaney et al. in [27], which is also studied
by Eastwood et al. in [28], [29]. These devices and the CPPR
both use asymmetric material removal to shift the neutral axis
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of a primary tube; however, instead of a pull-wire, an CPPR
uses a second asymmetrically notched tube fixed to the tip
of the first one to induce bending in the structure, as shown
in Figure 1. Compared to the single tendon-driven wrists, the
double tube structure strengthens the device in bending and
torsion and adds bi-directional actuation capability (push-pull),
which increases workspace and force capacity. Compared
to conventional tendon-driven or multi-backbone continuum
robot designs with internal routing structures such as disks, the
concentric push-pull tube construction is potentially simpler
and allows more room in the inner lumen. But multiple
tube pairs are required to achieve independent control of
position and orientation. Compared to concentric tube robots
(CTRs) using precurved tubes that are rotated, the stiffness
and strength are reduced due to the removal of wall material,
and more more tubes are needed to achieve the same degrees
of freedom (3 DOF for a single CPPR tube pair, vs. 4 DOF
for a CTR tube pair). However, the kinematic control is less
complicated, the bending range of motion is potentially larger,
and the issue of unstable snapping motions is eliminated.

Selective removal of tube wall material has been used to
modify the properties of metal and plastic tubes for a number
of purposes in robotics, such as shifting the neutral axis
[26], [28], generating high angulation for compact devices
[29], [30], [31], reducing bending stiffness for tendon-actuated
designs [32], [33], [34], creating continuously-variable stiff-
ness manipulators with multiple tubes [35], and increasing
the torsional stability of concentric tube robots [36], [37].
The CPPR concept leverages asymmetric material removal to
enable the tubes themselves to function as actuation trans-
mission elements, which simplifies the design and enables
bending through push-pull actuation without any additional
components. This concept is analogous to push-pull multi-
backbone actuation, but in a different form factor which
preserves a central working channel through which flexible
instruments can be deployed. It also inherits the simplicity and
ease of miniaturization of precurved concentric-tube robots
[19], [20], [21], [6] while eliminating the issue of elastic
instability [38] and enabling more straightforward control of
curvature.

In addition to its compact form factor and straightforward
actuation principle, the CPPR represents a versatile and ro-
bust design concept that can be created with a variety of
materials and through both additive and subtractive fabrication
methods (milling, wire EDM, laser-cutting, etc.). Additive
manufacturing of concentric tube robots has been explored by
Motorimoto et al in [39], and Amanov et. al. use it to generate
patient-specific manipulators in [40]. Similar customization
frameworks can be used for the design of the CPPR in
principle, but a model-based approach to design a CPPR to
achieve a specific desired curve is needed first. This is our
main contribution in this paper.

A. Outline and Contributions
In prior work in [24], we introduced the CPPR concept,

derived an approximate constant-curvature kinematic model,
and tested it on a 3D-printed prototype. Additionally, a small-
scale prototype for endoscopic use was built and deployed
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Fig. 2: The neutral axis offset and notch parameters of a single
tube are shown in (a) and (b), while (c) shows the cross section
of two nested tubes. Both the inner and outer tubes have n
notches. The wall thicknesses are exaggerated for clarity. (a)
A close-up of a single notch shows the neutral axis offset, γ,
based on notch depth, g, notch angle, φ, tube outer radius,
r1, and tube inner radius, r2. (b) A close-up of the profile
of the notched tube shows the notch length, notch depth, and
notch spacing parameter definitions. (c) The cross section of
the assembled CPPR at a notched section, which shows the
tubes nested inside each other.

inside a bronchoscope as a precursor to robotic implementation
[25]. In this paper, motivated by the opportunity to customize
manipulator workspace and dexterity for specific tasks and
applications, we first expand the kinematic analysis to in-
clude variable curvature, planar shapes. Then we provide an
algorithm to design the notch parameters to achieve a desired
shape in Section III, accounting for material strain limits to
achieve a robust and feasible design with maximal stiffness.
We built and tested variable-curvature CPPR prototypes with
multiple notch patterns, cross-sections, and materials using the
proposed design method, showing in Section IV that the results
have good agreement between both the desired curvature and
the experimental prototype’s actuated shape as well as the
new kinematics model and experiments. Section VI discusses
some of the considerations and practicalities in building an
CPPR and offers some guidance on design. It also includes
a proof-of-concept demonstration of a multi-segment CPPR.
We conclude our work and discuss future activities in Section
VII.

II. VARIABLE CURVATURE MODEL

Each notch on the CPPR acts as an individual bending
hinge, and the overall manipulator behavior is the result of the
summation of their deflections. The bending plane of the robot
passes through the tube center and is orthogonal to the neutral
axes of the two notched tubes. The magnitude of deflection
is determined by the stiffness of the notches in each tube.
The variations of notch bending plane and stiffness along the
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Fig. 3: (a) The coordinate definitions, where pulling on the inner tube creates a positive curvature, κ. (b) A close-up of the
jth notch, showing the relationship between inner and outer tube curvatures and the manipulator centerline. (c) A free-body
diagram of the tip, used in our force and moment balances.

backbone are determined by the notch parameters, as shown
in Figure 2: the number (n), length (h), spacing (c), depth
(g), and orientation/angle of the notch in the cross sectional
plane (φ). The parameters of h and c determine when the
notches will self-interfere at the edges of the workspace, which
occurs when a notch bends so far that the opposite edges
of the notch come into contact, closing the hinge formed by
the notch. From that point, material contact prevents it from
bending any further. Their relationship dictates how closely
an arc can approximate the overall shape of the manipulator
(i.e., if h is small and c is large, the manipulator will have
long, straight sections, whereas if the opposite were true, the
straight sections would be small and negligible). The notch
depth, g, determines the offset of the neutral axis (and thus the
location of the bending plane) as well as the strain in the notch,
which is typically the limiting factor for the workspace unless
one uses high-strain materials such as superelastic nitinol. The
orientation (notch angle), φ, determines the rotation of the
bending plane about the axis of the tube.

The notched tubes are aligned concentrically, such that the
two backbones are parallel to each other but on opposite sides
of the manipulator (i.e., φo = π and φi = 0) (see Figure 1)
with the tips rigidly attached to each other. When the base
of one tube translates with respect to the other, the tubes are
placed in agonist-antagonist compression and tension, which,
in turn, causes bending in the device. When the notches
are uniform along the length, the manipulator shape can be
approximated by a constant-curvature arc. However, when the
notches are varied along the length, the actuated shape is
non-constant curvature, which can be exploited to design the
kinematics of the manipulator for a given task.

A. Assumptions

We list various assumptions in our approach below:
• While the inner and outer tubes may have different values

for g and φ at each notch, we assume they share the same
values of n, h, and c. This reduces the design parameter
space and model complexity without a significant loss of
model generality or versatility of the possible designs.

• We assume that the deformation over a single notch is
dominated by pure bending, that the curvature is constant
over each notch, and that the internal moment is equal to
the curvature times the bending rigidity.

• As the device is actuated, some of the rigid, non-notched
segments will overlap with notched segments of the other
tube, as is visible in Figure 1. We assume that the tube
clearances are sufficient to allow the rigid segments to
reorient themselves such that interference and binding do
not occur when the notches are no longer aligned. This
allows the tubes to easily slide past each other even when
maximally bent. We have not observed any issues due to
notch misalignment during actuation of our prototypes.

• In our kinematic derivation, we also neglect the geometric
nonlinearities associated with notch misalignment on the
mechanics. I.e., the moment balance is written in the rest
configuration where the notches are aligned, rather than
the actuated configuration when they are misaligned. The
simplicity/accuracy trade-off of this assumption is good
as evidenced by our experiments.

• The kinematics model assumes that bending only occurs
in the notched portions, and the non-notched portions
behave in a perfectly rigid manner. To ensure sufficient
rigidity of the uncut sections, we recommend that the
minimum value of c be at least the radius of the outer
tube. To ensure that the notched sections are sufficiently
flexible relative to the rigid sections, we have observed
that notch depths greater than 50% of the outer diameter
should be used, which is not a very restrictive constraint
as material strain limits typically result in designs with
deeper notches regardless.

• We also assume that friction is insignificant. This as-
sumption becomes less accurate as the manipulator be-
comes more curved, but is reasonably accurate over the
workspace of the prototypes in this paper.

• Finally, we assume that the notch cross section has at least
one axis of symmetry orthogonal to its neutral axis. This
enables the CPPR to be made with wide array of non-
circular shapes, as we demonstrate in our experiments in
Section IV.
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B. Neutral Axis Offset Geometry

The notch depth, g, is the most important factor in deter-
mining the stiffness of a given notched section, and varying
it along the tube generates a variable curvature shape. This
parameter determines the second moment of area, I , of the
tube’s notched cross section, as well as the neutral axis offset
from the tube centerline, Γ, which we define as a vector within
the plane of the cross section:

Γ = γ̄

[
cos(φ)
sin(φ)

]
, (1)

where φ is the notch angle measured from the x-axis and γ̄ is
the magnitude of the offset, as shown in Figure 2. In this paper,
we consider only planar segment curves in the x−z plane, so
we restrict φ to be either 0 or π depending on the direction
of the cut. Thus, only the x-component of Γ is nonzero, and
we write

γ = γ̄ cos(φ),

where here and throughout the rest of the paper, the symbol
γ denotes the signed neutral axis location in the x direction,
whereas γ̄ denotes the absolute value of γ. The equations for
γ̄ for a circular segment cross section made by cutting the
notches can be found in [24], [41], [27]. The CPPR can have a
non-circular cross section, as demonstrated in the experiments,
provided that the cross-section has an axis of symmetry normal
to the neutral axis of the cross section. Non-circular tube cross
sections may offer advantages in being easier to assemble
– due to automatic rotational alignment – and in making
the manipulator stronger in torsion, as non-circular tubes are
constrained not to rotate with respect to each other everywhere
along the length.

C. Backbone Curvature Relationships at Each Notch

At a particular notch, the relationship between the curvature
of the inner and outer tube backbones are dictated by their
opposing notches, thus we state

φi = φo − π (2)

where φo and φi are the angles of the outer and inner tube
neutral axis offsets, respectively, measured from the positive
x-axis. This implies that sgn (γo) = −sgn (γi). From that
relationship, we also define the signed distance between the
two, d, as

d = γi − γo, (3)

which is a fixed constant for each notch pair based on the
notch geometry. (We later use a subscript j to denote a value
associated with the jth notch, but we omit it here for notational
simplicity.) This constant then defines the relationship between
inner and outer backbone curvatures, as illustrated in Figure
3(b):

ro = ri + d

thus
1

κo
=

1

κi
+ d,

where ro and ri are the radii of curvature of the outer and
inner tubes, respectively, and κo and κi are the corresponding
curvatures, as illustrated in Figure 3.

We assume that the curvatures are constant over the length
of a single notch and that the curves of the tubes’ neutral
axes share a common center of curvature outside the body of
the manipulator (which merely excludes curvatures so large
that self-contact would occur). These assumptions imply the
following relationships and constraints:

ro = r − γo ri = r − γi

where r is the radius of curvature of the robot centerline. This
results in a relationship between the curvatures

κo =
κ

1− γoκ
and κi =

κ

1− γiκ
, (4)

in which the denominators can never be zero due to the above
restrictions. Note that the curvatures and radii of curvature are
allowed to be negative, which would indicate that the segment
is curving in the opposite direction than shown in Figure 3(a).

D. Mechanics at a Notch

As shown in Figure 3(a), pulling on the inner tube is
defined as positive actuation. With that definition, summing
the moments about the outer tube’s neutral axis as shown in
the free-body diagram in Figure 3(c) gives

−dτ +mo +mi = 0 (5)

where τ is the tension carried by the inner tube, d is defined
as above for a notch, and mi and mo are the internal moments
of the inner and outer backbones, respectively, carried in an
inner-outer notch pair at an arc length location coincident with
a notch, which we call ”at” a notch moving forward. Note that
there are no transverse shear loads, and while there is an axial
load in the backbone, we assume its deflection component is
negligible compared to the deflection in bending. We can then
use the linear constitutive law of classical beam mechanics to
relate the internal moments in the backbone to their respective
curvatures:

mi = EiIiκi and mo = EoIoκo,

where E is Young’s Modulus and I is the second moment
of area. Using this and the relationship between the tube
curvatures in Equation (4), we can rewrite (5) in terms of
centerline curvature as

−dτ + EoIo
κ

1− γoκ
+ EiIi

κ

1− γiκ
= 0. (6)

In terms of only the outer tube curvature and for the jth notch,
τ is:

τ =

(
EoIo,jκo,j + EiIi,j

κo,j
1− dκo,j

)
d−1j . (7)

If tension is a known input, this equation can be used with
Equations (9) through (13) below to attain the robot position.
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Fig. 4: Workspaces of CPPR Designs. All four designs share the same material properties, tube diameters, and wall thicknesses.
The workspaces simulate actuation and axial rotation of the robots, and arrows on the end of the manipulator shape indicate
the tip direction. As this shows, the workspace and tip orientation can be drastically altered by the actuated shape of the robot.
The workspace seen in (a) is that of Design 2 from the experiments in Section IV. All workspace diagrams were generated in
MATLAB.

E. Kinematics of a Variable-Curvature Segment

Often, displacement is dictated by the actuation system
instead of tension, so we seek a kinematic relationship between
the relative displacement of the tubes and the shape of a
variable-curvature segment with multiple notches down its
length. The actuation variable, q, is the relative displacement
of the tube bases. The outer tube is defined as fixed in Figure
3, and pulling on the inner tube is defined as the positive
direction of q, so the change in relative displacement is equal
to the change in the length of the inner tube’s path through
the outer tube, which can be defined as:

q = si − si,act

where si is the fixed length of the inner tube backbone and
si,act is the changing length of the path through the outer tube,
which shortens and lengthens as the outer backbone bends.
These are calculated as

si =
n∑
j=1

(ci,j + hi,j)

and

si,act =
n∑
j=1

(co,j + sa,j)

where sa,j is the length of the inner tube path through the
bending portions of the jth outer tube notches. Solving for
q, the c terms cancel because they are constant and equal for
both tubes. The equation can be further simplified by the fact
that hi,j = ho,j = hj , yielding

q =
n∑
j=1

(hj − sa,j) .

The remaining sa,j terms can be defined in terms of the outer
tube geometry by using the geometric relationships based on
arc geometry

sa,j = ri,jhjκo,j and dj = ro,j − ri,j .

Finally, the expression for q can be expressed in terms of the
curvatures:

q =
n∑
j=1

djhjκo,j (8)

where hj is the notch length of the jth notch, κo,j is the
curvature of the jth notch of the outer tube, and dj is the
distance between the axis offsets of the corresponding jth

notches on the inner and outer backbones.
To solve the forward kinematics problem, this equation must

be solved numerically to find the array of κo values for a
given q. In addition to satisfying this kinematic equation, the
set of curvatures must also satisfy the requirement that τ is
constant throughout the backbones (since friction is assumed
to be negligible). This provides us with n + 1 variables
(κo,1, κo,2, . . . , κo,n, τ ) and n+1 equations (Equation (8) and
Equation (7) for j = 1 . . . n). For actuation in the negative
direction, which is defined as the inner tube being pushed
through the outer tube, this must be modified. Once translation
in this direction is large enough, the solid segment of tube
below the base of the first notch of the inner tube prevents
the first notch of the outer tube from bending. In this case,
the number of variables is reduced by one, removing κo and
τ of the first notch from the set of equations and unknowns.
One way to mitigate this effect is to put an additional notch
on the base of the inner tube to allow bending below that rigid
section.

Once the outer tube curvatures are known, we can rearrange
Equation (4) for the jth notch to find the centerline curvature,
κj :

κj =
κo,j

1 + γo,jκo,j
. (9)

Since the outer tube notch length remains constant as the
notch bends, the centerline length lj over the notch changes
with the curvature according to

lj =
hj

(1− γo,jκj)
(10)

for each notch. Because this centerline length is actuation di-
rection dependent, lengthening for positive κj and shortening
for negative ones, the CPPR will have an asymmetric bending
workspace when the inner tube is pushed and pulled with
respect to a fixed outer tube.

The transformation from the base of notch j to the base
of notch j + 1 consists of a constant curvature bending
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transformation

T b,j =


cos(κj lj) 0 sin(κj lj) (1− cos(κj lj))κ

−1
j

0 1 0 0
− sin(κj lj) 0 cos(κj lj) sin(κj lj)κ

−1
j

0 0 0 1


(11)

followed by a rigid translation

T r,j =


1 0 0 0
0 1 0 0
0 0 1 cj
0 0 0 1

 . (12)

Then, the transformation from the base of the first notch to
the tip is

T =
n∏
j=1

T j =
n∏
j=1

T b,jT r,j , (13)

fully defining the position of the robot in space using the
relative tube translation, q.

F. Summary of Model Equations

Once the geometric parameters of the design, namely dj
and Ij , are known, calculating the kinematics can be done
one of two ways: with Equation (7) (solved independently for
each κo,i) if the tension is dictated, or Equation (8) (solved
simultaneously for each κo,i and τ ) if tube base displacement
is dictated. From there, Equations (9) through (13) provide the
robot position and orientation along the length.

G. Validation (Verification) of Beam Model Assumptions

The primary assumptions underlying the kinematic model
developed in the previous section are (1) that the uncut tube
sections behave as rigid bodies, and (2) that the cut sections
undergo simple bending as beams. But if the cuts are very
close together, or have small width (h) or depth (g), these
assumptions may become less valid because the uncut sections
may undergo some deformation, and additional deformation
modes may occur in the cut sections. To evaluate how these
effects may affect model accuracy, we performed a parametric
study comparing these geometric assumptions to data from
static finite-element analysis (FEA) of a large set of notched
tubes under a pure bending load using Autotdesk Inventor
Stress Analysis. We calculated the effective neutral axis γ
of each tube from the FEA calculated displacements across
the tube. We then compared these to the neutral axis that
would be predicted by our model assumptions. Since the
rigid sections are assumed not to deform, the model-predicted
neutral axis is simply the neutral axis of the cut segments
(given in [24]) and does not change with notch width (h) or
spacing (c), whereas the FEA results account for any rigid
segment deformation. Note that the effective neutral axis is the
the primary parameter affecting kinematic model accuracy, as
it appears in or affects nearly every equation. We simulated
five different configurations of width and spacing, and a range
of notch depth values for each configuration. The parameters
g, h, c, and γ are nondimensionalized by dividing by the
outer diameter of the tube, i.e. g∗ = g/OD, h∗ = h/OD,

ℎ∗ = 1.75, (∗= 0.25

ℎ∗ = 1.5, (∗= 0.5

ℎ∗ = 1, (∗= 1

ℎ∗ = 0.5, (∗= 1.5

ℎ∗ = 0.25, (∗= 1.75

!∗

"∗

Fig. 5: Model and FEA parametric simulation predictions of
γ∗ over a range g∗ values under different h∗– c∗ configura-
tions.
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Fig. 6: A flow diagram illustrating the design process for
creating an CPPR for a desired actuated shape. Relevant
equation numbers are included in parentheses.

c∗ = c/OD, and γ∗ = γ/OD. Simulations were performed
on tubes with an outer diameter of 3mm and a wall thickness
of 0.1mm. Results are shown in Figure 5. The model γ∗

converges to the FEA γ∗ as h∗ increases and c∗ decreases;
model agreement also increases as g∗ increases for all h∗-c∗

configurations. This supports the main kinematic assumption,
particularly for designs where c ≤ h. However, we cannot
make c too small or h too large due to issues of mechanical
integrity. In Section VI, we discuss practical limits and other
design guidance.



7

III. NOTCH DESIGN FOR VARIABLE CURVATURE
ACTUATED SHAPES AT MAXIMAL ROBOT STIFFNESS

The CPPR can be designed to achieve many actuated shapes
by dictating the notch spacing (c), length (h), depths (go
& gi), and angle/orientation (φo & φi); this actuated shape
determines its workspace. Accounting for axial rotation and
CPPR actuation, the workspaces in Figure 4 are of designs
that only differ by their notch pattern– they have the same
material, tube diameters, and number of notches. By changing
the actuated shape of the manipulator, the achievable tip
angle (shown with arrows) and workspace surface change
significantly. All simulations in Figure 4 show results from
the workspace of a single-segment, 3-DOF CPPR, which has
DOF in (1) bending due to relative tube translation, (2) axial
rotation about the base of the tube, and (3) translation of the
entire robot. Translation of the entire robot was not simulated,
as it simply shifts the entire workspace. Note that using
the additional DOF of axial rotation made the workspaces
symmetric; this is in contrast to the bidirectional bending
range with 1-DOF actuation that is inherently asymmetric,
which can be seen in the results in Section IV.In addition
to tip position and orientation, the shape of the segment is
also important in the context of multi-segment designs, where
a second CPPR can be passed through the inner lumen of the
first and extended out the tip to create a second, independent
bending segment. We demonstrate such a robot in Section V.
This section details a single-segment shape design procedure
that will be the foundation for future work towards optimal
multi-segment CPPR design and control.

The following procedure generates a full CPPR notch pat-
tern from a given desired planar centerline shape by decou-
pling the problems of (1) fitting the CPPR kinematics to a
desired curve and (2) finding the relevant notch parameters
to meet those kinematic constraints. Aside from defining the
desired curve, the designer needs only to choose the tube
geometry, material, number of notches, n, and percentage of
the centerline arc length, β, that is composed of the non-
notched, non-bending CPPR segments. The design process
detailed in this section is summarized in flowchart form in
Figure 6, and the steps are as follows:

1) Sample the desired curve to attain a set of desired
curvatures, bending section centerline lengths, and rigid
section lengths. (Subsection III)

2) Optimize the notch depths for maximum stiffness by
using the desired curvatures, section lengths, stock tube
geometry, and material strain limit. Iterate on the design
based on the strain in all notches until the highest-
strained notch experiences the defined strain limit. (Sub-
section III-B)

3) Compute the remaining notch parameters based on cur-
vatures, depths, and section lengths to complete the
design. (Subsection III-C)

The number of notches is left to the designer due to fabri-
cation considerations– a multitude of smaller notches provides
better discretization of the curve but takes longer to machine,
and may not satisfy some of our modeling assumptions as
well. In the case of CNC machining, a designer may be

limited by the availability of end mills, and 3D printing must
consider the layer discretization and capabilities of the printer.
Laser micromachining can easily achieve most designs with
high precision. If fabrication limitations are not a significant
factor for the designer, they are free to use any optimization
technique they wish to sample and fit the curve in place of
Step 1, resuming the optimization from that point onward.

The desired actuated shape will generally be defined by
some continuous centerline curve pd(s) in the x − z plane,
parameterized by arc length s from 0 to L. The desired curve
is sampled at n+ 1 evenly spaced points:

sj = (j − 1)
L

n
for j = 1 . . . n+ 1.

Each discrete segment of length L
n represents a robot segment

containing a notched portion followed by a rigid (straight)
portion. The lengths of the rigid segments, c, and curved
segments, l, are defined by the design input parameter β, which
is the proportion of the centerline curve that is considered to
be straight:

c =
L

n
β, lj =

L

n
(1− β) . (14)

Starting at the base of the robot, we sequentially find the
desired curvature κj of each curved segment that minimizes
error at each sampled point, which requires that we only solve
one nonlinear equation in each step to achieve a set of n κj
values. Specifically, pj , the position of the end of the jth

notched-rigid segment pair, can be calculated as a function
of the curvature κj using the transformations in Equations
(11), (12), and (13). We then select κj to minimize ej+1, the
component of the error which is normal to the desired curve
at sj+1:

ej = N>j
(
pj − pd(sj)

)
(15)

where
Nj = Ry

(π
2

)
p′(sj)

represents the vector normal to the curve at sj , p′(sj) is
the arc-length derivative of position at sj , and Ry

(
π
2

)
is the

rotation matrix associated with a 90-degree rotation about the
y-axis. We use MATLAB’s fsolve function to accomplish this.

The curve segmentation method described above is only
one means of sampling a curve and determining desired
curvatures, curve section lengths, and rigid section lengths.
This is decoupled from the remainder of the optimization
technique such that many other methods could be used to
determine those parameters from the curve. Once the set of
n κ, lj , and cj values are found, the optimization should be
used from this point forward.

A. Strain Modeling

The optimization from this point forward is driven by the
strain experienced in the notches as they undergo bending, and
so we first present modeling for strain that will be used in this
optimization. Generally, we want the manipulator to be as stiff
as possible while still being able to achieve the desired range
of motion within the material strain limits. Thus, we enforce
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Fig. 7: An illustration of a single notch shows the strain
pattern in the inner and outer tubes at the same curvature. The
outer tube edge, a, and the inner edge formed by the notch,
b, experience strain depending on the direction of actuation.
Under positive actuation, the inner tube has tension on b while
the outer tube experiences tension in a. The opposite is true
for negative actuation.

the maximum tensile strain experienced in any notch is less
than the material strain limit εmax by a factor of safety FS:

εFS = εmax/FS.

This factor of safety can be determined as the designer
chooses. A higher factor of safety will lead to a lower strain
limit and deeper notches, leaving a thinner remaining back-
bone section; a lower factor of safety will lead to more shallow
notches and a stiffer robot that experiences higher strain. Other
factors, such as stress concentrations at the corners, can be
used to determine the value of FS.

Per each notch pair, there are four edges experiencing strain,
and thus there are four possible magnitudes of maximum
strain:

εj =
[∣∣εao,j∣∣ , ∣∣εbo,j∣∣ , ∣∣εai,j∣∣ , ∣∣εbi,j∣∣]

The magnitude of the strain experienced under actuation is
expressed as

∣∣εax,j∣∣ = |κx,j |
(
ODx

2
− γ̄x,j

)
(16)

and ∣∣εbx,j∣∣ = |κx,j |
(
ODx

2
+ γ̄x,j − gx,j

)
, (17)

where (17) represents the strain in the inner wall formed by
the notch, a, (16) represents the strain of the outside edge
of the tube, b, and x is a placeholder for either the subscript
for the inner tube, i, or for the outer tube, o, and ODx is
the outer diameter of the tube. As illustrated in Figure 7, the
outer edge, a of the outer tube is in tension when actuation is
positive while the inner edge, b, is in compression. The reverse
is true for the inner tube.

B. Notch Depth Optimization

The main driver of the actuated shape is the cut depths, go
and gi, and this process must determine these depths based
on the desired curvatures. The relationship between the two is
defined by Equation (6). To simplify the relationship for this
optimization, we assume that γoκ and γiκ are much smaller
than unity (i.e. a slender robot or relatively small curvature).
In the limit as these values approach zero, κo = κi = κ, (6)
becomes linear in κ, and assuming the inner tube tension τ is
constant down the length of the manipulator (i.e. assuming no
friction), we can write for the jth notch:

κj = αjτ (18)

where
αj =

dj
EoIo,j + EiIi,j

.

This allows us to linearly relate the geometry of the notch
pair to their actuated curvature, and we call α the compliance
constant for the notch. From here, we can attain a relationship
between all notches in only terms for stiffness, geometry, and
curvature:

κj
αj

=
κk
αk

(19)

for a given jth notch and k = 1 . . . n.
There is no unique solution for go and gi to achieve a desired

κ. To resolve this, we constrain the flexural rigidities of the
inner and outer notched segments to be equal to each other:

EIj = EoIo,j = EiIi,j . (20)

This constraint produced mechanically robust designs in pre-
liminary testing, and it allows the problem to be solved in
terms of go only.

With these definitions and constraints, our algorithm out-
lined below effectively solves the following optimization prob-
lem:

argmax
{go,1,...,go,n}

(
min
j
EIj

)
subject to αj =

αm
κm

κj ∀j

max(εj) ≤ εFS ∀j

(21)

where EIj is the flexural rigidity of the jth notch, εFS is the
material strain limit with a factor of safety, κj is the desired
centerline curvature from the curve sampling process, and κm
and αm are the sampled curvature and compliance constant
of the benchmark notch pair, which we define as the pair that
experiences the highest-magnitude strain caused by bending.
This optimization constrains the maximum strain to be equal
to εFS when actuated to the desired curve. The first constraint
on αj in the equation above enforces the desired curvature
profile.

There are two variables that must be provided with an initial
guess: the characteristics of the benchmark pair and an initial
set of go values, which must be found numerically because
of the high-order relationship between go and EI . For the
benchmark pair, we assume initially that the outer tube of the
notch pair experiencing the highest magnitude curvature, κm,
will also experience the greatest strain. The initial calculation
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assumes the tensile strain will be higher and calculates the
notch depth based on (16):

εFS =
∣∣εao,m∣∣ = |κo,m|

(
ODo

2
− γ̄o,m

)
.

Then, we use our relationship in (20) to calculate gi,m, use (16)
and (17) to evaluate the strain on all edges of the benchmark
pair, and iterate the values of go,m until max(εm) = εFS for
the pair. For the initial guess for the set of go values, we use

go,j = go,m

∣∣∣∣ κjκm
∣∣∣∣ .

In the flowchart in Figure 6, this step is represented in the
dashed box. Rather than using a pre-packaged general-purpose
nonlinear solver wrapped around our forward kinematics,
which was slow to converge and not guaranteed to do so in
initial testing, the process in the dashed box accomplishes the
optimization for any curve for which the material can handle
the strain by finding the required notch depth for the greatest-
strained, benchmark pair to exactly meet the strain limit, εFS .
This is equivalent to making the notches as stiff as possible
while meeting the strain limit constraint. Then, the ratio of
curvatures and the compliance constants given as the first
constraint in Equation (21) are used to determine all other
notch depths. The initial guess we suggest for the benchmark
pair assumes the highest-curvature pair of notches experiences
the highest strain, but this assumption must be verified; a set
of desired κj values containing two points with very similar
magnitudes of desired curvature (e.g., desired shapes similar
to the one used for Design 6 in the experiments) can lead to
a lower-curvature notch on the inner tube that is thicker than
the strain limit allows, stemming from the EI constraint in
Equation (20). One or two iterations of this method typically
generates a pattern that remains under the strain limit when
actuated to the desired shape.

C. Remaining Parameters

Using the set of desired curvatures, we can define the set
of φo for the notches:

φo,j =

{
0 κj<0

π κj≥0
(22)

where φi is then calculated with Equation (2).
Once the depth pattern is determined, the notch lengths,

h, can be found using the relationship between centerline
curvature and the outer tube neutral axis offset in Equation
(10), resulting in a complete notch profile. From that equation
we can see that

lj ≤ hj < 2lj

since 0 ≤ γ̄o < ODo

2 and 0 ≤ κ ≤
(
ODo

2

)−1
, as self-

interference occurs at κ =
(
ODo

2

)−1
. The required actua-

tion, q, that attains the desired shape can be calculated with
Equation (8), where the set of κo,j values are calculated with
Equation (4) and the optimized set of desired κj values.

The notch pattern is complete after these final parameters
are computed. When using the process as outlined with the

(c)(b)(a)

Fig. 8: (a) The unactuated nitinol prototype with position
marker at the tip. (b) The s-shaped nitinol prototype actuated
to its strain limit. (c) The experimental results for the tip posi-
tion of the prototype are shown in the red circles compared to
the kinematic model, which shows the manipulator’s predicted
shape in gray.

suggested initial guesses, this scheme has a convergence time
on the order of minutes using non-optimized code in MATLAB
and an i7 Intel processor.

IV. EXPERIMENTAL VALIDATION

Seven prototypes of varying cross sections and materials
were created to validate the kinematics, and all of them utilized
the shape design process to determine the notch pattern. The
first experiment tracks the tip position of an endoscopic-scale
nitinol prototype to compare to the model prediction; the
second set of experiments measure the full shape of six 3D-
printed prototypes to compare to both the model prediction of
shape and the input desired curve. This section concludes with
a discussion of the results and possible sources of error in the
shape experiments.

A. Tip Position Experiment in 4mm Nitinol Prototype

An at-scale prototype for endoscopic deployment was built
to validate the accuracy of the kinematics model for designs
made by laser cutting notches into solid thin-walled tubes. This
prototype was 4.02 mm in diameter, small enough to fit in
colonoscope tool ports. The shape design algorithm was used
to design this robot with a double-bend S-shape to maintain
a constant tip angle, and the material strain limit εmax for
the nitinol prototype was 2% to stay well within the linear
range of nitinol’s stress-strain behavior. The resulting notch
dimensions for the nitinol prototype are tabulated in Table
I. The notches were laser cut from superelastic nitinol using
a pulsed laser system. Once the notches were laser cut, the
exterior of the tubes were sanded with 400 grit sandpaper
and their distal ends were adhered using Loctite 430. The
tubes are actuated via hollow shaft stepper motors (Nanotec
L4118M1804-T5X5) that are attached to a 5mm pitch lead
screw. The tubes are attached to the shafts of the stepper
motors using ER-16 collets.

To track the tip position of the robot as it actuates across
its planar workspace, a marker was attached to the distal end
of the robot and was tracked with a MicronTracker H3-60
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Nitinol Prototype Notch Parameters

n h (mm) go (mm) gi (mm) φo φi

1 2.17 3.63 3.09 π 0

2 2.28 3.70 3.16 π 0

3 2.24 3.68 3.14 π 0

4 2.20 3.65 3.12 π 0

5 2.11 3.55 3.01 π 0

6 2.04 3.32 2.77 0 π

7 2.16 3.62 3.09 0 π

8 2.24 3.68 3.14 0 π

9 2.22 3.66 3.13 0 π

10 2.35 3.72 3.18 0 π

TABLE I: The parameters of the CPPR prototype that vary
along the length. For all notches, c = 3.27 mm. Tube
Geometry : ODo = 4.02 mm, ODi = 3.50 mm, to = 0.16
mm, and ti = 0.15 mm.

1 2 3

4 5 6

Fig. 9: Designs 1-6, created with the process detailed in
Section III, are shown actuated to their desired curve shapes.

stereoscopic camera. The outer tube remained fixed while the
inner tube was actuated up to 4mm in 0.5mm increments, in
both tensile and compressive directions. While actuation force
was not measured in this experiment, this prototype could
easily be actuated by hand, and the calculated value of the
actuation force was 7 N, which is significantly lower than that
of traditional concentric tube robots of similar dimensions and
range of motion. The maximum position error over the range
of actuation was 1.74 mm, and the tip position vs. the model
prediction can be seen in Figure 8.

B. Shape Experiments

To further validate the design algorithm rapidly over a
wider range of possible shapes and manufacturing methods,
six prototypes were designed using the process outlined in
Section III and 3D printed on a MAKEiT Pro-M printer
using manufacturer-recommended print settings for the given
material. The prototypes were 3D printed due to ease of

Manual
Stage

Outer Tube
Brace

Inner
Tube
Brace

Camera
Lens
Plane

Table
Actuation 

Stage
Setup

Plane of
Actuation

Camera

(a) (b)

Manipulator

Fig. 10: (a) The manipulator was mounted to a linear stage,
with the outer tube fixed to the non-moving frame and the
inner tube attached to the movable portion of the stage.
Small dots were painted on the prototypes to identify the
centerline. (b) The actuation setup was mounted to an angle
brace, clamped to a table, and aligned parallel to a camera
approximately 14 ft away to reduce error from perspective.

fabrication and availability of low-cost, high-strain materials.
We used three materials known to have high strain limits:
ColorFabb HT [44], ColorFabb nGen [43], and Nylon Alloy
910 [42]. All six designs pictured in Figure 9 are actuated
to their desired shapes. The chosen CPPR parameters used
in the optimization are listed in Table II. The tubes were
printed horizontally (with layers parallel to the long axis) as
opposed to vertically (with layers perpendicular to the long
axis of the robot), which tends to fail by layer separation
sooner than designs printed horizontally. The pure bending
loads experienced during actuation are better supported by
horizontal layers running along the tube axis. In addition,
vertical printing is more difficult from a process perspective
because support material is needed and the tube is less stable
when standing vertically.

For all prototypes, the distal notched tube ends were af-
fixed together with cyanoacrylate and the proximal ends were
mounted to an MDX-4090-60 linear stage from Optics Focus
(0.1 mm resolution, 0.03 mm accuracy) with 3D printed
braces, as shown in Figure 10(a). Dots were painted at the base
of each notch along the manipulator centerline, which were
identified by a small ridge added to the CAD model for the
printed designs. A Nikon D3300 DSLR camera was positioned
approximately 14 feet from the actuated setup, and a Tamron
A17NII lens was used to zoom into the image, reducing image
distortion due to perspective to the point at which it was
assumed to have negligible effect. Using a remote trigger, a
picture was taken at even steps of actuation for each prototype.
An image taken in the unactuated state was used to register
the base frame of the robot to image space, and measured
lengths were used to convert pixel coordinates to millimeters.
MATLAB’s ginput function, which records pixel coordinates
from user-input locations, was used to select the painted ridges
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Design Cross Material E εmax εFS ODo ODi Lcurve β n h min-max go min-max qmax

No. Section (GPa) (mm) (mm) (mm) (mm) (mm) (mm)

1 Square ColorFabb HT 1.58 7.00% 5.80% 8.0 5.2 120 0.5 10 6.02-7.44 3.69-7 13.92

2 Circle ColorFabb HT 1.58 7.00% 6.36% 6.0 2.8 100 0.55 12 3.79-5.33 4.6-5.49 13.44

3 Hexagon ColorFabb nGen 1.80 4.50% 3.00% 10.0 6.54 150 0.5 10 8.19-8.68 7.26-7.57 16.26

4 Square Nylon Alloy 910 0.502 18.0% 6.67% 8.0 4.8 120 0.5 12 5.02-6.67 3.98-7.11 13.22

5 Hexagon Nylon Alloy 910 0.502 18.0% 6.67% 8.0 4.3 150 0.65 15 3.68-4.7 5.4-6.13 17.96

6 Square ColorFabb nGen 1.80 4.50% 3.91% 8.0 4.8 150 0.45 15 5.55-6.48 5.00-7.04 15.75

TABLE II: Chosen parameters of the CPPR prototypes created using the design process in Section III. All designs had a wall
thickness of 1 mm (to = ti = 1 mm). The material strain limit is εmax per material datasheets [42], [43], [44], and εFS is the
strain limit for which the prototypes were designed. The range in h values and go values are reported to give an indication of
the results of the design procedure.

Fig. 11: The experimental results for Designs 1 and 2 for
their entire workspace compared to the kinematic model.
Interference from a printing artifact caused inaccuracies in
both Design 1 (negative half) and 2 (positive half). The desired
shape of Design 1 provides near-constant tip orientation.
Design 2 exhibits tip-first bending, which is ideal for achieving
high angluation in tight spaces.

at the base of each notch, which were typically 2x2 pixels in
area on the 1920x1080 pixel monitor. The mm-to-image-pixel
scaling for each dataset was calibrated at the start of every
experiment. Based on this calibration, the maximum error
associated with pixel discretization is calculated as 0.81 mm.
This is less than 1% of the robot length for these prototypes.

The plots in Figures 11 through 13 compare the experimental
results with the kinematic model prediction for the full robot
shape. The experimental results show a single set of measured
points for each actuated shape as the robot was incrementally
actuated from q = 0 to q = qmax.

C. Results of Shape Experiments

The root-mean-square (RMS) position error of each shape,
which used the error of the notch positions compared to
the model in each configuration, is provided in Figure 14
as a percentage of robot length. Shape data were recorded
at various magnitudes of actuation, |q|, as the robot passed
from zero to maximum actuation (Pass 1) and from maximum
actuation back to zero (Pass 2). The errors provided in Figure
14 were calculated as

err =
1

L

√√√√∑n
j=1

(
‖Pj − P̂j‖

)2
n

where L is the length of the robot, n is the total number of
notches, Pj is the recorded position of the jth notch, and
P̂j is the position as predicted by the model. In Figure 14,
the robot configuration when actuated to its desired curve is
marked by the dashed box in the chart for Designs 1-6, which
was calculated for each CPPR using Equation (8) and the
desired centerline curvatures. Each device was stepped by even
increments for the other four configurations. For Designs 1-4
and 6, q was stepped by 3 mm to 12 mm. For Design 5, q
was stepped by 4 mm to 16 mm.

The CPPRs overall showed good agreement with the kine-
matics models, as seen in Figures 11 through 8, which plots
the results of Pass 1 as compared to the model prediction.
Both the model prediction and experimental data demonstrate
the workspace asymmetry, which is dependent on actuation
direction as stated in Equation (10) in Section II. These results
support the assumption that the printed prototypes behaved as
if the material was isotropic, which is what their manufacturers
report them to be. As evident in the plots, surface finish
artifacts also played a role in error due to frictional effects– in
Design 1, the negative half of the workspace is affected by the
interaction of surface artifact near the base on the first pass,
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Fig. 12: The experimental results for Designs 3, 4, and 5
for their entire workspace compared to the kinematic model.
Design 3 is a constant-curvature arc with a tip angle of 160
degrees. Design 4, with base-first bending, generates a wide-
reaching CPPR that has minimal change in tip orientation.
Design 5 bends most in the middle, allowing retroflexion.

which increases friction and causes the robot to bend more at
the base and less at the tip.

A small amount of friction was present in all designs, given
the variation in position error between Pass 1 and Pass 2,
shown in Figure 14. For all prototypes, robots actuated to
higher curvatures saw diminishing performance due to friction
as compared to lower levels of actuator displacement. As
actuation and robot curvature increases, so does the normal
force between the inner and outer tubes, causing higher friction
forces. This unmodeled effect can become significant at the
edges of the manipulator workspace, where effects such as
notch misalignment can also begin to effect the results. Most
actuated states had similar errors between Pass 1 and Pass 2,
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Fig. 13: The experimental results for Design 6 compared to
the kinematic model as it steps through actuation. This design
changes orientation but has a near-constant position in x.
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Fig. 14: The RMS error of the shape experiments at multiple
configurations. Pass 1 data were recorded as the robot was
actuated from zero to its maximum value. Pass 2 data were
recorded as the robot returned from its maximum actuation to
zero. The error at the desired curve configuration is shown in
the dashed box.

though Designs 2 and 5 had clear deviations between the two
directions of travel, particularly on the negative half of the
workspace. This is likely due to friction causing a hysteresis
effect, as rough patches on the tubes pass each other from
different directions of travel.

Tube clearances also have some small contribution to the
error, as the inner tube will press against the inner wall of
the outer tube when actuated, rather than remaining perfectly
concentric within it. This increases the distance between the
backbones, thus increasing the effective moment arm between
the neutral axes of the tubes and leading to smaller angular
displacements for the same actuator displacements. This effect
causes all notches to bend less than the model predicts for
a tube pair with large clearances. Some error can also be
attributed to the camera being slightly out of alignment with



13

Fig. 15: (a) This nitinol, two-segment robot has an outermost
OD of 4.02 mm, and the open inner lumen is 1.844 mm
in diameter. The inner tube pair has a flexible transmission
segment that exists inside the outer pair and a distal actuating
segment. (b) The robot has 5 DOF. Both sections rotate and
actuate independently, and the entire robot can translate axially
(c) The first segment actuated independently, showing the
second segment in straight and actuated configurations.

the robot bending plane, which means that motion would
appear smaller than predicted, as it would be a projection
onto the camera plane. Lastly, the discrepancy between the
ideal notch parameters used in the model prediction and the
as-built parameters of the prototypes, which are affected by
the resolution of the 3D printer and settings of the slicer, can
contribute to the error seen in the experiments. The model
prediction curves consider the machining tolerances, but it
does not account for the differences in geometry due to effects
of slicing the geometry for printing.

Overall, the 3D-printed, prototype CPPRs that were de-
signed using the process outlined in Section III fit the shape
of their desired curves well. RMS shape errors of the robots
actuated to the desired shape range from 3.04% (Design 3) to
5.33% (Design 5) when normalized by robot length. While
the RMS shape error is a cumulative metric of the error
of each measured point along the manipulator per actuated
position, the plots in Figures 11 through 13 show a single
measurement of each point along the manipulator shape. These
results support the assumptions made in our design method,
and they show that the process yields designs that attain good
shape-fitting results.

V. MULTI-SEGMENT DESIGN DEMONSTRATION

To demonstrate multi-segment CPPRs, we built a 5-DOF
robot out of nitinol, which is shown in the accompanying video

and Figure 15. The robot has an outermost diameter of 4.02
mm with a 1.844 mm open lumen diameter. The first segment
has tube geometry of ODo,1 = 4.02 mm, to,1 = 0.16 mm,
ODi,1 = 3.5 mm, ti,1 = 0.15 mm, and the second segment is
ODo,2 = 3.0 mm, to,2 = 0.1 mm, ODi,2 = 2.088 mm, and
ti,2 = 0.122 mm. The entire device can translate, and each
segment can independently rotate about its tube axis and bend
via push-pull actuation. The inner tube pair contains a segment
which is notched symmetrically in order to flex easily as the
first (proximal) segment is actuated. The open lumen of the
CPPR allows additional nesting for further expansion of DOF
if desired, with each segment able to move independently as
long as the asymmetrically-notched CPPR segments do not
overlap with each other.

The notches of this multi-segment CPPR were cut using a
30W pulsed fiber laser system, where the cut depth, g, was
specified by arc length along the tube’s outer circumference
rather than a depth cut into the tube diameter in the manner
defined in Figure 2. As pointed out in [29], laser cutting
generates an radially-aligned cut edge that behaves slightly
differently than the straight-across cut achieved by milling,
and the appropriate equations for I and γ̄ must be used for
the calculations. In the video attachment, we demonstrate
each degree of freedom for this multi-segment prototype,
illustrating that the bending actuation of each segment does
not affect the other. We also demonstrate non-planar motions
involving simultaneous rotation of the tube pairs in opposite
directions while actuated.

VI. DISCUSSION ON DESIGN CONSIDERATIONS

The CPPR is a versatile design concept, and creating a
prototype requires careful consideration of many factors. Here,
based on our experiments, we offer further guidance to help
designers narrow down the unknowns and create a successful
CPPR. First, material selection should focus on lubricious
materials or those compatible with lubricators to combat
friction, which impacts accuracy at the edges of the workspace.
Also, material selection must consider the relationship between
strain, curvature, and notch depth, as shown in Equations (16)
and (17).

A maximum notch depth, which corresponds to a minimum
backbone width, can be determined from strength requirements
or other design factors, and the neutral axis offset created
by this notch drives the relationship between curvature and
strain. Using the strain limit of a given material, the maximum
curvature of a notch of this depth can be calculated with
Equations (16) and (17), allowing designers working with a
specific material to select an achievable curve. Conversely, if
the desired curve cannot be adjusted or reconfigured, one can
select a material based on the strain limit as calculated by the
maximum desired curvature and notch depth requirements.

The choice of desired curve can also be used to mitigate
the effects of friction and interference between the notches.
A designer should avoid large changes in curvature that also
coincide with a change in notch direction, as this can cause a
point contact between an outer-tube notch edge and the inner-
tube backbone and can generate significant friction. A single
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notch designed for low curvature either before or after the
direction change can mitigate this effect with very little change
to the overall curve. The curve itself can be used to define
certain characteristics of the whole workspace. For example,
choosing a curve that has the same tip angle as the unactuated
CPPR will yield a constant-angle manipulator that does not
change tip angle anywhere in its actuation range. Similarly,
a constant curvature arc for the desired centerline curve will
lead to an CPPR that will remain constant curvature at all
levels of actuation. More study is needed to determine the
best curve selection as related to entire spatial workspace, and
future work will focus on this.

A curve discretization parameter was introduced in this
paper, β, which influences the notch length and defines the
notch spacing. It can be changed to slightly modify the desired
notch depths (decreasing β increases the notch length, and a
longer notch is less stiff in bending). Generally, this value
should be kept near 0.5– the simulation study in Figure 5
shows that model assumptions agree well for values of c ≤ h
(β ≤ 0.5), and increasing β to above 0.5 means each discrete
segment of the CPPR has more of its centerline as straight,
rigid section than of a bending, actuated portion. The opposite
is true for β < 0.5, and while this leads to more of the
curve being influenced by actuation, having large notch lengths
increases the risk of the inner tube buckling, particularly for
thin, high-curvature notches. Essentially, a large h is the same
as increasing the column length when viewed in light of classic
Euler buckling. After a pattern is determined, a designer can
verify their design will not buckle using the actuation force
and the equation for pinned-pinned column loading:

hcr,j =

√
πEIi,j
τmax

where hcr,j is the maximum notch length, τmax is the actua-
tion force at the desired curve as calculated by Equation (7),
and EIi,j is the stiffness of the notch. The true end conditions
for the notch are more constrained than the pinned-pinned
assumption since they can support a moment, so this equation
provides a conservative measure since pinned-pinned columns
fail at lower loads than other end conditions. Generally, with β
near 0.5, the notch lengths produced by the design process are
much lower than this critical length. If necessary, increasing
the number of notches, n, is a simple and straightforward
means of reducing h to meet this criteria.

Selecting proper tube clearances is a balance of material,
fabrication method, and friction reduction. For the 3D-printed
prototypes, additional clearance helped to mitigate the effects
of printing imperfections and snags; however, it also leads to
lower-than-expected curvatures when actuated, as seen in the
Design 5 results. It can also have a detrimental impact on the
negative half of the workspace, where the inner tube is pushed
through the outer one, and the model accounts for the absence
of bending in the first notch. Large clearances allow this notch
to bend, and this additional angular displacement at the base
of the robot propagates to larger position errors at the tip.
The 3D printed prototypes in this paper had radial clearances
ranging from 0.4 to 0.6 mm for the printed prototypes. This
large clearance is necessary to accommodate uneven edges and

artifacts that can result from the printing process. The metal
prototypes, given the difference in their fabrication technique,
were able to have much smaller clearances overall, as the
nitinol prototype has 0.195 mm radial clearance with good
experimental results while the second segment of the multi-
segment design in Figure 15 has as little as 0.05 mm of radial
clearance between the tubes.

VII. CONCLUSIONS

A concentric push-pull tube robot can be designed to
achieve general shapes, and we have outlined a process to
create designs that achieve desired variable-curvature planar
shapes in this paper. We also demonstrated a multi-segment
design that can achieve out-of-plane motion with two pla-
nar segments. A variable-curvature model was presented and
agreed well with the experimental results. Tube clearances and
friction can be significant factors affecting model accuracy, and
these must be carefully considered in the design stage with
the selection of an appropriate material, tube geometry, and
fabrication method. Future work will include modeling inverse
kinematics, 3D spatial modeling, multi-segment designs, FEA
strain modeling, and workspace optimization, particularly as
it pertains to robot stiffness under external loads.
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