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Abstract—Continuum robots can be slender and flexible to
navigate through complex environments, such as passageways in
the human body. In order to control the forces that continuum
robots apply during navigation and manipulation, we would
like to detect the location, direction, and magnitude of contact
forces distributions as they arise. In this paper, we present
a model-based framework for sensing distributed loads along
continuum robots. Using sensed positions along the robot, we use
a nonlinear optimization algorithm to estimate the loading which
fits the model-predicted robot shape to the data. We propose that
Gaussian load distributions provide a seamless way to account
for a wide range of loadings, including approximate point loads
and uniform distributed loads, while avoiding the ill-conditioning
associated with highly resolved force distributions. In addition,
we gain computational efficiency by re-framing the problem as
unconstrained weighted least-squares minimization and by solv-
ing this problem with an Extended Kalman-filter framework. We
validate the approach on two prototype tendon-driven continuum
robots in multiple 3D loading scenarios, displaying a mean error
of 0.58 N in load magnitude and 7% mean error in load location
with respect to the length of the respective robot.

I. INTRODUCTION

Because continuum robots are inherently compliant, their
configuration is a function of both actuation and external
loading. This poses challenges for control and safety during
operation. Sensing environmental interactions is a nontrivial
task, since on-board force sensors add weight, give limited
information, and may be too large for small-scale surgical
robots [1]. This has motivated the use of force estimation
methods that rely on sensing secondary information from
which the force can be inferred from a model of the robot,
effectively using the robot itself as a force sensor. As an
example, sensing the actuation forces can provide information
about loading at the tip of the robot [2]–[4]. It has also
been found that measuring the deflections [5]–[8] or robot
curvatures [1], [9], [10] can provide a similar estimate of the
tip wrench, or of wrenches at pre-identified points of contact
[11]. Bajo et al explored using kinematic information from the
robot’s motion to determine contact locations [12], [13], and
Della Santina used a machine learning algorithm to train a
dynamic state observer [14] to detect contact locations. Shape
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data has been collected from a variety of sources including
electromagnetic trackers [7], [15], computer vision [1], [16]–
[18], or fiber-Bragg grating sensors [9], [19].

Recent research has made progress on extending force
estimation methods to sense general load distributions applied
anywhere on a robot’s surface. For non-slender soft robots, full
3D elasticity models can be used, which have an associated
linearized stiffness matrix. The inverse problem then maps
from nodal deflections to loads at each node [16], [17].
However, this approach would be inefficient and highly ill-
conditioned for slender continuum robots because their models
are typically nonlinear and have high axial stiffness.

A shape-based force estimation problem on slender elastic
rods was formulated in [18], in which we used a constrained
nonlinear optimization framework to fit a Cosserat rod model
to measured shape data by simultaneously selecting the pa-
rameters of a force distribution while solving the underlying
boundary value problem. Those force distribution parame-
terizations included Fourier series and Dirac delta functions
(point loads) with parameterized locations and magnitudes,
normal to the robot surface. A similar framework and loading
parameterization was implemented in [20], [21] to sense a
number of point forces on a passive medical instrument using
an Extended Kalman Filter. [22] also compared direct force
computations based on curvature segmentation to estimations
of point forces with an unscented Kalman filter.

In this paper we make several important advances upon our
prior work [18] and the related work above: (1) we formulate
and test our method on actuated soft and continuum robots
whereas the previous work was applied only to passive rods,
(2) we propose an advantageous parameterization of force
using Gaussians to efficiently capture the spectrum from point
loads to uniform distributed loads without incurring the ill-
conditioning seen with highly oscillatory loads, and (3) we
improve algorithm efficiency by formulating the estimation as
the solution to an unconstrained optimization problem using
a penalty method and solving it efficiently with the Extended
Kalman Filter framework.

II. FORCE ESTIMATION APPROACH

In this section we provide a general force estimation ap-
proach for slender continuum robots, where the aspect ratio
(length/diameter) of the deforming elastic material (e.g. the
backbone) is much greater than 1, usually higher than 5 or 10,
such that bending is the dominant mode of the deformation.
Given a kinetostatic model (a quasi-static kinematics model
that accounts for deformations due to external loads [23]), the
approach is capable of estimating multiple point contacts and
distributed loads applied at arbitrary locations along the length
of the robot.
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Figure 1. Our approach to the force estimation problem: (a) The model predicted robot shape (after actuation) does not match the measured robot shape due
to unmodeled external loads. (b) A distributed load is found that drives the robot model to match the measured shape data.

A. Problem Statement

Using a sensor, the positions of a number of points Np
along a continuum robot are collected. Each point is notated
pi ∈ R3 and is located at arc length si. We assume a forward
kinetostatic model for the robot is known which maps external
loading and actuator values to robot shape.

Using a nonlinear optimization approach, a distributed load-
ing can be found which finds the weighted least squares fit
between model predicted shape and sensed shape as shown in
Figure 1:

minimize
x

z̃>Wz̃

z̃(x) = ẑ(x)− z =

 p̂0(x)− p0
...

p̂Np
(x)− pNp

 (1)

where x contains unknown inputs to the model such as param-
eters for external loading,˜indicates an error between estimated
and sensed/known values, ˆ indicates an estimated value, and
p̂i(x) is the 3d coordinate produced by the kinetostatic model
given the estimated distributed load. In the vector of unknown
inputs, it is often convenient to include parameters which
encode a rigid transformation applied to the entire model,
such that the optimization simultaneously estimates the loads
and performs rigid registration from “measurement space”
to “model space”. This helps minimize errors from initial
registration which can manifest estimations of large forces
towards the base of the robot. If ζ is the twist vector that
parameterizes the registration transformation, and γ is a vector
of paramaters that encode the loading, the vector of unknowns
is

x =
[
γ> ζ>

]>
(2)

1) Incorporating Boundary Conditions: Forward kineto-
static models are commonly formulated as boundary value
problems where the distal boundary conditions are enforced
via a shooting method which applies an optimization routine
to the associated initial value problem [4], [5], [24]. In the

context of force estimation, it is efficient to combine this
model optimization loop with the estimation optimization loop
to form a single problem by weakly enforcing the boundary
conditions of the kinetostatic through penalty terms added
to the objective function of the estimation problem. The
weighted least squares framework handles this seamlessly by
augmenting the unknown x with α, the vector of unknown

initial conditions to be solved as x =
[
γ> ζ> α>

]>
, and

augmenting the vector ẑ with the vector of distal boundary
condition residuals c(x) so that the problem is written

minimize
x

z̃>Wz̃

where

ẑ =


p̂0(x)

...
p̂Np

(x)

c(x)

 = h(x) z̃(x) =


p̂0(x)− p0

...
p̂Np

(x)− pNp

c(x)


(3)

where h(x) represents the the nonlinear initial value problem.
Choosing the weights of W to be sufficiently high for the
boundary conditions can enforce them to within an acceptable
tolerance while allowing for the algorithm to converge quickly
and stably.

2) Weighted Least Squares with an Extended Kalaman
Filter: With a chosen loading parameterization and given
kinetostatic model represented by a set of differential equations
with boundary conditions, we can solve the weighted least
squares problem posed in (3). We propose to use an Extended
Kalaman Filter where the data is invariant in time:

Σ̄i = Σi +Q

Ki = Σ̄i−1H
>
i (HiΣ̄iH

>
i +W−1)−1

xi+1 = xi +Kiz̃

Σi+1 = (I −KiHi)Σ̄i

(4)

where I is the identity matrix, Σ is the co-variance matrix of
x, Q is conventionally the matrix of expected process noise,
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Figure 2. This figure illustrates the ill conditioned nature of the force estimation problem by considering highly oscillatory loads. As the frequency of a
sinusoidal distributed load is increased, the resultant deformation of a beam decreases. The beam in this example is 1m in length and has a flexural rigidity
of 1N-m2. The load is a harmonic sinusoid with a constant amplitude of A = 16π4 N

m
and an increasing frequency of ω = Nπ rad

s
as in (a) N=2, (b) N=4,

and (c) N=20. Because highly oscillatory loads have a minimal effect on the deformed shape, they are not easily sensed by observing position alone.

and H is the Jacobian of ẑ = h(x) with respect to x. It
has been noted by [20], [21] that using a Kalaman Filter
produced a significant increase in computational efficiency
over a Levenberg-Marqardt solver.

With this method, we have two matrices of tunable param-
eters: Q and W . For a given problem, these values can be
tuned by hand. In the context of solving a nonlinear least-
squares optimization problem, Q has the effect of increasing
the damping, thus slowing the convergence and improving
stability. Its elements should be chosen such that each value
in x can evolve quickly yet stably. If the algorithm is allowed
to run until it reaches a steady state solution, the elements of
Q will have no effect on the final estimation.

B. Ill-posedness of the Inverse Problem

It is straightforward to map from distributed loading to
deformation using a forward kinetostatic model; however,
the inverse problem is often ill-posed. There is a family
of disparate force distributions that all produce the same
deformed shape within a given tolerance. This basic fact limits
the effectiveness of any force estimation approach in practice,
due to sensor resolution limitations.

1) Uniqueness: As an analytical example of this problem,
consider an Euler-Bernoulli beam subject to a distributed load
in the shape of a sine wave. Using the differential equation
relating shape and load, we can calculate the deflection and its
continuous root mean square (RMS), a metric for total shape
change:

f(s) = A sin (ωs) =
1

EI

d4δ(s)

ds4
,

RMS =

√
1

L

∫ L

0

δ(s)2ds =

√
2AEI

2ω4
.

(5)

where f(s) is the load, A is its amplitude, ω is its spatial
frequency, s is the position along the beam, L is the total
length, EI is the flexural rigidity, and δ(s) is the deflection
of a point. From this we can see that RMS deflection is

proportional to load amplitude A, but inversely proportional
to ω4. This effect, graphically represented in Figure 2, implies
that there are an infinite number of loadings of arbitrary
magnitude that still produce a shape change that is less than
a given minimum value. This principle holds beyond the
case of a straight beam with sinusoidal loading: a large-
amplitude sinusoidal load with high spatial frequency can be
added to any existing loading on a deformed robot, and the
resulting deformation will only change minimally. In practical
application, this fact can stall a minimization algorithm or
cause convergence to a local solution that differs somewhat
from the true loading, especially if the force parameterization
is highly resolved in space. And the effect is present even
in very simple cases with lower spatial frequency. E.g. in
[18], oscillatory distributed loads with low-frequency produced
(within a very small error tolerance) the same rod shape as a
point load at the tip. This highlights the fundamentally ill-
posed nature of the force sensing problem.

2) Uncertainty of the Force Estimation: To further probe
the nuances of shape-based force estimation, let us consider
sensitivity analysis in the simple case of an Euler-Bernoulli
beam subject to a point force of magnitude F at position µ.
The resultant deflection at the tip is:

δ(L) =
F (3Lµ2 − µ3)

6EI
. (6)

If the measured tip deflection δ is used to estimate the
force magnitude and location, we can directly calculate the
sensitivity of the estimation to changes in the deflection data
as

∂F

∂δ
=

6EI

(3Lµ2 − µ3)

∂µ

∂δ
=

EI

F (Lµ− 1
2µ

2)
. (7)

In Figure 3, these sensitivities are plotted as a function of force
magnitude and location. The plot shows that the magnitude
estimation becomes more uncertain as the force approaches
the base. Intuitively, this is because forces towards the base
result in smaller moments and overall less deflection. The same
effect can be seen in the location sensitivity plot. However, the
location sensitivity is also inversely proportional to the force
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Figure 3. When estimating a force based off of a deflection, (a) the certainty
of its magnitude is only related to the point of application. (b) The certainty
of its location; however, is a function of both location and magnitude. For
this example, a combination of load locations and magnitudes were applied
to a beam of length L = 1m with a flexural rigidity of EI = 1Nm2.

magnitude. Thus, opposed to intuition, forces near the tip are
not always more certain than forces at the base.

When using a nonlinear model, such as a Cosserat rod,
we can compute these partial derivatives numerically and
efficiently using the Jacobian matrix, H , from equation (4):

γ = [F µ]
>

∂ẑ ≈H∂x

[
∂δ
∂c

]
≈
[
H11 H12

H21 H22

] [
∂α
∂γ

]
[
∂F

∂δ

∂µ

∂δ

]
≈
(
H12 −H11H

†
21H22

)†
(8)

In Figure 4, we see that the sensitivity of the Cosserat Rod
agrees with the Euler-Bernoulli sensitivity calculated from 7 in
the linear region; however, as the force increases, the sensitiv-
ity starts to rise, counter to what the linear theory predicts for
both the location and magnitude estimates. Measuring more
points along the rod will decrease the uncertainty but it does
not remove this fundamental nonlinearity.

C. Loading Parameterization

In order to mitigate the ill-posedness of the problem, we
would like to to find a loading parameterization that provides
a useful and physically appropriate interpretation of the net
loading. The form of the parameterization will be motivated
by both the physical construction of the robot and theoretical
limitations.

1) Normal Load Assumption: The design of a given ma-
nipulator can have a direct effect on what can be sensed
using shape data alone. As discussed in [10], for slender
robots which have high axial stiffness relative to their bending
stiffness, axial strain is minimal and not reliably sensible. As
a result, axial components of external loads are difficult to
determine from shape data alone. Thus, a major assumption
made in this work and related work [18], [21] is that all forces
are applied normal to the rod. In many cases, axial forces along
the body would only appear through friction which could be

Figure 4. We can see that as forces deflect a cosserat rod into nonlinear
deflections, the magnitude (a) and location (b) uncertainties begin to quickly
increase as well. In this example, a combination of load locations and
magnitudes were applied to a beam of length L = 1m with a flexural rigidity
of EI = 1Nm2.

assumed to be negligible. Therefore, our distributed load is
defined locally:

fext(s) = R(s)
[
fx,lext(s) fy,lext(s) 0

]>
, (9)

where f is a distributed load, the subscript ext denotes
it is an external load, and R maps from local to global
coordinates. Given a soft robot with a compressible backbone,
it is currently unclear if the shape data would produce unique
enough deformations to have reliable sensing; however, initial
results from [17] show that an FEA approach can reconstruct
a three component force estimation reliably from deflections
measured on a soft material.

2) Gaussian Parameterization: As we discussed in II-B
above, simply paramaterizing the load with a high-resolution
representation (e.g. a Fourier series with many terms, point
forces at many locations along the length, or highly resolved
splines or polynomials) results in an ill-posed estimation prob-
lem because high-frequency oscillatory loads have a minimal
effect on shape, as shown in Figure 2. However, such high-
frequency oscillatory loads are unlikely to occur in most
applications. We expect to commonly encounter point loads
and distributed loads that are roughly uniform (e.g. gravity)
or have low spatial frequency (e.g. contact with soft tissue
on one side). In prior work [18], we explored Fourier series
and sliding Dirac-delta functions to parameterize the forces. A
conventional Fourier series requires a large number of high-
frequency terms to accurately represent point loads, and this
led to overfitting and convergence issues on the ill-conditioned
problem. Conversely, the Dirac-delta parameterization requires
many terms to accurately represent smooth distributed loads,
which also leads to over fitting, oscillatory estimation results,
and poor convergence. An efficient force parameterization
would ideally be able to capture both of these extremes
(point loads and smoothly varying distributed loads) in as few
terms as possible without introducing the possibility of highly
oscillatory force estimations.

We propose that a good candidate for a parameterization
that meets these criteria is a series of Gaussian Distribution
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Functions:

fx,lext =

Nl∑
k=0

axke
−ck(s−µk)

2

,

fy,lext =

Nl∑
k=0

ayke
−ck(s−µk)

2

,

(10)

where axk and ayk are the component amplitudes, µk is the mean
which encodes the location, and ck encodes the “steepness”
of the function (ck → 0 approximates a constant load, while
ck → ∞ approximates a point load, and ck is related to the
Gaussian variance σk by 2ck = 1/σ2

k). A minimum number of
load terms, Nl, can be chosen based on the adaptive method
from [18], wherein terms are added to the series only when the
shape is unable to be fit well by fewer terms. To constrain the
location µk to be within some reasonable range µk ∈ (β1 β2)
(e.g. the body of the robot, (0, L), or slightly outside) we
parameterize it using a sigmoid function:

µk = S(ηk) =

(
β2 − β1

2

)
ηk√
ε+ η2k

+
β2 + β1

2
(11)

where ε determines the slope of the sigmoid curve, β1 and β2
determines the acceptable range of µk (it will range from β1
to β2), and ηk is the free parameter chosen by the estimation
algorithm. We chose this function because it has an upper and
lower limit, is monotonic, and has a well defined derivative.

Thus, the set of parameters associated with the Gaussian
force distribution is

γ = [ax1 ... a
x
Nl
, ay1 ... a

y
Nl
, η1 ... ηNl

, c1 ... cNl
]> (12)

An added benefit of using Gaussian functions is ease of
integration. Integrating the distributed load curve gives the
equivalent net load applied at µk as:

Fk =

√
π

ck

∥∥∥∥∥∥
axk
ayk

∥∥∥∥∥∥ (13)

D. Simulation Study

We verify the benefits of the Gaussian parameterization
in two simulation studies. Considering a passive rod of di-
mensions and material equal to those used in our physical
experiments below, we applied loads to the robot model
and then estimated those loads based on simulated discrete
measurements using our algorithm.

In study 1, we test the reliability of convergence and force
estimation accuracy with and without simulated measurement
noise. We simulated 100 different cases of a single point
load ranging from 0.5 to 1 Newtons, at random locations
between 10 cm and 39 cm along the length (the total rod
length was 40 cm). Simulated measurements were taken at
20 evenly spaced points along the robot, and we tested the
estimation performance using these data with and without
added measurement noise (sampled from a normal distribution
with zero mean and 1 mm standard deviation). Regardless
of the measurement noise, the estimation converged within
500 iterations in greater than 94% of the cases. Without

measurement noise, the average error in force location and
magnitude was 3.5 mm and 0.08 N respectively. With mea-
surement noise, the errors increased to 20.1 mm and 0.53
N respectively. This confirms that the similar magnitudes of
error seen in our physical experiments can be explained by
the shape measurement accuracy. Although implemented in
Matlab without code optimization, the average time taken per
iteration of the algorithm was 23 ms, with 2.1 seconds taken
to complete convergence.

In Study 2, we implemented our method using three dif-
ferent parameterizations of the estimated load: the Gaussian
parameterization above (using 3 Gaussians, totaling 12 inde-
pendent parameters), a Fourier series as in [18] (with terms
having 0, 1, 2, and 3 periods per robot length, totaling 14
independent parameters), and Dirac delta functions as in [18]
(using 4 delta functions, totaling 12 independent parameters).
We simulated 100 different cases where the rod was subjected
to a general distributed load defined by two 10th degree
polynomials in s in the local x and y directions, constrained
such that the distributed force was less than 5 N/m everywhere.
The Gaussian parameterization converged 99% of the time
with an average RMS shape error of 0.66 mm. The dirac delta
parameterization converged 93% of the time, with an average
RMS shape error of 1.4 mm. The Fourier parameterization
converged 92% of the time with an average RMS shape
error of 4.1 mm. The Gaussian parameterization shows had
the most reliable convergence and resulted in shape fitting
errors an order of magnitude smaller than of the Fourier
parameterization.

III. EXPERIMENTAL VALIDATION

To validate the proposed force estimation approach, we
will apply the methodology to two tendon-actuated continuum
robots in 3D (one single DOF and one multi-DOF). These
experiments contained significant gravity loading, actuation
loading, and both out-of-plane an in-plane external loading.
The estimation was performed using sparse data along the
rod: only eight points along the robot were measured using a
stereoscopic camera system.

A. Tendon Robot Model

We implemented the tendon robot model presented in [25],
[26]. The backbone of the robot is treated as a Cosserat
rod where the tendons apply a distributed wrench along the
length and a tip wrench. The shape of a rod is described
by the position of its centerline p(s) ∈ R3, and a rotation
matrix, R(s) ∈ SO(3), representing its material orientation as
a function of arc length s ∈ [0 L]. The derivatives of p and
R with respect to s are defined by

p′ = Rv

R′ = Ru∧,
(14)

where the kinematic variables v(s) and u(s) are the linear and
angular rates of change of a material attached transformation
expressed in the local body-frame coordinates. The ∧
operator, as defined in [27], maps R3 to 3 (the skew-symmetric
matrices, the Lie algebra of the Lie group SO(3)).
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Performing a static balance on a section of rod and taking a
derivative, we can describe the rates of change of the internal
force vector n(s) and the internal moment vector m(s) with
respect to arc length:

n′ = −(fext + f t + fg)

m′ = −(p′ × n + lt),
(15)

where l a distributed moment, subscript “t” indicates it is a
tendon load, and subscript “g” indicates it is a gravitational
load. Note, however, that f t and lt are nonlinear functions
of the state and state derivatives. The resulting ODE’s can be
written in an explicit form, which is detailed in [25].

The internal force and moment vectors are related to v and
u via a material constitutive law. Commonly, a linear law is
used:

n = RKse (v − v∗) , m = RKbt (u− u∗) (16)

where v∗ and u∗ are appropriate kinematic variables of the
rod in its stress free reference state (u∗ = 0 and v∗ = [0 0 1]>

for an initially straight rod), and Kse = diag (GA,GA,EA)
and Kbt = diag (EI,EI,GJ) are stiffness matrices in terms
of the rod’s cross-sectional area A, Young’s modulus E, shear
modulus G, area moment of inertia I , and polar moment of
inertia J . Combining Equations 14, 15, and 16, we have a
system of differential equations that describe the evolution of
p, R, n, and m with respect to s.

Given the tension in the tendons, this system can be solved
as a boundary value problem using a shooting method. Distal
boundary conditions are derived from a static balance at the
tip:

c(x) =

[
n(L)− F t
m(L)−M t

]
, (17)

where F andM are the tip forces and moments applied by the
tendons. The unknown initial conditions are the base wrench:

α =

[
n(0)
m(0)

]
. (18)

If a tendon terminates prior to to the tip of the robot, a piece-
wise integration routine must be used [25].

B. Robotic Setup

For the first set experiments, a robot with a single tendon
was constructed, as seen in Figure 5. It consisted of a 1.4 mm
diameter backbone, nine PLA spacer disks, and Kevlar thread.
The length of the robot was 40cm and the disks were evenly
spaced 5 cm apart. The tendon terminated at the final disk
and was connected to a load cell. This load cell was affixed
to a linear actuator. The tendon was routed parallel to the
back bone at a distance of 7 mm. The backbone was made
of ASTM A228 Spring steel, which has a nominal Young’s
modulus of 207 GPa and shear modulus of 79 GPa. Finally,
optical markers were attached to the spacer disks so we could
record their 3D positions. This provided Np = 9 data points.
The robot was oriented such that the tendon would move the
end effector in the plane of gravity.

For the second set of experiments, we constructed a multi-
segment robot with larger diameter and two tendons as seen

Load Cell Load 
Line

Load Line

Multi-Tendon
Actuation

Load
Line

(a)

(b)

(c)

(d)

Figure 5. Experiments were performed on a a single-tendon robot (a) and a
multi-tendon robot (b & c), made from a spring steel rod plastic disks. As
shown in (d), Linear actuators controlled the tendon displacement and each
tendon’s tension was measured by a load cell. External loads were applied to
various points on the robot structure using Kevlar thread. External forces were
measured using load cells as in (a) or by applying the load using a calibration
weight as in (b) to validate the force estimation algorithm.

in Figure 5. Similar to the one before, we used a spring
steel rod backbone and nine spacer disks, evenly spaced at
7 cm apart. However, this robot was significantly larger, with
a length of 56 cm. The tendons were routed parallel to the
backbone at an offset of 2.5 cm. The tendons were placed
on orthogonal sides. The tendon that actuates in the plane
of gravity terminates at end effector, and the second tendon
terminates at the disk halfway down the robot such that when
both tendons are actuated, the robot has two bending segments
in different planes.

C. Calibrating Gravitational Load
It is not necessary to know the gravitational loading a

priori. However, if we do include a known gravity loading,
the estimation algorithm will separately determine the non-
gravitational loads. Thus, we include the gravity loading as

fg = ρag (19)
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Figure 6. Using a 2 DoF robot, experiments were performed to validate non planar loading and actuation. Above are 3 example cases from the experiment
set. Using shape data and known tendon tensions, the algorithm is able to find appropriate forces necessary to recreate that shape. The yellow arrows represent
the measured applied forces. The estimated distributed load is drawn in red. Note that their directions are consistent because the red distribution is applied
toward the backbone.

Table I
SINGLE LOAD CASES FOR 1 DOF TENDON ROBOT

In Plane
Actuation

(cm)
Magnitude (N) Location (cm)

Meas. Estimated Meas. Estimated
11.5 0.06 0.04 30 25
11.5 1.2 0.7 10 10

5 3.9 4.8 10 7
5 0.5 0.4 30 28
-5 0.7 0.6 10 12
-5 2.5 2.0 10 10

Out of Plane
11.5 0.6 0.7 30 29
11.5 1.4 2.3 10 8.5

0 4.2 4.2 10 7.7
0 0.7 0.8 30 27

where ρ is the mass per length, and ag is the gravitational
acceleration vector. We calibrated ρ separately before the
estimation experiments by using the estimation algorithm
assuming the only external load is gravity. The calibrated
mass per length was ρ = 0.144kgm for the 1 DoF Robot and
ρ = 0.252kgm for the 2 DoF Robot.

D. Procedure and Results

For the 1 DoF Robot, a load cell was used to create a
single point force both in and out of plane. The loading was
placed at varying contact locations and with the robot actuated
into various poses. The cables were oriented such that they
were normal to the rods backbone. An optical micron tracker
was used to capture the shape data. The results are listed
in Table I. Actuation values in the table denote the amount
the tendon’s actuator was displaced from the nominal position
(along the positive z-axis). For the estimation, the loading was
parameterized as a single Gaussian curve.

The mean magnitude error was 0.32 N and the mean
location error was 2.7 cm (7% of total robot length). Even
with the extra loading from gravitational forces and actuation,
the force magnitude was of same order of accuracy as the
experiments performed on a cantilevered rod in [18] (0.29

Table II
DOUBLE LOAD CASES FOR 1 DOF TENDON ROBOT

In Plane
Actuation

(cm)
Load Magnitude (N) Load Location (cm)

Measured Estimated Measured Estimated

0
3.3
1.9

3.9
1.4

20
30

15
30

0
5.0
2.9

5.4
2.2

30
20

29
15

-5
2.2
1.6

3.8
1.1

10
30

12
27

-5
9.6
2.5

8.6
3.2

10
30

10
26

Out of Plane

0
3.2
1.9

3.8
2.4

25
40

24
36

0
1.52
0.72

1.86
0.92

25
40

12
23

-5
5.6
0.9

4.2
0.4

10
35

9
28

-14.5
0.8
0.4

0.9
0.5

40
25

39
22

N). The location error was slightly larger but only by a few
percent of the total length (2-3%). Comparing the planar and
non planar cases, the difference in accuracy is negligible.

Next, we used two load cells to apply two point forces
both in and out of plane, such as in Figure 5. As before,
we tested loads at various locations and different robot poses.
These results are given in Table II. For the estimation in these
experiments, the loading was parameterized as two gaussian
curves. The number of Gaussian curves necessary to solve
the estimation problem can be adaptively selected based on
the goodness of fit, and the improvement seen by introducing
more terms, similar to the methods proposed in [18] and [21].
Even with the robot loaded into large nonlinear deflections, the
accuracy remained consistent. There was a mean error of 0.51
N and 2.64 cm for the magnitude and location, respectively.

In the second set of experiments, we actuated the 2 DoF
Robot into eight poses with both single and double loading
scenarios, as summarized in Table III, where DoF 1 is the
longer tendon and DoF 2 is the shorter tendon. We did six
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Table III
2 DOF TENDON ROBOT EXPERIMENTS

Actuation (cm) Load Magnitude (N) Load Location (cm)
DoF 1 DoF 2 Measured Estimated Measured Estimated

-25 0 1.17 1.44 14 18.9
-15 -5 1.39 1.58 28 20.6
-30 0 5.21 3.71 21 19.8
-20 -20 1.59 2.68 21 23.5
-30 -5 5.57 3.62 21 20.0
-20 -10 1.01 1.99 21 21.6

-30 -5
2.87 3.02 21 19.4
0.49 0.60 52 46.0

-10 0
1.96 2.11 35 22.7
1.09 0.93 55 52.7

single load cases and two double load cases. The overall results
were similar to that of the 1 DoF experiments with mean errors
of 0.65 N and 3.98 cm (7.2%) in magnitude and location,
respectively. This shows that the increased complexity from
multi-tendon loading and large non-planar deflections does
not limit the estimation accuracy. In Figure 6, we provide a
showcase of three examples comparing the model estimation
and actual loading.

IV. CONCLUSIONS

We have formulated and validated a method for shape-based
estimation of forces along actuated continuum robots in 3D.
We explored the ill-posed nature of the estimation problem,
revealing that highly oscillatory loads are a main source of
the ill-conditioning. Consequently, force parameterizations that
require high resolution to represent commonly encountered
loads are not ideal. We proposed a nonlinear Gaussian pa-
rameterization to represent a large spectrum of loads (from
point forces to smooth distributed loads), with a small number
of parameters, and advantages were shown in simulation.
Experimental validation of the method on two separate tendon-
actuated robots resulted in reasonable performance in both
magnitude and location accuracy.
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