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Smooth Parameterization of Rigid-Body Inertia
Caleb Rucker Member, IEEE, Patrick M. Wensing Member, IEEE

Abstract—In this letter, we propose a parameterization of
the rigid-body inertia tensor that is singularity free, guarantees
full physical consistency, and has a straightforward physical
interpretation. Based on a version of log-Cholesky decomposition
of the pseudo-inertia matrix, we construct a smooth isomorphic
mapping from R10 to the set of fully physically consistent inertia
tensors. This facilitates inertial estimation via unconstrained
optimization on a vector space and avoids the non-uniqueness
and singularities which we show are inherent to parameteriza-
tions of the inertia tensor based on eigenvalue decomposition
and principal moments. The elements of our parameterization
have straightforward physical meanings in terms of geometric
transformations applied to a reference body. While adopting this
new parameterization breaks the linear least squares structure
of the system identification, theoretical results guarantee that all
local optima of the resulting problems remain global optima. We
compare the performance of three different parameterizations of
inertia by performing inertial estimation on test data from a set
of 1000 simulations of randomly sampled rigid bodies subject to
external time-varying wrench and measurement noise. We also
investigate the performance of the log-Cholesky parameterization
on a dataset from MIT Cheetah 3 to empirically demonstrate
the theoretical results. Overall, the results indicate that the
log-Cholesky parameterization achieves fast convergence while
providing a simple and intuitive parametric description of inertia.

Index Terms—Dynamics, Inertial Estimation

I. INTRODUCTION

Estimation of the inertial parameters of rigid bodies was an
early topic in robotics research [1]. For a single rigid body
in 3D, the inertial parameters are the six unique elements
of the symmetric rotational inertia tensor, the mass, and the
three first mass moments along each coordinate axis. It is
well known that the dynamics model of any manipulator or
other multi-body system is linear in these parameters, which
conveniently leads to a linear least squares estimation problem
that serves as the basis for identification algorithms, either
offline or adaptive.

However, as many researchers have recognized, not all
combinations of parameter values actually correspond to some
possible physical body. This gives rise to the notion of physical
consistency of a set of parameters. Physical consistency was
first defined by the notion that the rotational inertia tensor
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should be positive definite [2]–[5]. However, as shown by
Traversaro, et al. [6] this is a necessary but not sufficient
condition for physical consistency. In addition, a set of triangle
inequalities on the principal moments of inertia must be
satisfied, which was termed full physical consistency in [6].
It was later shown that the conditions for full physical con-
sistency were equivalent to the requirement that the pseudo-
inertia matrix be positive definite [7], such that the estimation
problem is a constrained optimization problem subject to linear
matrix inequalities (LMIs) [7]. This approach was applied to
flying robots in [8]. Using the fact that physically-consistent
parameters are isomorphic to P4 (the set of 4 × 4 positive
definite matrices), Lee and Park illuminated the Riemannian
geometry of consistent parameters, and proposed non-convex
optimization methods for system identification based upon it
[9]. Coordinate-invariant non-Euclidean regularization strate-
gies were later cast as a convex optimization problem in [10].

In some applications, it would be desirable to formulate
inertial estimation as an unconstrained optimization problem
on a set of parameters that inherently embeds the requirements
of physical consistency. For example, recent work in differ-
entiable physics simulators motivated exploration of several
parameterizations of rigid-body inertia that embedded physical
consistency constraints [11]. Similarly, [12] learned an object’s
unknown inertial properties online in order to facilitate robotic
manipulation, and needed to enforce physical consistency due
to noisy observations. However, the parameterizations so far
explored in these works have not been isomorphic mappings
between R10 and the space of physically consistent parame-
ters. A prominent mapping in both [11], [12], and others is
based on Traversaro et al. [6], which uses the orientation of the
principal axes, the second moments about them, the center of
mass, and the mass, as base parameters instead of the elements
of the inertia tensor. This intuitive approach is very appealing,
but it requires the estimation problem to be performed on the
SO(3) manifold (or to parameterize SO(3)), and it further
suffers from non-uniqueness and symmetry singularities, as
we later show.

In this letter we review the requirements of physical con-
sistency and highlight the fact that the space of physically
consistent inertial parameters is actually isomorphic to R10.
This is made evident first through a parameterization using
the exponential of a symmetric matrix. We then propose a
new parameterization of inertia based on a form of the log-
Cholesky decomposition of the pseudo-inertia matrix. This
parameterization is inherently physically consistent in the
full sense and thus amenable to unconstrained optimization,
yet it still resides on the vector space R10 and contains no
singularities, constituting a diffeomorphic mapping. It further
has an intuitive physical interpretation as it constitutes an
affine transformation applied to a reference body. With this
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new parameterization, we demonstrate inertial estimation on
simulated noisy data sets, and compare the results to other
methods. Tests with experimental data from MIT Cheetah 3
confirm that while this new parameterization leads to a non-
convex optimization problem, the diffeomorphism ensures that
all local optima of the problem remain globally optimal.

II. RIGID-BODY INERTIA AND CONSISTENCY

The inertial parameters of a general rigid-body object are
defined as functionals of the body’s mass-density field ρ :
R3 7→ R≥0 as

m =

∫
R3

ρ(x)dV

h =

∫
R3

xρ(x)dV = [hx hy hz]
⊤

Ī =

∫∫∫
R3

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 ρ(x)dV

=

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz


(1)

where m is the total mass, h = mc is the first mass
moment with c ∈ R3 the center of mass, Ī is the rotational
inertia about the origin of the body-fixed reference frame,
x = [x y z]⊤ ∈ R3 are Cartesian coordinates in the body-fixed
reference frame, and dV = dxdy dz is the volume differential.

The 6D spatial inertia tensor is then

I =

[
Ī S(h)

S(h)⊤ m13

]
(2)

where S : R3 7→ so(3) such that S(x)y = x× y [13].

A. Physical Consistency

Definition II.1. A vector

π = [m hx hy hz Ixx Iyy Izz Ixy Iyz Ixz]
⊤ ∈ R10 (3)

composed of candidate inertial parameters is fully physically
consistent if and only if there exists some finite-valued density
field ρ(·) : R3 7→ R≥0 such that π satisfies (1) and m > 0. Let
us define the set of physically consistent parameter vectors:

C = {π ∈ R10 | π is fully physically consistent}

Note that since ρ is required to be finite valued above, this
definition of physical consistency excludes point masses, line
masses, and plane masses, all of which would require an infi-
nite density in order to have nonzero mass. This is equivalent
to requiring physical bodies to have nonzero thickness in all
dimensions.

While defining physical consistency is straightforward, char-
acterizing the set C is more challenging. A helpful starting
place is provided by the theorem below, as stated in [6], which
we provide here for the reader’s convenience.

Theorem II.1. π is fully physically consistent if and only if
Ī ≻ 0, m > 0, and the following triangle inequalities are
satisfied

Dx < Dy +Dz, Dy < Dx +Dz, Dz < Dx +Dy (4)

where Dx, Dy , and Dz are principal moments of inertia
such that Ī = RDR⊤ with D = diag(Dx, Dy, Dz) and
R ∈ SO(3).

Proof. See [6, Lemmas 1 and 2, and Theorem 1]

The triangle inequalities above exist due to the relationship
of Dx, Dy and Dz to the second moments Lx, Ly and Lz

along the principal axes.

Dx = Ly + Lz, Dy = Lx + Lz, Dz = Lx + Ly (5)

where
Lx =

∫
R3

x̃2ρ(x)dV,

Ly =

∫
R3

ỹ2ρ(x)dV,

Lz =

∫
R3

z̃2ρ(x)dV

and x̃ = [x̃ ỹ z̃]⊤ are coordinates expressed in R, i.e.,
Rx̃ = x. Positivity of Lx, Ly , and Lz then implies the triangle
inequalities.

III. PARAMETERIZATION VIA THE EIGENVALUE
DECOMPOSITION

As detailed in [6], the theorem above immediately suggests
a natural way to parameterize C in terms of R>0 × R3 ×
SO(3)× R3

>0, i.e., use as base parameters

m ∈ R>0, c ∈ R3, R ∈ SO(3), L = [Lx Ly Lz]
⊤ ∈ R3

>0

and then calculate D from L using (5), and the rotational
inertia as Ī = RDR⊤. Note that the domain of the mapping
is not a vector space due to the involvement of SO(3), R>0,
and R3

>0. To perform physically-consistent inertial parameter
estimation, we would need to enforce the restrictions imposed
by these structures. SO(3) could be handled by (1) further
parameterizing R in terms of Euler angles, quaternions, ex-
ponential coordinates, or any other conventional coordinate
expression for rotation, or (2) enforcing the structure of
SO(3) as constraints during optimization, or (3) employing
optimization on manifolds as proposed in [6].

A. Symmetry-Induced Singularities

However, regardless of how the inequalities and SO(3)
are handled, this parameterization of C contains singularities
that were not revealed in prior research. To demonstrate this,
suppose R is parameterized using exponential coordinates
β ∈ R3 as R = eS(β). Then, establishing a vector of base
parameters

ϕ = [m ∈ R>0, c ∈ R3, β ∈ R3, L ∈ R3
>0]
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we can construct a physically consistent π as outlined above.
After calculating the Jacobian

Γ =
∂π

∂ϕ

upon examination, we find that Lx−Ly , Ly−Lz , and Lx−Lz ,
are all factors of the determinant of Γ, indicating that the
mapping from ϕ to π is singular whenever any two of the
second moments are equal.

Physically interpreted, the singularity above occurs when-
ever the parameters describe a body with rotational symmetry
of order three or greater about any axis (symmetry of order
n means that rotations by 360◦/n about some axis do not
change the object). Common examples of this include any
linear extrusion of a regular polygon (e.g., square, equilateral
triangle, regular hexagon, etc.) and any solid of revolution
about an axis (e.g., a vase or baseball bat). As a concrete
example, consider a cylinder with axis along z. In this case,
Lx = Ly . The singularity can be understood intuitively, since
rotating the body about the z−axis produces no change in the
inertia matrix. Whenever these singular combinations of base
parameters occur, there exist certain infinitesimal changes in
π that cannot be realized by any corresponding infinitesimal
change in ϕ because of the singular Jacobian.

It is important to note that these symmetry singularities are
independent from any other singularities that might arise from
a parameterization of R. Indeed, since the relevant factors of
the determinant are purely functions of the second moment
parameters Lx, Ly , and Lz , the symmetry singularities are
present even if R is handled in a singularity-free way with
quaternions [14] or optimization on manifolds [6]. The effect
of the symmetry-induced singularities could potentially be
significant in differentiable physics applications and online
adaptive estimation. In practice, many robotic links will ex-
hibit such symmetry at least approximately, and it would be
desirable to avoid parameterizations that introduce symmetry
singularities near the solution.

In addition to the symmetry singularities, there is a unique-
ness issue: for any rigid-body inertia matrix, there are at least
six different parameters sets ϕ which produce it, since L1, L2,
and L3 can be assigned in any order and subsequently com-
bined with a different rotation R to arrive at the same Ī. Thus,
while physically intuitive, any parameterization based on the
eigenvalue decomposition is not one-to-one, requires a strategy
for handling SO(3), and contains additional singularities.

IV. VECTOR-SPACE PARAMETERIZATIONS BASED ON THE
PSEUDO INERTIA

In light of the previous section, one might assume that
C is not isomorphic to any vector space (because SO(3) is
involved), and that any attempt at parameterization in terms of
R10 will suffer from the same problems. But this turns out not
to be true. In this section, we explore two parameterizations
that provide a bijective mapping from R10 to C without
singularities. Both mappings are based on the 4x4 pseudo-
inertia matrix, defined as [7]:

J =

[
Σ h
h⊤ m

]

where

Σ =
1

2
Tr(Ī)13 − Ī and Ī = Tr(Σ)13 −Σ

Defining q as the homogeneous coordinate representation of
the point x, i.e.,

q =

[
x
1

]
The pseudo-inertia can be simply written as

J =

∫
V

qq⊤ρ(x) dV. (6)

It was proved in [7] that π is fully physically consistent if
and only if J(π) ≻ 0. This result has been useful in expressing
physical consistency in terms of linear matrix inequalities [7],
and for recognizing that C is equivalent to the Riemannian
manifold P4 (4×4 symmetric positive-definite matrices). This
observation, in turn, provides a natural coordinate-free metric
on C and is useful in improving regularization during inertial
estimation [9].

A. Exponential Map Parameterization

It has also been observed [9], [15] that a bijection can be
constructed from R10 to P4 via the exponential of a symmetric
matrix Q ∈ S4:

exp(Q) =

∞∑
k=0

Qk

k!
= K ∈ P4

and the matrix logarithm of K ∈ P4 given by

log(K) = −
∞∑
k=1

(1−K)k

k
= Q ∈ S4

When combined with the results above, this bijection estab-
lishes the isomorphism R10 ≃ C, so it is possible to use the
exponential map to define a vector-space parameterization of
C. However, the physical meaning of this parameterization is
not immediately clear, and its computation is not in a closed
form, so it is difficult to gain intuition and insight or to form
the Jacobian.

B. Log-Cholesky Parameterization

Building on this prior work, we here further exploit the
pseudo-inertia to identify a smooth isomorphic parameteriza-
tion from R10 to C, which is both physically intuitive and
computationally closed form.

The real symmetric matrix J is positive definite if and only
if there exists a real nonsingular matrix M such that

J = MM⊤

The Cholesky decomposition is the unique factorization of this
form where M is lower triangular with a positive diagonal.
Similarly, there is also a unique decomposition

J = UU⊤ (7)

where U is upper triangular with positive diagonal. While we
could employ either upper or lower Cholesky decompositions,
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the upper decomposition corresponds to a natural physical
interpretation, as we will discuss below.

An upper triangular matrix U is nonsingular if and only
if the diagonal elements are nonzero. Let us then construct a
nonsingular upper triangular matrix U in the form

U = eα


ed1 s12 s13 t1
0 ed2 s23 t2
0 0 ed3 t3
0 0 0 1

 (8)

Viewed in light of the decomposition (7) this can be seen as a
version of the log-Cholesky decomposition with the bottom-
right scalar term factored out.1 Thus, given a vector of base
parameters

θ = [α, d1, d2, d3, s12, s23, s13, t1, t2, t3]
⊤ ∈ R10

we can construct a physically consistent inertia matrix from
the relationships above, resulting in the mapping π : R10 7→ C,
shown below:

π = f(θ) = e2α



t21 + t22 + t23 + 1
t1e

d1

t1s12 + t2e
d2

t1s13 + t2s23 + t3e
d3

s212 + s213 + s223 + e2d2 + e2d3

s213 + s223 + e2d1 + e2d3

s212 + e2d1 + e2d2

−s12e
d1

−s12s13 − s23e
d2

−s13e
d1


(9)

The mapping is onto, and the uniqueness of the log-
Cholesky decomposition implies that it is also one-to-one and
invertible. Moreover, we can calculate the Jacobian

Γ =
∂π

∂θ
,

and upon inspection we find that the only non-constant factors
of the determinant of Γ are eα, ed1 , ed2 , and ed3 , none of
which can be zero ∀θ ∈ R10. The mapping f(θ) and its inverse
are thus smooth, constituting a diffeomorphism.

V. PROPERTIES OF THE LOG-CHOLESKY
PARAMETERIZATION

A. Preservation of the Unique Optimum
The Log-Cholesky parameterization of inertia above con-

verts the task of estimation from a linear least squares problem
to a nonlinear optimization problem that is non-convex. This
appears to be the price of embedding physical consistency
in the parameter set. However, the resulting nonlinear opti-
mization problem is still well posed, and all local optima are
globally optimal because the mapping is diffeomorphic. To
prove this, consider a linear least squares cost function F (π).
Suppose there is a minimum of the cost function at a physically
consistent vector of parameters π∗. This implies that

∂F

∂π

∣∣∣
π∗

= 0

1The log-Cholesky decomposition was used in [16] to parameterize
variance-covariance matrices, which are closely related to pseudo-inertia
matrices [7].

and since the cost function is linear least squares, it is convex
with all critical points in the domain being global optima. The
optimum π∗ corresponds to a unique set of parameters θ∗ =
f−1(π∗). In terms of the new parameterization, the gradient
of the cost function is also zero at θ∗:

∂F

∂θ

∣∣∣
θ∗

=

(
∂F

∂π
Γ

) ∣∣∣
π∗

= 0

and since Γ is full rank everywhere, it follows that while the
parameterization converts the linear least squares problem to
a more general nonlinear one, this does not introduce any
additional local minima2.

B. Physical Interpretation and Generalization

In order to physically interpret the log-Cholesky parame-
terization and gain intuition that may inform the estimation
problem, recall that the pseudo inertia can be written in terms
of the homogeneous coordinates of points in the body as in (6).
Now, any affine transformation of a reference body’s geometry
can be written in the form

q′ = Aq =

[
B t
0 1

]
q

where B ∈ R3×3 is a linear transformation (encompassing,
e.g., various compositions of rotation, shearing, and scaling)
and t ∈ R3 uniformly translates the object in space. While
this transformation affects the geometry of the reference body
without influencing its density, one could additionally trans-
form the density of the body by scaling by some positive factor
β2. The combination of geometric transformation and density
scaling results in the the pseudo-inertia of the transformed
body:

J =

∫
V

q′q′Tβ2ρ(x)dV

=

∫
V

AqqTA⊤ β2ρ(x)dV

=CJ0C
⊤

(10)

where C = βA. We now recognize that our generalized log-
Cholesky matrix U has the same basic form as C (where β =
eα). Thus, our parameterization can be interpreted as applying
an affine transformation along with a density scaling to some
reference body with J0 = 14×4. Thus, we can generalize our
parameterization (7) by applying it to an arbitrary reference
object with pseudo-inertia J0,

J = UJ0U
⊤ (11)

This change does not affect the uniqueness and invertibility
of (7), as long as the chosen reference body itself is not
degenerate (i.e., not a point mass, line mass, or plane mass).
To see this, let J = U1U

⊤
1 and J0 = U2U

⊤
2 be the unique

Cholesky decompositions of J and J0. Then U = U1U
−1
2

exists as the unique upper triangular matrix with positive

2This result can alternatively be understood as follows. We note that a
convex function is not guaranteed to be convex under a nonlinear change of
variables. However, under a diffeomorphic change of variables, any convex
function is guaranteed to be goedesically convex [17], [18]. Similar to regular
convexity, this property ensures that all critical points are globally optimal.
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diagonal satisfying (11), due to the fact that upper triangular
matrices with positive diagonal form a group.

Based on the interpretation of our parameterization as an
affine transformation and density scaling of a reference body,
we can now identify the following physical meanings of the
elements of our parameter vector θ:

d1, d2, d3

are dimensionless and stretch (scale) the reference body along
x, y, z by their respective exponentials. A positive di indi-
cates stretch, and negative values indicate compression. The
transformation of the reference object will never cause it to
degenerate to zero thickness in any dimension because the
exponential can never be zero.

s12, s13, s23

are dimensionless and shear the reference body in the
xy, xz, yz planes without changing the object’s volume.

t1, t2, t3

have length units and translate the reference body uniformly in
x, y, z. The quantity α is dimensionless and effectively scales
the density ρ by the factor e2α. Again, the transformation can
never cause the body’s mass to degenerate to zero. In addition
to being physically intuitive and eliminating all symmetry-
induced singularities, the log-Cholesky parameterization of
interia is computationally attractive since the Jacobian is alge-
braic and easy to calculate due to the closed-form mapping.

The generalization (11) provides a physically meaningful
and intuitive way to incorporate prior information within
inertial parameter estimation. An approximate inertial model
(e.g., from a CAD model and/or physical measurements) can
be used to determine the nominal pseudo-inertia J0 for a
given robot link. Parametrizing the intertia as a transformation
applied to the nominal geometry is attractive because the
parameter magnitudes themselves indicate how far away from
nominal the estimate is.

VI. COMPARISON OF VECTOR-SPACE
PARAMETERIZATIONS

In this section we compare the three parameterizations of
rigid-body inertia from Sections III, IV-A, and IV-B by testing
their performance on an example inertial estimation problem.

A. Integration of Randomly Sampled Rigid-Bodies

Our example problem assumes an unconstrained rigid body
subject to known forces and moments over time. The Newton
and Euler equations can be written compactly as

Iξ̇ + ξ ×∗ Iξ = w (12)

where ξ = [ω⊤ v⊤]⊤ is the 6-DOF body-frame velocity
vector, w = [m⊤ f⊤]⊤ is the known body-frame wrench
consisting of applied force f and moment m vectors, and

ξ×∗ =

[
S(ω) S(v)
03×3 S(ω)

]

Parameter Sampling Interval
m 0.01 kg to 1.0 kg
cx -0.5 m to 0.5 m
cy -0.5 m to 0.5 m
cz -0.5 m to 0.5 m
Lx 0.01 kg m2 to 1.0 kg m2

Ly 0.01 kg m2 to 1.0 kg m2

Lz 0.01 kg m2 to 1.0 kg m2

β ∈ R3 Sphere of radius 2π

where R = eS(β)

Table I
SAMPLING INTERVALS FOR GROUND-TRUTH INERTIAL PARAMETERS

USED IN SIMULATIONS

We performed simulations with 1000 randomly generated
physically consistent inertia matrices by sampling uniform
probability density functions for the mass, center of mass,
second mass moments, and exponential rotation coordinates,
using the eigenvalue construction. The ranges of these uniform
distributions are outlined in Table I. The components of the
external applied wrench were as follows:

w =


sin(t)

sin(t+ π/3)
sin(t+ 2π/3)
sin(t+ 3π/3)
sin(t+ 4π/3)
sin(t+ 5π/3)


and the simulation time interval was 0 to 2π. By construction,
this ensures that the time series of wrenches spans R6.
Each simulation was calculated using Matlab’s ode23t with
data taken at equally spaced 0.1 second intervals. Simulated
measurement noise and bias were then added to the resulting
solution at the velocity level,

ξ̃i = ξi + ϵi

where the error ϵi ∈ R6 was sampled from a uniform
distribution of width 0.05 (noise) and mean of 0.1 (bias) in the
heterogeneous units of ξ, forming datasets on which inertial
estimation can be performed by minimizing the sum of squared
wrench residuals.

At each pair of discrete time points (ti, and ti+1) in each
rigid body dataset, a residual wrench vector ri was computed
by a second-order discretization of (12) using the implicit
midpoint method

ξ̇i =
ξ̃i+1 − ξ̃i
ti+1 − ti

ξi =
ξ̃i+1 + ξ̃i

2

ri = Iξ̇i + ξi ×∗ Iξi −wi

(13)

and all ri vectors were concatenated to form the least squares
residual vector.

B. Comparison of Inertial Estimation Results

We performed inertial estimation on these 1000 datasets
by solving the least squares problem using four different
parameterizations of the inertia matrix: (1) the ten inertial
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Figure 1. Results from 1000 estimation problems are shown for the different
parameterizations discussed in this paper. The plots show a histogram for the
number of iterations the algorithm took to satisfy the convergence criteria. The
algorithms were terminated after a maximum of 50 iterations. The average
time taken per iteration was 0.02 seconds, equal for all methods.

parameters themselves, (2) the eigenvalue construction in
Section III (with exponential coordinates for rotation), (3) the
exponential construction in IV-A, and (4) the log-Cholesky
construction in section IV-B.

When the inertial parameters themselves (as given in (3))
are used as the variables, estimation is a linear least squares
problem with a unique closed-form solution. However, out of
the 1000 simulated rigid bodies, this resulting least squares
solution produced a non-physical set of inertial parameters
15.1% of the time (151 occurrences). Of these, none resulted in
negative mass. 42 nonphysical cases resulted in Ī not positive
definite, and the mean of the most negative eigenvalue from
each of these cases was −0.04 kg m2. All of the nonphysical
cases violated at least one of the triangle inequalities (4), and
the mean of the triangle violations was −0.09 kg m2. In these
cases, measurement noise, bias, and discretization error led to
a nonphysical estimation result, as also observed in [6], [9].

The other three parameterizations create a nonlinear least
squares estimation problem, but they ensure that the result is
physically consistent. In each nonlinear case, we solved the
nonlinear estimation problem using Matlab’s lsqnonlin()
function with the trust-region-reflective algorithm, no param-
eter bounds, and a maximum of 50 iterations. All problems
were initialized with parameters such that the initial inertia
matrix was the identity matrix.

Differences in computational performance can be seen in
the number of iterations taken for the nonlinear estimation
to converge. These data are encapsulated in Figure 1, which
catalogs the occurances of the number of iterations taken
for the algorithm to terminate. Number of iterations also
serves as a proxy for time, because the average time taken

Figure 2. Experimental Setup for MIT Cheetah 3 System Identification
dataset.

per iteration (0.02 seconds) was equal for all methods. The
eigenvalue parameterization displays a wider range of times
to convergence with few failures. The exponential method
converged quickly but had far more failures, and the log-
Cholesky converged quickly with few failures, in addition to
being closed-form and physically intuitive.

VII. APPLICATION TO MIT CHEETAH ESTIMATION

A final set of results assessed the performance of the new
paramterization as applied to a dataset from the MIT Cheetah 3
[7], [19]. The robot was attached to the table as shown in
Fig. 2, and one leg was moved through a maximally exciting
trajectory. Joint angles and their derivatives were estimated
based on a non-causal Savitzky–Golay filter [20] (fourth order,
with a window size of 100 ms) applied to encoder data
sampled at 1 kHz. Joint torques were estimated based on
current readings reported by motor amplifiers, also sampled
at 1 kHz. The joint torques were left unfiltered since they are
the dependent variable within regression, and least squares
methods are suited to handle noise in the dependent variable.
Further details on the setup can be found in [7]. A regularized
nonlinear least squares problem was then formulated as

min
θ,θb,θc

Ns∑
j=1

∥Yjπ(θ) + diag(q̇j)b(θb) (14)

+ diag(sign(q̇j))bc(θc)− τ j∥2

+γ d(π(θ)||π̂)

where Yj gives the classical regressor at the j-th sample point,
q̇j the joint rates at the j-th sample point, and b ∈ R3 and
bc ∈ R3 are the viscous and Coulomb friction coefficients,
respectively. The final term γ d(π(θ)||π̂) is a coordinate-
invariant regularizer (see [10]) that penalizes the deviation
from a prior estimate π̂, with γ = 10−2 the regularization
weight chosen via cross-validation. Note that since not all
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Figure 3. Example convergence from 20 random runs of system identification
for the MIT Cheetah 3 dataset. The results are in empirical agreement with
the theoretical analysis of Section V-A: while the new parameterization makes
the system identification problem nonconvex, all initial conditions converge
to a global minimizer.

parameters are identifiable [21], without this regularization,
a subspace of the inertial parameters can be freely chosen,
with their evolution during optimization determined due to
numerical effects. To ensure that the friction terms were
physically plausible, additional parameters θb and θc were
optimized, with relation to the friction parameters as:

b(θb) =

eθb,1

eθb,2

eθb,3

 bc(θc) =

eθc,1

eθc,2

eθc,3


The inertial parameters for one leg included 10 parameters

for each link (ab/ad, thigh, and shank) and 10 parameters for
each motor rotor (ab/ad, hip, knee) such that θ ∈ R60. The
problem was solved using fminunc() in MATLAB with the
trust-region algorithm. RMS residuals of 1.47 Nm, 1.49 Nm,
and 1.43 Nm were observed on the ab/ad, hip, and knee torque
predictions on a batch of testing data that was distinct from the
training data. The prior and output parameters are summarized
in the supplemental material.

A nearly identical overall RMS prediction error was ob-
served across a set of trials wherein the initial guess to the
optimization was randomized. Figure 3 shows the convergence
over iterations for a representative set of 20 random initial
guesses. For these tests, all parameters (θ,θb,θc) were ran-
domized on [−1, 1], resulting in initial residuals up to 105

Nm RMS. The objective shown on the left includes both the
regularization and squared loss from (14). The RMS error on
the training data is shown in the middle vs. iterations for the
optimizer. The same parameter estimates at each iteration were
then used to assess validation error on the separate testing data
set, as shown on the right. The monotonic decrease in the
testing error across training iterations suggests that overfitting
was not present. Despite the significant initial suboptimality,
all solutions converged to the the same RMS error. These
tests empirically verify the theoretical property that all local
minimizers of the non-convex (but unconstrained) problem
(14) are global optimizers.

VIII. CONCLUSIONS

We have proposed a method for parameterizing rigid-body
inertia based on the Log-Cholesky decomposition of the sym-
metric positive definite pseudo-inertia matrix. We showed that
this parameterization has the intuitive physical meaning of an
affine transformation and density scaling applied to a reference
body. Furthermore, it does not suffer from singularities that
are inherent parameterizations based on an eigenvalue decom-
position. Over a large set of simulated estimation problems
with measurement noise, the method converged faster than
an eigenvalue parameterization, and with less failures than
an exponential parameterization. By construction, the method
only produces inertia estimations that are physically consistent,
in contrast to estimation based on the inertial parameters alone,
which produced many physically inconsistent results. These
results were also shown to scale well to practical identification
problems such as those encountered when identifying legged
robots. The results with the Cheetah 3 dataset further sup-
port the theoretical claim of the work in that unconstrained
optimization can, in fact, lead to globally optimal, physically
consistent solutions with our new parameterization.

Overall, the work paves the way for easily accessible
unconstrained optimization tools to be employed for enforcing
the physical plausibility of learned dynamics models. There
are many possible extensions to be considered. One immedi-
ate extension is the application to closed-chain mechanisms.
This generalization could be accomplished by combining the
new parameterization with the identification methods in [22]
to address kinematic loop-closure constraints. The method
also would present applicability within physically consistent
adaptive control schemes (e.g., [23]). In this case, continuous
time update laws would directly inherit consistency guaran-
tees when converted to discrete time if using our proposed
parameterization.
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