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Abstract—Continuum and soft robots can leverage complex
actuator shapes to take on useful shapes while actuating only a
few of their many degrees of freedom. Continuum robots that also
grow increase the range of potential shapes that can be actuated
and enable easier access to constrained environments. Existing
models for describing the complex kinematics involved in general
actuation of continuum robots rely on simulation or well-behaved
stress-strain relationships, but the non-linear behavior of the
thin-walled inflated-beams used in growing robots makes these
techniques difficult to apply. Here we derive kinematic models
of single, generally routed tendon paths on a soft pneumatic
backbone of inextensible but flexible material from geometric
relationships alone. This allows for forward modeling of the
resulting shapes with only knowledge of the geometry of the
system. We show that this model can accurately predict the
shape of the whole robot body and how the model changes with
actuation type. We also demonstrate the use of this kinematic
model for inverse design, where actuator designs are found
based on desired final robot shapes. We deploy these designed
actuators on soft pneumatic growing robots to show the benefits
of simultaneous growth and shape change.

Index Terms—Growing Robots, Soft Robot Materials and
Design, Soft Sensors and Actuators, Kinematics

I. INTRODUCTION

Compliance in soft or continuum robots allows them to
take on a wide variety of shapes [1], [2]. Continuum robots
are often said to have “infinite” passive degrees of freedom,
any of which can potentially be actuated. Actuators that
leverage these continuous degrees of freedom in interesting
ways enable numerous compelling behaviors and applications.
In general, well-informed design of actuation strategies for
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Fig. 1: Inflated-beam soft growing robots can move through two
different means, growing from the tip and changing their shape.
These degrees of freedom work independently of each other and,
when combined, yield new behaviors.

soft robots requires knowledge of the relationship between the
actuator design and the resulting kinematics. Helical tendon
routing, for example, can be used to expand the reachable
workspace of a manipulator [3] or create multibend shapes [4].
While some types of continuum robots have well-described
kinematics and dynamics, existing solutions cannot always be
easily extended to soft robots with compressible backbones or
non-traditional backbone geometries and materials, properties
shared by many recent growing continuum robots [S]-[8].
In this work, we present a geometric model for one such
compressible backbone continuum robot and use the model
to develop the kinematics of a generally routed actuator on a
thin-walled, soft pneumatic growing robot.

In general, the flexible and elastic materials that make up
soft robots can be continuously deformed into a wide variety
of shapes. Soft robots have been developed that bend [9]-
[11], twist [12], [13], extend [14], expand [15], and carry
out complex motions [16], [17] with only a few actuator
inputs. Complex motions of soft robots have been used to
grasp objects [10], [11], locomote [18], make haptic displays
[19], and more [1]. The shapes and motions of soft robots
are dependent on both the make-up of the soft body and
the coupling of the body and actuation, so models of these
relationships are useful for designing the actuation.

In this paper we focus on one particular soft robot that
uses a flexible but inextensible pressurized tube to form a
pneumatic backbone, and has a long flexible body similar
in form to many continuum robots [5], [20]. This pneumatic
backbone robot effectively “grows” through everting material,
similar to whole skin locomotion [21], in order to move into
and explore its environment [6] and can create tight curva-
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tures and spirals [22], [23]. Growth as a form of movement
allows for easy traversal through constrained environments
and the formation of a useful structure along the grown path
[5], [6], but it requires a thin-walled pneumatic backbone
in order to allow material eversion at the tip. This thin-
walled pneumatic backbone results in non-linear local buckling
and wrinkling behaviors that are not easily modeled using
traditional continuum robot techniques. Growing robots have
unique benefits as continuum robots (Fig. 1); in particular,
growth and shape actuation (steering) represent orthogonal and
independent degrees of freedom, so general shape change can
be investigated without considering growth. Adding growth to
shape change also expands the potential reachable space of
shapes using only a single steering actuator. Modeling and
control for growing continuum robots has provided methods
for tip position and orientation [20], [24], [25], but models of
the full robot shape have not previously been considered.
Kinematics and mechanics models for soft robot deforma-
tion have used many techniques, from geometric relationships
[26] to finite element methods [27]. For continuum robots,
we are specifically interested in applying these techniques
for lines of actuation placed in a general shape around the
continuum robot backbone, henceforth referred to as general
actuator routing or general tendon routing. Constant curvature
models are able to use geometric constraints of the robot
to predict actuation of tendons parallel to the backbone [2],
[26], but these specific geometric relationships used apply
narrowly to only those parallel actuators. By adding mechanics
to geometric constraints, more general models for continuum
robots have been created. Continuum robot models that pre-
dict deformations under general tendon routing and external
loading have been built on Cosserat rod and Cosserat string
methods [28]-[30]. These models generally require knowledge
of both the geometry and the stress-strain relationship of the
backbone. For thin-walled pneumatic backbones, the stress-
strain relationship is highly nonlinear and difficult to model
due to the buckling behavior of the thin-walled tube [31],
[32], which makes it difficult to adapt these Cosserat-based
models. Looking beyond continuum robot models, the models
for fiber-reinforced elastomeric enclosures (FREEs) [13], [33]
and McKibben actuators [34] are geometrically similar to the
models of continuum robots and rely on distributed inextensi-
bility constraints from the wound fibers. The deformation of
FREEs has been modeled both geometrically, based on the
inextensible fibers, and through finite element methods. The
finite element methods are often more accurate as they can
account for non-idealities that the geometric models ignore,
but they have difficulty accounting for highly non-linear ma-
terial behaviors like buckling or wrinkling [33]. While these
methods can inspire models for thin-walled pneumatic contin-
uum robots, the particular geometric relationships exploited do
not transfer. In this work, we define the geometric constraints
to develop a kinematic model for general tendon routing on
thin-walled pneumatic continuum robots and show how these
constraints can be used to model the deformation of the
pneumatic tube under various types of tendon-like actuation.
The remainder of the paper is organized as follows. Sec-
tion II presents the geometric solution for helical actuation

and shows how to extend this solution to general paths. We
then present different methods for actuating a soft growing
robot and the benefits and limitations of each actuation method
in terms of the model (Section III). Section IV presents
experimental results validating first the uniform helical ac-
tuation and then the general form of the model. Section V
shows another use for this model, to design actuators to
achieve desired shapes. Lastly, we end with a discussion of
the benefits of growth for general actuation and the limitations
of the actuation methods presented. Parts of this work were
previously published in [22], which initially presented the
model for uniform helical actuation, descriptions of actua-
tor implementations, and initial results validating the helical
model. This paper builds on that initial work, with the follow-
ing new contributions: generalizing the model from helical
tendons to any tendon shape, validating both the helical and
general actuator models with new experiments, and describing
a method to design actuators to match target shapes.

II. GEOMETRIC MODEL

To develop a geometric model for thin-walled pneumatic
growing robots, we first define the problem for uniform rout-
ings of actuators, i.e. helical actuation, including the actuator
parameterization and geometric constraints, and present the
closed-form solution for helical actuator kinematics. We then
show how this closed-form solution for a uniform helical path
can be used to calculate the actuation of general paths. While
the function of growth defines the structure of the robot,
previous work has shown that steering and growth can be
treated as independent degrees of freedom [20], so we do not
need to explicitly consider growth in the geometric model.

A. Uniform Actuation Geometry

1) Actuator Geometry: To achieve a uniform deformed
shape, the continuum robot actuator must route in a uniform
path on the surface of the body. Here we use uniform to mean
that any segment of the shape is geometrically similar to all
other segments of the shape. Uniform tendons may be routed
on the robot’s surface axially or at an angle, forming a helix
on the body of the tube (Fig. 2(a)). The traditional routing
of tendons on a continuum robot, in a straight path parallel
to the undeformed backbone, leads to a geometrically self-
similar shape in 2D when actuated, i.e. constant-curvature
deformation [2]. Helical tendon routing similarly leads to
a symmetrical and self-similar shape in 3D, resulting in a
helical actuated shape (Fig. 2(a)). This behavior has been
previously observed for a soft pneumatic continuum robot
in practice in our previous work [22] and closely resembles
the methods natural growing systems, like plants, use to form
helical structures [35].

We will quantify the relationship between the helical path
of an actuator around an undeformed pneumatic tube and the
resulting helical shape of the actuated pneumatic tube. To
develop this relationship, we first give the standard parameter-
ization of the 3D path of a helix, 7(s), in terms of its radius
and pitch,

7(s) = [Rsin(s) Rcos(s) bs}T (1)
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Fig. 2: Visualization of uniform cable routings and their effect
on robot shape, with the actuated cable shown in blue and the
diametrically opposite line in red. In (a), the robot with helical
cables is shown in both unactuated and actuated states. The actuator
parameters, 6, D, A, and shape parameters, R,, R;, b, are displayed.
In (b), the conventions for the Frenet-Serret frames along the actuator
path and the Frenet-Serret and material frames along center-line path
in the unactuated case are shown.

where R is the radius of a helical path, b is the normalized
pitch parameter such that 27b is the height achieved by one
revolution of the helix, and s € [0,S] is the length based vari-
able for parameterization, where the total length is Sv/b? + R2.
This helix parameterization applies both to the robot shape and
the actuator shape.

For the actuator, the helical path must lie on the body of
the robot, so the actuator radius is equal to the thin-walled
tube radius. In our parameterization of the helical actuator
path we use variations of these standard parameters. For the
intuitiveness of our formulation and to allow our model to
cover the straight actuator case as well, it is convenient to use
the tube diameter, D, in place of the radius and to replace
the actuator pitch, b,, with the drawn angle of the path with
respect to a straight actuator, 0, which is defined as

D
0 = arctan T )

These parameters define the path of the uncontracted actu-
ator. A third parameter is necessary to describe the amount of
actuation along the helical path. For a purely geometric model,
we parameterize the actuation using the relative shortening of
the path length when actuated compared to the path length
when not actuated. We use A to represent this ratio. The
buckling behavior of the flexible but inextensible pneumatic
tube wall means that how we use this actuator parameter is
highly dependent on how the tube is actuated. The contraction
ratio, A, can be physically achieved in several different ways,
as detailed in Section III, which can generally be categorized
as either continuous, meaning a single actuator can achieve
values for A within a range, or discrete, meaning an actuator
switches between a few set values for A. These considerations

and specifications of the implemented actuation will be dis-
cussed in detail in Section III. Fig. 2(a) shows the parameters
used to describe the actuator shape on the initial tube and the
parameters of the resulting helix after actuation.

2) Deformed Robot Geometry: To understand the resulting
shape further, we observe how the inflated-beam soft robot
deforms to achieve the final shape. The pneumatic beam is
made of inextensible plastic or fabric so it can only shorten
to change shape, not lengthen. It accomplishes this length
change by wrinkling the thin wall of the material. In some
implementations of actuation, this occurs at discrete locations
defined by the construction of the actuator (Section IIT). The
distributed strain caused either by the distributed loading or
the mechanical constraints, depending on the actuator im-
plementation, causes distributed wrinkling that approximates
a continuous shortening along the path of the actuator. We
assume that the maximum wrinkling will occur at the location
of the actuator, and no wrinkling will occur diametrically
opposite to the point of maximum wrinkling.

We define the robot shape by parameterizing the actuator
path 7(s) (the path with the highest wrinkling) and the path
diametrically opposite the actuator 7,(s) (the path with no
wrinkling) with a common parameter s (Fig. 3) as follows:

7i(s) = [Risin(s) Ricos(s) bs]T 3)
7,(s) = [Rosin(s) R, cos(s) bs]T 4)

where R; is the radius of the inner helix, R, is the radius of
the outer helix, and b is the normalized pitch of the helices
(Fig. 2(a)). The inner and outer paths share the same pitch
since they are attached to a single tube and can not diverge
from each other.

In addition to the paths on the surface of the tube, we also
define the center path of the robot as:

7o(s) = %(?,-(s) +7,(s)). 5)

B. Geometric Constraints

The relationship between the parameters defining the unac-
tuated path and actuation state of the actuator (6, D, 1) and the
parameters defining the final shape of an actuated helix (R,,
R;, b) are developed through an understanding of the geometric
constraints imposed by the tube material. We define constraints
to relate the shortest and longest helical paths, 7;(s) and 7,(s)
respectively, to each other using the actuator parameters.

Looking at a given length of the helix-actuated inflated tube,
we know that the ratio of the inner arc length to the outer arc
length over any portion of the robot should be equal to the
contraction ratio, A. For the helices described in Equations (3)
and (4), and looking at the interval s € [0,S], this constraint
can be written:

VPR YR ©
V(b2 (SR,)? /PP +RE

This constraint is defined by how much the inner path is
shortened relative to the outer, unwrinkled, path.
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Fig. 3: Diagram of the geometric relationships between the actuator
path (blue) and the diametrically opposite path (red). The two paths
are parameterized by s. The points 7,(s) and 7(s) are separated by
a distance D. The vector 7,(s) — 7;(s) is coincident with the normal
vectors (N,(s) and Ni(s)) and orthogonal to the tangent vectors to
these curves (7, (s) and 7;(s)). The angle between the tangent vectors
is 20, or twice the drawn angle of the actuator relative to the straight
tube.

The remaining constraints define the relationship between
the inner and outer paths for any points 7(s) and 7,(s) for
a common value s along the robot. These constraints are
portrayed graphically in Fig. 3. When the system is under
pressure, the material is in tension and the volume is maxi-
mized. In the unactuated state, the robot is a tube and the cross-
sections normal to the centerline path, 7.(s) for (s € [0,5]), are
circles of diameter D. As the tube is actuated and wrinkles, we
observe that these cross-sections move relative to one another
but remain approximately circular, and due to the relative
inextensibility of the materials used (less than 2.5% strain
at operating pressure for low-density polyethylene [36]) we
assume these circles maintain a constant diameter over the
range of inflation pressure. This circular shape imposes the
constraint that the tube diameter is the distance between two
points 7,(s) and 7i(s), which in terms of the parameters can
be expressed:

D=R,—R;. 7

For the final constraint, we make the assumption that the
angle between the inner and outer tangent vectors remains
constant at 20, where 0 is the drawn angle of the actuator
before actuation; this is based on observations of prototyped
actuation and measurements of the prototyped helices pitch
and radii. This offset angle will be a rotation about the
shared normal vector. Because the inner and outer curves are
separated by a constant distance, the curves form a Bertrand
curve pair. This means the normal vectors of the curves will
be aligned with each other, in the direction (7,(s) —7(s)), and
the tangent vectors (7;(s) and 7,(s)) will be offset by a rotation
about the shared normal [37]. This relationship is diagrammed
in Fig. 3. With this definition, the helix radii, particularly the

inner radius R;, can be positive or negative. In the case of a
negative R;, the normal vector of the Frenet-Serret frame points
away from the central axis of the helix, as seen in Fig. 2(b).
The normal and tangent vectors obtained from a Frenet-
Serret frame of the parameterization in Equation (1) are:

) [ Reos) .
O =on R | Ry @
2 —sin(s)
- T(s)
N(s) = =0 = | —cos(s) ©)
Ol | o

where T'(s) is the unit tangent vector and N(s) is the unit
normal vector to the curve. These frames can be seen in
Fig. 2(b). The constant angle between the tangents can be
captured with the dot product of the unit tangent vectors:
T, = | Tl[|To|| cos(26) = cos(26)

l

(10)

Substituting in the tangent vectors T; and T, from Equation (8)
into Equation (10) we get the final constraint:

RiR, +b?
V(02 + R (52 + R2)

cos(20) = (11)

C. Closed-Form Uniform Actuation Solution

The three geometric constraints in Equations (6), (7), and
(11) define the relationship between the actuator parameter-
ization and the robot shape parameterization. In fact, the
equations in their current form give a solution for the inverse
problem, taking the desired robot helical shape (given by R,,
R;, and b) and giving the actuator shape to achieve it (defined
by D, A, and 6). A forward solution can be solved from the
equations as:

D(1—Acos(26))

Ro= 2 hcos20) +1
 DA(cos(20) — 1)

k= A2 —2Acos(20)+1 (12)
b DA sin(20)

A2 —2Acos(20) + 1

The radius of the center path of the soft robot body can be
calculated using Equation (5) and taking the average of the
inner and outer radii solutions in Equation (12):

B D(1—2?)
© 7 2(A2—22cos(20)+1)

With these equations we can calculate the resulting helical
shape from a helical actuator configuration.

These equations can be reformulated in terms of curvature
and torsion to give additional insight, using the following
substitution:

R

13)

K= _R_ T= _b

b>+R? b>+R?

where Kk is the helix curvature and 7 is the helix torsion in
the Frenet-Serret sense, parameterized by the actuated path
length. With this substitution, there are now four parameters

(14)
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TABLE I: Summary of the forward and inverse static solutions of helical actuation

Inverse Solution Radius and Pitch Parameterized | Curvature and Torsion Parameterized
Forward Solution Forward Solution
. _ p. ~__ DA(cos(26)-1) ~__cos(26)—-A
D =R, =R Ri = 22 57 cos20) 11 Ki="Dp1
1 - VAR R — D(1-12)  1-Acos(26)
= ViR ¢ = 3A7=2%cos(20)+1) Ko="D
; 2 D(1—Acos(20)) sin(20)
ezlarccos M R . UTACONSY)) T =
5 0 7_ i DA
(b2+R2) (b2 +R3) A2—2Acos(26)+1
h— DA sin(20) T = Asin(20)
T A2-2Acos(20)+1 o D

describing the robot body shape (x,, kj, T,, and 7;) but still
only three equations. The inner and outer pitch being equal
adds a fourth constraint equation:
To _ Ti
24HK2 T4 K?

15)

Substituting the solutions from Equation (12) into the variable
re-parameterization in Equation (14) gives:

. — 1 —Acos(20) _ Asin(20)
‘- D D
(16)
_cos(20) -4 ~_sin(20)
EE)Y) =D

It should be noted that k, will always be positive, but k; will be
negative if A > cos(20). This corresponds to situations where
R; is also negative, which happens as A approaches 1 because
the two diametrically opposed lines are on opposite sides of
the helical center.

The geometric model can also be defined in terms of the
kinematic variables used in Cosserat-rod theory, i(¢) and
¥(¢), which are the linear and angular rates of change of a
material-attached reference frame with respect to length along
the undeformed material centerline (usually these frames are
assigned such that they exhibit no torsion when the backbone
is in the undeformed state.) The linear rate of change, V(¢),
includes the shear and the axial length change. While there
is no shear, the axial component of ¥(¢), v, is equal to the
centerline compression ratio, A.:

= A2+2Acos(260) +1
e 2(1+cos(20))

a7

which is derived by using the helical actuation solution in
Equations 12 and 13 and comparing the initial length of the
centerline to the actuated length of that path.

The angular rate vector (corresponding to material bending
and torsion), @(t) = [uy uy u;]', is related to the Frenet-
Serret curvature and torsion of the center path. The magnitude
of [u, uy]T can be calculated using Equation (13), with
a scaling correction of A. to correct for the fact that the

Cosserat derivatives are taken with respect to length along
the uncompressed centerline, while the geometric curvature is
a rate of change with respect to length along the compressed
centerline:
2(1-A%)
24u2= A 18
Vit = s atcosee) 1) 1Y

The scaled Frenet-Serret torsion using Equation (13) and the
scaling correction:

B 4 5in(26) A

= DT+ 2hcos(26) +1)°°

represents the torsion of a material frame which was assigned

such that one axis always intersects the tendon line. To

calculate the torsion u, of a more conventional material frame

which was assigned with zero torsion in the undeformed

(A = 1) state, we can subtract out the reference torsion as
follows:

19)

2sin(20)
D(1+cos(26))

While the remainder of this paper only uses the geometric
model in Equations (12) and (13), these additional parame-
terizations could be used in the future to compare the results
from the geometric model to other common parameterizations
of lines in 3D and to Cosserat-rod-based models for continuum
robots. The forward and inverse solutions for the helical
actuation are summarized in Table I.

(20)

U; = Te —

D. General Actuation

The geometric model generated above covers a larger range
of actuation than 2D constant curvature models alone, but still
requires the actuation to be uniform along the length. A truly
general model would allow change of the actuator parameters,
6 and A, along the line of actuation. To do this, we take
further inspiration from constant curvature models. For multi-
segment continuum manipulators, constant curvature models
can be applied consecutively to each segment of the continuum
robot, creating a piecewise constant curvature shape. Similarly,
the constant helical model can be applied in a piecewise
manner to a piecewise helical shape (Fig. 4). Whereas constant
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Fig. 4: Example shape generated by a tendon routing with changing
angle. Actuator starts with 6 = 10 , transitions in the center to 6 =5,
and ends back at 8 = 10°.

curvature models generally apply this idea to serial chains of
independently actuated continuum modules, we can apply the
same idea while imagining varying the actuator angle, actuator
contractio, or both of a single actuator, depending on the
actuator used. Fig. 4 shows an example where the tendon is
routed along the tube in three uniform helical sections, routed
with 6 equal to 10°, then 5°, and then back to 10°, with the
value of A held constant. While each section is a uniform
helix, together they produce a non-uniform shape that, through
growing, can be deployed sequentially from base to tip.

By changing the actuator parameters over smaller and
smaller sections, we get a general actuator shape that we can
calculate as a series of uniform helical sections (Fig. 5). This
general actuator requires a slightly more complex parameter-
ization, with 6 and A now functions of the position along
the tube, s € [0,.Z], where .Z is the total length of the tube.
The parameter s used here is different from that used in the
above sections and describes the length along the centerline of
the tube, not along the arc length of the actuator. While it is
also theoretically possible to have the diameter, D, vary along
the tube, this is difficult to achieve in a physical system. We
introduce an additional parameter for the continuous general
actuator, @ (s). This new parameter is the angle of the actuator
around the tube from a fixed point on the tube. It is a function
of the other parameters as:

o (s) = %/tiotan(e(t))dt 21

Because this is an integral of 6(s), ¢(s) describes the current
position of the actuator relative to the tube at each length,
as opposed to 6(s), which describes the rate of change in
the actuator position. This makes ¢ (s) useful for plotting and
implementing actuator designs.

Fig. 5: Parameterization of a general tendon routing (blue). The
centerline of the tube is shown in red. All parameters are a function
of the length along the centerline, s € [0,.Z]. The helix parameters,
0(s) and A(s), change along the length of the actuator, while the
diameter, D, is constant. Two new parameters are shown, the angle
of the actuator around the tube, ¢(s), and the discretized length of
tube each constant segment is applied for, Al(s).

While a truly continuous actuator path can be described
using the parameters above, for practical implementation, both
in the model and in the actuator construction, we discretize
these parameters. To do this, we discretize s for an actuator
path with N helical sections as s; for j € [0,N], where so =0
and sy = .Z. Each segment, starting at s; for j € [0,N — 1],
has actuator parameters A and 0 associated with it and, for
the discrete formulation, we introduce the parameter Al(s;) =
sj+1— s, which represents the length of tube that a particular
uniform actuation is applied for. This parameter is needed
since the discretization does not need to be uniform in s. In the
limit where actuator parameters change continuously, A¢(s;) is
the differential, ds. This also changes the calculation of ¢ (s)
in Equation (21) slightly to be a sum instead of an integral:

J
0(s7) = = Y tan(0(5¢) AL(s0). 2)
D=
To implement this discretized formulation, we use a trans-
formation matrix along a uniform helix which starts with the
Frenet-Serret frame aligned to the transformation reference
frame:

j+1 BJj+1
j R/ (s; P/ (s
T§+l (S/) — J ( J J ( ]) (23)
0 0 0 1
2 2 AL 7
%cos#—i—i—z —%sm% Iz—f(l—cos%)
JHL N R .. Al Al b Al
Rj“(sj)=] [sin7* cosTh  —psinTgt
Rb ALy, b .. Al bH2 AUy, R?
F(I—COST) leﬂT ﬁCOST—i_EZ‘
R2 . A@x b2 Aél )
TS+ T
B+ .
P; (sj)=1 R(1—sin %) (25)

AL .Y/
B (21 — sin 8f2)

where T;H (s5) is the incremental transformation matrix along

the length at segment s;, R:;H(sj) is the rotation matrix
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(a) Mechanically Programmed

(b) Tendon and Stopper

(c) Pneumatic Muscles

Fig. 6: Implementation of actuation. (a) Mechanically programmed implementation uses discrete removal of material using tape to achieve a
single static shape that can be grown. (b) Tendon and stopper implementation creates one shape when the string is fully relaxed and another
when the stoppers are fully connected, allowing actuation between two shapes. (c) Pneumatic artificial muscle implementation allows for
approximately continuous change of A during actuation. The material wrinkles along the full line of actuation to reduce length.

between the frames of segments s; and s;41, 13; +1(S ;) is the
position vector between segment s; and the next segment,
L=+/R?+ b2, and A/, is the length of the path at that segment
after the actuator deforms. This transformation is a function
of the current segment, s;, since R, b, L, and Af; depend on
the actuator parameters at that segment. For most paths, we
apply this transformation along the center axis, which means:

A2+2Acos(26) +1
Al = Al(sj)Ae = M(S/)\/ 2(1 +cos((29))) '

The transformation allows us to progressively add short helical
sections and align the starting and ending frames between
sections, so we can calculate the transformation from the path
to the world frame, T{VH, recursively as:

j pJ+1
=TT (s))

(26)

)+ @7
where the position vector of the transformation matrix T{;,,
Bl is equal to the jth point on the actuated shape, 7:(s;),
and T?V = I, the identity matrix. For each section, we use the
uniform helix model in Table I to take the actuator parameters,
0, A, and D, of that actuator segment and calculate the
shape, R. and b, which can then be used to calculate the
transformation, Tfrl (s;), using Equations (23)-(25). To get the
inner and outer paths of the shape, additional transformations
are needed between the center line and the inner or outer lines:

cos(@zi) 0 —sin(a;) O

o 0 1 0 L
T (sj) = sin(a.;)) 0 cos(a.;) O (28)

0 0 0 1

cos(a,) O sin(@,) O

Clg.) — 0 ! 0 7%

To(s)) = —sin(a.,) 0 cos(tte,) O @)
0 0o 0 !

where the angles o, ; and ¢, are the angle difference between
the center path tangent and the inner and outer path tangents,
respectively, defined as:

b b

. ; = arctan | — | —arctan ( —
R; R,

b b

O., =arctan | — | —arctan { —
’ R, R,

where b, R;, R., and R, are defined in Table 1. We post
multiply the centerline transformation matrix, T/, by these
matrices to get the inner and outer paths in the world frame.
These transformations move the points along the normal vector
shared by inner, outer, and center paths, and rotate them about
that normal vector. In order to implement the shape change
described by these equations, we need actuation methods to
shorten defined paths along the body, which will be discussed
in the following section.

(30)

III. ACTUATOR IMPLEMENTATION

We implemented the actuation of our soft inflated robot
body using three different methods, as shown in Fig. 6:
(1) mechanically programmed shapes, (2) tendon actuation
with stoppers, and (3) pneumatic artificial muscle actuation.
Actuation methods are constrained by the compliance needed
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to evert in order to grow. These methods allow different
amounts of control, from growth into a single set shape to
actuation among a range of shapes. In the remaining sections,
the soft inflated robot bodies are formed from low-density
polyethylene (LDPE) [36] in a range of diameters and material
thickness, primarily supplied by Aviditi (Elgin, IL). This
section has appeared previously in [22] but has been revised
and included here for completeness.

A. Mechanically Programmed

We refer to the first implementation as being “mechani-
cally programmed,” meaning that the shape is permanently
constructed during the manufacturing process. The robot body
can then be grown into this predetermined shape. In tasks
where the desired path is known or can be planned ahead
of time, this implementation allows precise shape control and
allows us to create static shapes. Despite this implementation
not being “actuated” in the sense that it changes shape actively,
we can use the same models of general actuation to describe
the permanent shapes achieved, which is useful for creating
shapes to test the model.

The robot body is mechanically programmed by removing
discrete sections of material along the actuator path. These sec-
tions are manually pinched together and held by tape. Though
the actual description of the model describes a proportional
shortening along the entire length of actuation, this can be well
approximated by alternating pinched and straight sections at a
sufficiently tight spacing, as seen in Fig. 6(a).

B. Tendon and Stoppers

The second implementation uses a combination of tendons
and rigid stoppers to actuate between two shapes, usually a
straight tube and a single desired shape. The tendon provides
the force to the tip of the robot and the stoppers mechanically
limit the contraction when they connect. This is done by
arranging alternating gaps and stoppers along the line of
actuation (Fig. 6(b)). A tendon is fed through the stoppers
and attached to the far end of the robot. When this string
is pulled, the gaps collapse along the line of actuation and
only the stoppers are left. This is similar to the mechanically
programmed implementation, in which discrete sections are
fully wrinkled and the remaining material is left extended. In
this implementation, the model can only be used when all
the stoppers are connected. The value of A will be the ratio
between the stopper length and the total length for a section.

We created this actuation using PTFE tubing for the stoppers
and high molecular weight polyethylene braided line for
the tendon. This combination provided a low coefficient of
friction, which is beneficial since the force needed to pull the
cable increases as more curves are formed in the path [38].
The tendon implementation can only be used to accurately
actuate between two discrete shapes because a specified value
for A along the line of actuation will not be guaranteed until
the cable is fully actuated and all the stoppers are touching.
In practice, this happens because, as the cable is actuated, the
tube wall will buckle and the tube will bend first at a single
point. This buckled point will have a much lower stiffness than

the rest of the tube and will require only a small force for each
additional displacement in order to change the volume. This
point will continue to be the location of bending until either
that small force is greater than the force to produce a new
buckle or until the stoppers touch. When either of these occurs,
a new buckling point will appear. This will repeat until all the
stoppers are touching, at which point the specified actuation
can be guaranteed. While the tendon actuation shown here
is achieved by pulling on the tendon by hand, this actuation
method has been previously demonstrated using DC motors to
autonomously shape helical tendon paths [23].

C. Pneumatic Artificial Muscles

Pneumatic muscles are a class of actuators that change
length or shape based on the internal pressure in the actuator
[14], [39], [40]. When made uniformly, the muscles will have
uniform contraction or expansion along the length.

For our final implementation we use a type of pneumatic
artificial muscles (PAMs) called series pneumatic artificial
muscles (SPAMS) [40]. sPAMs contract with increasing inter-
nal pressure and can be constructed of the same inextensible
plastic used to construct the robot bodies. By constructing
a robot with a pneumatic artificial muscle along the line of
actuation, we can shorten the full line of actuation simul-
taneously, and the actuation will be approximately uniform
given a sufficiently short robot (less than 1 meter long)
[6]. The use of sPAMs on growing robots was first shown
in [20], which demonstrated that growth and steering using
sPAMs act as independent degrees of freedom. While previous
implementations used tabs heat-sealed to the body to attach
the sPAM, in order to replicate a general line of actuation,
an sPAM actuator can be attached along the desired line of
actuation with a soft viscoelastic adhesive (TrueTape, LLC).
For the purposes of the model, we assume that the contraction
ratio, A(s), will be the same along the entire length of the
actuator at any given time, and that the contraction is a
function of the pressure within the actuator and the pressure
within the robot [40]. Therefore, while the value of A(s) will
be the same at all points along the robot, we can continuously
change the A value within a range over time by changing the
pressure, while maintaining a set 0 and D (Fig. 6(c)). Initial
validation of this assumption was carried out with a 0.5 m long
robot with @ varying between 5~ and 10° along the length. As
the actuator pressure was changed, measurements showed an
average error in the expected contraction ratio of 2.1% and
a maximum error of 3.8%, with no clear relationship with
length or pressure and only a small increase with varying angle
(2.4% versus 1.7%). Unlike the mechanically programmed and
tendon and stopper implementations, the value of A is not
inherently known from the construction, so either a mapping
must be developed to relate the pressure to the shape or another
measurement of the actuator strain will be needed.

IV. MODEL VALIDATION

We experimentally validate the geometric models introduced
in Section II, using the implementations described in Sec-
tion III. We start by showing validation of uniform helical
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actuation for both static and active shapes, and then move on
to experiments on generally routed actuators, again static and
active.

A. Uniform Actuation

To validate the geometric model for uniform helical ac-
tuation, we built both static and active shapes with uniform
actuation along the tube length. After extracting the 3D path
of the resulting shapes, we ran a global optimization to find the
best match between the data, r(s), and the vertically aligned
helix parameterization in Equation (1). In all situations, we
optimized the initial orientation, Ry, and initial position, Py,
of the data:

Ro = R (71)R:(12)Ri(13) (3D

Py = [x0,¥0,20]" (32)

where R, and R, are rotations about the x and z axis,
respectively, 71, %2, and 3 are Euler angles, and xp, yg, and
70 are the offsets in x, y, and z directions respectively. The
data was rotated first, 7,4 (s) = Ror(s) = [x,y,z]7. Then the x
and y components of the rotated data were compared to the
helix equations in Equation (1), rewritten as a function of z
and including the initial position:

$n(s) = Roos (Z“ +ZO) .

b
(s) (33)
Ym(s) = Rsin (Zb +Z0> +yo
with the optimization minimizing the error function:
e =Y (x(s) —xm(s)*+ 00) —ym(s)% (34)

N

1) Static Helices: To test a large range of the parameters,
we built static shapes for A € [0.4,0.75] and 6 € [2.57,507],
with a tube diameter of 2.62 cm and material thickness of
60 um (Fig. 7). The length of the actuated path, the inner
helical path, was 30.5 cm for all shapes. Qualitatively, changes
in O changed the relationship between the pitch and radius of
the path, modifying the slope of the helix, while changes in
A tightened or loosened the helix.

The shapes were measured using a magnetic tracker system
(Ascension Technology Corporation trakSTAR). The tracking
system measured the position and orientation of a sensor probe
relative to a stationary transmitter, with a spatial accuracy of
1.4 mm RMS and an update rate of 80 Hz. The measurements
were read and saved into a text file using a C++ program.
The sensor probe was 2.0 mm in diameter and was attached
to a cable 30.5 cm long. Measurements were made by running
the sensor probe along the inner or outer path of the shape.
To achieve this without applying forces that would distort the
shape, after the shape was constructed we taped short, rigid
tubes along the path to be measured, pushed the sensor probe
and cable through the tubes up to a length of 30.5 cm, and
then slowly pulled the probe through the tubes by hand while
measuring its position relative to the transmitter. The probe
was light enough to avoid deforming the shape, but the shape
could still be temporarily distorted while the probe was moved,

Contraction ratio, A
0.5 0.66

0.4

Angle, 0

Fig. 7: Static helix prototypes for a range of actuator parameters, 6
and A, with a tube diameter, D, of 2.62 cm. The shapes are unactuated
and produced using the mechanically programmed implementation
(Fig. 6(a)). The length of the inner path was 30.5 cm for each shape.

so we only recorded data points with the probe stationary, and
we took the average value over 1-2 s of measurements to lessen
the effects of noise. The prototypes were mounted to a surface
throughout the measurements so that both the inner and outer
helix paths could be measured with the prototype shape in
the same orientation. These data sets were aligned vertically
and matched with the model according to the optimization
described above. The helix parameters, R;, R,, and b, were
calculated from the known actuator design parameters, and the
error between the paths was minimized over 1, %, 13, X0, Y0,
and zg. Both inner and outer paths were fit simultaneously, and
the error of the paths (Equation (34)) were summed to create
a combined error. Examples of the resulting match between
modeled and measured shapes, including the position error
as a function of length along the path, are shown in Fig. 8.
The alignment of the shapes was most successful when more
revolutions of the helical path were measured, so paths with
high values of 6 and low values of A were easier to orient.

We measured and fit all 28 produced shapes. To quantify the
fit, we used the root mean square error (RMSE) of the data to
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Fig. 8: Examples of matching between the constructed shape and the modeled helix for = 5" and A = [0.4,0.5,0.66,0.75]. Measurements
are of the static helices shown in Fig. 7. The inner and outer paths were matched simultaneously using the same initial orientation and
position. Top row shows 3D paths of the model and measured data while bottom row shows the position error for inner and outer paths.

the helical path, calculated separately for the inner and outer
paths, and the R? value to quantify both fits together (Fig. 9).
Shapes with higher RMSE during initial fitting were measured
and fit multiple times to check consistency of the measurement
technique and help minimize human error. In Fig. 9(a), we
can see that the RMSE error overall is relatively small, less
than 15 mm over a length of 300 mm, with the exception
of the & =2.5°, A = 0.4 point. This much higher error
can be explained by looking at the predicted pitch from the
model, b = 0.252 cm, which give a rise for one revolution of
27b = 1.58 cm, less than the tube diameter, 2.62 cm. This self-
collision prevents the helix from taking on the predicted shape.
In general, self-collision in helical actuation, which is not
considered in the model, occurs when at least one revolution
is completed and 27bh < D or equivalently, using the equation
for b (Equation (12)), when 7sin(20) + cos(20) < %
Predicting similar self-collision for general actuator routings
is a topic of future study. Looking at the remaining shapes,
there appears to be a trend where higher angles and smaller
strains, i.e. larger values of A, lead to less error. This is likely
explained by larger 6 making shapes with tighter profiles less
easily deformed by external forces like gravity, while larger A
leads to fewer revolutions for the same actuator length, giving
less room for error in construction to affect the match to the
model. In the model helix R? data in Fig. 9(b), we can similarly
see that larger values for the contraction ratios, A, have better
fit (higher R?) on average.

To further examine the model, we compared the results of
fitting the model to fitting the best helices for both inner and
outer path. The same optimization and error function apply
(Equations (31)-(34)), but R;, R,, and b are added to the list
of variables being fit, instead of coming from the model. The
only restriction here is that the inner and outer paths must share
the same pitch, since this is required for the two helices to be
attached to the same tube. The R? value of this fit is added
to the plot in Fig. 9(b) as the best helix fit. The difference
between the model and best helix fits indicates what amount
of error lies in the model, and what amount can be attributed
to measurement or implementation error. We can see that the
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Fig. 9: Metrics quantifying the fit of the model to the measured
shape for the static test helices in Fig. 7. (a) The root mean square
error (RMSE) of the innermost and outermost helices. Errors are low
on average relative to the length of the robot measured and the largest
RMSE can be explained by self-collision preventing the tube from
reaching the predicted shape. (b) The R? value of the model predicted
helix compared to the R? for fitting the best helix for the data. For
the majority of shapes, the model provides nearly as good a fit as the
best helix.

difference in the R? values is small, again with the exception of
the small 6, small A shape. Not counting this self-interfering
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Fig. 10: Errors in the shape and actuator parameters for the static
helices in Fig. 7. These errors compare the best fit helix parameters
(Fig. 9(b)) to the model helix parameters and show the sensitivity of
the helix shape to changes in the parameters. (a) Percent error of the
helix shape parameters shows low error in the pitch parameter and
outer radius, and higher error in the inner radius. (b) The actuator
parameters show low error overall, with the highest error in a few
shapes occurring in the angle of the actuator 6.

shape, fitting the best helix possible leads to a small increase
in the average R” value from 0.94 to 0.96.

Finally, we looked at the difference in the shape and actuator
parameters between the model helix and the best fit helix
(Fig. 10). We calculated the percent difference of the best
helix fit parameters compared to the model helix parameters.
In Fig. 10(a), we can see the error in R;, R,, and b. The
parameter error, combined with the data in Fig. 9(b), indicates
where the helix shape is most and least sensitive to changes
in the parameters. With a few exceptions, the percent error is
below 15% for most parameters. This error is largest for R;
because the value is near zero for many of the shapes tested.
As expected, the self-interfering shape registers a high error
in the pitch parameter. Using the inverse model equations in
Table I, we calculate the actuator parameters for the best fit
helix. The error in these actuator parameters compared to the
true parameters is shown in Fig. 10(b). The largest errors are
generated in O for the shapes with the lowest value of 6.

It should be noted that we focused on the variations from
changing 6 and A in our validation of the model. Diameter
variation was not explored as deeply because the equations for
R,, R;, and b are all proportional to D as seen in Table I. So
the expected effect of changing D is a direct scaling of the
resulting shape, given the same A and 6. This was verified
in [22].

2) Actuated Helix: We carried out a similar validation of
the uniform helical actuator model using an active shape.
Using an sPAM as the actuator (Section III-C), we used a
3.23 cm diameter tube with a wall thickness of 68 um for the
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Fig. 11: A series of actuation states for an active shape with a
series pneumatic artificial muscle (sSPAM) routed around a 3.23 cm
diameter tube at an angle of 4°. The shape is measured by a set
of active motion capture markers attached to the outer path of the
helix. (a) The range of actuation demonstrated and the locations of
the actuator and active markers. (b) A frame of the motion capture
tracking showing the 15 tracked points. (c) Example fit between the
model and the measured data. The optimization includes fitting A4
because it varies as the SPAM actuates. R> average is 0.96, with
6 =4" and D = 3.23 cm. (d) Variation of the fit A over two cycles of
actuation. Gaps show where markers were obstructed or other errors
caused the helix fitting to fail.
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Fig. 12: Actuator routing and the modeled and implemented shapes for a static general shape on a tube with diameter 4.77 cm. (a) Shape
of the general actuator path drawn on the tube, generated from a polynomial function. The x-axis shows the length of tube and the y-axis
shows the circumference of the tube. This allows represents the line of actuation drawn onto the tube when laid flat. (b) The predicted shape
from the model given the actuator path in (a) and A equal to 0.7. The red line shows the actuator line on the deformed shape. (c) Resulting
shape from implementing the actuator path in (a) on a physical static prototype. The black line shows the line of actuation. (d) Measured
shape of the polynomial based actuator path aligned to the modeled shape using ICP. The measured points are colored based on the z-height.
(e) Position error versus length along the path. The RMSE between the data set and model is 0.45 cm with a maximum error of 3.0 cm.

body and routed the SPAM at an angle of 4. As the actuator
shortens, the tube is shaped into a series of helices (Fig. 11(a)).

We measured the shape as the SPAM was actuated using
a motion capture system with active LED markers (Impulse
X2E Motion Capture, PhaseSpace). In total, 15 points along
the outermost path of the helix were tracked (Fig. 11(b)).
Since only two of the actuator parameters, 6 and D, are static
during actuation, we found the helix fit for the measured shape
using the optimization above and adding A as a optimization
variable (Fig. 11(c)). Due to the camera placement, partial or
full marker occlusions occasional occurred during actuation.
These frames were removed as they led to inaccurate shape
matching (seen as small gaps in the plot in Fig. 11(d)). Overall,
the fits had an average R?> value of 0.96, on par with our
fits for static shapes above. Fig. 11(d) shows the fit A values
over time as the actuator is shortened and released for two
cycles. The value of A ranges between 0.97 and 0.87, smaller
than the range analyzed in the static helix experiments, but
enough to create significant shape change as seen in Fig. 11(a).
This range also matches well with the smallest achievable A
of the sPAM measured with the actuator alone, A = 0.73,
since we expect that the range of achievable A will be less
when attached to a pressurized tube due to the stiffness of the
pneumatic beam.

B. General Actuation

After validating the uniform helical actuation model from
Section II-C, we validate the extension of this model to
continuously varying actuation (Section II-D). We again do
this for both static and active actuation and extract the 3D
path of the resulting shapes. For the general paths, we use the
iterative closest point algorithm (ICP) to match the modeled

and measured shapes [41]. This works well for the general
actuation since, unlike the uniform actuation, portions of the
resulting shapes are not often self-similar to other portions of
the shape, allowing the ICP algorithm to find a match more
easily.

1) Static General Path: For the static path, we choose a
routing based off a fourth order polynomial previously used in
testing Cosserat-based models [28]. The path routing is defined
in terms of the angle of the actuator around the circumference,
¢ (s), parameterized in terms of the length along the tube, s:

0(s) = 5887 1(;00)4 — 2847 <1os00)3

320(—2 ) 462
+320(1506) + 5000

where s is in centimeters, and ¢(s) is in radians. The total
length of the tube used, .Z, is 150 cm. We plot this actuator
path as it looks on the undeformed tube when flattened for con-
struction purposes (Fig. 12(a)). This is done by calculating the
distance of the path around the circumference, c(s) = 2¢(s),
and plotting it as a function of the length along the tube.
The actuator parameter 6(s) can be calculated by rewriting
Equation (21) as:

(35)

D¢(Si+1)¢(5i)). (36)

0(s;) = arctan <2 AL

For the last actuator parameter, we choose A equal to 0.7.
The resulting shape using the model in Table I and the
transformation matrices in Equations (23)-(25) is shown in
Fig. 12(b). Finally, the actuation is implemented in a physical
prototype using a tube with diameter of 4.77 cm and wall
thickness of 68 um, shown in Fig. 12(c).
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Fig. 13: General actuation of a pneumatic backbone using an sPAM. The actuator routing is based on sinusoidally varying the value of
6. (a) Shape of the general actuator with sinusoidal 0 variation drawn on the tube as length along the tube versus the distance around the
circumference. (b) Series of actuation states of the physical prototype with the actuator path from (a) as the sPAM is pressurized, changing
A. The sPAM had a minimum measured A value of 0.65 when actuated alone, and this range will be truncated by the stiffness of the soft
growing robot body. (¢c) Measured and modeled shapes for the SPAM actuated generally routed path. The best fit A value for each measured
shape, given the model, are used to generate the model comparison shape and are shown in the legend. (d) Position error versus length along
the path for the SPAM actuated shapes. The measured shapes, with decreasing value of A, have an RMSE equal to 1.67 cm, 2.36 cm, 2.88
cm, 2.72 cm, and 3.20 cm and maximum errors of 2.70 cm, 6.04 ¢cm, 7.10 cm, 4.78 cm, and 7.27 cm.

Qualitatively, Fig. 12 shows a good match between the
modeled and implemented actuation. To quantify this, we
measured the inner path of the implemented shape using the
magnetic tracker. The magnetic tracker sensor was held up to
the inner path and traced by hand. This path was aligned to
the modeled path using the ICP algorithm. The results of the
alignment are shown in Fig. 12(d) and the error over the length
is shown in Fig. 12(e). The modeled shape and implemented
shape match each other well, with an RMSE of 0.45 cm with
a maximum error of 3.0 cm.

2) Actuated General Path: We also implement an active
generally routed actuator using sPAMs. Here we design 0(s)
directly, choosing:

0(s) = % sin(0.1s) 37)

where s € [0,100] cm. The tube has a diameter of 3.31 cm
with a wall thickness of 68 um and the length of each tube
segment is Al(s) = 1 cm. The shape of the actuator around the
circumference of the tube is calculated for implementation and
shown in Fig. 13(a). When the actuator is pressurized, the tube
deforms into a series of non-uniform shapes with decreasing
values of A (Fig. 13(b)).

The shape is measured during actuation using the Impulse
X2E Motion Capture system. Again, we track 15 points along
the outer path of the shape. We then analyze a subset of
the achieved shapes, shown in Fig. 13(c), and attempt to
minimize the RMSE from the ICP fit by varying the value of
A. Fig. 13(c) shows the best fits and the values of A leading
to those fits for five shapes along the full range of actuation

and Fig. 13(d) shows the position error as a function of length.
The best fit A values range from 0.76 to 0.98. This A range
is again confirmed by the measured maximum contraction of
the actuator alone, A = 0.65, taking into consideration the
stiffness of the pneumatic backbone. The fits for the shapes,
going from largest A to smallest, have RMSEs of 1.67 cm,
2.36 cm, 2.88 cm, 2.72 cm, 3.20 cm and maximum errors of
2.70 cm, 6.04 cm, 7.10 cm, 4.78 cm, and 7.27 cm. The error
increases as the shape is actuated further, but these errors are
still relatively small given the total length of the tube, 100 cm.
This example also shows how even “simple” tendon routings,
like a sinusoid, can lead to rather complex final shapes.

V. INVERSE DESIGN

Section IV shows how the model can be used to accurately
predict resulting shapes from a given actuator path, so we
now demonstrate how we can use the model to design an
actuator path that will actuate into a desired shape. While we
have already shown the inverse model for helices in Table I,
the inverse solution is not trivial for general paths. In this
section, we will discuss the actuator constraints and features
we need to consider in the inverse design process, different
methods for finding an actuator path to match a target shape,
and demonstrations of the actuator design process.

A. Design Constraints

In switching focus from shape prediction to actuator design,
the capabilities and limitations of each actuation method
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Fig. 14: Helical shapes produced using high values of 1 to establish
parameter limits. The actuator contraction ratio is kept at A = 0.5.
Angles over 60° tend to produce poorly formed shapes without
significant shape change that could be used to matching target shapes.

become important to consider. Some of these constraints apply
to any style of actuation because they are more dependent on
the magnitude and direction of contraction that is feasible to
apply to the pneumatic backbone, while others are directly an
impact of the type of actuator chosen.

The first important constraint to consider is the bounds of
the actuator parameters, 6, A, and D. While these are not
absolute limits for the most part, they are useful practical
limits. For the actuator angle, we look at the maximum angle
that is feasible and/or useful for creating shapes. While we
only tested up to 50° for the uniform validation in Section IV,
we tested larger values to find practical limits. The helices for
45°, 60°, and 75° are shown in Fig. 14. While actuators with
values of O over 60 can be physically constructed, we can
see in the shape produced with 6 = 75" that high values of 6
lead to poorly formed helices and do not result in significant
deviation from a straight tube, besides reducing the length and
apparent diameter. While these effects might be useful in some
cases, for the purposes of matching desired shapes we limit
ourselves to |8] < 60°. For the limits of the contraction ratio,
A, we have one absolute limit: we can only allow actuator
contraction, i.e. A < 1. This limit is based on the inextensibility
of the pneumatic backbone materials. For the lower limit,
we primarily consider the actuator capabilities to impose a
parameter constraint. For example, depending on construction,
the minimum A value for an unloaded sPAM is between
0.5 and 0.7 [40]. Similarly, for mechanically programmed
and tendon actuation, A values less than 0.4 were found to
be difficult to produce consistently and impeded the growth
function of the robot. These implementation constraints give
practical lower limits for A depending on the implementation.
Lastly, we consider the limits on diameter, D. While previous
work has demonstrated soft growing robots over orders of
magnitude in size [5], consistent and precise construction
of a tube of a desired diameter is not feasible. For this
reason, unlike the other parameters where we limited the
range, for the diameter we limit the choice to those available
pre-manufactured off-the-shelf. This still provides us a wide
range of choices, and does not limit the potential designs

significantly, since diameter change only scales the produced
shape [22].

The other important constraint to consider is the actuator
implementation used, as well as any coupling between pa-
rameters due to that actuator implementation. As discussed in
Section III, the different implementations of tendon actuation
lead to different trade-offs. Two of the implementations dis-
cussed, the mechanically programmed shapes and the tendon
and stopper actuation, can only produce a single well-defined
shape. However, we can easily implement paths where 8 and
A both vary with these actuator implementations. Pneumatic
muscle actuation, as seen in Fig. 11 and Fig. 13, allows for a
whole family of shapes to be actuated as the pressure changes,
but it is difficult to vary A over the length of the actuator.
For the pneumatic artificial muscles discussed, a single input
pressure is used to control the actuator contraction, so any
variations in A must be designed into the response of the
pneumatic muscle to a given pressure. With an sPAM actuator,
A can theoretically be varied by a small amount by changing
the spacing of the o-rings [40]. However it is not obvious
if the ratio of A values will remain consistent as the shape is
actuated. More modeling and testing would be needed to verify
the feasibility of this strategy, so, for this design process, we
limit ourselves to a single value of A over the actuator length
when considering SPAM designs.

B. Design Algorithm

We developed an algorithm to iteratively design paths to
match desired shapes. The algorithm is modified slightly
depending on the actuator constraints described above, but
each follows the same basic structure. We show the algorithm
for the mechanically programmed implementation and tendon
and stopper actuation in Algorithm 1. In the algorithm, we
take the desired shape, 7.4, and find vectors of values for
0(s), A(s), and Al(s), as well as an initial transformation T,
that allow us to most closely match the shape. As discussed in
Section V-A, we only have a few choices for the tube diameter,
D, so we choose an appropriate value based on the size of
the desired shape and give D as an additional input to the
algorithm. The actuator parameters are used to calculate the
achieved path, 7., using Equation (27). We compare the desired
and achieved shapes using the sum of the linear distances
between each pair of points:

e=) 7e()) = Fea(iI (38)
J
where e is the error in our shape matching.

To find values for 0(s), A(s), £(s), and T that produce a
shape closely matching the target shape, we attempt to mini-
mize the error, e. If we attempt to optimize over all the actuator
parameters, with a set of parameters for each point along
the path 7. 4, the problem quickly becomes intractable as the
number of variables to optimize grows. To lower the number of
variables to optimize over, we took two approaches. First, we
grouped sets of neighboring points into segments which will
have the same actuator parameters, dividing the path in 7,4
into uniform helical segments with n points each. Secondly,
instead of optimizing all segments simultaneously, we treat the
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Fig. 15: Example of the inverse actuator design process using tendon and stopper actuation to match a trefoil knot. (a) Results of fitting
to the trefoil knot using the design algorithm at three points in time. Each blue dot marks the end of an actuator segment covering n = 10
points of the desired shape. The actuator segments are fit in order, with all previous segments held constant, and using a look-ahead fitting
for the next k =4 segments. (b)-(c) The designed actuator parameters, A(s) and 6(s), along the length of the tube. These parameters can
include high frequency noise, so they are low-pass filtered. (d) Plot showing the effects of filtering the actuator parameters.

desired path, 7, 4, like a trajectory. This means we optimize the
actuator for each segment of the path given the fixed actuation
state from the previous segments and considering the resulting
error in the next k segments. This look-ahead is important
because the starting position and orientation of a segment is
given by the previous actuation, so small errors can accumulate
quickly if each segment is treated by itself. The results of
this iterative process are described in Algorithm 1 and can be
seen in Fig. 15(a). Within Algorithm 1, line 2 fits the initial
transformation and first k& helix parameters. The algorithm
then iterates through the N/n segments of the fit, with line 6
fitting k helix parameters starting at the jth point. The function
in line 12 is an implementation of the forward kinematics,
Equation (27). In all cases, the optimization is performed in
Matlab using a global search strategy with the finincom solver
and sgp algorithm. The global search is performed over 2000
trial points for the initial segment and 300 trial points for each
additional segment. Initial values for the optimization variables
for the first segment fit are set to A;40 =0.75, 61,40 =0, and
lio=|Fea(sj+1) —7ca(sj)|. Subsequent segments use the best
fits from the look ahead of previous segments to set the initial
values.

Algorithm 1 Tendon and Stopper Actuator Design Algorithm

1: function DESIGN(?. 4,D,k,n)

2: (TS, ik, 01k, 1) < argmin PathError(Fe, g, D, TS, Arx, 014, 01:4)
TV,1,0.,¢

3 N < length(7, 4)

4 for j <2 to N/n do

5: m<«— (j+k—1)

6: (lj:m7 ejjmagjim) — argmin PathError(?C‘d,D, Tgw ll:m: 91:m7 El:m)

2,0,

7 end for

8 return A,60,(

9: end function

11: function PATHERROR(F, 4,D, T, 1, 6,0)
12: 7 < actuatorToPath(D, A, 6,()

13: P TOF.
14: e YllFe(i) —Fea(@l
15: return ¢

16: end function

For pneumatic artificial muscle implementation, we modi-
fied this algorithm slightly to account for the different con-
straint from the actuation: the constraint that we need a single
A for the entire actuator. To incorporate this constraint, we no
longer optimize the shape segments over A. Instead, we give
A as an additional input, like D, to the algorithm, and iterate
through potential values of A external to the optimization.
We save the actuator parameters and A value for the shape
with the smallest error, e. Since this slows down our overall
optimization, we speed up the search by stopping solutions
that will clearly fail. For this criteria, we consider a design
to have failed if the cost function reaches nkD/2, meaning on
average each of the nk points being analyzed at a step has an
error equal to the tube radius.

C. Demonstration

1) Actuator Design: We demonstrate the inverse design
solution against a series of target shapes. To start, we designed
an actuator to allow a growing robot to tie a knot with
its own body. We plan to implement this with tendon and
stopper actuation, so we used the tendon actuation algorithm,
Algorithm 1. The path chosen is a trefoil knot [42] with the
parameterization:

my(sin(t) + 2sin(2¢))
my(cos(t) —2cos(2t))
—mysin(3¢)

r(s) = (39)

with t € [-0.2x,1.57] and m,, my, and m; scaling parameters
for the shape. An example of this knot shape can be seen in
Fig. 15. Using Algorithm 1, we designed actuators for a range
of 125 different trefoil knots for a tube of diameter 2.43 cm
and a wall thickness of 68 um, varying the parameters m,
my, and m; in Equation (39) between 2 and 6. The paths were
discretized into 400 points equally spaced in 7. The algorithm
was performed with n = 10 and k =4, and it took an average
time of 157 seconds and a maximum time of 220 seconds
to complete on a laptop computer. The RMSE between the
desired and modeled paths for the range of trefoil knots



IEEE TRANSACTIONS ON ROBOTICS

08
06 >

0.4

L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

! L L L L T L
10 20 30 40 50 60 70 8 90 100

Length along tube, s (cm)

20 40 60 80 100
Length along tube, s (cm)

—
—~ 20
%D /\ 0.8
<
© = ) 06 >
Y =
20 0.4
. . L
g 0 10 20 3 40 5 60 70 8 90
—
< S
=
AV e e S
= f e Y4 =
5 w
I o
-40 \& > \
— 2
)
= L N i w

20 40 0 10 20 30 40 5 60 70 8 90

z (cm) Length along tube, s (cm)

1
— 20 T T
] ©° Ta‘rgCt o A 0.8
. T 9 s >
E‘< @ Designed | o ) ’
N 20 0.4
‘ \ 250

50 100 150 200 250
Length along tube, s (cm)

Fig. 16: Examples of inverse actuator design process using tendon and stopper actuation showing 3D fit, actuator parameters over the
length, and actuator shape. (a) Actuator fit for Bézier curve with control points [0,0,0], [76,0,0], [—4,19,42], [34,—52,13], [16,19,48],
with RMSE 0.20 cm and maximum error 2.19 cm (b) Actuator fit for Bézier curve with control points [0,0,0], [54,0,0], [61,—50,18],
[8,—60,18], [33,0,30], [13,—10,6], with RMSE 0.13 ¢cm and maximum error 1.22 cm. (c) Actuator fit for 2D Bézier curve with control
points [0,0], [50,0], [24,—24], [0,—50], [50,—50], with RMSE 0.09 cm and maximum error 0.68 cm. (d) Actuator fit for a piecewise linear
curve, interpolating between the control points of (b), with RMSE 2.23 cm and maximum error 7.20 cm.
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Fig. 17: Implementation of the designed path to achieve a trefoil knot. (a) The shape of the actuator on a flat tube with diameter 2.43 cm. Blue
represents the location of stoppers or unpinched areas and red shows where material is removed during actuation. (b) Physical implementation
of the trefoil knot by mechanical programming. (c) Measurement of the trefoil knot in (b) using the magnetic tracker compared with the
desired path. (d) Position error versus length along the path. The RMSE of the path is 6.88 mm and the maximum error is 25.3 mm.

was 0.65 mm on average and 1.57 mm maximum over path
lengths ranging between 620 mm and 1602 mm. Fig. 15(b)-
(c) shows the fit for the trefoil knot with m, = m, = m, = 4.
For this scaling, the algorithm took 138 seconds to complete

and the RMSE between the desired and modeled paths was
0.22 mm over a path length of 980 mm, with a maximum
error of 0.48 mm near the start. While for the most part
the design algorithm produces actuator designs with smooth
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variation of the parameters, there are some higher frequency
changes at the start and end of the path. This is likely due
to those parts of the path having low curvature. For ease of
construction, we decrease this parameter variation slightly by
low-pass filtering the parameter curves. Since we target only
the infrequent high frequency oscillations, this filtering does
not have a major effect on the resulting shape, as shown in
Fig. 15(d), and increases the RMSE relative to the desired path
for the displayed trefoil knot to ~ 0.76 mm.

The algorithm performs similarly well on other smooth
curves. Fig. 16(a)-(c) show the results of using Algorithm 1
to fit tendon and stopper actuation paths for smooth Bézier
curves, showing the fit A and 6 values over the length as
well as the resulting shape of the actuator on the tube. For
each curve we used n = 10, k =4, and 400 points along the
length, resulting in an RMSE of 0.20 cm, 0.13 cm, and 0.09 cm
relatively and taking an average of 199 seconds to calculate.
While the algorithm performs well overall, the greedy nature
of the algorithm leads to high oscillatory behavior in 6 on
straight sections in Fig. 16(a) and (c) due to overshooting the
target shape. Interestingly, the algorithm is able to fit the in-
plane s-curve seen in Fig. 16(c) very well. Lastly, we fit an
actuator for a non-smooth curve with n = 10, k =4, and 200
points along the length (Fig. 16(d)). The RMSE is higher, at
2.23 cm over the 250 cm length, but the shape manages to
stay close to the target shape, with 1.64 cm of error at the end
even after a maximum error of 7.20 cm is reached.

2) Design Implementation: We translate the actuator pa-
rameters from the trefoil knot in Fig. 15 to an implementation
plan using Equation (22) to calculate ¢(s) for the actuator
and using that to plot the distance around the circumference
(Fig. 17(a)). In addition to the path of the actuator, we
show the sections to be removed (in red). These sections are
held pinched with tape in a mechanically programmed imple-
mentation or represent the segments without stoppers in the
tendon and stopper implementation. The implementation using
mechanical programming is shown in Fig. 17(b), and achieves
the knot tying. We measure this shape with the magnetic
tracker system and compare it to the desired path (Fig. 17(c)).
The RMSE of the measured path relative to the designed path
is 6.88 mm. The increase in error compared to the designed
shape above is primarily due to manufacturing errors. Larger
error between the measured and designed shapes develops at
the end of the tube, with 25.3 mm maximum error at the
tip. These points are at the end of the algorithm’s fit sections
and have relatively low actuation (as seen in Fig. 15(c)), so a
small initial manufacturing error quickly grows without being
corrected. This highlights the importance of the trajectory
fitting method and suggests that future improvements to the
design algorithm should consider the effects of manufacturing
errors. We also implemented the actuation in Fig. 17(a) using
a tendon and stopper actuator, which was then actuated by
hand. The results of actuating the tendon pulled trefoil knot
while growing can be seen in Fig. 18(a)-(d).

VI. DISCUSSION

In the previous two sections, we have demonstrated using
the geometric model with a piecewise helical formulation to

both accurately predict an actuated shape given the shape of
the actuator and to design actuators that can match desired
shapes. Here we discuss conclusion drawn from the experi-
mental results, the interaction of steering with growth, limi-
tations within the produced shapes and model, and potential
applications for shape matching.

A. Forward and Inverse Model

The static and active tests of the helical and general actu-
ation show that the geometric model accurately predicts the
resulting helical shape from the actuator parameters and that
general paths can be approximated as a series of uniform
helical paths with the correct alignment between segments.
Areas where high amounts of error do exist are due to self-
collision or occur near the ends of shapes. Best helical fits do
not show any clear errors in the model shape or actuator pa-
rameters, additionally validating the model. Lastly, the active
SPAM actuation further confirms the model by showing that
continuously varying one of the actuator parameters, A, over
time leads to a family of shapes sharing the expected 0(s) and
D as predicted by the model.

The inverse design demonstrations show the ability to use
this model as a design tool. Smooth and non-smooth 3D curves
can be matched and challenging 2D s-curves can be achieved
with single actuators. Improvements in the optimization algo-
rithm could lead to quicker optimization of designs with finer
discretization. The examples do show areas for improvement,
including the tendency to create high oscillations in parame-
ters, which will be addressed in future work.

B. Actuation and Growth

While the previous experiments and demonstrations focus
on the shape change, the thin walled body of the inflated-beam
robot is specifically chosen to allow for “growth” from the tip
through material eversion [5], and this ability to grow adds
interesting and useful features when it comes to general shape
actuation. These features can primarily be broken down into
two ideas: expanding the types of shapes that can be made
with a single actuator, and expanding the environments where
these shapes can be actuated and used.

Both of these features can be seen in Fig. 18, where we
compare actuating a tendon driven trefoil knot while it is
growing versus actuating after the tube is fully extended. First,
growth allows us to actuate into a knot with a single actuator.
We can see two points in the growing sequence, shown in
Fig. 18(b)-(c), when the path crosses itself, allowing the knot
to form and to stay tied in Fig. 18(d). Comparing this to the
actuation without growth, Fig. 18(g) shows the fully actuated
tube in self-collision at the two locations, which are the two
crossing points of the knot, so the knot is unable to form. This
demonstrates that growing while actuating allows the system
to create features and geometries that cannot be achieved
normally with a single actuator alone by taking advantage of
growing to move around potential self-collisions. In addition,
we can imagine exploiting self-collision in the function of the
actuation, like in Fig. 18(d), where the self-collisions that were
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Fig. 18: Implementation of the trefoil knot path using a tendon and stopper actuator pulled by hand. The top row shows successful knot
tying with growth and actuation together. The bottom row shows failed knot tying by using actuation after growth. (a)-(d) The robot is
simultaneously actuated and grown. The knot requires two self crossings to form; (b) shows the first self crossing, and (c) shows the second
when the knot is tied. (d) Tension in the tendon is released and the robot remains knotted. (e)-(g) The robot is actuated after being grown out.
(f) The tube sweeps through a large area as the actuator is shortened. (g) The robot fails to knot when fully actuated due to self-collision.

avoided using growth are now active as the tendon relaxes,
allowing the robot to stay tied.

Using growth during the actuation also reduces the amount
of free space needed to produce the shape, allowing us to avoid
unnecessary collision with the environment. The grown path
remains contained to the perimeter of the knot until we are
done actuating in Fig. 18(a)-(d), while the directly actuated
path in Fig. 18(e)-(f) swings through a wide area around the
tube. When actuating in a constrained space, it may be difficult
or impossible to fully actuate a non-growing robot, meaning
growing will be the only way to fully deploy the goal shape.

Growing while actuating does have downsides as well. As
the total angle swept out by a path increases, the force to actu-
ate the tendon and the pressure needed to grow both increase as
an exponential function of that angle [43]. Thus, growing into
a path will become more difficult the further along the path
the robot grows, and may actually not be possible depending
on the pressure available. We found periodically relaxing and
re-tensioning the tendon was found to encourage growth to
continue in Fig. 18(a)-(d). It is possible that by releasing the
tendon and lowering the curvature slightly, we could avoid
stopping the growth or restart it when it did stop. This friction
is the result of internal material contacting the inflated tube,
which previous work has mitigated by carrying the material
at the tip [44] or by switching to a material with lower self-
friction, like some coated fabrics [45].

C. Actuator and Shape Limitations

The infeasibility of large 6 values places some limits on the
types of curves that can be achieved. Creating a planar curve
that instantaneously switches between positive and negative
curvatures, 1.e. an s-curve, requires the actuator to route at a

high angle, ideally a 90" angle, for a short section, as seen
in the design in Fig. 16(c). This is not possible with the
pneumatic artificial muscle actuators, and it is also potentially
difficult to manufacture and actuate high angles for any
implementation, as shown in Fig. 14. Put another way, the 0
limit and the requirement that the actuator shape be continuous
along the length place a hard limit on the instantaneous torsion
values that can develop between segments of the actuator,
though we will investigate relaxing these restrictions in the
future for mechanically programmed implementations.

D. External Forces and Buckling

In this model, we ignore forces and instead focus on the
geometry of the problem to generate the kinematics of the
tendon actuation. While we showed that this method allowed
us to generate accurate predictions of shape, it also ignores
external forces, which may cause anywhere from small errors
in the shape to large localized errors when local buckling of the
membrane causes large movement of the structure. While large
deformation under gravity or other forces was not observed in
the tests preformed, previous work has shown that individual
pre-programmed turns cause locations where the robot will
preferentially bend when growing into obstacles [46], so it
is possible that local wrinkling along the actuator length also
leads to lower resistance to deformation. More investigation
is needed on how shape actuation affects the stiffness of the
pneumatic robot backbone and how external forces affect the
shape, in order to predict and correct for these errors.

E. Applications

The general shape actuation of a soft growing robot de-
scribed here can be used to create desired deployable shapes.
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This model allows us to make a wide range of shapes that can
be deployed from a small initial size, and that can be deployed
where space restrictions exist. Deployable structures could be
used for support or to exert forces on the environment, acting
as a structural beam or a pneumatic jack [5]. Shape control also
allows for navigation through delicate environments without
exerting forces on the environment that may be undesirable.
If the precise shape of a path in space is known, we can design
an actuator or mechanically program the robot to grow into
the path, a technique previously proposed for creating growing
catheters [47], [48]. Lastly, shape control could be used to
create complex movements at the tip of the soft growing
robot to grab objects or interact with the environment in a
specific way. We can design actuation to wrap the robot around
an object to be manipulated, or even use the self-tying knot
actuation to give the robot support in its environment as it is
moving, and the strength of the robot body material in tension
would allow for large pulling forces. Future work will look at
the allowable errors in shape for different applications to better
judge the results of the model and actuator design method.

VII. CONCLUSION

In this work, we showed how a single actuator placed on a
soft pneumatic continuum robot can create a large range of 3D
shapes. We introduced a model for general actuator routings
that built off our previous model for uniform helical routings.
By validating this model, we showed that general actuations
can be treated as a series of uniform actuations linked together.
In addition to predicting the actuated shapes of the robot, we
showed that this model can be used to design general actuators
to create desired shapes, including tying the robot into a knot.

In the future, we want to design faster and more accurate
algorithms for finding the optimal actuator routing for a
desired path. The algorithms described in this work were
unlikely to find the optimal actuator overall, since fitting seg-
ments sequentially results in a locally greedy strategy. Future
algorithms may be able to find more optimal actuators by
refitting earlier segments occasionally. We are also interested
in creating design algorithms that target different parts of the
resulting actuation, i.e. matching a desired movement of the
tip of the robot, or matching multiple target shapes with a
single actuator. In addition, we want to expand the model to
cover more actuation situations, including understanding the
interaction of multiple actuators and adding external loading
effects to the model. While we have shown the wide range of
shapes a single actuator can achieve, multiple actuators will
allow for an even larger design space and, by accounting for
external forces, the model can help design actuation strategies
for carrying a payload or interacting with obstacles.
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