
9

Solving Program Sketches with Large Integer Values

QINHEPING HU, University of Wisconsin—Madison

RISHABH SINGH, Google

LORIS D’ANTONI, University of Wisconsin—Madison

Program sketching is a program synthesis paradigm in which the programmer provides a partial program

with holes and assertions. The goal of the synthesizer is to automatically find integer values for the holes so

that the resulting program satisfies the assertions. The most popular sketching tool, Sketch, can efficiently

solve complex program sketches but uses an integer encoding that often performs poorly if the sketched

program manipulates large integer values. In this article, we propose a new solving technique that allows

Sketch to handle large integer values while retaining its integer encoding. Our technique uses a result from

number theory, the Chinese Remainder Theorem, to rewrite program sketches to only track the remainders of

certain variable values with respect to several prime numbers. We prove that our transformation is sound and

the encoding of the resulting programs are exponentially more succinct than existing Sketch encodings. We

evaluate our technique on a variety of benchmarks manipulating large integer values. Our technique provides

speedups against both existing Sketch solvers and can solve benchmarks that existing Sketch solvers cannot

handle.

CCS Concepts: • Software and its engineering→ General programming languages; • Theory of com-

putation→ Theory and algorithms for application domains;

Additional Key Words and Phrases: Program synthesis, program sketching, chinese remainder theorem

ACM Reference format:

Qinheping Hu, Rishabh Singh, and Loris D’Antoni. 2022. Solving Program Sketches with Large Integer Values.

ACM Trans. Program. Lang. Syst. 44, 2, Article 9 (July 2022), 28 pages.

https://doi.org/10.1145/3532849

1 INTRODUCTION

Program synthesis, the art of automatically generating programs that meet a user’s intent,
promises to increase the productivity of programmers by automating tedious, error-prone, and
time-consuming tasks. Syntax-guided Synthesis (SyGuS) [2], where the search space of possible
programs is defined using a grammar or a domain-specific language, has emerged as a common
program synthesis paradigm for many synthesis domains. One of the earliest and successful syntax-
guided program synthesis frameworks is program sketching [22], where (i) the search space of the

This work was supported, in part, by NSF under grants CNS-1763871, CCF-1750965, CCF-1744614, and CCF-1704117; and

by the UW-Madison OVRGE with funding from WARF.

Authors’ addresses: Q. Hu and L. D’Antoni, Department of Computer Sciences, University of Wisconsin Madison, 1210

West Dayton Street Madison, WI 53706-1685 USA; emails: qhu28@wisc.edu, ldantoni@wisc.edu; R. Singh, Google, 600

Amphitheatre Parkway Mountain View, CA 94043; email: rising@goggle.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0164-0925/2022/07-ART9 $15.00

https://doi.org/10.1145/3532849

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

https://orcid.org/0000-0002-4249-3726
https://orcid.org/0000-0003-1714-9656
https://orcid.org/0000-0001-9625-4037
https://doi.org/10.1145/3532849
mailto:permissions@acm.org
https://doi.org/10.1145/3532849

9:2 Q. Hu et al.

synthesis problem is described using a partial program in which certain integer constants are left
unspecified (represented as holes) and (ii) the specification is provided as a set of assertions de-
scribing the intended behavior of the program. The goal of the synthesizer is to automatically
replace the holes in the program with integer values so that the resulting complete program sat-
isfies all the assertions. Thanks to its simplicity, program sketching has found wide adoption in
applications such as data-structure design [23], personalized education [21], program repair [7],
and many others.

The most popular sketching tool, Sketch [24], can efficiently solve complex program sketches
with hundreds of lines of code. However, Sketch often performs poorly if the sketched pro-
gram manipulates large integer values. Sketch’s synthesis is based on an algorithm called
counterexample-guided inductive synthesis (Cegis) [24]. The Cegis algorithm iteratively
considers a finite set I of inputs for the program and performs SAT queries to identify values
for the holes so that the resulting program satisfies all the assertions for the inputs in I . Further
SAT queries are then used to verify whether the generated solution is correct on all the possible
inputs of the program. Sketch represents integers using a unary encoding (a variable for each
integer value) so that arithmetic computations such as addition, multiplication, and so on, can be
represented efficiently in the SAT formulas as lookup operations. This unary encoding, however,
results in huge formulas for solving sketches with larger integer values as we also observe in our
evaluation. Recently, a technique that extends the SAT solver with native integer variables and
integer constraints was proposed to alleviate this issue in Sketch. It guesses values for the integer
variables and propagates them through the integer constraints and learns from conflict clauses.
However, this technique does not scale well when the sketches contain complex arithmetic oper-
ations, e.g., non-linear integer arithmetic.

In this article, we propose a program transformation technique that allows Sketch to solve
program sketches involving large integer values while retaining the unary encoding used by the
traditional Sketch solver. Our technique rewrites a Sketch program into an equivalent one that
performs computations over smaller values. The technique is based on the well-known Chinese
Remainder Theorem, which states that, given distinct prime numbers p1, . . . ,pn such that N =
p1 · . . . · pn , for every two distinct numbers 0 ≤ k1,k2 < N , there exists a pi such that k1 mod pi �
k2 mod pi . Intuitively, this theorem states that tracking the modular values of a number smaller
than N for each pi is enough to uniquely recover the actual value of the number itself. We use
this idea to replace a variable x in the program with n variables xp1 , . . . ,xpn

, so that for every
i , xpi

= x mod pi . Using closure properties of modular arithmetic we show that, as long as the
program uses the operators +,−, ∗,==, tracking the modular values of variables and performing
the corresponding operations on such values is enough to ensure correctness. For example, to
reflect the variable assignment x = y + z, we perform the assignment xpi

= (ypi
+ zpi

) mod pi ,
for every pi . Similarly, the Boolean operation x == y will only hold if xpi

= ypi
for every pi . To

identify what variables and values in the program can be rewritten, we develop a dataflow analysis
that computes what variables may flow into operations that are not sound in modular arithmetic,
e.g., <, >, ≤, and /.

We provide a comprehensive theoretical analysis of the complexity of the proposed transfor-
mation. First, we derive how many prime numbers are needed to track values in a certain inte-
ger range. Second, we analyze the number of bits required to encode values in the original and
rewritten program and show that, for the unary encoding used by Sketch, our technique offers
an exponential saving in the number of required bits. We also present an incremental algorithm
that lazily increases the number of primes (and therefore the integer range) used in the modular
semantics.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:3

We evaluate our technique on 181 benchmarks from various applications of program sketching.
Our results show that our technique results in significant speedups over existing Sketch solvers
and is able to solve 48 benchmarks on which Sketch times out.

Contributions. In summary, our contributions are as follows:

• A language IMP-MOD together with a modular semantics that represents integer values using
their remainders for a given set of primes and a proof that this semantics is equivalent to
the standard integer semantics (Section 4).
• A dataflow analysis for detecting variables that can be soundly executed in the modular

semantics and an algorithm for translating IMP programs into IMP-MOD ones (Section 5).
• A synthesis algorithm for IMP-MOD programs and incremental synthesis algorithm that lazily

increases the number of primes used in the modular semantics (Section 6).
• A complexity analysis that shows that synthesis for IMP-MOD programs requires exponen-

tially smaller SAT queries than synthesis in IMP (Section 7).
• An evaluation of our technique on 181 benchmarks that manipulate large integer values.

Our solver outperforms the default Sketch unary solver, it can solve 48 new benchmarks
that no Sketch solver can solve, and it is 15.9× faster than the Sketch Native-Ints integer
solver on the hard benchmarks that take more than 10 seconds to solve (Section 8).

This article is an extended version with proofs and additional examples of the short version of the
article with the same title published at ESOP20 [17],

2 MOTIVATING EXAMPLE

In this section, we use a simple example to illustrate our technique and its effectiveness. Consider
the Sketch program polyArray presented in Figure 1(b). The goal of this synthesis problem is to
synthesize a two-variable quadratic polynomial (lines 7 and 8) whose evaluation p on given inputs
x and y is equal to a given expected-output array z (line 9),

assert p[i] == z[i];

Solving the problem amounts to finding non-negative integer values for the holes (??) and sign
values, i.e., −1 or 1, for the holes (??s) such that the assertion becomes true.1 In this case, a possible
solution is the polynomial:

p[i] = -17*y[i]^2 -8*x[i]*y[i]-17*x[i]^2 -3*x[i];

When attempting to solve this problem, the Sketch synthesizer times out at 300 seconds. To solve
this problem, Sketch creates SAT queries where the variables are the holes. Due to the large
numbers involved in the computation of this program (including intermediate expression compu-
tations), the unary encoding of Sketch ends up with SAT formulas with approximately 45 million
clauses.

Sketch Program with Modular Arithmetic. The technique we propose in this article has the goal
of reducing the complexity of the synthesis problem by transforming the program into an equiv-
alent one that manipulates smaller integer values and that yields easier SAT queries. Given the
Sketch program in Figure 1(b), our technique produces the modified Sketch program pAPrime
in Figure 1(a). The new Sketch program has the same control flow graph as the original one, but
instead of computing the actual values of the expressions x[·] and y[·], it tracks their remain-
ders for the set of prime numbers {2, 3, 5, 7, 11, 13, 17} using new variables, e.g., x2[i] tracks the
remainder of x[i] modulo 2.

1In Sketch, holes can only assume positive values. This is why we need the sign holes, which are implemented using

regular holes as follows: if(??) then 1 else -1.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:4 Q. Hu et al.

Fig. 1. Sketch program (a) and rewritten version with values tracked for different moduli (b).

The program pAPrime initializes the modular variables with the corresponding modular values
(lines 5–8). When rewriting a computation over modular variables, the same computation is per-
formed modularly (lines 12–17). For example, the term ??s1 ∗ ??1*y[i]

2 when tracked modulo 2 is
rewritten as

(??s1 *(??1%2)*((y2[i]%2)
2 %2))%2

In the rewritten program, the variables i and n are not tracked modularly, since such a transforma-
tion would incorrectly access array indices. Finally, the assertions for different moduli share the
same holes as the solution to the Sketch has to be correct for all modular values. In the rest of the
article, we develop a dataflow analysis that detects when variables can be tracked modularly.

Sketch can solve the rewritten program in less than 2 seconds and produce hole values that
are correct solutions for the original program. This speedup is due to the small integer values

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:5

Fig. 2. The syntax for a simple imperative language IMP with integer hole values.

Fig. 3. Semantics of IMP. Valuations σ and σH assign integer values to variables and holes, respectively.

manipulated by the modular computations. In fact, the intermediate SAT formulas generated by
Sketch for the program pAPrime have approximately 120 thousand clauses instead of the 45 million
clauses for polyArray. Due to the complex arithmetic in the formulas, even if Sketch uses the
SMT-like native integer encoding, it still requires more than 300 seconds to solve this problem.

While this technique is quite powerful, it does have some limitations. In particular, the solution
to the rewritten Sketch is guaranteed to be a correct solution only for inputs that cause interme-
diate values of the program to be in a range [d1,d2] such that d2−d1 ≤ 2×3×5×7×11×13×17 =
510, 510. We will prove this result in Section 4.

3 PRELIMINARIES

In this section, we describe the IMP language that we will consider throughout the article and
briefly recall the counter-example guided inductive synthesis algorithm employed by the Sketch
solver.

3.1 IMP Language for Sketching

For simplicity, we consider a simple imperative language IMP with integer holes for defining the
hypothesis space of programs (Figure 2).2 Without loss of generality, we assume the programs
consists of a single program f (v1, . . . ,vn , ??1, . . .??m)withn integer variables andm integer holes.
The body of the program f consists of a sequence of statements, where a statement s can either be a
variable assignment, a while loop statement, an if conditional statement, or an assert statement.
For simplicity, we assume the function has no local variables. The holes ?? denote integer constant
values that are unknown and the goal of the synthesis process is to compute these values such that
a set of desired program assertions are satisfied for every possible input values to f . The semantics
of IMP is standard (some of the rules are shown in Figure 3).

2Our implementation also supports for-loops, recursion, C-style arrays (i.e., non-infinite arrays), and complex types.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:6 Q. Hu et al.

Example 3.1. An example IMP sketch denoting a partial program is shown below.

triple(n,h ,??){ h=??; assert h*n==n+n+n; }

The goal of the synthesizer is to compute the value of the hole ?? such that the assertion is true
for all possible input values of n and h. For this example, ?? = 3 is a valid solution.

3.2 Solving IMP Sketches

The Sketch solver uses the counter-example guided inductive synthesis algorithm (Cegis) to find
hole values such that the desired assertions hold for all input values. Formally, the Sketch synthe-
sizer solves the following constraint:

∃ �?? ≡ (??1, . . ., ??m)∈Zm . ∀in∈I. �f (in, �??)�IMP � ⊥,

where Z denotes the domain of all integer values, �?? denotes the list of unknown hole values
(??1, . . . , ??m) ∈ Zm , I denotes the domain of all input argument values to the function f , and

�f (in, �??)�IMP � ⊥ denotes that the program satisfies all assertions. The synthesis problem is in
general undecidable for a language with complex operations such as the IMP language because of
the infinite size of possible hole and input values. To make the synthesis process more tractable,
Sketch imposes a bound on the sizes of both the input domain (Ib) and the domain of hole values
(Zb) to obtain the following constraint:

∃ �?? ≡ (??1, . . ., ??m)∈Zm
b . ∀in∈Ib . �f (in, �??)�

IMP � ⊥.
The bounded domains make the synthesis problem decidable, but the formula with nested quan-

tifiers results in a search space of hole values that is still huge for any reasonable bounds. To solve
such bounded equations efficiently, Sketch uses the Cegis algorithm to incrementally add inputs

from the domain until obtaining hole values �?? that satisfy the assertion predicates for all the
input values in the bounded domain. The algorithm solves the formula with two quantifiers by
iteratively solving a series of first-order queries with a single quantifier. It first encodes the exis-

tential query (synthesis query) over a randomly selected input value in0 to find the hole values �H
that satisfy the predicate for in0 using a SAT solver in the backend,

∃ �?? ≡ (??1, . . ., ??m) ∈ Zm
b . �f (in0, �??)�

IMP � ⊥.
It then encodes another existential query (verification) to now find a counter-example in1 for which
the predicate is not satisfied for the previously found hole values,

∃in ∈ Ib . ¬�f (in, �H)�IMP � ⊥.
If no counter-example input can be found, then the hole values are returned as the desired solution.
Otherwise, the algorithm computes a new hole value that satisfies the assertion for all the counter-
example inputs found so far. This process continues iteratively until either a desired hole value is
found (i.e., no counter-example input exists), no satisfiable hole value is found (i.e., the synthesis
problem is infeasible), or the SAT solver times out.

Integer Encoding. The Sketch solver can efficiently solve the synthesis constraint in many do-
mains, but it does not scale well for sketches manipulating large numbers. Sketch uses a unary
encoding to represent integers, where the encoded formula consists of a variable for each integer
value. The unary encoding allows for simplifying the representation of complex non-linear arith-
metic operations. For example, a multiplication operation can be represented as simply a lookup
table using this encoding. In practice, the unary encoding is efficient for many practical problems.
However, this also results in huge SAT formulas in presence of large integers. Recently, a new
technique based on extending the SAT solver with native integer variables and constraints was

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:7

proposed to alleviate this issue in Sketch (flag --slv-nativeints). Similarly to the Boolean vari-
ables, this technique extends the solver to also guess integer values and propagates them in the
constraints while also learning from conflict clauses. Note that Sketch uses these SAT extensions
and encodings instead of an SMT solver. While it is possible in principle to implement a Sketch
solver that directly uses an SMT solver (e.g., using the theory of bit-vectors), Sketch uses these
encodings for more efficient solving of constraints especially for non-linear arithmetic, where the
unary encoding may instead produce a large number of clauses. Our new technique for handling
computations over large numbers still maintains the efficient unary encoding of integers and com-
putations over them while improving scalability for problems involving large integer values.

4 MODULAR ARITHMETIC SEMANTICS

In this section, we present the language IMP-MOD in which variables can be tracked using modular
arithmetic. We start by recalling the Chinese Remainder Theorem, then define both a modular and
integer semantics for the IMP-MOD language, and show that the two semantics are equivalent.

4.1 The Chinese Remainder Theorem

The Chinese Remainder Theorem is a powerful number theory result that shows the following:
Given a set of distinct primes P = {p1, . . . ,pk }, any number n in an interval of size p1 · . . . · pk can
be uniquely identified from the remainders [n mod p1, . . . ,n mod pk]. In Section 4.2, we will use
this idea to define the semantics of the IMP-MOD language. The main benefit of this idea is that the
remainders could be much smaller than actual program values.

Example 4.1. For P = [3, 5, 7] and an integer 101, its remainders [2, 1, 3] are much smaller than
101. However, any number of the form 101 + 105 × n also has remainders [2, 1, 3] with respect to
the same prime set.

In general, one cannot uniquely determine an arbitrary integer value from its remainders for
some set P, i.e., the mapping from a number to its remainders is an abstraction in the sense of
abstract interpretation [6]. However, if we are interested in a limited range of integer values [L,U),
then one can choose a set of primes P = {p1, . . . ,pk } such that, for values L ≤ x < U , the map
[r1, . . . , rk]
→ x , where x ≡ ri mod pi , is an injection.

Theorem 4.2 (Chinese Remainder Theorem [4]). Let p1, ..., pk be positive integers that are pair-

wise co-prime, i.e., no two numbers share a divisor larger than 1. Denote N =
∏k

i=1 pi , and let d , r1, r2,
. . . , rk be any integers. Then there is one and only one integer d ≤ x < d +N such that x ≡ ri mod pi

for every 1 ≤ i ≤ k .

We define the translation function mP (x) := [x mod pi , . . . ,x mod pk] that maps an integer to
its set of remainders with respect to P. The following corollary follows from Theorem 4.2.

Corollary 4.3. Let P = [p1, . . . ,pk] be a set of distinct primes such that p1 · . . . · pk = N . For
every integer d , the mapmP (x) : [d,d + N) → [0,p1) × · · · × [0,pk) is a bijection.

In Section 4.2, we will use Corollary 4.3 to relate the semantics of IMP and IMP-MOD. WhenmP (x)

is bijective on some set R, we denote withm−1,R
P

: [0,p1) × · · · × [0,pk) → R its inverse function.

Example 4.4. Let x be a integer in the range [0, 105) (note that 105 = 3 × 5 × 7). If we know that
the value of x is congruent to [2, 1, 3] modulo {3, 5, 7}, then we can uniquely identify the value of
x to be 101 by observing that 101 ≡ 2 mod 3, 101 ≡ 1 mod 5, and 101 ≡ 3 mod 7.

The following lemma shows that the function mP is closed under addition, subtraction, and
multiplication of integers.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:8 Q. Hu et al.

Fig. 4. Syntax of the IMP-MOD language.

Lemma 4.5. For every set of primes P, integers x and y, and op ∈ {+,−, ∗}, the following holds:
mP (x op y) =mP (x) op mP (y).

4.2 The IMP-MOD Language

In this section, we define the IMP-MOD language (syntax in Figure 4), a variant of the IMP language
for which the semantics can be defined using modular arithmetic.3 An IMP-MOD program is para-
metric on a set P = {p1, . . . ,pk } of distinct prime numbers. The structure of an IMP-MOD program is
similar to an IMP program, but IMP-MOD supports two types of variables and arithmetic expressions:
the regular IMP ones (i.e., v , a, and b), which operate over an integer semantics, and the modular
ones (i.e., vP, aP, and bP), which take as an additional parameter the set of primes P and operate
over a modular semantics. The semantics of some of the key constructs of IMP-MOD is shown in
Figure 5.

The key idea of the modular semantics is that the value of each program variable in vP and
arithmetic expressions in aP is denoted by a tuple of values, one for each prime number pi ∈ P.
For example, the value of the constant cP is represented by the tuple [c mod p1, . . . , c mod pk],
where each individual value denotes the remainder of c when divided by the prime number pi ∈ P.
Formally, the program f has two sets of variablesV Z = {v1, . . . ,vn } andV P = {vP1 , . . . ,vPm }, which
contain all the integer and prime variables, respectively, and a set of holes H = {??1, . . . , ??k }.
The denotation function, uses two valuation functions: (i) σ : V Z ∪ H → Z, which maps variables
and holes to integer values, (ii) σP : V P → [0,p1) × · · · × [0,pk), which maps primed variables to
modular values. The expression toPrime(a) converts the integer value of an integer expression
a to a modular tuple. Arithmetic expressions in aP are computed using modular values with the
result being obtained using modular arithmetic with respect to the corresponding primes in P. Note
that the only comparison operator allowed over modular expressions is == and that the division
operator cannot be applied to modular expressions. While the syntax does not directly allow for
holes to be represented modularly (i.e., we do not have expressions of the form ??P) an expression
of the form toPrime(??) effectively achieves the objective of representing a hole ?? modularly.

4.3 Equivalence between the Two Semantics

Next, we provide an alternative integer semantics, which applies the IMP integer semantics to
modular expressions and show that, under some assumptions on the magnitude of the values

3We consider the simple subset for a clear presentation of the semantics, but our framework works for the full IMP language

(and for more complex language constructs) as we will see in the later sections.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:9

Fig. 5. Modular semantics.

Fig. 6. Integer semantics.

manipulated by the program, the modular and integer semantics are equivalent. We will use this
result to build our modified synthesis algorithm.

Integer Semantics. The integer semantics of IMP-MOD is shown in Figure 6 (denoted �·�σ1,σ2). In
this semantics, modular expressions are evaluated as integer expressions using the same semantics
as for IMP, i.e., the values of modular variables and modular arithmetic expressions are denoted by
integer values. Therefore, in the integer semantics, we use two valuation functionsσ1 : V Z∪H
→ Z
mapping variables and holes to integers and σ2 : V P
→ Z mapping modular variables to integers.

Relation between the Two Semantics. We now show that the modular semantics is, in some sense,
equivalent to the integer semantics. For the rest of this section, we fix a set of distinct primes
P = {p1, . . . ,pk }.

To prove the equivalence of the two program semantics, we will require the values of modular
expressions to lie in some range that is covered by the prime numbers in P. The following definition
captures this restriction.

Definition 4.6. Given a modular arithmetic expression aP (respectively, Boolean expression b)
and some integers L < U , we say aP with context (σ1,σ2) is uniformly in the range R := [L,U)
—aP ∈σ1,σ2 R for short if, under the integer semantics, all evaluation of modular subexpressions of
aP (respectively, b) are in the range R,

• aP ∈σ1,σ2 R, iff �aP�σ1,σ2 ∈ R;
• aP1 == aP2 ∈σ1,σ2 R, iff aP1 ∈σ1,σ2 R, aP2 ∈σ1,σ2 R;
• b1 and b2 ∈σ1,σ2 R, iff b1 ∈σ1,σ2 R, b2 ∈σ1,σ2 R;

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:10 Q. Hu et al.

• b1 or b2 ∈σ1,σ2 R, iff b1 ∈σ1,σ2 R, b2 ∈σ1,σ2 R;
• not b ∈σ1,σ2 R, iff b ∈σ1,σ2 R;
• a1 opc a2 ∈σ1,σ2 R for any arithmetic expressions a1, a2 and operator opc .

Given a valuation function σ : V P
→ Z, we write mP ◦ σ to denote the modular valuation
obtained by applying the mP function to σ , i.e., for every vP ∈ V P, (mP ◦ σ) (vP) = mP (σ (vP)).

Similarly, for a modular valuation function σP : V P → [0,p1)×· · · [0,pk), we denotem−1,R
P
◦σP the

integer valuation fromV P to R such that, for everyvP ∈ V P, (m−1,R
P
◦σP) (vP) =m−1,R

P
(σP (vP)). The

following lemma shows that, when the values of modular arithmetic expressions lay in an interval
of size N = p1 · . . . · pk the modular and integer semantics of modular arithmetic expressions
are equivalent. In practice, the assumption that numbers need to lie in a given range is not a
limitation, since one can choose enough prime numbers to cover any practical range. We will
show in Section 8 how the choice of prime numbers affects the efficiency of our technique.

Lemma 4.7. Given a set of primes P = {p1, . . . ,pk }, an arithmetic expression aP, and two valuation
functions σ1 : V Z ∪ H
→ Z and σ2 : V P
→ Z, we have

mP (�aP�σ1,σ2) = �aP�Pσ1,mP◦σ2
.

Moreover, if there exists an interval R of size N = p1 · . . . · pk such that aP ∈σ1,σ2 R, then

m−1,R
P

(�aP�Pσ1,mP◦σ2
) = �aP�σ1,σ2 .

Proof. We prove this lemma by induction on aP.

• If aP = cP, then we havemP (�cP�σ1,σ2) =mP (c)
= [c mod p1, . . . , c mod pk] = �cP�Pσ1,mP◦σ2

.

• If aP = vP, then we havemP (�vP�σ1,σ2) =mP (σ2 (vP)) = (mP ◦ σ2) (vP) = �vP�Pσ1,mP◦σ2
.

• If aP = aP1 opPa aP2 , then we have from the induction hypothesis that mP (�aP1�σ1,σ2) =

�aP1�
P

σ1,mP◦σ2
andmP (�aP2�σ1,σ2) = �aP2�

P

σ1,mP◦σ2
. Then

mP (�aP1 op
P

a aP2�σ1,σ2) =mP (�aP1�σ1,σ2 op
P

a �aP2�σ1,σ2)

(Lemma.4.5) =mP (�aP1�σ1,σ2) opPa mP (�aP2�σ1,σ2)

(Induction hyp.) = �aP1�
P

σ1,mP◦σ2
opPa �aP2�

P

σ1,mP◦σ2

(Def. of �·�P
σ ,σ P

) = �aP1 op
P

a aP2�
P

σ1,mP◦σ2

= �eP�Pσ1,mP◦σ2
.

• If aP = toPrime(a1), then we have

mP (�toPrime(a1)�σ1,σ2) =mP (�a1�σ1,σ2)

= [�a1�σ1,σ2 mod p1, . . .]

= [�a1�
P

σ1,mP◦σ2
mod p1, . . .](*)

= �toPrime(a1)�Pσ1,mP◦σ2
,

where the deduction (*) follows from the fact that, on an integer expression a1, the semantics
�a1� and �a1�

P are identical and are only affected by σ1.

For the second part of the lemma, according to Corollary 4.3 and the assumption that
aP∈σ1,σ2 R ⇒ �aP�σ1,σ2 ∈ R, the function mP is a bijection from R to [0,p1) × · · · × [0,pk). Hence,

m−1,R
P

(�aP�Pσ1,mP◦σ2
) = �aP�σ1,σ2 follows directly frommP (�aP�σ1,σ2) = �aP�Pσ1,mP◦σ2

. �

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:11

Similarly, we show that the two semantics are also equivalent for Boolean expressions.

Lemma 4.8. Given a set of primes P = {p1, . . . ,pk }, an interval R of size N = p1 · . . . ·pk , a Boolean
expression b, and two valuation functions σ1 : V Z ∪ H
→ Z and σ2 : V P
→ Z, if b ∈σ1,σ2 R, then

�b�σ1,σ2 = �b�Pσ1,mP◦σ2
.

Proof. We prove this lemma by induction on b.

• If b = (aP1 == aP2), then we have

�b�σ1,σ2 = (�aP1�σ1,σ2 == �aP2�σ1,σ2)

and
�b�Pσ1,mP◦σ2

= (�aP1�
P

σ1,mP◦σ2
== �aP2�

P

σ1,mP◦σ2
).

According to Lemma. 4.7 and the assumption that b ∈σ1,σ2 R ⇒ aP1 ,a
P

2 ∈σ1,σ2 R, the function
mP is bijective over R and the following implication holds:

�aP1�σ1,σ2 == �aP2�σ1,σ2 ⇔ mP (�aP1�σ1,σ2)==mP (�aP2�σ1,σ2)

⇔ �aP1�
P

σ1,mP◦σ2
==�aP2�

P

σ1,mP◦σ2
.

• If b = b1 or b2, then we assume by induction that �b1�σ1,σ2 = �b1�
P

σ1,mP◦σ2
and �b2�σ1,σ2 =

�b2�
P

σ1,mP◦σ2
. Then

�b1 or b2�σ1,σ2 ⇔ (
�b1�σ1,σ2 or �b2�σ1,σ2

)

⇔
(
�b1�

P

σ1,mP◦σ2
or �b2�

P

σ1,mP◦σ2

)

⇔ �b1 or b2�
P

σ1,mP◦σ2
.

• The case of and and not is similar as the previous case.
• If b = a0 opc a1, then �a0 opc a1�σ1,σ2 = �a0 opc a1�

P

σ1,mP◦σ2
, since a0 and a1 are not modular

expressions and the two semantics are therefore identical. �

We are now ready to show the equivalence between the modular semantics and the integer
semantics for programs P ∈ IMP-MOD. The semantics of a program P = f (V Z,V P,H) {s} is a
map from valuations to valuations, i.e., given a valuation σ1 : V Z → Z for integer variables, a
valuation σ2 : V P → Z for modular variables and a valuation σH : H → Z for holes, we have
�P�(σ1,σ2,σ

H) = �s�σ1∪σ H ,σ2
and �P�P (σ1,σ2,σ

H) = �s�P
σ1∪σ H ,mP◦σ2

. Therefore, it is sufficient to

show that the two semantics are equivalent for any statement s .
The two semantics are equivalent for a statement s if, under the same input valuations, the

resulting valuations of the semantics can be translated to each other. Formally, given valuations
σ1, σ2 and an interval R of size N , we say �s�σ1,σ2 ≡P �s�Pσ1,mP◦σ2

iff σ ′1 = σ ′′1 , mP ◦ σ ′2 = σP2 and

σ ′2 =m
−1,R
P
◦ σP2 where �s�σ1,σ2 = (σ ′1,σ

′
2) and �s�Pσ1,mP◦σ2

= (σ ′′1 ,σ
P

2).
We define uniform inclusion for statements.

Definition 4.9. Given a set of primes P, two integers L < U and a statement s , we say s with
context (σ1,σ2) is uniformly in the range R := [L,U)—s ∈σ1,σ2 R for short if under the integer
semantics, all evaluation of modular subexpressions of s are in the range R:

• (vP = aP) ∈σ1,σ2 R iff aP ∈σ1,σ2 R.
• while(b){s} ∈σ1,σ2 R iff s ∈σ1,σ2 R and b ∈σ1,σ2 R.
• s1; s2 ∈σ1,σ2 R iff s1 ∈σ1,σ2 R and s2 ∈σ1,σ2 R.
• if(b) s1 else s2 ∈σ1,σ2 R iff s1 ∈σ1,σ2 R, s2 ∈σ1,σ2 R and b ∈σ1,σ2 R.
• assert b ∈σ1,σ2 R iff b ∈σ1,σ2 R.

At last, the two semantics are equivalent for statements.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:12 Q. Hu et al.

Theorem 4.10. Given a set of primes P = [p1, . . . ,pk], a statement s and two valuation functions
σ1 : V Z ∪ H → Z and σ2 : V P → Z, if there exists an interval R of size N such that s ∈σ1,σ2 R, then

�s�σ1,σ2 ≡P �s�Pσ1,mP◦σ2
.

Proof. We prove this theorem by induction on statements s . In the following, we let �s�σ1,σ2 =

(σ ′1,σ
′
2) and �s�Pσ1,mP◦σ2

= (σ ′′1 ,σ
P

2).

• If s = (vP = aP), then we have that �vP = aP�σ1,σ2 = (σ1,σ2[vP ←� �aP�σ1,σ2]) and �vP =
aP�Pσ1,mP◦σ2

= (σ1, (mP ◦ σ2)[vP ←� �aP�Pσ1,mP◦σ2
]). To show mP ◦ σ ′2 = σP2 , we need to show

that

mP ◦ (σ2[vP ←� �aP�σ1,σ2]) = (mP ◦ σ2)[vP ←� �aP�Pσ1,mP◦σ2
].

In fact, for any primed variable uP � vP, both sides in the above equation will return (mP ◦
σ2) (uP). For the primed variable vP, we have

le f t side =mP (�aP�σ1,σ2) = �aP�Pσ1,mP◦σ2
= riдht side,

where the middle equation is induced from Lemma. 4.7 with the assumption s ∈σ1,σ2 R ⇒
aP ∈σ1,σ2 R.
• If s = while(b){s1}, then we have by induction that �s1�σ3,σ4 ≡P �s1�

P

σ3,mP◦σ4
for any valuation

σ3 and σ4. Deduced from Lemma. 4.8 and the assumption that s ∈σ1,σ2 R ⇒ b ∈σ1,σ2 R, we
know that the Boolean values �b�σ1,σ2 = �b�Pσ1,mP◦σ2

. If both �b�σ1,σ2 and �b�Pσ1,mP◦σ2
are false,

then

�while(false){s1}�σ1,σ2 = (σ1,σ2) ≡P (σ1,mP ◦ σ2)

= �while(false){s1}�Pσ1,mP◦σ2
.

So it is left to show the true-branch �s1�σ1,σ2 ≡P �s1�
P

σ1,mP◦σ2
, which is exactly the IH.

• If s = s1; s2, then we assume by induction that �s1�σ1,σ2 ≡P �s1�
P

σ1,mP◦σ2
and �s2�σ3,σ4 ≡P

�s2�
P

σ3,mP◦σ4
for any valuations σ3 and σ4. Then

�s1; s2�σ1,σ2 = �s2�σ ′3,σ
′
4
≡P �s2�

P

σ ′3,mP◦σ ′4

= �s1; s2�
P

σ1,mP◦σ2
,

where �s1�σ1,σ2 = (σ ′3,σ
′
4) ≡P (σ ′3,mP ◦ σ ′4) = �s1�

P

σ1,mP◦σ2
is implied by IH.

• If s = assert b, then it is similar to the case of while-statements. Since the two semantics
for Boolean expressions are equivalent, the two semantics for s will choose the same branch
that is either ⊥ or unchanged.
• If s = if s1 else s2, then it is also similar to the case of while-statements.
• If s = (v = a), then the two semantics are equivalent, since there are no modular expressions

in s . �

5 FROM IMP TO IMP-MOD PROGRAMS

In this section, we develop a dataflow analysis for detecting variables in IMP programs for which it
is sound to track values modularly. We then use this dataflow analysis to rewrite an IMP program
to an equivalent IMP-MOD program.

5.1 Dataflow Analysis

The formalization of IMP-MOD in Section 4.2 made it clear that the modular semantics is only
appropriate when integer values are manipulated using addition, multiplication, subtraction, and
equality. Other operations like division and less-than comparison cannot be computed soundly in
modular arithmetic.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:13

ALGORITHM 1: Returns variables that should be tracked using modular/integer semantics.

/* f : sketched function, V P variables to be tracked modularly, V Z variables to be

tracked with integer values */

1 function DataFlowAnalysis(f)
2 S ← {/, <, >, ≤, ≥};V Z ← ∅
3 for op ∈ S do

/* Compute all variables v that may flow into op */

4 V Z ← V Z ∪ Dataflow(op, f)

5 V P ← V \V Z

6 return (V Z,V P)

Example 5.1. Consider an integer variable x with modular value x2 under modulus 2 and x3

under modulus 3 and an integer variable y with modular value y2, y3 under corresponding moduli.
Then the assignment of x = y+y; implies x2 = (y2+y2) mod 2; and x3 = (y3+y3) mod 3. However,
x = x/y; does not imply x2 = (x2/y2) mod 2; and x3 = (x3/y3) mod 3.

Dataflow Analysis for Partitioning Variables. We now define a dataflow analysis for computing
which variables in a program must be tracked with the integer semantics (i.e., the set V Z) and
which variables can be soundly tracked using the modular semantics (i.e., the set V P). For each
operator op in {/, <, >, ≤, ≥}, the analysis computes the set of variables that may flow into the
operands of an expression of the form e1 op e2. In practice, this is done via backward may analysis,
noted as the Dataflow procedure in Algorithm 1. The obtained set of variables must be tracked
using the integer semantics. The remaining variables will never flow into a problematic operator
and can therefore be tracked using the modular semantics.

Implementation Remark. Since our implementation also supports arrays and recursion, the
dataflow analysis in Algorithm 1 is inter-procedural and the set S also contains the array index-
ing operator [], i.e., given an expression arr [a], if a variable v may flow into a, then a must be
tracked using the integer semantics. Furthermore, while in our formalization we allow variables
to be tracked using only one of the two semantics, in our implementation, we allow variables to be
tracked differently (using actual values or modular values) at different program points by tracking,
for each variablev , the program points for which the actual value ofv is needed, which is done by
using the same dataflow analysis. In this case, a variable might initially need to be tracked using
actual values but can later be tracked using modular values.

Example 5.2. Consider the sketch program polyArray in Figure 1(b). For this program, Algo-
rithm 1 will return that the variables x and y can be tracked modularly. However, the variables
i and n must be tracked using the integer semantics, since they are used in a < operation and as
array indices.

5.2 From IMP to IMP-MOD

Now that we have computed what sets of variables can be tracked modularly, we can transform
the IMP program into an IMP-MOD program. The transformation Rf that rewrites f into an IMP-MOD

program is shown in Figure 7. The key idea of the program transformation is to use the sets V Z

and V P to only rewrite variables and sub-expressions of f for which the modular arithmetic can
be performed soundly.

Once we get a solution for the IMP-MOD program as hole values, we can get a solution for the
IMP program by mapping the hole to integer values given by the integer semantics.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:14 Q. Hu et al.

Fig. 7. Rules for the translation from IMP to IMP-MOD programs. Rules are parametric in V Z, V P with P:

Rf (f (V , ??){s}) = f (V Z,V P, ??){Rs (s)}.

Fig. 8. Transformation from the IMP program LoopInc in (a) to an IMP-MOD program LoopIncMod in (b).

Example 5.3. Consider the example program transformation shown in Figure 8. For this program,
the dataflow analysis computes V Z = {i,n} and V P = {x }. Therefore, the transformation rewrites
the statement x = x + i + 1 to xP = xP + toPrime(i) + 1P.

The transformation Rf is sound.

Theorem 5.4. Given an IMP program f , and sets V Z and V P resulting from the dataflow analysis
on f , the program Rf (f) is in the IMP-MOD language. Moreover, �f �IMP = �Rf (f)�.

Proof. First a few lemmas (note that in the formalization we only consider the language de-
scribed in Figure 4, which for example does not include arrays).

Lemma 1. For every a, Ra (a) is a modular arithmetic expression in aP. We proceed by induction on
a. The interesting case is the “otherwise” case. In this case, Ra (a) = toPrime(a). Hence, we need
to show that a is an IMP-MOD arithmetic expression, i.e., a does not contain any variable in V P.
Let us analyze all the cases that can follow in the “otherwise” case:
• If a ≡ v , and v ∈ V Z, then a does not contain variables in V P.
• If a ≡ ??, then a does not contain variables in V P.
• If a ≡ a1/a2, then, from the dataflow analysis, all variables in a1 and a2 belong to V Z.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:15

Lemma 2. For every b, Rb (b) is a IMP-MOD Boolean expression in b. We proceed by induction on b.
The first interesting case is b ≡ a1 == a2. Here, we have Rb (b) = Ra (a1) == Ra (a2). From Lemma
1, Ra (a1) and Ra (a2) are in aP, and hence we are done.
The other interesting case is the “otherwise” case. In this case, Rb (b) = b and b is of the form
a1 opc a2 where opc ∈ {<, >, ≤, ≥}. Hence, we need to show that b is an IMP-MOD Boolean
expression, i.e.,a does not contain any variable inV P. Due the operators inopc , from the dataflow
analysis, all variables in a1 and a2 belong to V Z.

Now, we are ready to show that Rf (f) = f (V Z,V P, ??){Rs (s)} is in the IMP-MOD language. To do
so, we show that Rs (s) is an IMP-MOD statement by induction on s . The interesting cases are the
following:

• If s ≡ vP = a, then Rs (s) = vP = Ra (a). From Lemma 1, Ra (a) is a modular arithmetic
expression in aP. Hence we are done.
• If s ≡ assert b, then Rs (s) = assert Rb (b). From Lemma 2, Rb (b) is a IMP-MOD Boolean

expression. Hence we are done.

The fact that �f �IMP = �Rf (f)� follows from a straightforward induction on s,b, and a. �

6 SOLVING IMP-MOD SKETCHES

In this section, we discuss how synthesis in the modular semantics relates to synthesis in the
integer semantics and provide an incremental algorithm for solving IMP-MOD sketches.

6.1 Synthesis in IMP-MOD

Given a set of integers R, we say that a variable valuation σ is in R (denoted σ ∈ R) if for every
v we have σ (v) ∈ R. Similarly to what we saw in Section 3, we assume that the sketch has to
be solved for finite ranges of possible values for the hole (RH) and input values (Rin). Solving an
IMP-MOD problem P = f (V ,V P,H){s} for the integer semantics amounts to solving the following
constraint:

∃σH ∈ RH .∀σ1,σ2 ∈ Rin .�s�σ1∪σ H ,σ2
� ⊥.

According to Theorem 4.10, given a set of distinct primes P = {p1, . . . ,pk } and variable valua-
tions σH ,σ1, and σ2, if there exists a range R of size N = p1 · . . . · · ·pk such that s ∈σ1∪σ H ,σ2

R, then
the modular semantics and the integer semantics are equivalent to each other. Using this observa-
tion, we can define the set of variable valuations for which the two semantics are guaranteed to
be equivalent:

IPR :=
{
(σ1,σ2) | ∀σH ∈RH .∃R. |R |=N ∧ s∈σ1∪σ H ,σ2

R
}
.

Since for everyσH ∈ RH andσ1,σ2 ∈ IPR we have that �s�P
σ1∪σ H ,mP◦σ2

= �s�σ1∪σ H ,σ2
, any solution

to an IMP-MOD program in the modular semantics is also a solution to the following formula in the
integer semantics:

∃σH ∈ RH .∀σ1,σ2 ∈ IPR .�s�σ1∪σ H ,σ2
� ⊥.

When all valuations in σ1,σ2 ∈ Rin are also elements of IP
R

, any solution to an IMP-MOD program
in the modular semantics is guaranteed to be a correct solution under the integer semantics.

To summarize, if the synthesizer returns UNSAT for the IMP-MOD program, then the problem is
unrealizable and does not admit a solution. When it returns a solution, the solution is correct if it
only produces valuations in the range allowed by the choice of prime numbers. In practice, one can
use a verifier to check the correctness of the synthesized solution and add more prime numbers to

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:16 Q. Hu et al.

ALGORITHM 2: Incremental synthesis for IMP-MOD.

/* f : function, P: set of primes */

1 function IncrementalSynthesis(f ,P)
2 P

′ ← [p1]

3 fsyn ← Synthesis(f ,P′)
4 while ∃pcex ∈ P : ¬Verify(fsyn,pcex) do

5 P
′ ← P′ ∪ pcex

6 fsyn ← Synthesis(f ,P′)
7 if fsyn == UNSAT then return ∅ ;

8 return fsyn

the modular synthesizer if needed. In fact, this is the main idea behind the counterexample-guided
inductive synthesis algorithm used by Sketch (Section 3).

6.2 Incremental Synthesis Algorithm

In this section, we propose an incremental synthesis algorithm that builds on the following ob-
servation. The set of variable valuations for which modular and integer semantics are equivalent
increases monotonically in the size of P:

P1 ⊆ P2 =⇒ IP1

R
⊆ IP2

R
. (1)

Algorithm 2 uses Equation (1) to add prime numbers lazily during the synthesis process. The
algorithm first constructs a set P′ = {p1} with the first prime number p1 ∈ P and synthesizes
a solution that is correct for computations modulo the set P′. It then checks if the synthesized
solution fsyn satisfies the assertions with respect to all prime numbers in P. If yes, then fsyn is
returned as the solution. Otherwise, the algorithm finds a prime pcex ∈ Pwhere Verify(fsyn,pcex)
does not hold and it adds it to the set P′ continuing the iterative algorithm. Due to Equation (1),
Algorithm 2 is sound and complete with respect to the synthesis algorithm that considers the full
prime set P all at once.

In practice, the user could use domain knowledge to estimate a suitable set of primes or alterna-
tively use our incremental algorithm to discover appropriate prime sets. The set of prime numbers
{2, 3, 5, 7, 11, 13, 17} could usually instantiate a range R that is large enough for most synthesis
tasks based on Sketch.

7 COMPLEXITY OF REWRITTEN PROGRAMS

In this section, we analyze how many bits are necessary to encode numbers for both semantics
using unary and binary4 bit-vector encodings of integers (Sections 7.1 and 7.2) and show how
many prime numbers are necessary in the modular semantics to cover values up to a certain bound
(Section 7.3). The following results build upon several number theory results that the reader can
consult in References [9, 15].

7.1 Bit-complexity of Binary Encoding

In this section, we analyze how many bits are necessary when representing an interval of size
N in binary in our modular semantics. In the rest of the section, we consider the set of primes
Pn = {p | p < n} = {p1, . . . ,pk } containing the prime numbers that have value smaller than n. We

4Sketch does not currently implement a binary encoding, but we include this result for completeness and to show that

applying our technique to a binary encoding is not as beneficial.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:17

will show in Section 8 that this choice of prime number also yields good performance in practice.
Concretely, we are interested in knowing what is the magnitude of the number N = p1 · . . . · pk

and how many bits are used to represent the numbers in Pn .
We start by introducing the notion of primorial.

Definition 7.1 (Primorial). Given a number n, the primorial n# is defined as the product of all
primes smaller than n, i.e., n# =

∏
p∈Pn

p.

The primorial captures the size N of the interval covered by the Chinese Remainder Theorem
when using prime numbers up to n. The following number theory result gives us a close form for
the primorial and shows that the number N has approximately n bits,

n# = e (1+o (1))n = 2(1+o (1))n . (2)

We use another number theory notion to quantify the number of bits in Pn .

Definition 7.2 (Chebyshev Function). Given a number n, the Chebyshev function ϑ (n) is the sum
of the logarithms of all the prime numbers smaller than n,i.e., ϑ (n) =

∑
p∈Pn

logp.

The following number theory result relates the primorial to the Chebyshev function:

ϑ (n) = log(n#) = log 2(1+o (1))n = (1 + o(1))n. (3)

Aside from rounding errors, the Chebyshev function captures the number of bits required to rep-
resent the numbers in Pn . To obtain a more precise bound on this number, we need a bound for
the formula

∑
p∈Pn
�logp�.

We start by recalling the following fundamental number theory result.

Theorem 7.3 (Prime Number Theorem). The set Pn has size approximately n/ logn.

Using Theorem 7.3, we get the following result:∑

p∈Pn

�logp� ≤ n/ logn +
∑

p∈Pn

logp ≈ (1 + o(1))n. (4)

Representing a number en in a classic binary encoding requires log2 (en) = (1+ o(1))n bits, and,
combining Equations (2) and (4), we get the following result.

Theorem 7.4. Representing a number 2n in binary requires (1 + o(1))n bits under both modular
and integer semantics.

Hence, representing a number in binary requires the same number of bits in the both semantics.

Example 7.5. Consider the set P18 = {2, 3, 5, 7, 11, 13, 17}, which can model an interval of N =
510, 510 integers (i.e., n = 18 in Theorem 7.4). Representing N in binary requires 19 bits while the
binary representations of all the primes in P18 use 22 bits. Both numbers are close to 18 as predicted
by the theorem.

7.2 Bit-complexity of Unary Encoding

As discussed in Section 3, the default Sketch solver encodes numbers using a unary encoding, i.e.,
Sketch requires 2n bits to encode the number 2n . Representing the same number in unary under
the modular semantics requires only prime numbers smaller than n and therefore

∑
p∈Pn

p bits. We
can then use the following closed form to approximate this quantity:

∑

p∈Pn

p ∼ n2

2 logn
. (5)

Equation (5) yields the following theorem.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:18 Q. Hu et al.

Theorem 7.6. Representing a number 2n in unary requires 2n bits in the integer semantics and

approximately n2

2 log n
bits in the modular semantics.

These results show that, under a unary encoding, the modular semantics is exponentially more
succinct than the integer semantics.

Example 7.7. Consider again the prime set P18 = {2, 3, 5, 7, 11, 13, 17}, which can model an inter-
val of N = 510, 510 integers. Representing N in unary requires 510,510 bits. However, the sum of
the bits in the unary encoding of the primes in P18 is 58.

7.3 Number of Required Primes

We analyze how many primes are needed to represent a certain number in the modular semantics.
We start by introducing the following alternative version of the primorial.

Definition 7.8 (Prime Primorial). For the nth prime number pn , the prime primorial pn# is defined
as the product of the first n primes, i.e., pn# =

∏n
k=1 pi .

The following known number theory result gives us an approximation for the prime primorial:

pn# = e (1+o (1))n log n . (6)

Notice how the approximation of the primorial differs from that of the prime primorial. This is
due to the fact that prime numbers are sparse, i.e., the nth prime number is approximately n logn.

Using Equation (6) we obtain the following result.

Theorem 7.9. Representing numbers in an interval of size N = en log n in the modular semantics
requires the first n prime numbers.

Since the relation k = n logn does not admit a closed form for n, we cannot derive exactly
how many primes are needed to represent a number 2k with k bits. It is, however, clear from the
theorem that the number of required primes grows slower than k .

Example 7.10. Consider again the prime set P18 = {2, 3, 5, 7, 11, 13, 17}, which can model an
interval of N = 510, 510 integers and consists of the first seven primes. According to Theorem 7.9,

P18 should be able to model an integer interval of size approximately e (1+o (1))(7 log 7) . In this case, N
is approximately e2.22(7 log 7) .

8 EVALUATION

We implemented a prototype of our technique as a simple compiler in Java. Our implementation
provides a simplified Sketch frontend, which only allows the limited syntax we support. Given a
Sketch file, our tool rewrites it into a different Sketch file that operates according to the modular
semantics. We will use Unary to denote the result obtained by running the default version of
Sketch with unary integer encoding on the original Sketch file; Native-Ints to denote the result
obtained by running the version of Sketch using a native integer solver that extends the SAT
solver with native integer variables, which it propagates them through the integer constraints, and
learns from conflict clauses (flag --slv-nativeints)5; Unary-p to denote the result of running
the default Sketch version on our modified Sketch file; and Unary-p-inc to denote the result
of running the default version of Sketch on the file generated by the incremental version of our
algorithm described in Section 6. All experiments were performed on a machine with 4.0-GHz Intel

5In the short version of this article published at ESOP20 [17], this version of Sketch was denoted with the name Binary.

Since the encoding used by Native-Ints does not operate directly on a binary representation of numbers, we decided to

use the name of the flag instead.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:19

Core i7 CPU with 16 GB RAM with Sketch-1.7.5, and we use a timeout value of 300 seconds (we
also report out-of-memory errors as timeouts).

Our evaluation answers the following research questions:

Q1 How does the performance of Unary-p compare to Unary and Native-Ints?
Q2 How does the incremental algorithm compare to the non-incremental one?
Q3 Is Unary-p’s performance sensitive to the set of selected prime numbers?
Q4 How many primes are needed by Unary-p to produce correct solutions?
Q5 Does Unary generate larger SAT queries than Unary-p?

8.1 Benchmarks

We perform our evaluation on three families of programs.

Polynomials. The first set of benchmarks contains 81 variants of the polynomial synthesis
problem presented in Figure 1. The original version of this benchmark appears in the Sketch
benchmark suite under the name polynomial.sk. For each benchmark, we generate a random

polynomial f , random inputs {−→x }, and take the set {(−→x , f (x))} as specification. Each bench-
mark in this set has the following parameters: #Ex∈ {2, 4, 6} is the number of input-output ex-
amples as specification, cbits∈ {5, 6, 7} denote the number of bits hole values can use, exIn∈
{[−10, 10], [−30, 30], [−50, 50]} denotes the range of randomly generated input examples, and
coeff∈ {[−10, 10], [−30, 30], [−50, 50]} denotes the range of randomly generated coefficients in
the polynomial f .

Invariants. The second set of benchmarks contain 46 variants of two invariant generation prob-
lems obtained from a public set of programs that require polynomial invariants to be verified [8].
We selected the two programs in which at least one variable could be tracked modularly by our
tool (the other programs involved complex array operations or inequality operators) and turned
the verification problems into synthesis problems by asking Sketch to find a polynomial equality
(using the program variables) that is an invariant for the loop in the program. To control the size
of the magnitudes of the inputs, we only require the invariants to hold for a fixed set of input
examples.

The first problem, mannadiv, iteratively computes the remainder and the quotient of two num-
bers given as input. The invariant required to verify mannadiv is a polynomial equality of degree
2 involving five variables. The Sketch template required to describe the space of all polynomial
equalities has 32 holes and cannot be handled by any of the Sketch solvers we consider. We there-
fore simplify the invariant synthesis problems in two ways. In the first variant, we reduce the
ranges of the hole values in the templates by considering cbits ∈ {2, 3}. In the second variant, we
set cbits = {5, 6, 7} but reduce the number of missing hole values to 4 (i.e., we provide part of the
invariant). Each benchmark takes two random inputs, and we consider the following input ranges
{[1, 50], [1, 100]}. In total, we have 10 benchmarks for mannadiv.

The second problem, petter, iteratively computes the sum
∑

1≤i≤n i
5 for a given input n. The

invariant required to verify petter is a polynomial equality of degree 6 involving three variables.
The Sketch template required to describe all such polynomial equalities has 56 holes and can-
not be handled by any of the Sketch solvers we consider. We consider the following simplified
variants of the problem: (i) petter_0 computes

∑
1≤i≤n 1 and requires a polynomial invariant of de-

gree one, (ii) petter_x computes
∑

1≤i≤n x for a given input variable x and requires a polynomial
invariant of degree two, (iii) petter_1 computes

∑
1≤i≤n i and requires a polynomial invariant

of degree two, and (iv) petter_10 computes
∑

1≤i≤n i + 1 and requires a polynomial invariant
of degree two. Each benchmark takes two random inputs and we consider the following input

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:20 Q. Hu et al.

Table 1. Effectiveness of Different Solvers

Polynomials Invariants Program repair
Solver Solved SAT UNSAT TO SAT UNSAT TO SAT UNSAT TO

Unary 69/181 12 4 65 5 0 41 48 0 6
Native-Ints 127/181 70 6 5 17 0 29 34 0 20

Unary-p 169/181 73 5 3 41 2 3 48 0 6
Unary-p-inc 172/181 73 6 2 41 2 3 50 0 4

SAT (respectively, UNSAT) denotes the number of benchmarks for which solver could find a solution to the benchmarks

(respectively, prove no solution existed) while TO denotes the number of timeouts.

ranges {[1, 10], [1, 100], [1, 1000]}. In total, we have 12 variants of petter, each run for values of
cbits ∈ {5, 6, 7}, i.e., a total of 36 benchmarks.

Program Repair. The third set of benchmarks contains 54 variants of Sketch problems from the
domain of automatic feedback generation for introductory programming assignments [7]. Each
benchmark corresponds to an incorrect program submitted by a student and the goal of the syn-
thesizer is to find a small variation of the program that behaves correctly on a set of test cases. We
select the 6/11 benchmarks from the tool Qlose [7] for which (i) our implementation can support
all the features in the program and (ii) our dataflow analysis identifies at least one variable that
can be tracked modularly. Of the remaining benchmarks, 3/11 do not contain variables that can
be tracked modularly and 2/11 call auxiliary functions that cannot be translated into Sketch. For
each program, we consider the original problem and two variants where the integer inputs are
multiplied by 10 and 100, respectively. Further, for each program variants, we impose an assertion
specifying that the distance between the original program and the repaired program is within a
certain bound. We select three different bounds for each program: the minimum cost c , c + 100,
and c + 200.

8.2 Performance of Unary-p

Table 1 summarizes our comparison.
First, we compare the performance of Unary-p and Unary. We use P = {2, 3, 5, 7, 11, 13, 17},

which is enough for Unary-p to always find correct solutions (we verify the correctness of a solu-
tion by instantiating the hole values in the original sketch programs and using Sketch (without the
--slv-nativeints flag) to verify that the assertions hold). We note that the Chinese Remainder
Theorem does not require one to use only prime numbers, and it only requires pairwise co-prime
integers. In our evaluation, we only consider prime numbers for simplicity and to avoid arbitrary
choices of non-prime numbers. Unary can only solve 69/181 benchmarks while Unary-p can solve
169/181. Figure 10(a) shows a scatter plot (log scale) of the solving times for the two techniques:
Each point below the diagonal line denotes a benchmark on which Unary-p was faster than Unary.
Points on the extreme right-hand side of the plot denote timeout for Unary. When both solvers
terminate, Unary-p (average 1.7 seconds) is 6.1× (geometric mean) faster than Unary (average
25.0 seconds).

Next, we compare the performance of Unary-p and Native-Ints (Figure 10(b)). On the 64 easier
benchmarks that Native-Ints can solve in less than 1 second, Native-Ints (average 0.55 seconds)
outperforms Unary-p (average 2.32 seconds), but Unary-p still has reasonable performance. On
the 49 benchmarks that Native-Ints can solve between 1 and 10 seconds, Unary-p (average 3.5
seconds) is on average 1.9× faster than Native-Ints (average 6.9 seconds). Most interestingly, for
the 14 harder benchmarks for which Native-Ints takes more than 10 seconds, Unary-p (aver-
age 5.7 seconds) is on average 15.9× faster than Native-Ints (average 90.9 seconds). Remarkably,

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:21

Fig. 9. Rosette vs. Native-Ints.

Unary-p solved 43 of the benchmarks (in less than 8 seconds each) for which Native-Ints timed out,6

and Unary-p only timed out for two benchmarks that Native-Ints could solve in less than a sec-
ond and one benchmark that Native-Ints could solve in 260 seconds. Finally, we highlight that
for 41/208 benchmarks, even Unary outperforms Native-Ints. As expected from the discussion
throughout the article, these are benchmarks typically involving complex operations but not in-
volving overly large numbers.

We can now answer Q1. First, Unary-p consistently outperforms Unary across all benchmarks.
Second, Unary-p outperforms Native-Ints on hard-to-solve problems and can solve problems that
Native-Ints cannot solve, e.g., Unary-p solved 28/46 invariant problems that Sketch could not
solve with either encoding. Unary-p and Native-Ints have similar performance on easy problems.

Comparison to full SMT encoding. For completeness, we also compare our approach to a tool
that uses SMT solvers to model the entire synthesis problem. We choose the state-of-the-art SMT-
based synthesizer Rosette [26] (version 3.0 with Z3 v4.8.7) for our comparison. Rosette is a
programming language that encodes verification and synthesis constraints written in a domain-
specific language into SMT formulas that can be solved using SMT solvers.

We only run Rosette on the set of Polynomials, because Rosette does support the theories of
integers but does not have native support for loops, so there is no direct way to encode Invariants
and Program Repair benchmarks. To our knowledge, Rosette provides a way to specify the num-
ber k it uses to model integers and reals as k-bit words, but the user has no control over how many
bits it uses for unknown holes specifically. So we evaluate 27 instead of 81 variants of the polyno-
mial synthesis problem on Rosette, i.e., we consider different numbers of cbits. We run Rosette
with the theory of integers (though Rosette supports many SMT theories including reals) in our
experiments.

Figure 9 shows the running times (log scale) for Rosette and Native-Ints with cbits=6.
Rosette successfully solved 16/27 benchmarks and it terminates quickly (average 2.9 seconds)
when it can find a solution. However, Rosette times out on 11 benchmarks for which Native-Ints
terminates. The timeouts are due to the fact that Rosette employs full SMT encodings that com-
bine multiple theories while Native-Ints uses a SAT solver that is only modified to accommodate
SMT-like integer constraints. Since we now know full SMT encodings are not as general and ef-
ficient as the encodings used in Sketch, we will only evaluate the effectiveness of our technique
based on comparison with Native-Ints.

6During our experiment, we observed that Native-Ints incorrectly reported UNSAT for 10 satisfiable benchmarks. We

reported these benchmarks as timeouts and have contacted the authors of Sketch to address the issue.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:22 Q. Hu et al.

Fig. 10. Performance of Unary, Native-Ints, and Unary-p.

We also consider the unsound encoding in which the holes and numbers are encoded as bit-
vectors (16 bits) and directly encode the polynomial problems in SMT using quantifiers (to encode
that the polynomial should be correct on all inputs) and the theory of bit-vectors. Z3 (v4.8.7) can
efficiently solve all these instances (<1 seconds per instance). However, it often returns solutions
that are correct in bit-vector arithmetic but not in integer arithmetic (due to overflow).

Finally, we tried applying our prime-based technique to Rosette (with integer variables), and
the technique is not beneficial and causes all benchmarks to timeout.

To summarize, (i) SMT solvers cannot efficiently handle the synthesis problems considered in
this article when considering the theory of integers but can efficiently solve (though at times
unsoundly) some of the problems using the theory of bit-vectors, and (ii) our technique is better
suited for the Sketch unary encoding of integers than for the encodings used for integers in SMT
solvers.

The results leave open whether it is possible to build an SMT-based approach for solving pro-
grams sketches that can benefit from the techniques presented in this article. This direction is be-
yond the scope of this article, as our focus is on addressing the existing limitations of the Sketch
solver.

8.3 Performance of Incremental Solving

Our implementation of the incremental solver Unary-p-inc first attempts to find a solution with
the prime set P = {2, 3, 5, 7}. If the solver returns a correct solution, then Unary-p-inc terminates.
Otherwise, Unary-p-inc incrementally adds the next prime to P until it finds a correct solution,
it proves there is no solution, or it times out. Unary-p-inc is 25.2% (geometric mean) slower than
Unary-p (Figure 11 (log scale)). Unary-p-inc can solve three benchmarks for which both Unary-p
and Native-Ints timed out. To answer Q3, Unary-p-inc performs slightly better than Unary-p.

8.4 Varying the Prime Number Set P

In this experiment, we evaluate how different prime number sets affect the performance and cor-
rectness of Unary-p.

We consider the five increasing sets of primes: P5 = {2, 3, 5}, P7 = {2, 3, 5, 7}, P11 = {2, 3, 5, 7, 11},
P13 = {2, 3, 5, 7, 11, 13}, and P17 = {2, 3, 5, 7, 11, 13, 17}. Figure 12(a) (log scale) shows the running
times for all the polynomial benchmarks with cbits = 7 (showing all benchmarks would clutter
the plot). The points where the lines change from dashed to solid denote the number of primes for
which the algorithm starts yielding correct solutions. As expected, a smaller set of primes leads to

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:23

Fig. 11. Unary-p-inc vs. Unary-p.

Fig. 12. Performance for different sets of prime numbers.

faster solving times as the resulting constraints are smaller and fewer bits are needed for encoding
intermediate values. The runtime on average grows with the increasing size of the primes. For
example, across all benchmarks, using P17 takes 23% longer on average than using P11. To answer
Q3, Unary-p is slower when using increasingly large sets of prime.

In terms of correctness, we find that smaller prime sets often yield incorrect solutions (P5 (37%
correct), P7 (70%), P11 (86%), P13 (97 %), and P17 (100%)), because there is not enough discriminative
power with fewer primes and the solutions may overfit to the smaller set of intermediate values.
It is interesting to note that even prime sets of intermediate size often lead to correct solutions in
practice, which explains some of the speedups observed in the incremental synthesis algorithm.
To answer Q4, Unary-p is able to synthesize correct solutions even with intermediate sized sets of
primes.

Changing Magnitude of Primes. We also evaluate the performance of Unary-p when using
primes of different magnitudes. We consider the sets of primes {11, 17, 19, 23}, {31, 41, 47}, and
{251, 263}, which define similar integer ranges, but pose different tradeoffs between the number of
used primes and their sizes, e.g., the set {251, 263} only uses two very large primes. Since the dif-
ferent sets cover similar integer ranges, they all produce correct solutions. Figure 12(b) (log scale)
shows the running time of Unary-p for the same benchmarks as Figure 12(a). Larger prime sets of
smaller prime values require less time to solve than smaller prime sets of larger prime values. This
result is expected, since, in the unary encoding of numbers, representing larger numbers requires
more bits.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:24 Q. Hu et al.

Fig. 13. SAT formulas sizes and performance.

8.5 Size of SAT Formulas

In this experiment, we compare the sizes of the intermediate SAT formulas generated by Unary-p
and Unary. Figure 13(a) shows a scatter plot (log scale) of the number of clauses of the largest
intermediate SAT query generated by the CEGIS algorithm for the two techniques. We only plot
the instances in which Unary was able to produce at least a SAT formula. Unary produces SAT
formulas that are on average 19.3× larger than those produced by Unary-p. To answer Q5, as
predicted by our theory, Unary-p produces significantly smaller SAT queries than Unary.

Performance vs. Size of SAT Queries. We also evaluate the correlation between synthesis time
and size of SAT queries. Figure 13(b) plots the synthesis times of both solvers against the sizes
of the SAT queries. It is clear that the synthesis time increases with larger SAT queries. The plot
illustrates how the solving time strongly depends on the size of the generated formulas.

9 RELATED WORK

Program Sketching. Program sketching was designed to automatically synthesize efficient bit-

vector manipulations from inefficient iterative implementations [24]. A program sketch is a pro-
gram template where a finite number of constants (holes) are missing and the goal of the synthe-
sizer is to find values for such holes that can make a set of assertions hold. While sketching is
limited to synthesizing constants, it is easy to encode problems that involve synthesizing a finite
set of expressions by using the holes as guards of if-then-else operators. The Sketch tool can in
fact support complex language features and operations [22]. Thanks to its simplicity, sketching has
found wide adoption in applications such as optimizing database queries [3], automated feedback
generation [21], program repair [7], and many others. Our work further extends the capabilities of
Sketch in a new direction by leveraging number theory results. In particular, our technique allows
Sketch to handle sketches manipulating large integer numbers. To the best of our knowledge, our
technique is the first one that can solve many of the benchmarks presented in this article.

Uses of Chinese Remainder Theorem. The Chinese Remainder Theorem and its derivative corol-
laries have found wide application in several branches of Computer Science and, in particular, in
Cryptography [11, 29].

The idea of using modular arithmetic to abstract integer values has been used in program anal-
ysis. Since modular fields are finite, they can be used as an abstract domain for verifying programs
manipulating integers [5, 16, 19], e.g., the abstract domain can track whether a number is even
or odd. Our work extends this idea to the domain of program synthesis and requires us to solve

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

Solving Program Sketches with Large Integer Values 9:25

several challenges. First, when used for verifying programs, the modular abstraction is used to
overapproximate the set of possible values of the program and does not need to be precise. In
particular, Clark et al. [5] allow program operations that are in the IMP language but not in the
IMP-MOD language and lose precision when modeling such operations, e.g., when performing the
assignment x = x/2 the value of x mod 2 can be either 0 or 1. Such imprecision is fine in program
analysis, since the abstraction is used to show that a program does not contain a bug, i.e., even in
the abstract domain, the problem behaves fine. In our setting, the problem is opposite, as we use
the abstraction to simplify the synthesis problem and provide a theory for when the modular and
integer semantics are equivalent.

Pruning Spaces in Program Synthesis. One of the key challenges in program synthesis is to tackle
the large search space of possible programs [14] and many techniques have been proposed to
efficiently prune large search spaces. Enumerative techniques [27] and version-space algebra syn-
thesis techniques [12, 13, 20] enumerate programs in a search space and avoid enumerating syn-
tactically and semantically equivalent terms.

Some synthesizers such as Synquid [18] and Morpheus [10] use refinement types and first-order
formulas over specifications of DSL constructs to refute inconsistent programs. Recently, Wang et
al. [28] proposed a technique based on abstraction refinement for iteratively refining abstractions
to construct synthesis problems of increasing complexity for incremental search over a large space
of programs.

We note that our work differs from these approaches because it targets program sketching,
where the goal is identify constant values, instead arbitrary program synthesis. While sketching
can be used to encode a number of synthesis problems, it limits the types of search spaces one
can express and the ability to syntactically prune search spaces. We believe our technique could
be used in tandem with existing program synthesis approaches to synthesize programs containing
large constants, but this extension is beyond the scope of this article. In terms of technical differ-
ence, instead of pruning programs in the syntactic space as the aforementioned techniques do, our
technique uses modular arithmetic to prune the semantic space (i.e., the complexity of verifying
the correctness of the synthesized solution), while maintaining the syntactic space of programs.
Our approach is related to that of Tiwari et al. [25], who present a technique for component-based
synthesis using dual semantics where syntactic symbols in a language are provided two different
semantics to capture different requirements. Our technique is similar in the sense that we also
provide an additional semantics based on modular arithmetic. However, we formalize our analysis
based on number theory results and develop it in the context of general-purpose Sketch programs
that manipulate integer values, unlike Tiwari et al.’s work that is developed for straight-line pro-
grams composed of components.

Synthesis for Large Integer Values. Abate et al. propose Cegis(T), a modification of the Cegis
algorithm for solving SyGuS problems with large constants [1]. Cegis(T) uses two nested loops.
In an outer loop, it enumerates “template programs” that contain holes for the constants, while
in an inner loop it relies on an SMT solver to find the valuations for these constants. The main
novelty is that the inner loop can use techniques such as quantifier elimination to discard large
sets of constants that cannot fill the holes and potentially prove that no constants exist.

Our approach is orthogonal to that of Abate et al. First, our work is focused on program sketch-
ing and not SyGuS. While the two ways of specifying synthesis problems have ways to be related,
they are fundamentally different. Sketching limits the user to providing templates where only a fi-
nite number of constants are missing and by bounding many quantities (e.g., loop iterations, input
sizes), but it allows one to use many complex programming constructs and retain practical syn-
thesis. SyGuS allows the user to specify grammars of programs (which need to consist of terms

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

9:26 Q. Hu et al.

in a given theory) from which the final program can be synthesized. Furthermore, existing SyGuS
solvers are typically designed for specific theories (e.g., LIA). Many of the examples described in
this article cannot directly be encoded in SyGuS, as they use complex control constructs (e.g., to
encode loops one would require to explicitly unroll programs and operations such as non-linear
integer arithmetic cannot be handled by existing SyGuS solvers). Dually, one cannot encode the in-
finite search spaces encoded by SyGuS grammar as a program sketch, making the two formalisms
complementary. Both our approach and the one by Abate et al. were designed to address the in-
ability of existing solvers to synthesize large constants, and they have different uses. Second, for
Cegis(T) to work, the constants that need to be synthesized have to appear in specific places in
the template, e.g., they cannot be the coefficients of linear terms. For our technique to work, the
constants can appear as coefficients but cannot be manipulated using certain operators (e.g., divi-
sion). In principle, the two approaches could be combined, and the Cegis(T) algorithm presented
by Abate et al. could potentially make use of our technique to fill the holes in the templates they
synthesize. This possible extension is beyond the scope of this article.

10 CONCLUSION

We presented a new technique for solving program sketches with large integer values. Our tech-
nique rewrites the sketches to operate in a different semantics that only manipulates small values.
In particular, instead of tracking concrete integer values, the rewritten sketches only track the
remainders of such values for an appropriate set of prime numbers. Using the Chinese Remain-
der Theorem, we showed that our technique is sound and yields correct solutions as long as the
values manipulated by the program never exceed certain well-defined boundaries. We provide a
dataflow analysis for detecting when program variables and values can be modeled using this mod-
ified semantics and implement our technique in Unary-p. The evaluation of our technique on 181
benchmarks that manipulate large integer values shows that our solver can solve 100 new bench-
marks that the Sketch unary solver could not solve and is 15.9× faster than the Sketch SMT-like
integer solver on the hard benchmarks that take more than 10 seconds to solve.

This article opens new opportunity for encoding constraint problems involving large integer
values. The proposed techniques are general and could be applied to other domains beyond pro-
gram sketching. We leave investigating the effectiveness of the techniques on other domains (e.g.,
SMT solvers) as future work.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for commenting on earlier drafts and Rong Pan for his contri-
butions to this article.

REFERENCES

[1] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth Polgreen. 2018. Counterexample

guided inductive synthesis modulo theories. In Proceedings of the International Conference on Computer-Aided Verifi-

cation (CAV’18), Lecture Notes in Computer Science. Springer.

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh

Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Proceedings of

the Formal Methods in Computer-Aided Design (FMCAD’13). 1–8.

[3] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing database-backed applications with

query synthesis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI’13). 3–14.

[4] Lindsay N. Childs (Ed.). 2009. The Chinese Remainder Theorem. Springer, New York, NY, 253–281. https://doi.org/10.

1007/978-0-387-74725-5_12

[5] Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model checking and abstraction. ACM Trans. Program.

Lang. Syst. 16, 5 (Sept. 1994), 1512–1542. https://doi.org/10.1145/186025.186051

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

https://doi.org/10.1007/978-0-387-74725-5_12
https://doi.org/10.1145/186025.186051

Solving Program Sketches with Large Integer Values 9:27

[6] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of pro-

grams by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (POPL’77). ACM, New York, NY, 238–252. https://doi.org/10.1145/512950.512973

[7] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program repair with quantitative objectives. In Pro-

ceedings of the International Conference on Computer-Aided Verification (CAV’16), Lecture Notes in Computer Science,

Vol. 9780. Springer, 383–401.

[8] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial invariants by linear algebra. In Auto-

mated Technology for Verification and Analysis, Cyrille Artho, Axel Legay, and Doron Peled (Eds.). Springer Interna-

tional Publishing, Cham, 479–494.

[9] Pierre Dusart. 2016. Estimates of ψ ,ϑ for large values of x without the Riemann hypothesis. Math. Comput. 85, 298

(2016), 875–888. https://doi.org/10.1090/mcom/3005

[10] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of

table consolidation and transformation tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, 422–436. https://doi.org/10.

1145/3062341.3062351

[11] J. Grobchadl. 2000. The chinese remainder theorem and its application in a high-speed RSA crypto chip. In Proceedings

of the 16th Annual Computer Security Applications Conference (ACSAC’00). IEEE Computer Society, Washington, DC,

USA, 384–.

[12] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of

the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’11). 317–330. https://doi.

org/10.1145/1926385.1926423

[13] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet data manipulation using examples. Commun.

ACM 55, 8 (2012), 97–105. https://doi.org/10.1145/2240236.2240260

[14] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program synthesis. Found. Trends Program. Lang. 4, 1–2

(2017), 1–119. https://doi.org/10.1561/2500000010

[15] G. J. O. Jameson. 2003. The Prime Number Theorem. Cambridge University Press. https://doi.org/10.1017/

CBO9781139164986

[16] Shinji Kimura. 1995. Residue BDD and its application to the verification of arithmetic circuits. In Proceedings of the

32nd Design Automation Conference. 542–545. https://doi.org/10.1109/DAC.1995.250006

[17] Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni. 2020. Solving program sketches with large integer

values. In Proceedings of the 29th European Symposium on Programming (ESOP’20), Lecture Notes in Computer Science,

Peter Müller (Ed.), Vol. 12075. Springer, 572–598. https://doi.org/10.1007/978-3-030-44914-8_21

[18] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement

types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,

(PLDI’16). 522–538. https://doi.org/10.1145/2908080.2908093

[19] Kavita Ravi, Abelardo Pardo, Gary D. Hachtel, and Fabio Somenzi. 1996. Modular verification of multipliers. In Pro-

ceedings of the 1st International Conference on Formal Methods in Computer-Aided Design (FMCAD’96). Springer-Verlag,

Berlin, 49–63.

[20] Rishabh Singh and Sumit Gulwani. 2016. Transforming spreadsheet data types using examples. In Proceedings of the

43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’16). 343–356. https:

//doi.org/10.1145/2837614.2837668

[21] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated feedback generation for introductory

programming assignments. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’13). 15–26. https://doi.org/10.1145/2462156.2462195

[22] Armando Solar-Lezama. 2013. Program sketching. Int. J. Softw. Tools Technol. Transf. 15, 5–6 (2013), 475–495. https:

//doi.org/10.1007/s10009-012-0249-7

[23] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. 2008. Sketching concurrent data structures.

In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation. 136–148.

https://doi.org/10.1145/1375581.1375599

[24] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial sketch-

ing for finite programs. SIGOPS Operat. Syst. Rev. 40, 5 (Oct. 2006), 404–415. https://doi.org/10.1145/1168917.1168907

[25] Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. 2015. Program synthesis using dual interpretation. In Proceedings

of the 25th International Conference on Automated Deduction (CADE’15). 482–497. https://doi.org/10.1007/978-3-319-

21401-6_33

[26] Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’14).

ACM, New York, NY, 530–541. https://doi.org/10.1145/2594291.2594340

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1090/mcom/3005
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1561/2500000010
https://doi.org/10.1017/CBO9781139164986
https://doi.org/10.1109/DAC.1995.250006
https://doi.org/10.1007/978-3-030-44914-8_21
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2837614.2837668
https://doi.org/10.1145/2462156.2462195
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1168917.1168907
https://doi.org/10.1007/978-3-319-21401-6_33
https://doi.org/10.1145/2594291.2594340

9:28 Q. Hu et al.

[27] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M. K. Martin, and Rajeev Alur.

2013. TRANSIT: Specifying protocols with concolic snippets. In Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’13). 287–296.

[28] Xinyu Wang, Isil Dillig, and Rishabh Singh. 2018. Program synthesis using abstraction refinement. Proc. ACM Program.

Lang. 2 (2018), 63:1–63:30. https://doi.org/10.1145/3158151

[29] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon. 2003. RSA speedup with chinese remainder theorem

immune against hardware fault cryptanalysis. IEEE Trans. Comput. 52, 4 (April 2003), 461–472. https://doi.org/10.1109/

TC.2003.1190587

Received April 2020; revised September 2021; accepted November 2021

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 2, Article 9. Publication date: July 2022.

https://doi.org/10.1145/3158151
https://doi.org/10.1109/TC.2003.1190587

