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Quantum aging and dynamical universality in the long-range O(N → ∞) model
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Quantum quenches to or near criticality give rise to the phenomenon of aging, manifested by glassylike
dynamics at short times and far from equilibrium. The recent surge of interest in the dynamics of quantum
many-body systems has rejuvenated interest in this phenomenon. Motivated by the ubiquitous long-range
interactions in emerging experimental platforms, it is vital to study quantum aging in such settings. In this
paper, we investigate the dynamical universality and aging in the d-dimensional O(N ) model with the long-range
coupling 1/xd+σ and in the mean-field limit N → ∞ that allows an exact treatment. An immediate consequence
of long-range coupling is the emergence of nonlinear light cones. We focus on the correlation and response
functions, and identify a rich scaling behavior depending on how the corresponding space-time positions are
located relative to each other, via a local light cone, and to the time of the quench via a global quench light
cone. We determine the initial-slip exponent that governs the short-time dependence of two-point functions. We
highlight the qualitative features of aging due to the long-range coupling, in particular in the region outside the
light cones. As an important consequence of long-range coupling, the correlation function decays as 1/xd+σ

outside the quench light cone while increasing polynomially with the total time after quench. This is while,
for short-time differences, the two-time response function “equilibrates” at all distances even outside this light
cone. Our analytic findings are in excellent agreement with exact numerics, and provide a useful benchmark for
modern experimental platforms with long-range interactions.
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I. INTRODUCTION

Universality and scaling have long fascinated physicists
as they allow a classification of physical systems based on
the universal behavior of their macroscopic properties in the
vicinity of a critical point, independently of their microscopic
details. In equilibrium physics, universality is well estab-
lished due to a large body of work from Landau’s theory
of continuous phase transitions [1–3] to Wilson’s celebrated
renormalization group theory [4–8]. In the vicinity of a con-
tinuous phase transition, critical behavior arises where only
dimensionality, range of interactions, and the underlying sym-
metry become relevant.

Out of equilibrium, the theoretical framework of universal-
ity and scaling has been extended to classical systems, and
distinct dynamical universality classes have been identified
from a dynamical renormalization group theory [9,10], but its
further extension into the quantum realm is far from complete.
What makes this topic particularly rich is that dynamical
universality not only depends on dimensionality, range of in-
teractions, and global symmetry, but also on conservation laws
and integrability or lack thereof [11–14]. At the same time,
quantum many-body systems far from equilibrium have been
at the focus of intense research in recent years, where various
notions of dynamical criticality have received much atten-
tion [15–17]. With long-range interactions, quench dynamics

exhibits rich physics such as long-lived prethermal states due
to constrained dynamics [18–20], superballistic propagation
of information and faster-than-linear light cones [18,21–23],
and nonequilibrium critical behavior [24]. On the other hand,
experimental advances in modern quantum simulators have
allowed unprecedented control of real-time dynamics, and
have led to the observation of various hitherto theorized phe-
nomena such as gauge-theory dynamics [25–29], many-body
localization [30–32], time crystals [33–36], dynamical phase
transitions [37–42], many-body dephasing [43], and prether-
malization [44–47].

An intriguing aspect of critical dynamics is the short-time
universality that occurs after a quench to or near to a critical
point [48–50]. While criticality is usually reserved for long
distances and times, the short-time universality, also called
“aging” [51], becomes manifest well before the system ap-
proaches a steady (possibly thermal) state at late times; this
is particularly appealing as available experiments are limited
by evolution times. This notion has originated from the theory
of boundary critical phenomena that is concerned with critical
properties of magnets, binary alloys, and fluids near surfaces
[52,53]; aging is just its dynamical counterpart that occurs in
space-time with the time slice at t = 0 playing the role of a
surface. In contrast to near-equilibrium dynamics [9], aging
leads to truly out-of-equilibrium critical behavior and even
a new critical exponent known as the initial-slip exponent
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θ with no counterpart in or near equilibrium. This exponent
governs the short-time dynamics of the order parameter as
well as the critical behavior of the two-time (t and t ′ < t)
correlation and response functions. Since the system has not
yet equilibrated in the prethermal regime and time translation
invariance is broken, the two-time functions depend not only
on the time difference (t − t ′) but also on the age or waiting
time t ′: the older a system is the slower it responds [49]—a
phenomenon that is reminiscent of aging in spin and struc-
tural glasses [54–56]. Aging behavior has also been observed
experimentally [57,58], e.g., in magnetic systems quenched
from their high-temperature phase to or below their critical
point [49,59,60]. Studies of aging have only begun to reach the
quantum domain where a quench to the critical temperature is
replaced by a quantum quench to a (dynamical) critical point
[61–65].

Aging in long-range interacting systems has also been
studied in various contexts such as the Ginzburg-Landau
model [66], spherical model [67], anisotropic cubic systems
[68], random Ising chains [69], two-dimensional Ising model
[70], and open d-dimensional quantum Ising lattices [71].
On the one hand, solving the quench dynamics of generic
long-range quantum many-body systems is particularly chal-
lenging, because the Hilbert space grows exponentially in
system size. As a consequence, studying aging in such sys-
tems requires approximations the benchmarking of which is
not straightforward. On the other hand, the interplay of di-
mensionality and range of interactions can lead to diverse
dynamical critical behavior that is not directly accessible in
long-range one-dimensional many-body chains [72–74]. This
provides motivation for studying critical dynamics in a solv-
able model where the range of interactions and dimensionality
can be tuned. In this paper, we consider the long-range d-
dimensional O(N ) model with power-law coupling 1/xd+σ

in the limit N → ∞ that allows an exact treatment. The
equilibrium phase diagram of this model has been recently
mapped out [75]. We study the nonequilibrium critical dy-
namics and aging in the wake of a quantum quench to or
below the dynamical critical point. Specifically, we identify
the initial-slip exponent θ as a function of dimensionality and
σ . Dynamical criticality in the wake of a quench has been
investigated in the short-range classical [76–78] and quantum
[65,79–81] O(N ) models, as well as classical variants of this
model with long-range coupling [66–69]; see also Ref. [50].
Many parallels with the dynamical criticality in these models
notwithstanding, the long-range quantum model finds distinc-
tive features, including a nonlinear light cone and nontrivial
power-law dependence of correlations on both distance and
time even beyond the light cone, as summarized in the next
section.

The rest of the paper is organized as follows: In Sec. II,
we provide a summary of our main findings and particularly
the scaling of correlation and response functions in various
regimes. In Sec. III, we present the model along with the
quench protocols employed in our paper. We study the uni-
versal dynamics ensuing from a critical quench in Sec. IV,
and introduce two-point functions and provide analytical ex-
pressions in momentum space in Sec. V. We present a detailed
analysis of the correlation and response functions in position
space in Secs. VI and VII for quenches to and below the

dynamical critical point, respectively, and identify the cor-
responding initial-slip exponents while comparing to exact
numerics. We derive the equilibrium and dynamical critical
points for the long-range quantum O(N → ∞) model in Ap-
pendix A. For completeness, a detailed study of the classical
variant of the long-range model considered here is provided
in Appendix B.

II. SUMMARY OF MAIN RESULTS

In this paper, we consider the quantum O(N → ∞) model
with long-range coupling ∼1/xd+σ where x is distance and
d is the spatial dimension; see Eq. (4). We focus on the
critical properties of the transient dynamics as well as the
stationary state reached at late times after a quench of the mass
r to or below the (dynamical) critical point rc where critical
scaling behavior emerges. We identify both the correlation and
response functions, with the latter characterizing the causal
behavior, after the quench; see Eqs. (21). We find it useful to
draw an analogy with light-cone dynamics. Although long-
range interactions change the linear nature of the light cone,
it will be useful to consider a nonlinear light cone, t ∝ xσ/2,
which we dub the quench light cone. Indeed, the dynamical
critical exponent is given by z = σ/2; for short-range cou-
pling (upon inserting σ = 2), we recover z = 1, indicating the
linear-light-cone dynamics. Let us now consider two space-
time points, one at (x, t ) and a reference point at (x = 0, t ′);
see Fig. 1. Depending on whether or not the two points are in
the same nonlinear light cone starting at (0,0), they exhibit
distinct correlations and causal behavior. In Fig. 1(a), we
show the correlation function at equal times when t = t ′. The
equal-time correlation function within the quench light cone
is given by a power law 1/xp with

p =
{

d/2, r = rc, σ < d < 2σ,

σ/2, r < rc, σ < d.
(1)

The bounds on the dimension specify the lower and upper
critical dimensions where the critical behavior is nontrivial
(i.e., non-Gaussian); for a quench to r = rc in any dimension
d > 2σ , a Gaussian fixed point governs the critical behav-
ior. In a quench below the dynamical critical point, r < rc,
one might expect coarsening dynamics and ordering at long
times with the (disconnected) correlation function approach-
ing a constant at long distances; however, this regime too
exhibits critical behavior, but one that is distinct from that
at r = rc. This behavior has also been viewed as a kind of
anomalous coarsening [80,82,83]. Very interestingly, there is
no upper critical dimension in this case and the power-law
decay of the correlation function is independent of the di-
mension. Finally, the highlighted (blue) region schematically
denotes the space-time region |t − t ′|, xσ/2 � t, t ′ centered
around the reference point (x = 0, t ′) where the correlation
function has saturated to a stationary value. For unequal times
(t �= t ′), this means that the correlation function (as well as
the response function; see below) only depends on the time
difference t − t ′ and not the absolute times. For completeness,
we remark that in equilibrium (in the absence of quench), the
exponent p = d − σ/2 at the zero-temperature critical point
and p = d − σ at a finite-temperature critical point (within
the corresponding lower and upper critical dimensions), thus
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FIG. 1. Scaling of correlation and response functions after a
quantum quench at t = 0 from a disordered initial state to or below
the dynamical critical point (r � rc) of the O(N → ∞) model with
the long-range coupling 1/xd+σ . Even a quench below the dynamical
critical point (r < rc) leads to power-law correlations indicative of
criticality, but distinct from those in a quench to the dynamical criti-
cal point (r = rc). The two-point functions are between space-time
points (x, t ) represented by an open circle and (0, t ′) represented
by the solid circle. (a) Equal-time correlation function inside and
outside the nonlinear quench light cone, t ∝ xσ/2. Well within this
light cone, the correlation function shows critical scaling [see Eq. (1)
for the exponent p] and becomes stationary in the highlighted (blue)
region. Outside this light cone, it falls off with distance as 1/xd+σ

while increasing with time as a power law [see Eq. (2) for the
exponent q]. (b) The causal response function when t − t ′ � t ′, t . In
the highlighted (blue) region, the response function has equilibrated
to its form in equilibrium and depends only on t − t ′. The response
function is best characterized by identifying a nonlinear local light
cone with t − t ′ ∝ xσ/2 (filled cone). Outside this light cone, the
response function decays as 1/xd+σ . The quench light cone is in-
visible in this regime. (c) Aging behavior from the response function
when t ′ � t . The response function is proportional to (t ′/t )θ , and
thus depends on the age of the quenched state, with θ the initial-slip
exponent [see Eq. (3)].

setting the exponent p in the stationary state in Eq. (1) apart
from those in equilibrium.

Outside the quench light cone (t � xσ/2), the correlation
function decays with the same power law as the long-range
coupling (1/xd+σ ); however, it also increases in time as t q

with the exponent

q =
{

2 + d/σ, r = rc, σ < d < 2σ,

1 + 2d/σ, r < rc, σ < d.
(2)

Therefore, the correlation function has not saturated to a
stationary value in this region. The fact that the correlation
function has reached a stationary value inside the quench light
cone is consistent with the picture given in terms of oppositely
moving quasiparticles in one-dimensional lattice models as
well as quantum and conformal field theories [84,85]. The
important difference here is that, due to long-range coupling,
the light cone is nonlinear and furthermore the correlations
outside of it do not decay exponentially but rather vary alge-
braically with space and time.

In considering the response function after a global quench,
one is immediately led to consider another (nonlinear) light
cone that defines the causal relation between the two space-
time points considered, which we dub the local light cone;
see the (filled) nonlinear light cone starting from (x = 0, t ′)
in Fig. 1(b). The causal response function strongly depends
on whether or not one point is within the local light cone
emanating from the other. We shall focus on the behavior
of the response function in the region outside the local light
cone. For short-range models, the response function decays
exponentially outside the linear light cone [86] and is iden-
tically zero for relativistic field theories due to causality. On
the other hand, in the presence of long-range coupling, the
response function (at fixed time) often decays with the same
power law as the long-range coupling, in harmony with the
Hastings-Koma bound [87]. This should be expected since
any perturbation immediately affects a distant point with a
strength that decays with the long-range coupling. Indeed, we
find the same behavior within the nonequilibrium dynamics
of our model; see Figs. 1(b) and 1(c). When t − t ′ � t, t ′, the
response function becomes identical to the critical response
function in equilibrium that itself is independent of tempera-
ture, a fact that is true inside or outside the local light cone
and for a quench to or below the dynamical critical point;
see the highlighted (blue) region in Fig. 1(b). In other words,
the quench light cone is invisible to the response function in
this regime. Also note that, by definition, the causal response
function vanishes for t ′ > t .

Finally, we consider the response function in the most
interesting regime where t ′ � t ; see Fig. 1(c). This limit
exposes the critical dynamics at short times and contains
new information, and a new critical exponent, beyond that at
long times. In fact, the response function, beside an overall
dependence on x and t , becomes proportional to (t ′/t )θ with θ

the so-called initial-slip exponent [48–50]; the overall depen-
dence on the age of the system is called aging. In the context
of the quantum model considered here, we find

θ =
{

1 − d/(2σ ), r = rc, σ < d < 2σ,

3/2 − d/σ, r < rc, σ < d.
(3)
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For a quench to r = rc, we have θ > 0, while for a quench
below the dynamical critical point, r < rc, this exponent can
become negative at sufficiently high dimensions, namely,
when d > 3σ/2. In a similar fashion, aging and the initial-slip
exponent become manifest in the unequal-time correlation
function in the same limit, t ′ � t .

III. MODEL AND QUENCH

We consider the d-dimensional long-range O(N ) model
given by the Hamiltonian

H (r, u) =
∫

dd x
[

1

2
�2 − 1

2
� · ∇σ� + r

2
�2 + u

4!N
(�2)2

]
,

(4)

with the N-component bosonic field � = [�1(x), . . . , �N (x)]
and the canonically conjugate momentum � =
[�1(x), . . . ,�N (x)], which satisfy the commutation relation
[�m(x),�n(x′)] = iδ(x − x′)δmn. Here we have used the
shorthand ∇σ to denote the long-range coupling ∼1/xd+σ for
0 < σ < 2; we use x = |x| for convenience (similarly for k).
More precisely, the long-range coupling in momentum space
is given by 1

2

∫
dd k

(2π )d kσ |�(k)|2 where �(k) is the Fourier
transform of the field. By setting σ = 2 in Eq. (4), one
retrieves the short-range O(N ) model. The squared operators
denote the inner product of the vector fields. Finally, u > 0
denotes the strength of the nonlinear interactions, while r
defines the (bare) mass of the bosonic field. For σ > 2, the
momentum dependence ≈ k2 due to the short-range coupling
is dominant and the long-range coupling may be neglected
insofar as the critical properties are concerned. In this paper,
we restrict ourselves to σ < 2.

We shall prepare the system in the ground state of the initial
Hamiltonian H (�2

0, 0) ≡ H0 with the initial mass r0 = �2
0 and

then quench the system to the final Hamiltonian H (r, u) at t =
0.1 This quench protocol has been extensively studied in the
short-range limit [64,65,79–83]. Starting from the disordered
phase, the initial state inherits the O(N ) symmetry. Together
with the same symmetry of the postquench Hamiltonian, the
state at all times respects the symmetry. Specifically, this im-
plies that the correlation function 〈�m�n〉 vanishes for cross
correlations (m �= n) and is independent of the field compo-
nent n for diagonal correlations (m = n). In the limit N → ∞,
we exploit the mean-field character of the model to replace the
quartic interactions by limN→∞ 1

N (�2)2 = 2〈φ2〉�2 where φ

represents any component of the field � due to the symmetry.
The dynamics is then governed by a quadratic Hamiltonian for
each field φ (dropping the component index) and its conjugate
momentum � as

Heff (t ) = 1

2

∫
dd x[�2 − φ∇σφ + reff (t )φ2], (5a)

where

reff (t ) = r + u

6
〈φ2(x, t )〉. (5b)

1One can start with a nonzero initial u, but this will only lead to
an inconsequential renormalization of �2

0 and does not change the
dynamical criticality.

These equations define a self-consistent set of equations
where the field φ evolves under the Hamiltonian Heff the
parameter of which, reff , itself depends on the field. We shall
expand the fields in terms of creation and annihilation opera-
tors ak and a†

k as

φk(t ) = fk(t )ak + f ∗
k (t )a†

−k, (6)

which diagonalize the initial Hamiltonian, H0 =∫
k ω0k(a†

kak + 1/2) with ω0k = √
kσ + r0; for notational

convenience, we have defined
∫

k ≡ ∫
dd k/(2π )d . The

Heisenberg equation of motion will then determine the
evolution of the time-dependent coefficients fk(t ) via

f̈k + [kσ + reff (t )] fk = 0, (7a)

reff (t ) = r + u

6

∫
k
| fk(t )|2, (7b)

where the integral in the last equation is up to a high-
momentum cutoff �, i.e., |k| � �. Such a cutoff makes the
theory well defined at short distances and does not affect it
at all for k � �, and therefore it will not affect the critical
properties of the system at long distances. Hard cutoffs are
however pathological when it comes to dynamics, as they
lead to spurious oscillations in observables that hide their
universal long-time behavior [80]. Accordingly, they should
be replaced with a soft cutoff that can be introduced by a
function h(k/�) which smoothly, but quickly, decays when
its argument is large compared to 1. In all numerical simula-
tions in this paper, we have used h(k/�) = exp{−k2/(2�2)};
we have checked that other choices of a soft cutoff such as
h(k/�) = exp{−k/�} do not alter our main results. Finally,
the equation of motion should be supplemented with the
initial conditions, fk(0) = 1/

√
2ω0k and ḟk(0) = −i

√
ω0k/2.

We further assume that the system is initially deep in the
disordered state, ω0k ≈ �0. In this case, the initial conditions
simply become f0 = 1/

√
2�0 and ḟ0 = −i

√
�0/2, indepen-

dent of the momentum k.
The numerical simulation of the equations of motion is

achieved by using the Delambre-Störmer-Verlet method [88].
In all simulations, we choose u = 80, �0 = 10, and � = π/2;
we have checked that the universal results reported here hold
for other choices of these parameters. For the most demand-
ing simulations, we achieve convergence with a time step
of δt = 10−4 and a discretization of δk = 10−5π within the
range k ∈ [0, 4π ].

IV. CRITICAL QUENCH: SCALING HYPOTHESIS

In this section, we consider a critical quench, i.e., a sce-
nario where the long-time state is critical; this is determined
by the condition reff (t ) → 0 as t → ∞. Our aim is to inves-
tigate the critical state reached at late times, but also identify
the universal dynamics at short or intermediate times before
approaching the stationary state. The critical dynamics is
determined by a scaling ansatz that makes the equation of
motion scale invariant. An inspection of Eq. (7a) reveals that
a scaling solution is achieved only if the effective mass decays
with time as

reff (t ) = a

t2
, (8)
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where a is a dimensionless constant that should be determined
from our self-consistent analysis. Notice that this term scales
in the same way as the second-order time derivative, and thus
does not introduce an additional time scale. We should stress
however that the scaling solution is expected to emerge only
after a fast transient evolution over a time scale that is con-
trolled by the short-wavelength cutoff (set by the momentum
cutoff).

Inserting the scaling solution (8) in the equation of motion
(7a) and defining a scaling function fk(t ) ≡ gk(kσ/2t ), we
obtain an equation for g(x) as

g′′
k +

(
1 + a

x2

)
gk = 0. (9)

A general solution to this equation takes the form

gk(x) = √
x[AkJα (x) + BkJ−α (x)], (10)

where α = √
1/4 − a; the coefficients Ak and Bk in general

depend on k. Apart from the dependence on σ in the argument
of the function g (i.e., x ≡ kσ/2t), the above equations are
identical to those obtained for the short-range coupling (upon
inserting σ = 2) [80,81]. Indeed, the subsequent analysis in
this section parallels that of short-range interactions, although
with modifications following the original work of Janssen
et al. [48].

To describe the full solution, we must determine the co-
efficients Ak and Bk by inspecting the initial conditions. To
this end, one can expand Eq. (10) at short times. Given the k
independence of the initial values of fk and ḟk, one can show
that the coefficients Ak and Bk should scale with k as

Ak ∼ A k−(1/2+α)σ/2,

Bk ∼ B k−(1/2−α)σ/2, (11)

with A and B constants independent of k. With the milder
divergence of the coefficient Bk with k, one may expect that its
contribution would be less relevant in the scaling regime past
the short transient time. Indeed, this is confirmed by numerical
simulation (see also Ref. [80]), and, together with Eqs. (7b)
and (10), leads to the self-consistent equation

reff (t ) = r + u

6
Kd |A|2t

∫ 1

0
dk kd−1−σαJ2

α (kσ/2t ). (12)

Note that we have written the integral
∫

dd k/(2π )d · · · =
Kd

∫
dk · · · where Kd = �d/(2π )d with the spherical angle

�d = 2πd/2/
(d/2). Here and in the subsequent analytical
treatment, we set � = 1 for ease of notation (though � = π/2
in numerical simulations).

Now, for a critical quench, the value of r should be chosen
such that limt→∞ reff (t ) = 0, ensuring a critical state at late
times. Using this fact, we can rewrite the above equation
together with the scaling ansatz in Eq. (8), and upon a change
of variable z = kσ/2t , as

a = uKd |A|2
3πσ

t3+2α−d̃
∫ t

0
dz zd̃−2−2α

[
πzJ2

α (z) − 1
]
. (13)

Here, we have defined d̃ = 2d/σ . Apart from the coefficient
of the integral (only affecting the critical value of r, u), the
dependence on the exponent σ and the dimensionality d is
given through the combination 2d/σ which appears as an

exponent in the above integral. This is particularly convenient
as it brings the integral into the same form as the short-range
case (σ = 2) simply by changing d → d̃ ≡ 2d/σ . We also
remark that the expression in the bracket in the above equation
goes to zero (up to a highly oscillatory part) as z → ∞.

Equation (13) defines a self-consistent criterion to deter-
mine a (the right-hand side depends on a through α). It
is convenient to write the time integral in this equation as∫ t

0 = ∫ ∞
0 − ∫ ∞

t . The dominant contribution is due to the first
integral (

∫ ∞
0 ) the coefficient of which grows in time2 while

the left-hand side is constant. We thus require the condition∫ ∞

0
dz zd̃−2−2α

[
πzJ2

α (z) − 1
] = 0. (14)

We will evaluate this integral shortly to determine α. Before
doing so, we note that the remaining integral (

∫ ∞
t ) provides

the next order in the expansion of Eq. (13) from which we can
determine the fixed-point value of u. Let us first expand the
expression in the bracket for z � 1:

πzJ2
α (z) − 1 ∼ oscill. terms + 4α2 − 1

8z2
+ O(1/z3).

The oscillatory terms start at the order of O(1/z); however,
one can verify that they do not contribute to the final answer
due to their highly oscillatory nature. The next term in the
expansion is proportional to 1/z2, from which we can obtain
the fixed-point value of the coupling constant as

u∗ = 24πσ

Kd |A|2
(d̃ − 3 − 2α)a

4α2 − 1
. (15)

This equation fixes the value of u given the (yet unknown)
value of a and α. Most importantly, we shall require u∗ � 0,
which will put important constraints on the space of possible
solutions and will determine the upper critical dimension, as
we will see shortly.

We now return to the condition in Eq. (14) which dictates3


(d̃/2)
(1/2 − d̃/2 + α)


(1 − d̃/2 + α)
(1 − d̃/2 + 2α)
= 0. (16)

We designate a first set of solutions by α(1):

α(1) = d̃ − 2

4
−→ a(1) = d̃

4

(
1 − d̃

4

)
. (17)

Given that α � 0, we have d̃ � 2 which thus sets the lower
critical dimension, dl = σ . Incidentally, the same lower crit-
ical dimension arises at finite temperature in equilibrium.
Moreover, the fixed-point value of u can be determined from

2To be more precise, the dependence of the right-hand side on time
depends on α and d; however, one can verify that it indeed grows in
time for the values of α obtained later in this section.

3The integral in Eq. (14) is not strictly convergent. One can remedy
this by introducing a soft cutoff and inspect the asymptotic behavior
at long times. However, a consistent solution is simply obtained
by computing the integral with a hard cutoff and then analytically
continue it to the regime of interest.
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Eq. (15) as

u(1)
∗ = 3πσ

Kd |A|2 (4 − d̃ ). (18)

Now, the condition that u∗ � 0 requires d̃ � 4 and thus
identifies the upper critical dimensions du = 2σ which again
coincides with that of finite-temperature equilibrium. For any
d > 2σ , the fixed point becomes Gaussian, and we simply
have α = 1/2 or a = 0.

A second set of solutions to Eq. (14) can be found as

α(2) = d̃ − 2

2
−→ a(2) = (3 − d̃ )(d̃ − 1)

4
. (19)

Again, the condition α � 0 implies d̃ � 2, identifying the
same lower critical dimension, dl = σ . Similarly, the fixed-
point value of the coupling constant can be obtained from
Eq. (15) and is given by

u(2)
∗ = 6πσ

Kd |A|2 . (20)

Interestingly, we find that u∗ is always positive and thus there
is no upper critical dimension.

Given that the first set of solutions is sensitive to the upper
critical dimension, it is natural to identify it with a quench
to the dynamical critical point r = rc describing the onset
of critical behavior. We stress that rc denotes the dynamical
critical point characterizing the stationary state long after a
quench, and should not be confused with the equilibrium
critical point at finite temperature (see Ref. [64] for a com-
parison with the thermal critical point). Any quench above
this dynamical critical point (r > rc) leads to a finite effective
mass, and hence a finite correlation length. On the other hand,
the second set of solutions discussed above is insensitive to
the upper critical dimension, therefore we may anticipate that
it describes the critical behavior in a quench below the dynam-
ical critical point when r < rc. Indeed, we can directly verify
these points numerically: In Fig. 2, we inspect three distinct
cases where the dimension is smaller than, equal to, or larger
than du = 2σ and consider three distinct quenches above, to,
and below the dynamical critical point rc. One can identify
the value of rc numerically, or estimate it via a simple ansatz
[79,80,89] described in Appendix A. In all cases, a quench
above the dynamical critical point (r > rc) leads to a finite
effective mass reff �= 0 and the system remains noncritical.
A quench to the dynamical critical point (r = rc) for d < du

leads to the critical scaling reff ∝ 1/t2 while at the upper crit-
ical dimension finds a multiplicative logarithmic correction;
such logarithms also arise at the upper critical dimension of
the classical spherical model, somewhat the classical analog
of the model considered here [50]. At higher dimensions, d >

du, the scaling hypothesis does not hold, which is expected
since the model is governed by a Gaussian fixed point where
a = 0 and α = 1/2. In this case, the condition in Eq. (14) is
not satisfied and the leading term in Eq. (12) falls off as reff ∼
1/t d̃−2 at long times [80]. For a quench below the dynamical
critical point (r < rc), the scaling hypothesis, reff ∝ 1/t2, is
satisfied in all dimensions, indicating the absence of an upper
critical dimension, consistent with our analysis. We also note
that no critical scaling emerges below or at the lower critical

FIG. 2. Time evolution of the effective mass reff for σ = 1.5 in
dimensions d = 2.8 < du (upper panel), d = 3 = du (middle panel),
and d = 3.2 > du (bottom panel), where each panel shows the time
evolution for quenches below, to, and above the dynamical critical
point (light to dark blue solid lines, respectively); du = 2σ = 3 is
the upper critical dimension. A quench above the dynamical critical
point always leads to a nonvanishing effective mass, while a quench
to or below the dynamical critical point leads to an effective mass
that falls off algebraically with time.

dimension, the latter because the critical value rc → −∞ at
d = dl ; see Appendix A.

Before closing this section, we remark once again that
the results obtained in this section closely mirror those of
the short-range O(N ) model. Indeed, we have seen that upon
a change of variable, d → d̃ = 2d/σ , Eqs. (17) and (19)
become identical to those of the short-range model [80,81].
Nevertheless, we shall see in the subsequent sections that
the long-range O(N ) model has unique features that make it
distinct from its short-range counterpart; see also the summary
in Sec. II.

V. TWO-POINT FUNCTIONS

To fully characterize critical properties of our model, we
need to identify spatial and temporal correlations. To this end,
we introduce the two-point functions

iGR(x − x′, t, t ′) = �(t − t ′)〈[φ(x, t ), φ(x′, t ′)]〉, (21a)

iGK (x − x′, t, t ′) = 〈{φ(x, t ), φ(x′, t ′)}〉. (21b)

Here, GR and GK represent the response and (symmetrized)
correlation functions, respectively; our notation is inspired
by the Keldysh field theory conventions where GR/K desig-
nate the retarded and Keldysh functions, respectively [90].
While the former function describes the causal response to
a perturbation at an earlier time (hence, the Heaviside step
function �), the latter characterizes correlations; at t = t ′, the
latter function gives the equal-time correlation function. Using
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spatial translation symmetry, we have written the two-point
functions as a function of x − x′. In momentum space, these
functions can be written in terms of fk as [see Eq. (6)]

iGR(k, t, t ′) = 2�(t − t ′)Im[ fk(t ) f ∗
k (t ′)], (22a)

iGK (k, t, t ′) = 2Re[ fk(t ) f ∗
k (t ′)]. (22b)

Our analytical solution for fk together with the correspond-
ing value of α [see Eqs. (17) and (19)] allow us to obtain
analytical solutions for the two-point functions. While there
are many parallels with the short-range model [80,81], we will
highlight the qualitative terms that emerge exclusively due to
the long-range coupling.

We shall focus on the equal-time correlation function, in
which case we simply have iGK (k, t, t ) = 2| fk(t )|2. This is
the same expression that we have encountered before when
identifying the self-consistent equation for the effective mass
in Eq. (7b). The above equation together with Eq. (10) yield

C(k, t ) ≡ iGK (k, t, t )

≈ 2t |A|2k−σαJ2
α (kσ/2t ). (23)

Here, we have introduced C to denote the equal-time correla-
tion function. Specifically, the stationary-state correlations are
obtained in the limit t → ∞:

Cst (k) ≡ lim
t→∞C(k, t ) ∼ 2|A|2

π
k−σ (α+1/2), (24)

where we have defined the long-time limit of equal-time
correlation function Cst with the subscript st denoting the
stationary state. More generally, the correlation function ap-
proaches a stationary value once kσ/2t � 1, which describes
the region within the quench light cone at any finite time. We
shall discuss this in further detail in the following sections.

Next we inspect Eq. (23) in the limit of long distances, or
kσ/2t � 1:

C(k, t ) ∼ 21−2α|A|2

2(1 + α)

t1+2α

[
1 + kσ t2

2(1 + α)
+ · · ·

]
. (25)

While the first term gives the leading-order contribution in
momentum space, it decays quickly in position space. The
subleading term however is dominant at long distances and de-
cays algebraically with the same power law as the long-range
coupling (1/xd+σ ) outside the quench light cone. Interest-
ingly, the correlation function outside the light cone also
increases algebraically in time as we will discuss in detail in
the following sections.

One can similarly obtain the response function from
Eq. (22a) together with Eq. (10) as

GR(k, t, t ′) = −�(t − t ′)
π

2 sin(πα)
(tt ′)1/2

× [Jα (kσ/2t )J−α (kσ/2t ′)

− J−α (kσ/2t )Jα (kσ/2t ′)]. (26)

In deriving this equation, we have used the canonical com-
mutation relation [φ(x, t ), φ̇(x′, t )] = iδ(x − x′), which, in
momentum space and in terms of the function fk(t ), translates
into Im[ fk(t ) ḟ ∗

k (t )] = 1, which in turn yields

Im(AkB∗
k ) = − π

4 sin(πα)

1

kσ/2
, (27)

a fact that we have used to arrive at Eq. (26).
Next we inspect the response function in several limits.

First, we find that at long times, kσ/2t, kσ/2t ′ � 1,

GR(k, t, t ′) = −�(t − t ′)
1

kσ/2
sin[kσ/2(t − t ′)]. (28)

This limit is appropriate within the quench light cone, but it is
more broadly applicable as we explain shortly. Notice that the
time translation symmetry is restored at long times, hence the
dependence on t − t ′ only. Indeed, in this limit, we recover the
response function of a critical quadratic Hamiltonian which is
state independent and is thus independent of temperature. To
identify the response function outside the local light cone (but
still within the quench light cone), we can expand the above
equation for kσ/2(t − t ′) � 1:

GR(k, t, t ′) = �(t − t ′)[−(t − t ′) + 1
6 kσ (t − t ′)3 + · · · ].

(29)
This equation follows from Eq. (28) that itself is derived in the
limit kσ/2t, kσ/2t ′ � 1; however, it is more generally valid as
long as t − t ′ � t, t ′, k−σ/2 regardless of kσ/2t and kσ/2t ′, as
one can directly verify from Eq. (26).

Next, let us inspect the response function well outside the
quench light cone. To this end, we should consider Eq. (26) in
the limit kσ/2t, kσ/2t ′ � 1:

GR(k, t, t ′) ∼ t �α (t ′/t ) + kσ t3 �α (t ′/t ) + · · · , (30)

where, for convenience, we have defined the functions

�α (y) ≡ 1

2α
[y1/2+α − y1/2−α], (31)

�α (y) ≡ y
1
2 −α

8α

{
y2 − y2α

1 − α
+ 1 − y2+2α

1 + α

}
. (32)

Again, the leading term in Eq. (30) quickly decays in position
space, while the subleading term provides the leading-order
nonanalytical term in k and gives rise to the same power law of
the long-range coupling (∼1/xd+σ ) at long distances. A par-
ticularly interesting limit of Eq. (30) is when t ′ � t � k−σ/2:

GR(k, t, t ′) ∼ t

2α

(
t ′

t

)θ[
−1 + kσ t2

4(1 + α)
+ · · ·

]
, (33)

where we have included the first nonanalytical term in k too.
In this equation, we have identified the initial-slip exponent
that characterizes the dependence on the ratio t ′/t :

θ = 1
2 − α. (34)

In the following sections, we use the results derived here
to investigate the critical behavior in position space and in
various limits. In Sec. VI, we focus on a quench to the dynam-
ical critical point (r = rc), while, for a clearer presentation,
we dedicate Sec. VII to the study of the critical behavior in a
quench below the dynamical critical point (r < rc), although
there are many parallels between the two sections.

VI. QUENCH TO THE DYNAMICAL CRITICAL
POINT r = rc

In this section, we focus on the quench to a dynamical
critical point and derive analytical results for the correlation
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and response functions and identify the initial-slip exponents
in various regimes and compare them against exact numerical
results. We also derive a k-dependent effective temperature
that mimics critical correlations at long distances within the
stationary state.

A. Correlation function

We start by considering the initial correlation function at or
before t = 0 due to the long-range coupling [23]:

C(x, t = 0) ∝ 1

xd+σ
. (35)

This power law does not indicate criticality since r0 = �2
0 >

0, but is simply inherited from long-range nature of the model
[1,23].

Now we consider the correlation function in the stationary
state well within the quench light cone; see Fig. 1(a). To iden-
tify the nature of the stationary state, one must consider the
long-time limit of the equal-time correlation function, which
is given by Eq. (24). Together with the value of α in Eq. (17),
we find

Cst (k) ∝ 1

kd/2
, σ < d < 2σ. (36)

In the spatial domain, this equation implies that, well within
the quench light cone, xσ/2 � t , the correlation function falls
off as

Cst (x) ∝ 1

xd/2
, σ < d < 2σ. (37)

Above the upper critical dimension, d > 2σ , where the fixed
point becomes Gaussian, we find Cst (k) ∼ 1/kσ , which, in the
spatial domain, gives Cst (x) ∼ 1/xd−σ .

At intermediate times, Eq. (23) hints at a crossover from
the critical behavior inside the quench light cone x � t2/σ

to a faster power-law decay due to the long-range coupling
(1/xd+α) outside the light cone x � t2/σ . Putting Eqs. (23)–
(25) together with Eq. (17), we have

C(x, t ) ∝
{

1/xd/2, x � t2/σ ,

t2+d/σ /xd+σ , x � t2/σ ,
(38)

at the non-Gaussian fixed point, σ < d < 2σ . Interestingly,
the correlation function increases algebraically in time outside
the quench light cone. Above the upper critical dimension,
d > 2σ , we find similar behavior where the power law 1/xd−σ

inside the quench light cone crosses over to t4/xd+σ outside
of it.

In Fig. 3, we numerically show that indeed two distinct
spatial power laws emerge inside and outside the quench light
cone; see also the bottom left panel there. Furthermore, one
can see that the correlation function increases as a power law
with time outside the light cone consistent with the above
equation; see the bottom right panel in Fig. 3. These charac-
teristics are schematically shown in Fig. 1(a). Same qualitative
features arise for different values of σ as we show in Fig. 4.
Note that in the absence of the long-range coupling (when
σ = 2), correlations decay exponentially outside the light
cone; see the thick curve in Fig. 4.

There are a few interesting facts to note here. The power-
law decay of the correlation function [Eq. (37)] at long times

FIG. 3. Main panel: Equal-time correlation function as a function
of time and distance in the wake of a critical quench (r = rc); here,
σ = 1.7 and d = 3. A nonlinear quench light cone emerges with
t ∝ x0.85. Bottom left panel: Correlation function at fixed t = 35.
This function exhibits a crossover from the critical power law inside
the quench light cone to 1/xd+σ outside of it. Bottom right panel:
Correlation function at a fixed distance x = 200. This function grows
as a power law in time before saturating to a constant value inside the
quench light cone.

is independent of σ at the non-Gaussian fixed point (σ < d <

2σ ). This is quite surprising given the long-range coupling
of the model. This behavior is also characteristically different
from the critical behavior of the long-range model in equilib-
rium either at zero or at finite temperature:

Ceq(x) ∝
{

1/xd−σ/2, Tc = 0,

1/xd−σ , Tc > 0,
(39)

where Tc denotes the critical temperature. On the other hand,
the power-law decay of the correlation function above the
upper critical dimension depends on σ in a fashion that is

FIG. 4. Equal-time correlation function as a function of distance
in the wake of a critical quench r = rc; here, t = 100 and d = 3.
For short-range coupling, σ = 2, the correlation function decays
exponentially.
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FIG. 5. Response function (solid dark blue curve) at fixed t and
t ′ with t − t ′ � t, t ′ as a function of distance in the wake of a critical
quench (r = rc) for d = 3 and σ = 1.7. The “equilibrium” response
function in Eq. (40) is an excellent fit (the dotted yellow curve). The
response function outside the local light cone falls off as 1/xd+σ

(the dashed green line). Inset: The response function well outside
the local light cone scales as (t − t ′)3 at short-time differences.

compatible with the equilibrium behavior at finite tempera-
ture; see Eq. (39). This will be consistent with our analysis in
Sec. VI D where we argue that a finite effective temperature
emerges above the upper critical dimension. On the other
hand, we find that interestingly the effective temperature van-
ishes at long wavelengths as k → 0 for σ < d < 2σ .

B. Response function

We have argued that, at long times, the response function
becomes translation invariant [see Eq. (28)] and recovers its
form in equilibrium; the latter is identical to the response func-
tion of a quadratic Hamiltonian, and is thus independent of the
state or the temperature of the system. In this subsection, we
translate this statement into position space and derive scaling
relations for the response function outside the local light cone.
Most importantly, we argue that as long as t − t ′ � t, t ′, the
response function approaches its equilibrium value at any
distance x inside, on, or outside either the quench or the
causal light cone. To this end, let us assume t − t ′ � t, t ′,
and consider different spatial regions. We start with the region
within the quench light cone, x � t2/σ . This is exactly the
domain of validity of Eq. (28), hence the stationary form of
the response function. Next, we consider x � (t − t ′)2/σ well
outside the local light cone and resort to Eq. (29).

The latter equation is valid irrespective of the value of
kσ/2t, kσ/2t as long as kσ (t − t ′) � 1. As noted in our discus-
sion there, Eq. (29) is consistent with the equilibrium form
of the response function in Eq. (28). It follows from these
considerations that, for t − t ′ � t, t ′, at any distance x,

GR(x, t, t ′) = −�(t − t ′)
∫

k

eik·x

kσ/2
sin[kσ/2(t − t ′)]. (40)

It is quite remarkable that, for short-time differences, the
response function equilibrates globally at all distances; see
Fig. 1(b). In Fig. 5, we numerically verify this point and find
an excellent agreement with the above equation.

We are particularly interested in the response function out-
side the local light cone, x � (t − t ′)2/σ . This is obtained by
expanding the sine function in the above equation to the third
order where the first nonanalytical term (≈ kσ ) appears; see

(a) (b)

FIG. 6. Response function in the wake of a critical quench (r =
rc); here, σ = 1.7 and d = 3 and the larger time coordinate is set to
t = 100. (a) Response function in momentum space. The function
�α (t/t ′) is an excellent fit. (b) Response function in position space
at long distances well outside the quench light cone. The function
�α (t ′/t ) is an excellent fit.

Eq. (29). We then find, for t − t ′ � xσ/2, t ,

GR(x, t, t ′) ∝ (t − t ′)3

xd+σ
. (41)

Again, we numerically verify this scaling behavior in Fig. 5
and the inset there.

Next we turn our attention to the response function in the
limit t ′ � t . This regime exhibits aging and is discussed in
more detail in the next subsection.

C. Aging

According to Eq. (33), the response function is propor-
tional to (t ′/t )θ for t ′ � t . The initial-slip exponent θ is given
by Eq. (34), together with Eq. (17), as

θ = 4 − d̃

4
= 1 − d

2σ
, σ < d < 2σ, (42)

while θ = 0 above the upper critical dimension, d > 2σ . For
arbitrary t ′/t and at k → 0, the response function is given by
[see Eq. (30)]

GR(k → 0, t, t ′) ∼ t �α (t ′/t ), (43)

with the function � defined in Eq. (31) and α = (d/σ − 1)/2
as follows from Eq. (17); note that �α (y) ∝ yθ for small y.
We find an excellent agreement between the above analytical
expression and the numerical simulation in Fig. 6(a).

Next, we consider the response function in position space.
To describe the dependence on t ′/t , we first point out that the
response function is proportional to t ′θ as long as t ′ � t . This
is because, in this limit, a natural cutoff for the momentum
integral is roughly set by k � t−2/σ . Now the domain of the
Bessel function J±α (kσ/2t ′) is of the order � t ′/t , therefore it
can be expanded to the first nontrivial order to give GR ∼ t ′θ .
In the following, however, we focus on the response function
outside the quench light cone, x � t2/σ ; see Fig. 1(c). From
Eq. (30), we find that, at long distances xσ/2 � t, t ′,

GR(x, t, t ′) ∼ A t3

xd+σ
�α (t ′/t ), (44)

where the function � is defined in Eq. (32) together with
α = (d/σ − 1)/2; note that �(y) ∝ yθ . The constant of pro-
portionality A in this equation is simply given by the inverse
Fourier transform of kσ in position space; for d = 3, for
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example, we have A = 
(2 + σ ) sin(πσ/2)/2π2. We plot
the response function in Fig. 6(b) well outside the quench
light cone and find excellent agreement with the analytical
expression above.

Finally, we point out that the classical (stochastic) O(N →
∞) model leads to the same initial-slip exponent θ given by
Eq. (42) although the overall dependence on t is different;
see Appendix B. The same exponent governs the long-range
spherical model [50]. We also remark that the same conclu-
sion emerges in the short-range variant of the quantum model
considered here [80,81].

D. Effective temperature

In equilibrium, correlation and response functions are
related by the celebrated fluctuation-dissipation relation as
(suppressing the k dependence for now) [90]

GK (ω) = h̄ coth

(
h̄ω

2T

)
[GR(ω) − GR(−ω)]. (45)

In the high-temperature limit (T � h̄ω), one recovers
the classical limit of the fluctuation-dissipation relation,
GK (ω) = (2T/ω)[GR(ω) − GR(−ω)], or, in the time domain,
i∂t GK (t − t ′) = 2T [GR(t − t ′) − GR(t ′ − t )]. For t > t ′, we
simply have i∂t GK (t − t ′) = 2T GR(t − t ′).

Even outside equilibrium, the fluctuation-dissipation rela-
tion can be used as a basis to define an effective temperature
[91] which may nevertheless depend on k. To this end, we
must characterize the time dependence of the correlation and
response functions. One can easily deduce the unequal-time
correlation function at long times (|t − t ′| � t, t ′) as

iGK (k, t, t ′) = Cst (k) cos[kσ/2(t − t ′)]. (46)

We remind the reader that Cst (k) denotes the equal-time cor-
relation function in the stationary state. Now, together with
Eq. (28), it becomes clear that the correlation and response
functions satisfy the classical form of the fluctuation-
dissipation relation

i∂t G
K (k, t − t ′) = 2Teff (k)GR(k, t − t ′), (47)

for a k-dependent effective temperature

Teff (k) ∝ kσ−d/2, σ < d < 2σ. (48)

In contrast, we find that Teff = const, i.e., independent of k, at
the Gaussian fixed point above the upper critical dimension,
d > 2σ . The scaling of the effective temperature with mo-
mentum is intriguing and has important consequences. Most
importantly, it indicates that the system is genuinely out of
equilibrium as the critical, long-distance properties are not
captured by a constant effective temperature below the upper
critical dimension. In fact, the exponent governing the scaling
of the effective temperature is simply σθ , that is, the critical
exponent describing the effective temperature at late times
is directly proportional to the aging exponent characterizing
the short-time dynamics. This fact is indicative of the true
nonequilibrium nature of the stationary state [80,81]. Further-
more, the effective temperature vanishes with k → 0, which
might seem to indicate that quantum fluctuations become
important; this would in turn invalidate the classical limit of
effective temperature. However, the classical description is

still valid if the frequency ωk ∼ kσ/2 of a given mode k is
small compared to the temperature, Teff (k). A quick compar-
ison shows that this is always the case provided that d > σ

that is trivially satisfied above the lower critical dimension.
Finally, the fact that the effective temperature is simply a
constant above the upper critical dimension is compatible with
a simple analysis of harmonic oscillators appropriate to the
corresponding Gaussian fixed point [64,80,81].

VII. QUENCH BELOW THE DYNAMICAL CRITICAL
POINT r < rc

Despite many parallels with the previous section, we find
it more appropriate to devote another section to the quench
below the dynamical critical point for a clearer presentation
and to highlight the contrasts with the critical quench.

In equilibrium and below the dynamical critical point, the
systems becomes ordered,

lim
|x|→∞

Ceq(x) = const > 0, (49)

or, alternatively in momentum space, Ceq(k) ∼ V δ(k) with
V the system’s volume. The dynamics of phase ordering is
often described by expanding domains, in a process known
as coarsening [92]. However, the quantum quench considered
here does not give rise to ordering even for r < rc as we shall
see below. Instead, it will give rise to critical behavior that is
distinct from that in a quench to the dynamical critical point.
Such behavior can also be viewed as an anomalous coarsening
dynamics [80,82,83]. With no upper critical dimension, the
nontrivial (i.e., non-Gaussian) critical behavior in this case
persists at any dimension d > dl . In this section, we derive
analytical results for the correlation and response functions
and aging behavior and compare them against exact numerical
results. Finally, we identify a k-dependent effective tempera-
ture that captures the critical correlations.

A. Correlation function

To identify the nature of the stationary state, we resort to
Eq. (24). For a quench below the dynamical critical point, we
must substitute α by the value given in Eq. (19):

Cst (k) ∝ 1

kd−σ/2
, (50)

for any dimension above the lower critical dimension d >

dl = σ . In the spatial domain, this means that the correlation
function falls off as

Cst (x) ∝ 1

xσ/2
. (51)

Interestingly, the decay of the correlation function is indepen-
dent of dimensionality. This becomes particularly surprising
given that, in higher dimensions, a slow decay of correlations
indicates a highly correlated system. Indeed, we shall see that,
at sufficiently high dimensions, the effective temperature in
the stationary state can even diverge as k → 0.

In this case too, we expect a crossover at a time scale
governed by the nonlinear light cone, x ∝ t2/σ . Putting
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FIG. 7. Equal-time correlation function (solid blue curves) as a
function of distance in the wake of a quench below the dynamical
critical point (r = 3rc); here, t = 15 and σ = 1.6.

Eqs. (23)–(25) together with Eq. (19), we have

C(x, t ) ∝
{

1/xσ/2, x � t2/σ ,

t1+2d/σ /xd+σ , x � t2/σ .
(52)

A stationary, time-independent power-law correlation func-
tion (1/xσ/2) within the nonlinear quench light cone crosses
over to the long-range power law (1/xd+σ ) outside the light
cone. In Fig. 7, we verify the emergence of these distinct
power laws for different values of σ .

B. Response function and aging

An almost identical analysis to Sec. VI B shows that the
response function “equilibrates” globally at all distances when
t, t ′ � t − t ′ and is identical to that in a critical quadratic
Hamiltonian, hence no dependence on the state; see Fig. 5.

Furthermore, the analysis of aging behavior closely follows
our discussion in the previous section. Only for the quench
below the dynamical critical point, r < rc, we find a distinct
initial-slip exponent:

θ = 4 − d̃

2
= 3

2
− d

σ
, σ < d. (53)

Interestingly, the exponent θ becomes negative for d > 3σ/2.
As we shall discuss in the next subsection, the effective tem-
perature diverges as k → 0 in this regime.

Again, we can identify aging behavior by probing the de-
pendence on t ′/t either in momentum space via Eq. (43) or in
position space, outside the quench light cone, via Eq. (44) but
with the value of α = d/σ − 1 from Eq. (19). Figure 8 depicts
the dependence of the response function on t ′/t in momentum
space in the limit k → 0. In this figure, one can clearly see
that the response functions corresponding to negative values
of θ further increase as the ratio t ′/t becomes smaller at fixed
t ; this is in contrast with the behavior for θ > 0; see also
Fig. 6(a).

C. Effective temperature

An effective temperature that captures the critical fluctua-
tions can be identified similar to Sec. VI D. A similar line of
reasoning, based on the fluctuation-dissipation relation, leads
to

Teff (k) ∝ k3σ/2−d , (54)

FIG. 8. Response function (solid blue curves) in the wake of a
quench below the dynamical critical point, r = 3rc; here, d = 2.6
and the larger time coordinate is set to t = 1000. The plots are
consistent with the response function increasing as t ′/t decreases for
σ < 2d/3.

for a quench below the dynamical critical point, r < rc. As
remarked earlier, this effective temperature can even diverge
with k → 0 depending on dimensionality d and the exponent
σ when d > 3σ/2. It then follows that, in this regime, the
density of low-momentum states diverges faster than that at
any finite temperature. Again, we notice that the exponent in
the above equation is simply σθ , underscoring the nonequilib-
rium nature of the stationary state. The effective temperature
thus diverges at long wavelengths precisely in a regime where
the initial-slip exponent becomes negative.

VIII. CONCLUSION

We have considered quenches to and below the dynam-
ical critical point of the d-dimensional quantum O(N →
∞) model with the long-range coupling 1/xd+σ , and have
investigated the critical behavior of the ensuing short-time
dynamics as well as the stationary state at late times through
the two-point correlation and response functions. Qualitative
behavior of the two-point functions depends on the corre-
sponding space-time positions with respect to both local and
quench light cones. While the correlation function saturates
to a stationary value inside the quench light cone and exhibits
critical scaling distinct from that in equilibrium, it grows
algebraically with time outside this light cone while falling
off with the distance as 1/xd+σ , the latter in harmony with
the Hastings-Koma bound [87]. The response function too
becomes stationary as long as the time difference t − t ′ is
short compared to the age of the quenched quantum system,
and becomes identical to that in equilibrium. Aging becomes
manifest in the limit t ′ � t where the response function scales
as (t ′/t )θ with the initial-slip exponent θ that characterizes a
truly out-of-equilibrium critical behavior. This exponent along
with other scaling properties exhibit a rich interplay between
dimensionality and long-range coupling, and are distinct for
quenches to or below the dynamical critical point. Indeed, a
surprising observation is that even a quench below the dynam-
ical critical point exhibits critical scaling, or an anomalous
type of coarsening [79,80,82], in contrast with the phase or-
dering and coarsening dynamics that would occur when the
system is coupled to a thermal bath [92].

Further investigation of the quantum quench well below
the dynamical critical point, the role of the corresponding
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initial-slip exponent, and its connection with the order-
parameter dynamics is worthwhile. Another direction is to
investigate consequences of integrability breaking, for exam-
ple due to finite (but large) N . Crossover to thermalization
at long times will showcase the nontrivial dynamics that is
constrained by a weakly broken integrability. Finally, it would
be interesting to identify qualitative features of the quench
dynamics of the O(N ) model that extend to other systems such
as spin models with long-range interactions.
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APPENDIX A: EQUILIBRIUM AND DYNAMICAL
CRITICAL POINTS

The long-range quantum O(N → ∞) model given by
Eq. (4) can be described in the disordered phase, where 〈�〉 =
0, by

reff = r + u

12

∫
k

1√
kσ + reff

h(k/�). (A1)

The equilibrium critical point is then readily calculated by
setting reff = 0, yielding

req,c = − u

12

∫
k

k−σ/2h(k/�). (A2)

On the other hand, in order to determine the dynamical
critical point of the long-range quantum O(N → ∞) model
and following Refs. [79,80,89], we make the ansatz that, at
late times, the equal-time correlation function is the same as
the stationary part of the free (noninteracting) theory with
the initial parameter r0 = �2

0 and the final parameter r f to be
self-consistently determined. With this ansatz, we just replace
reff in Eq. (7a) with r f :

f̈k + [kσ + r f ] fk = 0, (A3)

again with initial conditions fk(0) = 1/
√

2ω0k, ḟk(0) =
−i

√
ω0k/2 where ω0k = √

kσ + r0. Inserting the late-time so-
lution in Eq. (7b) and keeping the stationary (nonoscillatory)
contribution, we find

lim
t→∞ reff (t ) = r f + u

4!

∫
k

2kσ + �2
0

kσ

√
kσ + �2

0

h(k/�). (A4)

We can then infer the dynamical critical point as

rc = − u

4!

∫
k

2kσ + �2
0

kσ

√
kσ + �2

0

h(k/�). (A5)

The approximate ansatz used here provides accurate pre-
dictions for the dynamical critical point (A5), according to

our numerical simulations. Notice that as the dimension ap-
proaches the lower critical dimension, dl = σ , we have rc →
−∞ since the integral diverges due to the contribution near
k = 0, hence the absence of ordering at d = dl .

APPENDIX B: CLASSICAL AGING
WITH LONG-RANGE INTERACTIONS

In this section, we present the classical aging behavior
in the presence of long-range interactions [66–69,93]. We
closely follow the treatment by Janssen et al. for the short-
range classical model [48] which naturally reduces to the
short-range result upon inserting σ = 2. Alternative deriva-
tion for the (long-range) spherical model is provided in
Ref. [50]. We warn the reader that the conventions used here
for the response and correlation functions are different from
those in the main text and reflect the standard notation in the
classical literature. We begin with the classical Hamiltonian

H =
∫

dd x
[
−1

2
� · ∇σ� + r

2
�2 + u

4!N
(�2)2

]
, (B1)

and the associated stochastic (Langevin) equation

∂t� = −λ
δH
δ�

+ ξ(t ), (B2)

with the noise correlations

〈ξa(x, t )ξb(x′, t ′)〉 = 2λδabδ(x − x′)δ(t − t ′). (B3)

The parameter λ can be viewed as mobility and its appearance
in both the equation of motion as well as the noise correlator
reflects the fluctuation-dissipation relation. By introducing the
response filed [90], one can describe the stochastic dynamics
in a functional-integral language as

Z =
∫

d�d�̃ e−J[�̃,�], (B4)

with the functional J given by

J[�̃,�] =
∫ ∞

0
dt

∫
dx

[
�̃ ·

(
�̇ + λ[−∇σ + r]�

+ λu

6N
��2

)
− λ�̃

2
]
. (B5)

Again, in the large-N limit, we can replace the nonlinear term
by

1

N
(�̃ · �)�2 −→ C(t )�̃ · �, (B6)

where

C(t ) ≡ 1

N
〈�2(t )〉. (B7)

With this substitution, exact in the limit N → ∞, the func-
tional J becomes

J[�̃,�] =
∫

t,x
[�̃ · (�̇ + λ[−∇σ + reff (t )]�) − λ�̃

2
],

(B8)
where the mass term is replaced by

r −→ reff (t ) = r + u

6
C(t ). (B9)
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The functional J being quadratic, the ensuing dynamics can
be solved exactly. Specifically, the correlation and response
functions can be determined by inverting the kernel in the
functional J; we find, in momentum space,

χ (k, t, t ′) = �(t − t ′) exp

{
−λ

∫ t

t ′
ds[reff (s) + kσ ]

}
,

(B10)

C(k, t, t ′) = 2λ

∫ ∞

0
ds χ (k, t, s)χ (k, t ′, s), (B11)

for the (retarded) response function χ and the correlation
function C, respectively; notice that C(t ) = ∫

k C(k, t, t ). The
self-consistent condition in Eq. (B9) can be now stated as

reff (t ) = r + u

6

∫
k

C(k, t )

= reff (∞) + u

6

∫
k
[C(k, t ) − C(k,∞)], (B12)

where we have introduced C(k, t, t ) ≡ C(k, t ) for brevity.
The integral over momentum is up to a cutoff momentum that
we conveniently choose to be � = 1. In a quench to the crit-
ical point, we have reff (∞) = 0 and the correlation function
at late times is determined by that of the critical Gaussian
model at finite temperature, i.e., C(k,∞) = 1/kσ . Comparing
various terms in Eq. (B8), a scale-invariant solution emerges
at intermediate times only if

reff (t ) = a

2λt
, (B13)

with a a dimensionless constant. Notice that this effective
mass scales with time in the same fashion as the first time
derivative in Eq. (B8). Inserting this equation in the response
and correlation functions, we find

χ (k, t, t ′) = �(t − t ′)
(

t ′

t

)a/2

exp{−λ(t − t ′)kσ }, (B14)

C(k, t, t ′) = 2λ

∫ min(t,t ′ )

0
ds

(
s2

tt ′

)
exp{−λ(t + t ′ − 2s)kσ }.

(B15)

It follows from the last equation that the equal-time correla-
tion function at intermediate times can be written as

C(k, t ) = 1

kσ
F (2λkσ t ). (B16)

Apart from the coefficient 2λ that is chosen for later conve-
nience, the argument of the scaling function is dictated by the
dynamical exponent.4 The precise form of the scaling function
is given by

F (x) = x
∫ 1

0
dy (1 − y)ae−xy. (B17)

4The classical dynamical exponent z = σ should be contrasted with
z = σ/2 of the quantum model considered in the main text. For
short-range coupling (upon inserting σ = 2), the classical dynamical
exponent z = 2 characterizes diffusive dynamics in contrast with
z = 1 of the quantum model which underlies light-cone dynamics.

Incidentally, the scaling takes exactly the same form as that of
short-range interactions [48]; this is evident in the fact that the
function F is independent of σ , which only enters through the
definition of the argument of the scaling function (∝ kσ t).

Now in a quench to the critical point, reff (∞) = 0,
Eq. (B11) upon a change of variables, z = 2λkσ t , yields

a = uKd

6σ
(2λt )2−d/σ

∫ 2λt

0
dz zd/σ−2[F (z) − 1]. (B18)

While the left-hand side is a constant, the right-hand side
appears to increase with time. To ensure self-consistency, we
must require that the leading time-dependent term vanishes:

∫ ∞

0
dz zd/σ−2[F (z) − 1] = 0. (B19)

Using Eq. (B17), the latter condition amounts to


(a + 1)
(2 − d/σ )


(a + 2 − d/σ )
= 0, (B20)

with the only consistent solution being

a = −(2 − d/σ ). (B21)

With this, we can now determine the response function as

χ (k, t, t ′) = �(t − t ′)
(

t

t ′

)1− d
2σ

exp{−λ(t − t ′)kσ }, (B22)

from which we can identify the aging exponent:

θ = 1 − d

2σ
. (B23)

We remark that, similar to the quantum aging discussed in
the main text, the aging exponent can be determined from the
short-range case by replacing the dimension d by d̃ = 2d/σ .
The classical initial-slip exponent is identical to this exponent
in our quantum model; see Eq. (42). However, note that the
response function of the quantum model in the limit k →
0 comes with an additional factor of t [64,80,81]. We can
also investigate the response function at long distances [see
Fig. 1(c)]. It follows from Eq. (B22) that, in a regime where
t ′ � t � xσ ,

χ (x, t, t ′) ∝ t

xd+σ
(t ′/t )θ . (B24)

This is similar to Eq. (44) in the limit t ′ � t with the dif-
ference that there is an overall cubic, rather than linear,
dependence on t in the quantum model.

Finally, we mention that a quench below the critical point
leads to an ordered phase at late times and coarsening dynam-
ics at intermediate times, in contrast with the quantum model,
where ordering does not occur even in the limit t → ∞.
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