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Abstract—We propose a new method for improving the sta-
bility of concentric tube robots. Prior work sought to improve
stability through laser-cut patterns that reduced EI/GJ , the
ratio of flexural rigidity to torsional rigidity, but this strategy has
always entailed a steep trade-off in overall robot stiffness. Instead,
we show that stability can be improved much more efficiently
by allowing transverse anisotropy (direction-dependent flexural
rigidity, EIx 6= EIy). We provide a generalized robot model with
this property and give its associated stability criterion. In the
two-tube case, this provides a new version of the well-known
EI/GJ criterion, now generalized to reveal the independent
effects of EIx and EIy . It shows that the most efficient strategy
to improve stability while preserving stiffness is to reduce the
flexural rigidity about the axis of precurvature while maintaining
high off-axis flexural rigidity and torsional rigidity. We validate
the approach with a balanced-stiffness pair of laser-machined
Nitinol tubes, demonstrating model accuracy and significant
stability improvement while requiring less stiffness reduction
than prior methods.

Index Terms—Surgical Robot, Continuum Robot, Elastic Sta-
bility

I. INTRODUCTION

Concentric-tube robots (CTRs) are slender manipulators
composed of two or more precurved elastic tubes nested
together. Axial rotations and translations of the tube bases
by actuators cause the tubes to bend and twist one another,
which changes the shape of the collection and moves the tip
through space. This creates a highly miniaturizable device that
is potentially useful in minimally invasive surgical applications
to navigate through tight spaces and deliver therapy [1].

Ever since their initial introduction, the elastic stability of
concentric tube robots has been a rich topic of research and
discussion. As first identified in [2], a so-called “snapping”
instability can happen when two tubes with overlapping curved
regions are rotated with respect to each other. The tubes reach
a point where much of the stored elastic energy suddenly
releases, and the tubes “snap” to a new configuration with
high velocity. The existence of such unstable events limits
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the robot’s workspace and implies the existence of multiple
solutions to the forward kinematics problem [3], [4], thus com-
plicating modeling and control. The theory and understanding
of CTR stability was expanded in [5]–[8] which also developed
numerical tests to determine if particular configurations and
designs will be stable. The dynamics of the unstable transitions
were recently modeled in [9].

Though some have proposed ways to harness the snapping
transitions for useful purposes [10], much recent CTR research
has focused on avoiding unstable behavior by planning and
controlling the robot to follow stable actuation trajectories [5],
[11]–[16], or by designing the tube precurvatures and overlap
regions such that instabilities do not exist in the configuration
space [8], [17]–[21].

A. Stability through Structural Modification

In the development of the now standard CTR mechanics
model [3], [4], [22] and its analytical solution in the two-tube
case, the authors found the inequality

L2c <
π2

4
(1)

to be necessary and sufficient for the stability of the entire
rotation space of two tubes with constant precurvature, where
L is the overlapped length,

c = κ1κ2
EI1EI2(GJ1 +GJ2)

(EI1 + EI2)GJ1GJ2
(2)

and EIi, GJi, and κi are the flexural rigidity, torsional rigidity,
and precurvature of the ith tube. If the two tubes have identical
stiffnesses and precurvatures (a usually impractical case, but
useful for gaining insight) then the stability condition reduces
to

(κL)
2 EI

GJ
<
π2

4
(3)

This observation inspired further research on potential ways to
reduce the effective ratio of flexural rigidity EI to torsional
rigidity GJ for a given tube, so that robots could be made
capable of greater bending angles (κL) while remaining sta-
ble over the whole rotation space. In [23]–[26], patterns of
horizontal slots were laser cut into the tube walls. Typical
results from these studies showed that the strategy was able to
reduce the effective EI/GJ to 0.4 (29% of its original value
of 1.3), but this required reduction in EI itself to around 3% of
its original value. In [27], topology optimization was used to
identify a pattern of holes that reduced EI/GJ to 1.0, (77% of
1.3), but this reduced EI itself to 47% of its original value. In
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[28], 3D printed bellows tubes were used to create larger soft
robot segments with very low EI/GJ ratios around 0.05, but
also with extremely low bending stiffness considering the tube
diameter. Recently, [29], [30] studied auxetic cutting patterns
in tubes and showed that the bending and torsional stiffnesses
are independently controllable. However, the boundary of the
feasible parameter space shown in Figure 6 of [30] again
reveals the fundamental tradeoff: reducing EI/GJ by 50%
would require a reduction in EI by about 80% or more.

B. Contributions

The above results demonstrate that the main trade-off in-
herent to structural modification thus far has been the drastic
reduction in bending stiffness required to achieve sufficient sta-
bility improvement, which consequently weakens the robot’s
capacity to apply or resist forces. Our contribution in this paper
is a new approach to CTR stability improvement in which
this trade-off is far less severe. The strategy we propose is
to endow the tubes with direction-dependent flexural rigidity
(EIx 6= EIy), creating what is known as a “transversely
anisotropic” member [31]. As shown in Figure 1, we propose a
cut pattern that reduces the flexural rigidity about one axis (the
axis of precurvature) more than the other. Direction-dependent
flexural rigidity has been a feature of other robots for various
purposes [32]–[35], but no research has yet investigated the ef-
fect of such transverse anisotropy on the stability of precurved
concentric tube robots.

To fill this gap, we first present the standard CTR model
[22] in a generalized form that accommodates transverse
anisotropy. Using this model, we examine the stability of the
two-tube case, generalizing the prior stability condition (3)
to reveal the independent effects of EIx and EIy and the
benefits of direction-dependent rigidity. We further explore
the improved stiffness/stability trade-off through characteristic
input-output angle curves, and comparisons to existing designs
from the literature (see Figure 4). Finally, we provide a
realistic example using a pair of transversely anisotropic laser-
cut tubes, and validate the stability predictions experimentally.

II. MECHANICS MODEL WITH TRANSVERSE ANISOTROPY

In this section we provide a short summary of the equations
of the standard CTR mechanics model with external loading,
but without applying the typical assumption that EIx = EIy .
Each tube in a CTR obeys the static equilibrium conditions
for a Cosserat rod [31]:

ṅi + fi = 0

ṁi + ṗi × ni + li = 0
(4)

and the kinematic equations

ṗi = Rie3

Ṙi = Riûi
(5)

where the subscript i denotes the tube index, mi : R 7→ R3

is the tube’s internal moment, li : R 7→ R3 is an external
distributed moment, ni : R 7→ R3 is the internal force, fi :
R 7→ R3 is an external distributed force pi : R 7→ R3 is the
position, Ri : R 7→ SO(3) is the orientation, ui : R 7→ R3 is
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Figure 1. If the tube is precurved locally about the x-axis, we propose to
lower the flexural rigidity EIx relative to the off-axis flexural rigidity EIy
and the torsional rigidity GJ . To accomplish this, the cut pattern shown above
is used in our prototype design.

the curvature vector, and e3 = [0 0 1]>. All variables are
functions of the reference arc length s ∈ [0 L] along the tube
centerline. The ˙ denotes a derivative with respect to s, and̂ : R3 7→ so(3) denotes the standard skew-symmetric form of
a vector [36].

A linear constitutive law relates the kinematics to the statics
as

mi = RiKi(ui − u∗i )

where Ki = diag(EIxi, EIyi, GJi) and û∗i = R∗>i Ṙ∗i is the
precurvature vector in the unstressed state (R∗i is the rotation
matrix assigned in the unstressed state).1 We can differentiate
the constitutive law and substitute into (4). We then multiply
by e>3 R

>
i and solve for u̇iz as:

u̇iz = u̇∗iz −
1

GJi
e>3 (ûiKi + K̇i)(ui − u∗i ) (6)

where e>3 R
>
i li = 0 under the assumption of no torsional

friction, and e>3 R
>
i (ṗi × ni) = 0 identically because of (5).

Note that (6) was simplified in all prior work by assuming
EIx = EIy , but we are intentionally not making that assump-
tion here, so we leave (6) in its general form.

The x and y components of the tube curvature ui can be
related to the curvature u = [ux uy 0]> of a Bishop frame
R that slides along the robot centerline with no torsion:

Ṙ = Rû ṗ = Re3 (7)

Based on the concentric constraint ṗi = ṗ, we have

Ri = R

cosψi − sinψi 0
sinψi cosψi 0
0 0 1

 = R

[
Rψi 02×1
01×2 1

]
, (8)

1Note that we can assume Ki is diagonal without loss of generalization
because we can always assign the initial reference frame R∗

i (s) such that the
x and y axes align with the effective principal axes at s. This can be done
even if the principal axes vary along the length, which would simply entail
u∗
i (s) having a nonzero torsional component, as in [37].



RUCKER et al.: TRANSVERSE ANISOTROPY STABILIZES CONCENTRIC TUBE ROBOTS 3

And the curvature relationship is then[
uix
uiy

]
= R>ψi

[
ux
uy

]
(9)

where
ψ̇i = uiz (10)

Enforcing the concentric constraint ṗi = ṗ ∀i, and defining
m =

∑n
i=1 mi, n =

∑n
i=1 ni, and f =

∑n
i=1 fi we have

ṅ+ f = 0

ṁ+ ṗ× n+ l = 0
(11)

and from the above definitions we can algebraically derive

uxy =

(
n∑
i=1

Rψi
KbiR

>
ψi

)−1( n∑
i=1

Rψi
Kbiu

∗
i +

[
mx

my

])
(12)

where Kbi = diag(EIxi, EIyi), and mx and my are the x
and y components of m expressed in the Bishop frame R,
i.e. [mx my mz]

> = R>m
Thus Equations 6, 7, 10, and 11 provide a complete set

of differential equations for the robot state variables with
Equations 8, 9, and 12 providing the algebraic relationships to
compute necessary quantities and other variables of interest.
Boundary conditions of a concentric tube system are detailed
in many prior publications [3], [4]. These usually specify the
proximal angle of each tube ψi(βi) (where βi is the arc length
at which tube i is held by the rotary actuator), and the distal
torsion at the free end (uiz(`i) = 0 if tube i ends at s = `i).

The stability of a given solution to the above general
boundary value problem can be evaluated using the method
of [7] based on a criterion adapted from optimal control,
namely the “conjugate-point test”. In the unloaded case, this is
equivalent to the criteria of [8]. In the subsequent development
in this paper, we will consider the unloaded scenario, and
specifically the two-tube case in order to gain practical insight
into the design of stable tube pairs.

III. TWO TUBES WITH TRANSVERSE ANISOTROPY

In this section we will examine the case of two tubes with
constant Ki and uniform precurvatures κ1 and κ2 about their
x axes (u∗i = [κi 0 0]>). In this case (6) reduces to

u̇iz =
1

GJi
((EIix − EIiy)uixuiy − EIixκiuiy) (13)

and the differential equation governing the relative tube angle
θ = ψ2 − ψ1 can then be expressed as

θ̈ = κ>A(θ)κ sin θ (14)

where κ = [κ1 κ2]
>, and the matrix A(θ) is given by

A(θ) =

(γ1 + γ2)

[
χ1χ2 + χ1γ1

(χ2γ1 − χ1χ2)Cθ

] [
(χ1γ2 − χ1χ2)Cθ
χ1χ2 + χ2γ2

]>
µ1µ2

µ1 + µ2

∣∣∣∣ χ1 + γ2 (χ1 − γ1)Cθ
(χ2 − γ2)Cθ χ2 + γ1

∣∣∣∣2

where Cθ = cos θ, and we have defined the following symbols
for notational compactness:

χi = EIix γi = EIiy µi = GJi (15)

The boundary conditions of (14) are θ(0) = θ0, and θ̇(L) = 0.
θ(L) is denoted by θL.

A. General Two-Tube Stability Criterion

We can evaluate the stability of a particular configuration
by computing the solution h(s) of the variational equation
along any solution curve θ(s), which is an established stability
metric [8]. The function h(s) is associated with a solution θ(s)
as follows:

ḧ(s) =
∂

∂α

{
κ>A(α)κ sinα

}
α=θ(s)

h(s)

h(L) = 1

ḣ(L) = 0

(16)

The solution θ(s) is stable if and only if the associated h(s)
satisfies

h(s) > 0 ∀s ∈ [0 L] (17)

(i.e., there are no conjugate points [7], [38]). Physically, this
condition means that positive variations in the angle at the
distal end of the robot correspond only to positive variations in
angle along the entire length of the robot. Graphically, h(0) =
dθ0
dθL

is the inverse of the slope of the curve at a point (θ0, θL)
on the locus of static equilibria as shown in Figures 2 and 3.
And energetically, if the condition holds, the system energy
is locally positive definite around the static equilibrium with
regard to variations in θ(s).

In the general case, analytical solutions to (14) and (16)
are not available, so no closed-form stability condition can be
found. However, for any numerically evaluated solution θ(s),
we can evaluate the stability criteria numerically, and we can
test whether the entire rotation space is stable by sampling
θL ∈ [0 2π]> with sufficient resolution.

B. Stability of the Stationary Solution θ(s) = π

Note that θ(s) = π is a stationary solution to (14).
Intuitively, this solution is important to analyze because, in the
case of transversely isotropic (symmetric) tubes, it is the first
configuration to become unstable as the overlapped bending
angle increases. It also admits a tractable solution and insight
into the stability of the transversely anisotropic case. Applying
(16) gives

ḧ = −κ>A(π)κh = −Ch (18)

where

A(π) =

(µ1 + µ2)

[
χ1χ2 + χ1γ1
χ1χ2 − χ2γ1

] [
χ1χ2 − χ1γ2
χ1χ2 + χ2γ2

]>
µ1µ2(χ1 + χ2)2(γ1 + γ2)

(19)

Thus the scalar constant C = κ>A(π)κ is a generalization of
the constant c in [4], or a in [3], extended to the transversely
anisotropic case. The conjugate point stability condition then
gives

L2C <
π2

4
(20)
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Figure 2. Input-output angle curves are shown for a two-tube robot with
both tubes precurved about the x-axis to a 120◦ bending angle. The effect
of various changes to EIx and EIy are shown while holding GJ constant.
Reducing EIx while preserving EIy and GJ as much as possible is shown
to be the best strategy.

Of course, in the case of isotropic flexural rigidity, this
condition reduces to the prior result (1).

C. A Simplified Stability Criteria for Design
If we examine the idealized case of two tubes with identical

rigidities EIx, EIy , GJ , and precurvatures κ then (14) reduces
to

θ̈ =
4(EIx)

2EIyκ
2 sin θ

GJ(EIx + EIy + (EIx − EIy) cos θ)2
(21)

and (20) reduces to

L2κ2
(
EIx
GJ

)(
EIx
EIy

)
<
π2

4
(22)

This simple result provides a more complete understanding of
stability than the well-established condition (3). Considering
the conventional strategy of reducing EI/GJ , (22) reveals that
reducing (EIx)

2/(GJEIy) is a better objective. Although this
expression reduces to EI/GJ in the isotropic (symmetric)
case, it reveals that only the EIx reduction improves the
stability, and, contrary to current CTR knowledge and practice,
reducing EIy actually worsens the stability. We see that de-
creasing the flexural rigidity ratio EIx/EIy improves stability,
making the left hand side of (22) proportional to (EIx)

2. Thus
(22) suggests we should attempt to reduce EIx alone while
preserving both EIy and GJ as much as possible for robot
strength. Additional advantages of this strategy include that (1)
attempting to reduce only EIx also makes it easier to preserve
GJ , and (2) preserving EIy also gives the robot higher out-
of-plane stiffness.

In practice, the various reductions in EIx, EIy , and GJ will
be coupled and dependent on the pattern of removed material,
and the tubes may not have identical rigidities and curvatures.
Thus, we will only use the simple result (22) as a heuristic
to evaluate and improve the design of a single tube’s material
removal pattern, while using the exact general conditions (20)
and (17) to formally evaluate the stability of a tube pair.
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Figure 3. Input-output angle curves are shown for a two-tube robot with equal
tubes having EIy/GJ = 1.3. The effect of reducing only EIx is shown
for four different cases of bending angle κL. The plots illustrate that while
the strategy is very effective at improving stability for tubes with moderate
bending angles, it is not as effective for very large κL, because instabilities
arise away from θ(s) = 180◦. In these extreme cases, additional reduction
in EIy/GJ would stabilize the robot.

D. Stability Over the Rotation Space

To further illustrate the proposed strategy, the plots in Figure
2 show the conventional input-to-output angle mapping (θL vs.
θ0) for four different two-tube robot designs with two tubes
having equal lengths, precurvatures, and rigidities, by solving
(14) with θ̇(L) = 0. The precurvatures of the tubes are such
that the total bending angle κL = 120◦ when the tubes are
aligned (an extreme case). The nominal case (blue line) has
tubes with isotropic flexural rigidity and EI/GJ = 1.3, which
is consistent with solid tube walls and a Poisson’s ratio of
ν = 0.3. As discussed at length in [8], the regions of the
plot with a negative value of h = dθ0

dθL
(the reciprocal of the

slope of the graph) represent unstable configurations, and the
minimum value of h over the whole curve is a metric for
stability of the configuration space. The value of L2c in the
nominal unmodified tube case is about 2.3 times larger than the
maximum value for a stable configuration space, π2/4. The red
curve shows that an “almost stable” workspace can be achieved
by reducing EI/GJ uniformly to half its previous value, but
the instability around θ = π remains, and it is difficult to
achieve such a reduction without dramatically reducing the
overall flexural rigidity. The yellow curve shows that reducing
EIy/GJ alone actually makes the instability worse than the
nominal case. Finally, the purple curve shows that reducing
EIx/GJ alone improves stability even more than the same
amount of uniform reduction, while also preserving more of
the original stiffness.

E. Extreme Cases

The previous sections analyzed the stability of the θ(s) = π
configuration, and qualitatively examined the entire rotation
space in an example case. The analysis clearly illustrates
that reducing bending stiffness in only one direction (about
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Table I
MODIFIED TUBE DESIGN PARAMETERS

OD ID κ w p α φ
(mm) (mm) (1/m) (mm) (mm) (deg) (deg)

Tube 1 3.00 2.76 14.0 0.1 0.75 89◦ 15◦

Tube 2 2.54 2.20 13.5 0.1 0.75 85◦ 12◦

the axis of precurvature) is a superior strategy for improving
stability of the significant θ(s) = π configuration, but the
question remains whether other configurations could ever
become unstable due to the anisotropy itself.

The answer is yes, but only for extremely long or curved
robots. Figure 3 illustrates this phenomenon for a pair of equal
tubes with constant EIy/GJ over a range of stiffness ratios
EIx/EIy . The plots show that for a total bending angle less
than about 150◦, the tube pair can be stabilized by reducing
EIx alone, and stability of the θ = 180◦ configuration implies
stability of the entire rotation space. However, the bottom
plots show that for larger bending angles, instabilities (negative
slope regions) are possible at other configurations even when
θ(s) = 180◦ is stable. Thus, the minimum value of dθ0

dθL
over

the whole input-output curve should be used as a the stability
metric in such cases. Studying how this value varies with
changes in EIy and EIy would reveal the most efficient way
to improve the stability for a given extreme design. In any case,
stability of all points in the rotation space can be achieved by
some combination of EIx and EIy reduction. But in the most
practical cases, stability improvement can be most efficiently
gained by reducing EIx, relative to both EIy and GJ , as
shown by the top two plots.

The simulations in this section all used two equal tubes
for simplicity and to build intuition in a reduced parameter
space. For realistic CTRs, the tubes will likely be unequal,
and full stability assessment will have to be done according to
the general model we presented. However, the basic intuition
gained by the comparisons in this section is still valid for
unequal tubes, and we can further use the cut pattern to design
certain properties to be equal if desired, as we show in the next
section.

IV. EXPERIMENTAL VALIDATION

In the remainder of the paper, we investigate the benefits of
transverse anisotropy in a prototype two-tube CTR segment.

A. Prototype Design

We selected two Nitinol tubes with parameters given in
Table I. Our design goal was to significantly improve the
workspace stability while preserving the strength of a tube
pair with a curved length of L = 100 mm and u1 = u2 =
[κ 0 0]>, where the precurvature κ is such that the total
bending angle is approximately 90◦. We also aimed to produce
tubes with equal EIx so that the tube pair would be balanced
and thus able to fully straighten.

We chose the pattern shown in Figure 1 because FEA
simulations showed it was able to efficiently lower EIx
while preserving a significant portion of the original EIy
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Figure 4. The relationship of flexural rigidity (stiffer toward the right)
to stability (more stable toward the bottom) is depicted for 43 candidate
transversely anisotropic designs simulated with finite element analysis (blue
circles). All of the candidate designs were more ideal than prior designs with
EIx = EIy gathered from the literature (red x’s) [23], [25]–[27], [30]. All
candidates exceeded the theoretical performance bound for symmetric designs
(red line) and came close to the bound for transversely anisotropic designs
(blue line).

Figure 5. Rigidities and stability parameters of the unmodified and modified
tubes are shown, as calculated from finite-element simulations.

and GJ . We manually iterated the design parameters and
performed finite element analysis to determine the effective
flexural and torsional rigidities of 43 candidate designs. The
resulting blue datapoints are plotted in Figure 4 showing the
nondimensional relationship between EIx/EIx,solid and our
generalized stability parameter (EIx)

2/(GJEIy) (lower is
more stable). Figure 4 also shows in red a representative
sampling of results obtained from prior published work [23],
[25]–[27], [30] which sought to reduce EI/GJ by reducing
EI in an isotropic (symmetric) manner. For isotropic de-
signs, a theoretical performance bound can be obtained as
EI/GJ ≥ EI/GJsolid, since GJ cannot be increased by
removing material. In contrast, the performance of transversely
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Figure 6. The manufacturing process, beginning with laser machining of the
tubes, followed by shape setting and characterization.

anisotropic designs is only bounded by (EIx)
2/(GJEIy) ≥

(EIx)
2/(GJsolidEIy,solid). These performance bounds are

depicted by the red and blue lines in Figure 4. Note that
stability of every transversely anisotropic design we tested was
better than the theoretical performance bound for symmetric
designs and came close to the bound for anisotropic designs.
Note also that Figure 4 is conservatively plotted with the
weaker rigidity on the horizontal axis. The overall stiffness of
a given anisotropic design is even larger due to the minimal
reduction in EIy .

We eventually selected the design parameters given in Table
I for each tube to satisfy our design goals. The resulting
properties of the modified and unmodified tubes are depicted
in Figure 5. Note that the modified EIx of both tubes are
equal, and EIy and GJ have retained much of their original
stiffness. Note that (EIx)2/(GJEIy) is reduced by a larger
percentage than any of the individual stiffness reductions.

We cut the chosen pattern into straight, superelastic NiTi
tubes using a pulsed fiber laser system. The resulting tubes
are shown in Figure 6(a). The tubes were shape set via the
resistance heating method described in [39] with a jig to
enforce the desired curvature, as shown in Figure 6(b). The
fixture was made of medium density fiberboard and coated
in high temperature epoxy (J-B Kwik) to reduce charring.
The electrical shape setting system was set to ramp the
resistance of the part from its room temperature value R0 to
an increased value (1 + k)R0 over 5 seconds, and to hold
the peak resistance for 15 seconds. The process was repeated
for values k = 0.15, 0.16, 0.17, and 0.18 for the larger tube
and for k = 0.16, 0.17, and 0.18 for the smaller tube. The
tubes are shown after shape setting and cleaning in Figure 6(c),
with the resulting total bending angles indicated, which turned
out slightly less than the desired bending angle of 90◦. The
resulting precurvatures are listed in Table 1.

A manual actuation setup, shown in Figure 7, was con-
structed to measure the distal angle of our modified tubes
over a range of input angles. Rotary stages (Optics Focus
MAR-60L-P) were used to provide independent rotation of
the inner and outer tubes. The inner tube was connected to its
rotary stage by a larger rigid steel tube, such that the effective
straight transmission length of the inner tube was only 21 mm
behind the base of the outer tube. A graduated disk and pointer

Figure 7. Manual actuation setup used to determine the experimental input-
output angles. Inset figure shows the experimental range of motion of the
modified tube pair.
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Figure 8. The experimental input-output angles are shown with the model
prediction.

were used to measure the output angle of the tube pair. The
graduated disk has angular increments of 1◦ and is attached to
the outer tube while the pointer is attached to the inner tube.

We rotated the tubes by equal angles in opposite di-
rections in 5◦ increments (resulting in 10◦ increments in
ψ2(β2)− ψ1(β1) from 0◦ to 360◦. At each configuration, we
performed a small insertion/retraction motion of the inner tube
using a linear stage (Optics Focus MDX-4090-60) to eliminate
frictional effects, as discussed in [40].

B. Results

We generated model-predicted input-output angle curves for
the unmodified and modified tube pairs by solving our gen-
eral model equations numerically, with boundary conditions
accounting for additional transmission torsion in the straight
length of the inner tube. The results are shown in Figure 8,
along with the data from the experimental measurements on
the modified tubes (red dots). The only calibrated parameter
in this dataset is the initial relative angle of the tubes since
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Figure 9. The y-z view of the subset of the workspace generated by rotating
the tube bases equal amounts in opposite directions. Green shaded areas
indicate stable regions in the workspace while red indicates unstable regions.

this is difficult to set precisely. The plot shows good agreement
between the model and the data with an RMS error of 1.8◦ and
a max error of 15◦, occurring at approximately 120◦ and 240◦.
The error pattern indicates that the cut tubes have slightly more
anisotropy than the intended design.

A view of the workspace perpendicular to the y-z plane is
shown in Figure 9. The full model of Section II is solved to
obtain the robot shape in space as the tubes are rotated by equal
increments in opposite directions such that ψ2(β2) − ψ1(β1)
ranges from 0◦ to 360◦. When ψ2(β2) − ψ1(β1) = 0, the
precurved tube shapes lie entirely in the y-z plane, and as
they are counter-rotated, the stiffness-balanced pair straightens
and then curves towards the opposite side. Note that while the
unmodified pair snaps across the gap, the modified tube pair
never snaps and has a more evenly distributed set of configu-
rations with respect to uniform changes in ψ2(β2)− ψ1(β1).

V. CONCLUSIONS

Concentric tube robots have excited researchers as some of
the most slender robots for applications in confined, tortuous
spaces. However, the unstable “snapping” problem can frus-
trate their practical application, since it creates limitations on
how curved the robots can be and presents a serious safety
hazard in many surgical contexts. Using a model that captures
transverse anisotropy, we have presented a fundamentally
new understanding of the problem, revealing that selectively
reducing the rigidity of the tubes only about the axis of
precurvature has a strikingly beneficial effect on the rotational
stability of concentric tube robots. A major added benefit
of this new insight is that the total reduction in the robot’s
stiffness is much less than previous approaches to improving
stability through modification of the tube’s structural rigidity.
The new approach was validated experimentally with a pair
of highly curved tubes that would have exhibited snapping
behavior if not for their structural modification. This new
insight into concentric tube robots will substantially expand
their capability, opening the door to future applications with
highly curved robots.
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