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Abstract— Classical mathematical models of information
sharing and updating in multi-agent networks use linear
operators. In the paradigmatic DeGroot model, for example,
agents update their states with linear combinations of their
neighbors’ current states. In prior work, an accelerated aver-
aging model employing the use of memory has been suggested
to accelerate convergence to a consensus state for undirected
networks. There, the DeGroot update on the current states is
followed by a linear combination with the previous states. We
propose a modification where the DeGroot update is applied
to the current and previous states and is then followed by a
linear combination step. We show that this simple modification
applied to undirected networks permits convergence even for
periodic networks. Further, it allows for faster convergence
than DeGroot and accelerated averaging models for suitable
networks and model parameters.

I. INTRODUCTION

Linear models for information sharing play a crucial
role in multi-agent systems and sensor networks. Among
these, distributed averaging algorithms have been intensively
studied as a way to reach global consensus with local
computations. One of the first such models was proposed
by DeGroot [1]. There, agents update their state by taking
the weighted average of their neighbours’ states at each time
step. Many variations have since accounted for real-world
phenomena (changing communication patterns or individu-
als’ stubbornness), and optimized convergence rates.

As a starting point for this paper, we consider an acceler-
ated averaging model first proposed by Muthukrishnan et
al. in [2]. Therein, authors suggest a modification of the
classic DeGroot scheme where agents update their states
by first taking a DeGroot update of the current states and
then performing a linear combination between this and their
previous states, as shown in Fig. la. In [2] they show that
this additional memory step allows for faster convergence in
networks where the original DeGroot model also converges.
In this paper, our modification of the Muthukrishnan et al.
averaging scheme involves the agents performing DeGroot
averaging on the current and previous states followed by
a linear combination step, as shown in Fig. 1b. Hereafter,
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Fig. 1: Representation of discrete-time averaging algorithms in a
two-dimensional state space (x1,x2). (a) In the accelerated averag-
ing model, a DeGroot update is performed on current state at k.
This is followed by a linear combination step to get the final state
at k+ 1. (b) In MLA, we apply DeGroot update on the current
and past states. This is followed by a linear combination of the
intermediate states to obtain the final state at k4 1.

we call this model the Memory of Local Averages (MLA)
model. Besides deriving convergence guarantees for this
modified scheme, our main objective is to show that this
simple modification leads to two important consequences:
First, we demonstrate conditions for undirected, connected
and periodic networks under which MLA achieves consensus
despite the DeGroot and the accelerated averaging models
failing to do so. Second, we give sufficient conditions under
which MLA achieves faster convergence than the DeGroot
model and the accelerated averaging algorithm.

Our work is part of a rich literature on opinion dynamics,
information sharing and consensus models. Besides classic
DeGroot dynamics, several modifications have been pro-
posed to include stubborn agents (e.g., [3], [4]) or dynamics
on random or state-dependent networks (e.g. in [5] [6])
among others. We refer to [7] and [8] for recent surveys.

Our work is most related to the literature that focuses on
capturing convergence rates while maintaining the original
DeGroot structure. In general, faster convergence can be
achieved either by tuning the network weights as suggested
e.g. in [9] [10] or by modifying the update dynamics as
suggested e.g. in [2]. Our work belongs to the latter class.
We note that whereas in [2] and our work, faster convergence
is obtained by introducing one step of memory, the use of a
prediction step has also been investigated (see [11], [12]).
Similar to these works, we retain linearity of the update
equation which permits for analysis using techniques of
linear algebra and Markov chains. We conclude by noting
that significant work focused also on deriving finite-time con-
sensus schemes [13], [14], [15]. Such schemes require non-
linear updates, which may carry additional computational
burden as compared to their linear counterparts.
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II. THE MLA MODEL
A. Model formulation

Let n > 2 agents be connected in a network with corre-
sponding weighted adjacency matrix, A = [aij].xs. Here, a;;
denotes the weight that agent i assigns to agent j. The state
of each agent, i, at time step, k € Z>, is denoted by x;(k).
Throughout the paper, we use the following assumption.

Assumption 1: The weighted adjacency matrix A,x, is
non-negative i.e. a;; >0V i,j€ {1,...,n} and row-stochastic
ie. Z’}:ld,'j =1Vie {1,...,71}.

In the DeGroot model, each agent updates its state with the
weighted average of the current states of its local neighbors,

Zal}xl
= xpg(k+ 1) = Ax(k), (1)

where x(k) = [x1(k),...,x,(k)]T € R™.

In contrast, the MLA model is an averaging algorithm with
memory which takes into account each agent’s current and
previous states. In particular, given the current states of the
agents x(k), and the previous states x(k — 1), we first apply
Degroot model to get intermediate states,

z(k) = Ax(k) and z(k—1) = Ax(k—1).

xipc(k+1)

We then obtain the final state x(k+ 1) by taking a linear
combination of z(k) and z(k — 1) with weight y

x(k-+1) = ya(k) + (1 - Pa(k— 1)
= x(k+1) = YAx(k) + (1 — y)Ax(k — 1), )

where the initial conditions are x(0) = x(—1). In MLA, each
agent only needs to store the local average at the previous
time step, z(k — 1), instead of the individual states of all
its neighbors. Note that for ¥y = 1, Eq. (2) reduces to the
DeGroot model.

B. Augmented system

To study convergence properties of the system given by
Eq. 2 we define an augmented state, %(k) € R** and an
augmented iteration matrix, A € R>*?" as follows

oo | X0
9= L((kl)] @
K(k+1)= l HYA (1@_ A 1 k(k) = Ak(k). (4

Spectral properties of A in relation to A are discussed in
the following lemma.

Lemma 1: If (A,v) denotes an eigenpair of A, then the
eigenpairs of A are (A, ¥4) where,

Remark: Eqgs. (6) and (7) are derived from an eigenanalysis
of A as given in the companion arXiv paper [16].

III. CONVERGENCE GUARANTEES AND CONSENSUS
VALUE

A. Convergence guarantees for connected undirected net-
works

Convergence properties of (4) (and thus (2)) can be
connected to spectral properties of A as stated in Lemma 2.

Lemma 2 (Theorem 2.7 in [7]): A square matrix, B €
R™"_ is semi-convergent and not convergent i.e. limy_,., B¥
exists different from 0y, if and only if (i) 1 is an eigenvalue
of B and is semi-simple (ii) all other eigenvalues of B have
magnitude strictly less than 1.

Assumption 2: The weighted adjacency matrix A is sym-
metric i.e. ajj=aj ¥ i,j € {1,2,...,n} and irreducible i.e.
Yi oAk > 0.

Remark: Assumption 2 is equivalent to the network being
undirected and connected. The spectrum of A is the set of
all eigenvalues of A i.e. spec(A) = {A1,42,...,A,} with the
condition A; > A, >...> A, and the corresponding eigenvec-
tors to be {vy,vs,...,v,}. By Perron-Frobenius theorem for
irreducible matrices, under Assumptions 1 and 2, (i) A; =1
is a simple eigenvalue of A, (i) |A;| <1V ie{2,3,...,n}.

Theorem 3: Suppose Assumptions 1 and 2 hold. Then A
is semi-convergent if and only if:

M) v<(0,2),

@) 2yA, — A, +1>0,
where A, is the smallest eigenvalue of A.
Proof: We proceed in three steps:

(1) A is semi-convergent = y € (0,2)

We prove this by contradiction. Since A; =1 is an eigen-
value of A, from Lemma 1, {1,y — 1} are eigenvalues for
A with corresponding eigenvectors {[vi;vi],[(y—1)vi:vi]}.
Now if ye R\ (0,2] then A has an eigenvalue A,_ =y—1¢€

R\ (—1, 1], which is absurd from Lemma 2 since A is semi-
convergent.

If y=2, A has an eigenvalue A =1 with algebraic
multiplicity 2 (from Lemma 1). The associated eigenspace
is E; = {¥] A¥ = ¥}. Note that for y=2,

R 2A —A \4| \4]
AV = =11 (8)
lixn | Ousxcn \f) \f)

which implies ¥ = ¥, = v. Thus, 2A¥| —AV, =Av=V; =V.
Here v is an eigenvector of A. Since by assumption, the
geometric multiplicity of A =1 in A is 1, the geometric
multlpllclty of A =1 in A is also 1. This is absurd since
A semi-convergent implies 2 =1 has same algebraic and
geometric multiplicity.

A2 —yAd+(y—1)A =0, 5) (2) A is semi-convergent = 2YAn—An+1>0
By Eq. (5) spec(A) = {Aix] A € spec(A)}. Since A is
s YAE/PAT—4(y—1)A y =4 A T
= Ay = Y 4 > (r—1) , (6) semi-convergent |Aix| < 1 V i. Moreover, since A =1 has
i geometric multiplicity 1 and A is semi-convergent, it must
Yy = =¥ ] (7) be that A; has geometric multiplicity 1. Given that Ay =1,
\4 we conclude that [Aii| <1V ie{2,3,...,n}.
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Lemma 4 (Lemma 8.5 in [17]): The polynomial z> +az+
b =0, where a,b € C, has roots |z1 2| < 1 if and only if roots
sy and s, of (1 +a+b)s>+2(1 —b)s+b—a+1=0 satisfy
Re(s1) <0 and PRe(sz) < 0. A

Applying Lemma 4 to Eq. (5), |A;=| < 1 if and only if the
following Eq. (9) has roots with strictly negative real parts.

(1—=7Ai+ (y—DA)s* +2(1 = (y— DA)s+...
A+ ((y=-DA+ YA+ 1) =0,
= (1-=2)" +2(1 —yAi+A)s+ ¥4 — 4 +1) =0, (9)
For fixed i € {2,3,...,n}, let the roots of Eq. (9) be 51,52 €
C. We have the sum of roots of Eq. (9),
—2(1—yA+A)
1—A
Since the sum of roots is real, s; and s, are of the form,

s1 =aj +bi and s, = ap — bi, where aj,a>,b € R. We then
note that,

S1+s5 = cR. (10)

a1 <0, a<0&cr:a14+a; <0, ¢c3:a1a > 0. (11

We study conditions ¢; and c¢; independently. Note that for

condition ¢y,

—2(1 - (y=DA)
1-A

ar+ay =s1+sy = <0 (y—DHA< 1.

(12)
Since, as proved above, semi-convergence implies ¥ € (0,2)
and |A;] < 1, condition ¢; is automatically satisfied V i €
{2,3,...,n}. For condition ¢3, when b = 0, using the product
of roots of Eq. (9), we can write,
2’)/2,, —Ai+1

-2

294 —A+1>0,Vie{2,...  ,n}.

ajay = s152 = >0,

Specifically, for 4,, we get,

29 — A +1>0. (13)

When b#0, ay =ay = ajap =a? > 0. Since, a; +a, <0
from condition ¢, a; # 0. Hence, aja; > 0.

(3) The conditions (i) v € (0,2) and (ii) 2yA, — A, +1 >0
= A is semi-convergent.

Recall that from Lemma 1, the eigenvalue A of A gets
mapped to eigenvalues A: in A. Then A =1 is mapped to
{1,y—1}, where y € (0,2).

We next show that all the other eigenvalues of A are
mapped inside a unit disk, which is enough to prove that
A is semi-convergent by Lemma 2. Again, applying Lemma
4 to Eq. (5), we know that A+ lies within the unit-disk if
and only if the roots of Eq. (9) lie in the open left half plane.
As before, the roots of Eq. (9) are in the left half plane if
and only if,

cy: —2(1 —(y- l)l,') <0,
o (2y—-DA+1>0.

(14
15)
Recall that A; € [—1,1) for i € {2,...,n}, hence for y €

(0,2), criterion ¢; holds. For proving ¢, consider two cases:
(@) Y€ (0,1) and (b) v € [1,2).

For case (a), |2y— 1| < 1, and since |4;] < 1, the condition
(2y—1)A4+1>0, holds V i € {2,...,n}. For case (b),
2y—1>0 and f(4;) = 2y—1)A;+ 1 is a monotonically
increasing function. Since, A; > A, V i € {2,...,n} and
f(A) >0, we infer that f(A) = 2y—DA+1> f(A,) >
0Vie{2,... n}

_ Overall, the eigenvalues of A are {l,y— 1,;1&}, with
A+ =1 simple and (y—1), Aix inside the unit disk V i €
{2,...,n}. From Lemma 2 A is semi-convergent. ]

B. Special case of periodic networks

Note that Theorem 3 does not require the network to
be aperiodic. If the network is periodic, then A, = —1 and
convergence can be guaranteed by Theorem 3 for v € (0,1).
This is in sharp contrast with the DeGroot model where,
if the network is periodic, we can always find an initial
condition that causes persistent oscillations.

For comparison, we next discuss the accelerated averaging
model by Muthukrishnan et al. [2]. Similar to our model, it
also takes into account agents’ current and previous states,
however the update equation in [2] is given by,

x(k+1) = BAx(k) + (1 —B)x(k—1), (16)

where k € Z>(, € R and initial states x(0) = x(—1) = xo.
Lemma 5: Under Assumptions 1 and 2, if the network
associated with A is periodic, there exist initial conditions
Xo s.t. the accelerated averaging model given by Eq. (16)
does not converge.
Proof: The augmented iteration matrix for the model
in Eq. (16) is Ag € R21x2n,

ﬁA ‘ (1 *ﬁ)ﬂan

@nxn

c R, (17)

Ap =

UVlX}’l ‘

Denote the eigenvalues of Ag by Uy, for i € {1,2,...,n}.
As illustrated by Eq. (11.13) in [7], t;+ can be obtained by
performing eigenanalysis on Ag:

BAit/B2A2 4B +4

2

Wit = (18)
The eigenvalues induced by A, = —1 are . ={—1, 1 -}
Thus, by Lemma 2, the model does not converge; selecting
an xo along the eigenvector corresponding to —1 leads to
persistent oscillations. [ ]

We next numerically compare convergence properties of
the MLA model with the DeGroot model and the accelerated
averaging model. To do so, we consider a periodic ring
network with four nodes, shown in Fig. 2, and numerically
simulate the system starting from 1000 randomly chosen
initial conditions and plot the time series of the envelope
of oscillations relative to the mean. It can be seen that for
the chosen undirected, symmetric and periodic network, the
DeGroot model as well as the accelerated averaging model
oscillate whereas the MLA model reaches a consensus steady
state.
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Fig. 2: Comparison of convergence in three averaging models for
a periodic network. The plot shows the envelope enclosed between
the maximum and minimum deviation from the mean state and is
simulated using 1000 randomly chosen initial conditions. In contrast
to others, the MLA model converges to consensus.

C. Value of convergence

Lemma 6: Under Assumptions 1 and 2, if the convergence
criteria given in Theorem 3 are satisfied, the MLA model
given by Eq. (2), with initial conditions %(0) = [x(0);x(0)],
converges to an average consensus value given by 17x(0)/n.

Proof: The final value of the states, Xpal, 1S,

Khina = lim %(k) = lim A*%(0). (19)
k—so0 k—yoo0
Since A has a simple eigenvalue at A, = 1 and A is
semi-convergent, Eq. (5§) implies that M=1isa simple
eigenvalue for A (see proof of Theorem 3). Using the Jordan
decomposition, we can write,

k
. ~ ) 1 ‘ O1x2n-1 -1
ImA®*=1limT r, (20)
k—so0 k—yo0 02,—1x1 ‘ Boy—1x2n-1
where, T = [01i7”'7€7ni]9 T71 = [W{i;”';wr{i]’ and

~

Vit, Wi+ denote the right and left eigenvectors of A V i €
{1,...,n}, such that W' %, =1, V i€ {1,2,...,n}. B
consists of Jordan blocks corresponding to eigenvalues, il-i,
satisfying |Aix| <1, Vi€ {2,3...,n} and |A;_| < 1. Thus,
we get,

‘ O1x20—-1

. ’\k . 1
limA® = lim T
k—yeo k= | Oon-1x1 | O2n—1x2n-1

1 77l @D
Combining Egs. (19) and (21), we get:
Riinat = ¥1: W], R(0) = (W] R(0))91. (22)

Since A is a row-stochastic matrix, ¥;, = 12,, proving that
the agents reach consensus. Define W/ L= [wlT 1,Wsz] . Thus,
we get the following eigenvalue problem:

YA | (1-pA
(Wi wl ] =1[w ,w,]. (3
I]IZXI’! @an
Solving this system of equations yields:
wi A=w] . (24)

Thus, wy_; is a scaled dominant right eigenvector of A i.e.
wi 1 = {w; for some { € R\ {0}. Combining this with

Eq. (23) yields wy o = (1 —y)w;, 1 = {(1 — y)w;. Addition-
ally, by imposing the constraint vAvlTﬂznxl =1, we get:

AT 1 T -y T
W = |(5) v ()]

Hence, the final consensus states attained by agents is:

Kfinal = [(ﬁ) Wi, (H) Wﬂ {igg;] T2, = Wi X(0) 2.
(26)

(25)

Since A is symmetric, w; = (1/n)1, and MLA reaches a
consensus to the average of the initial states of the agents.
|

IV. AN ACCELERATED ROUTE TO CONSENSUS

In the previous section we showed that under certain
conditions the MLA algorithm converges while the models
by DeGroot and Muthukrishnan et al. do not. In this section
we show networks and model parameters for which all
three models converge but the MLA algorithm leads to
faster convergence. To this end we consider a refinement of
Assumption 2 that guarantees convergence for the DeGroot
and the accelerated averaging models, as given below.

Assumption 3: The weighted adjacency matrix A is sym-
metric and primitive, that is 3 k € N such that Ak is positive.

The essential spectral radius of a row-stochastic matrix A,
denoted by pess(A), is defined as follows [7]

0, if spec(A) ={1,1,...,1},
Pess(A) =

max{[A| | A € spec(A) \{1}},

The essential spectral radius determines the rate of conver-

gence for linear discrete models. The lower the essential
spectral radius the higher the rate of convergence [7].

otherwise.

A. Comparison with the DeGroot model

Lemma 7: Under Assumptions 1 and 3, and if A, + A, #
0, 3 Y€ R such that p,g(A) < pess(A). This implies that the
MLA model given by Eq. (4) converges to consensus faster
than the DeGroot model given by Eq. (1).

Proof: Due to Perron-Frobenius theorem for primitive
matrices, (i) A} =1 is a simple eigenvalue of A, (ii) |A;| <
1Vie{2,3,...,n}, with the convention 1 =4; >, >... >
An > —1. For y=1+A such that A ~ 0, the discriminant in
Eq. (6) is approximately equal to A2, and is non-negative.
Thus, all eigenvalues of A are real ie. Air ER VY i€
{1,2,..,n}. Additionally, for y = 1, the convergence criteria
given by Theorem 3 are satisfied i.e. A is row-stochastic,
symmetric, irreducible, y € (0,2), and 2yA, — 4, + 1 > 0.
Thus A is semi-convergent and reaches consensus. From
Eq. (6), we get for A #0,

(I+A)A £ A /14+2A+A2 -4
2

Since A2 < 1, we ignore this term and use the binomial
approximation to get,
i (I+M)AE|A| (1+A-2R)

~ 5 . Q27)

4+ =
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We then have,

Since A; + A4, # 0 there exists a unique eigenvalue A,z such

that p,ss(A ) |Aess| € (0,1). From Eq. (28) for A= 0, we

have pgss( ) |A«ess —|—A(l€sx - 1)|

Aess € (0,1) = FTA>0 5.t 0< Apgy + A(Aegs — 1) < Aesss

Aess € (—1,0) = FA<O0 s.t. 0> Apgs +A(Apss — 1) > Aggs

Overall, 3 A € R s.t. Pess(A ) < Pess(A). (29)
||

The technical assumption A, + A, # 0 is generic and besides
pathological cases, holds for almost all networks.

(28)

B. Comparison with the accelerated averaging model
Theorem 8: Under Assumptions 1,3,if 4, <0and 1, <
|Aq|/3, for y* = pm( 3 14 Pess(A) — 1), the essential

spectral radius of A in the MLA model given by Eq. (4)
is pess(A) = /14 pess(A) — 1. In this case, the system
converges to consensus faster than both the DeGroot model
and the accelerated averaging model for any value of the
parameter f3.
Proof: We will prove this in two parts: first, we show

that y* satisfies the convergence criteria in Theorem 3.
Second, we compute the convergence rate of the MLA
model.

Part I: Under the given assumption, the essential spectral
radius of A, denoted by pess(A), is given by,

Pess(A) = —A, € (0,1).
We need to verify that y* € (0,2).

(30)

14 pes(A) —1>0= 7" = pmz(A) ( 11 Pess(A) — 1) >0
(31)
Additionally,
v = pmz(A) ( 1+ Pess(A) — 1) <1
o pait) <1+ 228 o)
& Pess(A)?2 > 0. (32)

Hence y* € (0,1) C (0,2)
To show that y* satisfies Theorem 3 (ii) we start noting
that y* € (0,1), as proven before and p,s(A) > 0, hence
0<Y <1= 2pes5(A) > 2pess(A) (1 —7") >0,
= Pess(A) + 1> 20655 (A) (1 — ¥*) — Pess(A) +1 > ...
o> —Pess(A)+1>0. (33)

Thus, A, = —Pess(A) = 27" A, — A, + 1 > 0, as desired for
convergence. Note that the value of y* is obtained by setting

An explanation for setting D(4,,y*) = 0 is given in the
companion arXiv paper [16].

Part 2: For the convergence rate, we evaluate the essential
spectral radius of A, denoted by pess(A), corresponding to
Y= v*. Note that for y* € (0,1),

{D(/l,»,}f*) <0V A € [A,0],

D(An,7") =0= D(A,7") >0V A € (0,1].

(35)

We examine the ordering in modulus of eigenvalues of A.
For y= v*, and for some a and b, consider two scenarios: (i)
1> 24> A >0 (ii) 4, <Ay <A <0. In (i), the expression
for A;, given in Eq. (6) is monotonically increasing which
implies A4 > A4 > 0. In (ii), the modulus of complex roots
of Eq. (5), is |(y* — 1)A| which implies |A,x| > |Aps| > O.
Thus, for the essential spectral radius of A, we then have,

Pess(A) = max{| 21—, [Ans |, 22}, (36)
where |Ai_| =1— %", [ds| = V¥ — DAy = —7*A,/2 and
o] = (rxﬁ\/y*mg— (7 — 1)12) /2. We show that

|5L,,i| > |Aj—|. In fact, for v* € (0,1) and using the value
of A, from Eq. (34), we arrive at the following statements,

V=D, > |y —1]
@\/(y*—l) (W) Sy —1le-—2<y <2
which clearly holds V y* € (0,1). Thus,

max{Mni\ |lg+|} We next show that Pegs )
only if

pess( A) =
| As| if and

| > D2,
i Y aotJY —4(r — )
2 2 ’
¢>_)~n_)~2 2 \/222_241}1'27
S A+ <0and ¢ : |Af,1—|-},2| > 1/2,22—1,112. 37

Condition ¢; holds for A, < 0 and |A,| > |A;|. Condition ¢,
in Eq. (37) can be further simplified as shown below:

e (M+1)? > M — A,
< (A +34) >0,
S Ay < =31, since A, <0,
|
3

<:>7

S <

(38)

Overall, the expression for the spectral radius of A is then
given by,

pess( ) Mvn:t| —’)/*2,,,/2 (39)

the discriminant in Eq. (6) to zero i.e. D(4,,y*) = 0. From o )
this expression we also get, Substituting Eq. (30) and y* from Theorem 8 in Eq. (39),
Ay —1) we get:
Ap = EEE since 4, < 0. (34) Pess(A) = /T + pess(A) — 1. 40)
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The optimized essential spectral radius of the accelerated
averaging model given by Eq. (16) is given by [7],

Pess(A)

1+ V l_pezss(A)

< Pess (A)a
41)

i ess(AB) = Pess(Ag+) =
gmin, P (Ag) = Pess(Ap-)

for pess(A) € (0,1). Using further algebraic manipulations it
can then be shown that, for pess(4) € (0,1), MLA converges
faster than the accelerated averaging model and DeGroot
since,

pess(A) =V 1 +pess(A) -1< pess(Aﬁ*) < pess(A)~ (42)
|
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Fig. 3: Comparison of essential spectral radii and the optimal rates
of convergence of the three models of network dynamics; DeGroot
model, accelerated averaging model, and the MLA model under the
criteria given in Theorem 8. MLA model yields faster convergence.

Eq. (42) is plotted in Fig. 3. It can be noted that for
a network that satisfies the criteria given in Theorem 8
with an essential spectral radius close to unity, the MLA
model reaches consensus significantly faster than the classic
DeGroot model and the accelerated averaging model. Good

DeGroot Model
[ Acc. Avg. Model, §* = 1.437
PEMLA Model, v* = 0.838

0.04 058 0.04

Deviation from Mean

0 5 10 15 20 25 30
k (step)
Fig. 4: Comparison of rates of convergence in three averaging
models for a ring network with self-loops. The plot shows the
envelope enclosed between the maximum and minimum deviation
from the mean state and is simulated using 1000 randomly chosen

initial conditions. MLA converges faster.
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