
16

Dynamically Adapting Page Migration Policies Based
on Applications’ Memory Access Behaviors

SHASHANK ADAVALLY, MAHZABEEN ISLAM, and KRISHNA KAVI,

University of North Texas

There have been numerous studies on heterogeneous memory systems comprised of faster DRAM (e.g., 3D

stacked HBM or HMC) and slower non-volatile memories (e.g., PCM, STT-RAM). However, most of these

studies focused on static policies for managing data placement and migration among the different memory

devices. These policies are based on the average behavior across a range of applications. Results show that

these techniques do not always result in higher performance when compared to systems that do not migrate

data across the devices: some applications show performance gains, but other applications show performance

losses. It is possible to utilize offline analyses to identify which applications benefit from page migration

(migration friendly) and use page migration only with those applications. However, we observed that several

applications exhibit both migration friendly and migration unfriendly behaviors during different phases of

execution supporting a need for adaptive page migration techniques. We introduce and evaluate techniques

that dynamically adapt to the behavior of applications and either reduce or increase migrations, or even halt

migrations. Our adaptive techniques show performance gains for both migration friendly (on average of 81%

over no migrations) and unfriendly workloads (by an average of 3%): it should be remembered that previous

migration techniques resulted in performance losses for unfriendly workloads.

CCS Concepts: • Computer systems organization→ Heterogeneous (hybrid) systems;

Additional Key Words and Phrases: Heterogeneous memory systems, flat address memory, dynamic page

migration, reverse migration

ACM Reference format:

Shashank Adavally, Mahzabeen Islam, and Krishna Kavi. 2021. Dynamically Adapting PageMigration Policies

Based on Applications’ Memory Access Behaviors. J. Emerg. Technol. Comput. Syst. 17, 2, Article 16 (March

2021), 24 pages.

https://doi.org/10.1145/3444750

1 INTRODUCTION

High performance applications and emerging data-centric applications need memory systems
with very large capacities (hundreds of gigabytes to terabytes), high bandwidth, and energy effi-
ciency [3, 16]. For example, SAP HANA in-memory database system requires 256 GB to multiple
terabytes per host [3], and Spark in-memory analytics provides higher performance when run

This research was supported in part by NSF awards 1828105 and 1361806.

Authors’ address: S. Adavally, M. Islam, and K. Kavi, University of North Texas, 1155 Union Circle, Denton, TX, 76203;

emails: {ShashankAdavally, MahzabeenIslam}@my.unt.com, Krishna.Kavi@unt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

© 2021 Association for Computing Machinery.

1550-4832/2021/03-ART16 $15.00

https://doi.org/10.1145/3444750

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

https://doi.org/10.1145/3444750
mailto:Permissions@acm.org
https://doi.org/10.1145/3444750

16:2 S. Adavally et al.

with 12 TB of memory [16]. In addition, the value of these large amounts of gathered data depends
on how fast the data can be analyzed to make decisions [16].
The architecture community has reacted to these needs with new memory technologies includ-

ing 3D stacked DRAMs and very dense non-volatile memories (NVMs). Different organizations
for combining these diverse memory technologies into a system architecture have been inves-
tigated, including hierarchical organizations (i.e., using 3D DRAM as last level cache (LLC)) or
flat-address memories where 3D DRAM (e.g., HBM [9], HMC [7]), DDR, and NVM devices (e.g.,
STT-RAM [20], phase change memories (PCMs) [28]) form a single memory address space. In such
flat-address systems, to effectively reduce average memory access times, heavily accessed pages
(hot pages) are migrated from slower memories (NVM) to faster memories (3D DRAM); cold pages
are moved from faster memories to slower memories to make room for the hot pages. Pages can
be migrated (or swapped) at regular intervals (epoch based) or individually (on-the-fly). The mi-
gration of pages between the memory systems incur execution and energy overheads. In addition
to the cost of actual data movement between memory devices, OS tables (translation look-aside
buffers (TLBs), page tables) must also be updated since physical addresses (PAs) in such memory
systems are based on the physical location of pages and a migration changes PAs: we call this
process of changing PAs and updating system tables address reconciliation (AR).
Numerous designs have evaluated the efficiencies of different page migration techniques. One

thing is clear from these studies: no single approach leads to consistent performance improvement
for all applications. Some applications may actually see a performance degradation due to page
migrations [21, 27]. It may be possible to perform offline analysis of memory access behaviors of
applications and categorize them as migration friendly (applications that show performance gains
from page migration—for these applications, performance gains outweigh migration overheads)
and migration unfriendly (applications that do not show performance gains—overheads outweigh
performance gains from migration), and use page migrations for only the migration friendly ap-
plications. However, offline analyses are often coarse grained and may not capture evolving be-
haviors of applications: applications may have both migration friendly and unfriendly phases. It
is necessary to design adaptive migration techniques to dynamically increases or reduces migra-
tions and even turns off migrations to adapt to changing behaviors of applications. We propose
such adaptive page migrations techniques in this article. The key contributions of our work are as
follows:

—Adaptive migration polices: Previous page migration techniques relied on fixed hotness
thresholds: a page is migrated from slow memories to faster memories when the num-
ber of times that page was accessed exceeds the hotness threshold. In contrast, we control
page migration policies based on applications’ memory access behaviors. Our technique
increases or reduces the hotness thresholds to reduce or increase the number of pages
migrated based on either the number of pages migrated over a window of observation or
based on the observed benefits of page migrations (were pages accessed after the migration
to faster memories).

—AR overheads can defeat the benefits of page migration: To eliminate AR, we explore the ben-
efit of reverse migrating pages to their original locations, particularly when the migrated
pages are no longer heavily accessed. Reverse migration makes page migration invisible to
the OS. However, reverse migrations can result in excessive data movement between slow
and fast memories. In this work, we evaluate the effectiveness of the reverse migration
technique.

Epoch-based approaches migrate “hot” pages at the end of an epoch. In such systems, some hot
pages may have exhausted their usefulness by the time they are migrated. Our previous research

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:3

[14] and the MemPod study [27] have observed that migrating recently accessed hot pages results
in better performance than migrating the “hottest” pages with accesses accrued over a longer
period (i.e., an epoch). We migrate pages as soon as they become hot (we call this on-the-fly (OTF)
migration). Epoch-based approaches rely on the OS for AR, which can be excessive. In our previous
study [14], we used a special hardware migration controller (MigC) that includes a small remap
table (or ReMap table in our system) to track physical locations of recently migrated pages to aid
in redirecting accesses to correct page locations. Periodically, older entries in the ReMap table
are deleted, after MigC updates page table entries (PTEs) and TLBs, making room for new page
migrations (i.e., after AR). We based our adaptive migration techniques and reverse migration
techniques on our previous design. We extended MigC to monitor applications’ memory access
behaviors to dynamically adapt page migrations.
The rest of the article is organized as follows. Section 2 includes themotivation for adaptive page

migration techniques. We also include a description of our MigC, as well as the migration and AR
processes. We include this information (previously reported in our previous work [14]) to make
this contribution self-contained. Section 3 describes our adaptive migration techniques and the
reverse migration technique. Section 4 contains our experimental setup and the benchmarks used
for evaluation. Section 5 includes an analysis of the results from our experiments. We include both
performance and energy results when using our adaptive migration policies. Section 6 includes a
discussion of research that is closely related to ours, and Section 7 summarizes the conclusions of
this study and further research that can be explored.

2 BACKGROUND ANDMOTIVATION

A number of heterogeneous memory investigations (e.g., [21, 27, 35]) and our previous study [14]
show that not all applications benefit from page migrations since page migrations incur perfor-
mance overheads due to extra data movement, as well as overheads for AR. It is possible to develop
offline analyses to categorize applications as migration friendly (applications that show perfor-
mance gains) and migration unfriendly (applications that show performance losses) so that page
migration is enabled only for migration friendly workloads. In our previous work [14], we devel-
oped one such offline classification by analyzing memory accesses to main memory pages (when
the accesses miss the cache hierarchy). We then created a histogram that shows how many pages
received a certain number of accesses. We discovered that an exponential-shaped histogram in-
dicates that very few pages receive most accesses and that those applications benefit by either
placing those few pages in the faster (HBM) memory at the start of execution, or migrated to HBM
on demand. This is the case with mcf (one of the benchmarks) where just 3% of all pages cause 97%
of memory accesses.1 Thus, mcf gains significant performance from most page migration policies,
and it is classified as a migration friendly application. However, applications exhibiting uniform-
shaped histograms indicate that most or all pages receive about the same number of accesses,
implying that too many pages may be migrated if a fixed hotness threshold is used for migrating
pages, and the migration overheads outweigh performance gains. This behavior is exhibited by
milc (another one of our benchmarks): 65% of pages contribute to 82% of all accesses, and this
application does not benefit from page migration and will be classified as a migration unfriendly
workload.
We also tracked the usefulness of pages that were recently migrated to faster memory. Migration

of pages to faster memories results in performance gains if those pages continue to be heavily
used, because these accesses will be satisfied by faster memories. We defined the migration benefit

1We omit details of the analysis and our approach for classifying applications as migration friendly or not friendly since

offline analysis is not a key contribution of this work and that information was published in our earlier work [14].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:4 S. Adavally et al.

Table 1. Migration Friendliness of Applications

Friendliness Benchmark

Very friendly mcf, mix1, mix2, mix4,
mix5

Moderately friendly lbm, omnetpp, astar
cactus, BFS, mix3, mix6

Least friendly or unfriendly milc, gems, zeusmp
xalanc, braves, miniFE
lulesh, xsbench, CoMD

quotient (MBQ) to measure the average usefulness of recently migrated pages. Relying on the
histograms and MBQ, we classified applications as very (migration) friendly, moderately friendly,
and migration unfriendly. Table 1 shows a possible classification of our benchmarks based on such
an analysis.

2.1 On-the-Fly Page Migration

In this section, we will include a brief description of our previous work [14] to provide sufficient
details needed to understand the contribution of this work. This section also provides the motiva-
tion for our adaptive migration techniques.
Unlike approaches that rely on epochs (e.g., 10-ms intervals) to track page access counts to

determine which hot pages to migrate, we migrate a page as soon it receives a certain number of
accesses (hotness threshold). We call this the OTF migration technique. OTF migration performs
better than epoch-based page migration techniques since we migrate recent hot pages [14]. This
is in line with the observations made by Prodromou et al. [27] that migrating recently accessed
hot pages results in better performance than migrating the “hottest” pages with accesses accrued
over a longer period. Since in OTF migration a page migration can take place at any time, it is
important to ensure that a migration does not halt user program execution.2 Moreover, OS-based
AR on each page migration is prohibitive for OTF migration. To mitigate these issues, we devised
a special hardware called MigC, placed on the processor chip, which performs actions necessary
for our OTF page migration.
Figure 1 shows a high-level system architecture of MigC. There are hot and cold buffers to

temporarily store data from pages as they are being migrated. There is a Wait queue in MigC,
which holds read/write requests from LLC for the currently migrating pages; these requests will
be serviced from the hot/cold buffers. The memory controllers (MCs) are equipped with a separate
Migration queues (Mig.Q) to service requests from MigC for the migrating pages. There is a small
ReMap table that holds new physical page addresses of the migrated pages. The ReMap table is
consulted on every LLC miss (or on a write-back) using the old PA to find the new location. The
size of the ReMap table is kept small (e.g., 1024 entries) so that it can be placed on-chip. Whenever
the table is full to a certain level, say 50%, the AR process starts—that is, entries from the ReMap
table are deleted and the new PAs are made visible to the OS as discussed in Section 2.3 and in our
previous work [14].

2Epoch-based approaches stop program execution and migrate several hot pages at the end of an epoch. The OS manages

the migration and updates TLBs and PTEs with new PAs.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:5

Fig. 1. High-level system architecture.

2.2 User Transparent Page Migration

Wemigrate a hot page from slower PCM into a free frame of HBM if available (one-waymigration),
or select a HBM page that has not been accessed recently (LRU cold page) and swap the hot and
cold pages (two-way migration). Consider that MigC finds that a PCM page (say page A with PA,
PA 8192) meets the hotness threshold for migration. MigC then finds a cold page from HBM (say
page B with PA, PA 0) to swap with the hot page. MigC inserts entries for pages A and B in the
ReMap table with their current OS visible PAs (namely 8192 and 0) and future PA (after migration,
namely 0 and 8192). The ReMap table is always looked up using an OS visible (original) PA. Mig
flag is set to 1 when these pages are being migrated and a Pair flag is set to 1 to indicate a two-way
migration involving a hot and cold pair (this flag will be set to 0 for one-way migration). The Pair
flag will be checked during AR to update PTEs for both (or one) pages involved in the migration.
MigC waits for any pending read requests to the pages involved in the migration that were

already issued to complete. Then, MigC starts reading hot and cold pages into their respective
buffers (inside MigC). Any new requests (after the migration is initiated) for these pages from
LLC will be held in the MigC resident Wait queue and will be served from these buffers. After
completely reading the migrating page contents into the buffers, MigC starts writing contents of
buffers to their respective new page frames. Whenmigrations are completed, the Mig flag for these
pages will be reset (to indicate completion of migration). All future requests for these pages will
be directed to proper new locations based on the ReMap table information.

2.3 Address Reconciliation

AR can be eliminated (and make page migration transparent to the OS) by using very large ReMap
tables, sufficient to track all migrated pages during the lifetime of an application. However, this
is not practical for emerging systems with very large memories (several hundred gigabytes to
terabytes). We use a very small ReMap table and periodically evict old entries to make room for
new entries for future migrations. Removing entries from the ReMap table requires updates to PAs
(i.e., AR) to reflect the new location of the page consistently throughout the system, and making
the new PAs visible to the OS. We reconcile entries from the ReMap table pairwise if the Pair flag is
1, thus updating the PAs of the pages swapped during the migration. When the Pair flag is 0, then
we perform AR only for that entry. The following actions must be performed to ensure correct AR.
We use the same example hot and cold page pair, A (PA = 8192) and B (PA = 0), respectively. First,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:6 S. Adavally et al.

all cache lines from these pages, which are currently residing in the cache hierarchies and tagged
with the OS visible (old) PA, must be invalidated (and dirty lines written back), since the current
OS visible PA will be replaced with the new PA. All future accesses to these pages will only have
access to the new PA. Next, corresponding PTEs for A and B need to be updated with new PAs.
The TLB entries in all cores using the old PA must also be invalidated (known as TLB shootdown).

2.3.1 AR: OS vs. Hardware. Linux3 performs the following functions when the virtual to PA
mapping of a page is changed:

(i) flush_cache_page(),
(ii) change PTE,
(iii) flush_tlb_page() [23].

The function flush_cache_page() takes necessary parameters (a pointer to the process address
space, the virtual address (VA) and the associated page frame number) and writes back any dirty
cache lines of that page to memory and invalidates the cache lines belonging to that page. This
process halts the user program resulting in large overhead.We found that on average it takes 4 μs to
flush cache lines of a page using CLFLUSH x86 instruction on a processor running at 2.26 GHz. To
update PTE, Linux acquires page table lock and changes PTE and also executes flush_tlb_page() to
invalidate all TLBs (TLB shootdown) with old VA to PA translation. The OS releases the lock upon
completing these actions. The TLB shootdown is costly because it uses IPI (interprocess interrupt)
to invalidate TLB entries in every core that contains an entry with old PA. The delay grows non-
linearly with number of cores [2, 30, 36]. As reported by Meswani et al. [21], TLB shootdown may
take up to 4, 5, 8, and 13 μs for 4, 8, 16, and 32 cores, respectively, on an AMD 32-core system
running Linux.
In our hardware-based approach, we configure MigC as a pseudo-processor that can send “write

invalidate” requests over the coherency network for each of the cache lines of the pages under rec-
onciliation, requiring all caches to write-back any dirty lines to memory and invalidate their cache
lines for these pages (instead of CLFLUSH instruction). MigC will be configured such that it can
send coherence requests to other caches and receive acknowledgments back from them; however,
other caches will never send requests to or wait for any acknowledgments from MigC. For TLB
shootdown, we rely on a shared TLB directory that contains all private TLB entries along with
process identifiers (i.e., address space identifier) and core residency information. MigC initiates
TLB shootdown by sending the associated VAs to the shared TLB directory. The shared TLB direc-
tory then maps these VAs to necessary entries and requests cores to invalidate these TLB entries
somewhat similar to that used in the work of Villavieja et al. [36]. We envision that actual inval-
idation at each core will be carried out by a per-core hardware invalidation controller without
interrupting the core, and the upper bound of time required for completing such invalidations is
assumed to be a round-trip off-chip memory access latency [36].

2.3.2 One Final Issue in AR. To update PTE to reflect the new PA of a migrated page and in-
validate associated TLB entries we need the VA of the page. However, our ReMap table contains
only the original PA of a page and not its VA. Moreover, since the same page can be shared by
multiple processes and each process may have a different VA corresponding to the PA of the page,
we need to obtain all possible VAs. Linux keeps descriptors for every allocated physical page frame
that maintains bookkeeping information on the number of PTEs referring to this page frame and
pointers to such PTEs [5]. By using existing Linux reverse mapping function, we can obtain the

3We use Linux-based systems in all of our experiments, which makes it easier to compare our results with those reported

in the literature.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:7

Fig. 2. IPC improvement (%) of different page migration and AR policies over a no-migration baseline with

static hotness thresholds (negative y-axis shows degradation).

list of PAs of PTEs that hold mappings to this specific page frame number and associated VAs with
ASIDs [5]. We account for all delays involved for these OS functions needed to implement our AR
and page migrations using previously reported numbers and actual experimental data on a real
system (see Table 3). More details on how our MigC performs AR can be found in our previous
work [14].

2.4 Analysis of Fixed Hotness Threshold Experiments

As a motivation for the adaptive migration techniques presented in this article, we reproduced
some results from our previous work [14]. We include results using OTF migrations without any
AR (labeled as OTF_no_AR), assuming a sufficiently large on-chip ReMap table to track all pages
migrated during program executions. This is unrealistic but provides a data point for comparison.
We also included OTF with OS-based AR (labeled as OTF_OS_AR) and OTF with our hardware-
based AR (labeled as OTF_HW_AR). This allows us to directly compare the benefits of using
hardware instead of the OS for AR. We compared our OTF schemes with an epoch-based page
migration study [21], which uses a combination of hardware and OS for AR (we refer to this as
HMA_HS_OS_AR), and with MemPod [27] with no AR, as it assumes large ReMap tables (we refer
to this as MemPod_no_AR). For all OTF schemes presented in this section, we used a fixed hotness
threshold of 128. We experimented with different thresholds (e.g., 32, 64, and 128) for 4-KB pages
and settled on 128 since this threshold provided the best trade-off between the number of pages
migrated and the cost of migrations. For both of our OTF migration experiments, one that per-
forms AR using the OS (OTF_OS_AR) and the other that uses our MigC hardware (OTF_HW_AR),
we use a 1024 entry ReMap table and start the AR process whenever the table is 50% occupied. We
stop migration if the ReMap table does not contain free entries and wait for AR to free up space.
More details of the experimental parameters can be found in our previous work [14].
Figure 2 shows the results using static hotness thresholds for all of our workloads4 for different

page migration and AR techniques. A positive y-axis value shows performance improvement in
terms of instructions per cycle (IPC) as a percentagewhen compared to a baselinewithout any page
migrations. Likewise, a negative y-axis value indicates a performance (or IPC) loss as a percentage
compared to the baseline. We separated migration friendly and unfriendly workloads and used
different scales for the y-axis to make the graphs clearer.

4Experimental setup and workloads are described in Section 4.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:8 S. Adavally et al.

For page migration friendly workloads, our OTF migration with hardware-based AR technique
(OTF_HW_AR) results in 74% IPC improvement on average over the baseline system. It also shows
24% IPC improvement on average over OTF page migration with OS-based AR (OTF_OS_AR).
Our hardware-basedmigration, OTF_HW_AR, shows higher improvements over other page mi-

gration techniques as well: HMA_HS_OS_AR [21] (by 29%) and MemPod_no_AR [27] (by 13%).
We included results for migration unfriendly workloads to show that all page migration tech-
niques degrade performance for these workloads, not just our OTF technique, thus justifying our
discussion regarding classifying applications as migration friendly and unfriendly in Section 2. It
is important to note that for more than half of the migration friendly workloads, even after ac-
counting for all AR overheads (as discussed in Section 2.1), hardware-based AR (OTF_HW_AR)
performs better than MemPod_no_AR even when MemPod performs no AR. Next, we compare
HMA_HS_OS_AR that used OS-based AR at each epoch with our OTF approach. As shown in
Figure 2, our hardware-based AR (OTF_HW_AR) performs better than HMA_HS_OS_AR for all
page migration friendly workloads except mix6. In this case, OTF_HW_AR migrated more pages
than HMA_HS_OS_AR; the migration benefit of some of the pages is not high. In later sections,
we describe adaptive thresholds to monitor the MBQ to control the number of pages migrated.
As expected, within our OTF techniques, hardware-based AR (OTF_HW_AR) performs better

thanOS-basedAR (OTF_OS_AR). The only exception are astar and xalancbmk; the hardware-based
AR with smaller overheads is migrating more pages than the OS-based AR methods (since the
migrations are paused duringAR); however, the additional migrations are not beneficial since these
applications are classified as moderately friendly or unfriendly. Epoch-based approaches migrate
“hot” pages at the end of an epoch, and some hot pages may have exhausted their usefulness
by the time they are migrated. This is one of the reasons for our OTF technique outperforming
HMA_HS_OS_AR. However, in epoch-based methods (e.g., [21]), since several pages are migrated
at the end of an epoch, AR of all migrated pages can be completed together using theOS, amortizing
the cost of AR. Detailed discussions on the performance results can be found in our previous
work [14].

2.5 Motivation

The performance results (shown in Figure 2) for different page migration techniques that use static
values for hotness thresholds supports our classification of applications as migration friendly and
unfriendly shown in Table 1 in Section 2. The very migration friendly applications do show signif-
icant performance gains, whereas unfriendly applications show performance losses. With offline
analysis such as ours (as described in Section 2 and in our previous work [14]), one could po-
tentially classify an application as either friendly or unfriendly and use page migrations only for
migration friendly applications. But some applications exhibit both migration friendly and un-
friendly behaviors during different phases of execution. For such applications, relying on offline
analysis limits the ability to benefit from page migrations during migration friendly phases of an
application.
Consider the behavior of one benchmark, xalancbmk, shown in Figure 3. The left side of the

figure shows the variation of MBQ and the number of pages migrated over the course of the
benchmark execution, using a static “hotness” threshold (in this case 128) in determining when
a page is migrated. Both the number of pages migrated and MBQ vary during the execution of
the application. Although a large number of pages were migrated during the windows between
70 and 180, the MBQ did not show a significant increase. A properly designed adaptive migration
technique can turn on or turn off migration, or adjust the number and frequency of page migra-
tions based on the evolving behavior of an application. The right side of Figure 3 shows the result
of using one of our adaptive migration techniques (as described later in Section 3.2). The adaptive

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:9

Fig. 3. MBQ and migration count variation of the xalancbmk workload.

technique controls the number of pages migrated based on the MBQ. The figure shows an overall
increase in the MBQ (which corresponds in the performance gains).
A second motivation for this study is our desire to minimize overheads due to AR (updating

TLBs and PTEs when pages are relocated during migration). Some prior research (e.g., [27]) used
very large ReMap tables5 to eliminate AR. However, the ReMap tables for emerging systems with
hundreds of gigabytes to terabytes of memory can become impractical or require additional tech-
niques for the management of large ReMap tables (e.g., caching a small number of ReMap entries
while keeping the rest in DRAM). We use small ReMap tables and rely on hardware for AR to
minimize OS intervention. As an alternative to using AR, we also explore the idea of reverse mi-
grating previously migrated pages, particularly when they are no longer heavily accessed, making
the page migration completely transparent to the OS.

3 ADAPTIVE MIGRATION

The results shown in Figure 2 in Section 2.4 clearly indicate that page migration techniques that
use a static or fixed hotness threshold for deciding when a page is considered for migration can
lead to performance loss for some applications. In this section, we describe our adaptive migration
techniques that adjust the number of pages migrated and even turn off migration by observing the
benefits of page migration, eliminating the need for offline analysis for classifying applications as
migration friendly and unfriendly. We track the number of pages migrated in a window twindow

and determine if toomany or too few pages aremigrated in thewindow.We alsomeasure theMBQ,
which is the average number of accesses to pages recentlymigrated to fastermemories. Using these
metrics, we propose two adaptive techniques described in Algorithm 1 and Algorithm 2. Values
shown for different variables in these algorithms depend on the page size (4 KB in our experiments)
and system parameters such as memory latencies and overheads due to AR. However, they will be
constant for a specific system configuration.

3.1 Adaptive Migration Based on Number of Pages Migrated

Algorithm 1 presents an overview of our first adaptive migration technique. We monitor the page
migration behaviors over a window, or a threshold_window (i.e. twindow), and dynamically in-
crease or reduce hotness thresholds to be used by our OTF migration techniques. The change is
based on how many pages have been migrated during this window. If the count is high (too many
pages have been migrated), we double the hotness threshold to reduce future migrations; likewise,
if too few pages have beenmigrated in a twindow, we halve the hotness threshold to increase future

5Note that ReMap tables keep track of the new locations of migrated pages.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:10 S. Adavally et al.

ALGORITHM 1: Adaptive Migration_count technique

migrations. In our experiments, we used 4 million cycles as our twindow.6 We also limit the hotness
threshold variations between 64 and 256. We increase the threshold if more than 240 pages have
been migrated in a window and reduce the threshold if fewer than 160 pages have been migrated
in a window. These numbers are based on our observations from our experiments of systems we
simulated. These numbers will likely be different for other systems and can be determined from
experimental evaluations. We also pause migrations or resume migrations using the MBQ. We de-
fine the MBQ as the average number of accesses to pages that were recently migrated to HBM. If
the MBQ is less than a threshold (min_MBQ), then migrations are halted; migrations are resumed
if the MBQ is greater than another threshold (max_MBQ). The decisions regarding pausing and
restarting migrations are made only after observing MBQ values over several twindows; we re-
fer to this as migration_window (migwindow). Our experiments indicated that an average MBQ
of less than 90 did not result in performance gains. We use this value to pause migrations. This
number (indicating the number of accesses to recently migrated pages in a twindow) depends on
the overheads to page migrations.

3.2 Adaptive Migration Based on the MBQ

Migration of a page from a slow memory to a faster memory is valuable only if the page re-
ceives sufficiently large number of accesses after migration to offset the cost of migration (and
AR). Figure 3 in Section 2.5 illustrated that the usefulness of migrated pages (or MBQ) plays a crit-
ical role in the overall performance gains achieved. Thus, another approach to dynamically adapt
to an application’s behavior is to rely on the MBQ as shown in Algorithm 2. Our hardware MigC
counts all of the accesses to recently migrated pages in a window (twindow or 4 million cycles)
and calculates the average MBQ. We decrease (halve) the hotness threshold when the MBQ is high
(greater than 130), causing more pages to migrate. We increase (double) the threshold if the MBQ
is low (less than 50), to reduce the number of pages migrated. We halt migrations if the MBQ is low

6We selected this value to minimize overheads when changing the hotness thresholds. A smaller window results in more

rapid adaptation, which in turn causes some overheads in changing the configuration of MigC structures that identify

pages ready for migration. Larger windows may be too slow to adapt.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:11

ALGORITHM 2: Adaptive MBQ technique

for several consecutive windows (more than 25 windows). We remind the reader that these specific
numbers are based on our experiments and the systems on which we conducted our experiments,
and the numbers may be different for different systems.

3.3 Reverse Migration

In most page migration techniques, either epoch-based or OTF migrations, the OS is eventually
notified of the migration to modify PTEs and TLBs to reflect new PAs of the migrated pages (since
PAs are based on their location). We referred to this process as AR. As described in Section 2.3, and
reported in our previouswork [14], AR can be very expensive, particularly if performed in software
by the OS. The AR can be completely eliminated by using very large ReMap tables, as done in the
work of Prodromou et al. [27]. However, the ReMap tables for emerging systems with hundreds
of gigabytes to terabytes of memory can become impractical or require additional techniques for
the management of large ReMap tables. Instead of using a very large ReMap table, we propose to
use small ReMap tables but “reverse migrate” pages back to their original locations, thus making
room for more recent hot pages. It should be noted that reverse migration may involve “pairwise”
migration if originally a page from faster member was moved to slower memory to make room
for a hot page from slower memory.
The reverse migration process is shown in Figure 4. The top left quadrant of the figure shows the

identification of hot pages and the top right quadrant shows the original migration, where a PCM
page with a PA of 8192 is swapped with a HBM page with a PA of 0. The ReMap table maintains
entries for this pair of pages so that CPU requests are correctly directed to their new locations. A
previously migrated PCM page to HBM with PA 8192 has turned cold in the bottom left quadrant,
and the page is reverse migrated as shown in the bottom right quadrant, where the HBM page that
contains the page with the PA of 8192 is swapped with the PCM page with the PA of 0. We rely on
MigC hardware for both forward and reverse migrations. The ReMap table entries for these pages
will be deleted upon completion of the process (as shown in the bottom right quadrant).
Pages selected for reverse migration can be based several different criteria, such as LRU, or the

MBQ (pages with a smaller MBQ are reverse migrated), and the reverse migration can take place
on demand or when the ReMap table fills up. Elimination of AR simplifies the complexity of our

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:12 S. Adavally et al.

Fig. 4. Reverse migration model.

MigC hardware, since the hardware no longer needs to initiate cache invalidation, shootdown of
TLBs, and lock user processes during the reconciliation.

4 EXPERIMENTAL SETUP

In this section, we will describe our simulation setup and the benchmarks we used. This setup
and the workloads are the same that we used in our previous work [14] and the same for the
experimental results shown previously in Figure 2 in Section 2.4.

4.1 Simulation Infrastructure

Wemodel a 16-core system with a flat-address heterogeneous memory consisting of 1 GB of HBM
and 16 GB of PCM using Ramulator [17]. Ramulator is a trace-driven, cycle-level memory simula-
tor with support for a simple multi-core CPUmodel with cache hierarchies. Each core is four-wide
out-of-order issue with 128 reorder buffer entries and operates at 3.2 GHz. The cores have private
L1-D caches (32 KB, 4-way, 2-cycles) and shared L2 (16 MB, 16-way, 21-cycles) as LLC. Physi-
cal address tags, write-back policies are used for all caches and LLC is inclusive. Ramulator does
not model L1-I cache and assumes that non-load/store instructions are executed in 1 cycle. The
memory system configuration is provided in Table 2; for timing parameters of HBM, we rely on
Kim et al. [17] and for PCM timing on Nair et al. [25]. We modified Ramulator to support a flat-
address heterogeneous memory system. A basic address mapping function is added to Ramulator
to support this model; it allocates pages to frames of different memories in a round-robin fashion
(namely, four pages to faster memory, then four pages to slower memory), as long as there are free
frames in faster memory. When faster memory capacity is exhausted, only slower memory frames
are assigned. This allocation ensures that pages for all applications span both memory devices,
thus necessitating page migration considerations in our experiments. We also made sure that the
memory footprints of our benchmarks are at least twice as large as the HBM capacity, requiring the
use of both HBM and PCM. We incorporate our MigC unit in Ramulator with all necessary details
to perform functions as described in previous sections (Section 2.1). MigC also operates at 3.2 GHz.
We assume conventional 4-KB pages. The ReMap table is implemented as a 1024-entry fully asso-
ciative table. We conservatively assumed an access latency of 10 CPU cycles for the ReMap table

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:13

Table 2. Baseline Configuration

Parameter HBM PCM

Channels, 8, 1 GB 2, 16GB
capacity (8 × 128 MB) (2 × 8 GB)
Memory 1 per channel 1 per channel
controller (MC)
Row buffer 2 KB 2 KB
Queue size/MC RD 32, WR 32, RD 64, WR 256,

Mig. 32 entries Mig. 32 entries
Latency tCAS-tRCD Read 80 ns

-tRP-tRAS: (7.5-ns tPRE
14 ns–14 ns + 62.5-ns tSENSE
−14 ns–34 ns + 10-ns tBUS)

Write 250-ns tCWL
Bus/channel 128 bit, 1 GHz 64 bit, 400 MHz

Table 3. Timing Parameters at 3.2-GHz Clock

Task Time Requirement

ReMap table lookup 10 cycles (after LLC)
Light-weight TLB 300 cycles (round-trip
invalidation at core latency to off-chip

memory [36])
Page walk 150 cycles
OS reverse mapping 4,480 cycles (measured using FRrace [4] on a real

machine running Linux)

(in some experiments, we testedwith larger ReMap tables and adjusted access times appropriately).
We included all timing overheads (listed in Table 3 assuming 3.2-GHz clock rate) for performing
different HW/OS tasks described in Section 2.2. Finally, we used CACTI [24] to model the power
rating of the MigC components.

4.2 Workloads

We use 16 multi-programmed SPEC CPU2006 [8] workloads, four multi-threaded benchmarks
from the US Department of Energy provided ECP Proxy Applications [10], and the BFS from
Graph500 suite [15]. We selected SPEC benchmarks with large memory footprints, at least twice
the capacity of HBM. SPEC benchmarks allow us to compare our work with other studies. We
profile benchmarks using the PinPlay kit [11] to collect a representative slice of 500M instructions
from each of the applications. To make a multi-programmed workload, we run a 16-core Ramula-
tor simulation where each core runs one of the SPEC traces to completion. We either run 16 copies
of the same benchmark on 16 cores (each such workload is labeled by the benchmark name in
our graphs) or run a random mix of benchmarks on 16 cores (these workloads are labeled as mix1
to mix6 and described in Table 4). The publicly released multi-threaded HPC proxy benchmarks
by the US Department of Energy that we used are XSBench [1], LULESH [13], CoMD [22], and
miniFE [12]. We ran each HPC benchmark in a 16-thread setup and collected 500M instruction
traces for each of the threads using Pin tools [26]. By running traces of the 16 threads of a HPC

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:14 S. Adavally et al.

Table 4. SPEC Multi-Programmed Mix Workloads

mix1 mix2 mix3 mix4 mix5 mix6
astar 2x 1x 1x
bzip2 1x 1x 2x
cactus 2x 2x 1x
dealII 3x 1x 1x
gcc 1x 2x 1x 3x
gems 2x 2x 1x
lbm 2x 3x 1x 6x 1x
leslie 2x 1x
libq 2x 1x 3x 4x
mcf 3x 2x 1x 5x
milc 2x 2x 1x 2x
omntpp 1x 3x
soplex 2x 3x 3x 5x
sphinx 1x 2x 3x

benchmark in Ramulator, we obtain a multi-threaded workload (each such workload is labeled
with the name of the benchmark). The memory footprint of the workloads range between 2 and
11 GB, ensuring that the workloads fit in physical memory and do not require access to secondary
storage. They are large enough to cause migration but are not unrealistically small.

5 RESULTS AND ANALYSES

In this section, we present the experimental results for our adaptive migration and reverse migra-
tion techniques.7

5.1 Adaptive Hotness Thresholds

As discussed in Section 2.4, techniques that use fixed hotness thresholds do not perform well on
some applications. In this section, we will evaluate our adaptive page migration techniques de-
scribed in Section 3. As described in that section, we monitor the number of pages migrated in a
window: page migration overheads can defeat benefits of migrations if too many pages are mi-
grated. We also monitor the benefits of page migration (or MBQ) by tracking the average number
of memory accesses to migrated pages in a window. A low MBQ may indicate that the migrated
pages are not heavily accessed and thus the migration was not beneficial. This may be the case for
applications that are migration unfriendly. Using thesemeasures, we either change hotness thresh-
olds (to either increase or decrease the number of pages migrated) or completely stop migrations
for a duration.

5.2 Evaluation of Adaptive Control Based on Number of Pages Migrated

MigC will monitor the number of pages migrated and sets new threshold values. MigC still per-
forms AR when the ReMap table is more than half full. We compare the IPC using dynamic thresh-
olds with the results obtained using a static threshold of 128, OTF_HW_AR (previously shown in
Figure 2). Figure 5 shows the IPC improvements using our first adaptive technique (as described in
Algorithm 1) over the baseline with no pagemigration. The bars labeled OTF_HW_AR_adaptive_1

7In Section 2.4, we reported the performance results for migration techniques that use static or fixed hotness thresholds.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:15

Fig. 5. IPC improvement (%) using adaptive migration policies over a no-migration baseline (negative y-axis

shows degradation).

refer to the results from our OTF migrations using hardware AR and adapting hotness thresholds
based on the number of pages migrated. Our adaptive technique results in 70% performance gains
on average over the baseline for migration friendly workloads (the OTF migration with static
threshold shows 80% gains over the baseline) but shows on average 2% performance gains over
the baseline even for unfriendly workloads (static threshold OTF shows a performance loss of 7%).
The adaptive threshold generally reduces the number of pages migrated for migration unfriendly
workloads (e.g., milc, gems, bwaves, lulesh, CoMD, xalancmbk) reducing the cost of migrations.
However, applications that are friendly (e.g., mcf, lbm, BFS, and some mixed workloads) may see
some decrease in performance gains when compared to static threshold–based migrations. This
is because when MigC notices that very few pages are migrated in a window, the threshold is
reduced to 64 to increase the migrations. However, these additional migrations do not contribute
to performance gains. For example, as described in Section 2.5, for mcf, only 3% of pages receive
a large number of accesses, and migrating other pages with fewer accesses will not contribute to
performance gains but adds to migration and AR costs. It may also be the case that for moderately
friendly applications, the adaptive technique may aggressively increase the hotness threshold and
reduce the number of pages migrated, even when the application is benefiting from the page mi-
grations. We will explore this later in Section 5.4.

5.3 Evaluation of Adaptive Control Based on the MBQ

Figure 5 includes the results for our second adaptive technique that uses the MBQ to control hot-
ness thresholds, as described in Algorithm 2. The results labeled OTF_HW_AR_adaptive_2 refer
to our OTF migrations using hardware for AR and adapting thresholds based on the average ac-
cess counts to recently migrated pages (i.e., MBQ). On average, our MBQ-based adaptive migration
shows a performance gain of 66% over the baseline (compared with 80% gain using static thresh-
old) for migration friendly workloads, and a 3% performance gain on average (compared with a
performance loss of 7% with static threshold) for unfriendly workloads. The adaptive technique
results in either some performance gains or at least prevent performance losses for migration
unfriendly benchmarks: for example, milc, gems, zeusmp, bwaves, CoMD. However, the adaptive
MBQ technique results in smaller performance gains for some migration friendly benchmarks
when compared to static threshold technique (e.g., mcf, lbm, cactus, and some mixed workloads)
for the same reasons outlined in Section 5.2.
To understand the performance of our adaptive algorithms better, we analyzed migration pat-

terns and accesses to migrated pages (Figure 6). We show the average number accesses to pages

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:16 S. Adavally et al.

Fig. 6. Traffic data. Left: MBQ per window. Right: Migration count per window.

migrated to HBM in a window of 4 million cycles (or MBQ) on the left and the average number
of pages migrated in a window on the right. Please note that the MBQ per window in Figure 6 is
shown in log2 scale. For most of the migration friendly applications, the static threshold technique
migrated a very large number of pages, whereas the adaptive techniques aggressively reduced the
number of pages migrated and this in turn reduced overall performance gains. Note that our adap-
tive techniques try to reduce the number of pages migrated to minimize migration overheads. The
exception is lbm. As reported in our previous work [14] and listed in Table 1, lbm is actually clas-
sified as an only moderately friendly application. For migration unfriendly workloads, adaptive
techniques migrated fewer pages and this in turn resulted in a higher average MBQ than static
thresholds. The exceptions are gems and bwaves. The number of migrations for gems is greatly
reduced in adaptive migration techniques that improved the overall MBQ. For bwaves, the static
threshold resulted in a slightly better MBQ than adaptive techniques, but it migrated more than
twice as many pages: the migration overheads defeat the MBQ advantage. These results directly
translate into performance gains shown in Figure 5.

5.4 Evaluation of Adaptive Migrations Based on a Combined Technique

Based on these observations regarding the two adaptive techniques presented thus far, we explored
a third adaptive technique that combines these two methods. This is shown in Algorithm 3. In this
method, when the number of pages migrated exceeds the threshold, but the MBQ is high, we will
not increase the hotness threshold (which in turn reduces the number of pages migrated), since
the high MBQ indicates that page migration is beneficial even when a large number of pages is
migrated.
The results of this combined adaptive technique are also included in Figure 5, which are labeled

as OTF_HW_AR_adaptive_3. The figure shows that the combined approach achieves almost the
same level of performance as the static threshold technique for (very) migration friendly appli-
cations. However, the combined adaptive technique outperforms static threshold and the other
adaptive migration techniques for moderately friendly and unfriendly workloads. On average, our
combined adaptive migration shows a performance gain of 81% over the baseline (compared with
80% gain using a static threshold) for migration friendly workloads, and a 2% performance gain on
average (comparedwith a performance loss of 7%with a static threshold) for unfriendly workloads.
Our adaptive techniques achieve these goals without having to perform offline analyses. Our

adaptive techniques are very simple to implement. We either count the number of pages migrated
in a given time window or measure the number of accesses to pages recently migrated to HBM. It
may be possible to investigate more intelligent adaptive techniques, but they will likely be complex
to implement.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:17

Fig. 7. IPC improvement (%) of reverse migration over a no-migration baseline with different ReMap table

sizes (negative y-axis shows degradation).

ALGORITHM 3: CombinedAdaptive technique (initialized values depend on the page size)

5.5 Reverse Migration of Pages

Next, we explored reverse migration of pages to eliminate AR. As the ReMap table fills up, instead
of reconciling addresses of pages and removing ReMap entries, we migrate pages back to their
original locations and remove the corresponding ReMap entries, as described in Section 3.3. For
our experiments, we select pages based on the MBQ: pages with the least number of accesses in
a window are candidates for reverse migration, after making sure that migrated pages remain in
HBM for a minimum duration (in our case 1 million cycles) to avoid reverse migrating pages too
early. If no pages are suitable for reversemigration, pagemigration is temporarily delayed. Figure 7
shows the results from our reverse migration experiments.
We still use adaptive thresholds relying on the MBQ as described in Algorithm 2. For compar-

ison purposes, Figure 7 includes data for migration based on a static threshold of 128 (previously
shown in Figure 2: these results are labeled as OTF_HW_AR (with 1024 ReMap entries). For re-
verse migration experiments, we vary the ReMap table sizes between 1K and 64K entries. The

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:18 S. Adavally et al.

results are labeled with ReMap table sizes. For example, OTF_RM_adaptive_1K refers to OTF mi-
grations with reverse migrations, using adaptive MBQ-based thresholds and a ReMap table with
1024 entries. For migration friendly workloads, on average the reverse migration technique shows
performance gains of 2%, 41%, and 57% with 1K, 16K, and 64K ReMap tables, respectively, over the
baseline (comparedwith 74% gains using a static threshold). A smaller ReMap table causes frequent
migrations and reverse migrations leading to excessive data movement. A larger ReMap table re-
sults in performance gains for most applications when compared to the baseline with no page mi-
grations. For some migration friendly benchmarks (e.g., lbm), reverse migration may cause heavily
accessed pages to be migrated and reverse migrated several times. AR eliminates such repeated
migrations since heavily accessed pages are likely to be permanently moved to HBM (and PAs
reconciled). For most workloads, larger ReMap tables provide sufficient space for heavily accessed
pages to remain in the ReMap table for longer periods of time, requiring fewer reverse migrations.
For example, considermcf; based on our characterization [14], only 3% of the pages account for 90%
of the memory accesses. So, having such large ReMap table sizes helped in reducing reverse migra-
tions. Except for some very friendly workloads like mix1, mix2, mix5, and lbm, reverse migration
(OTF_RM_adaptive_64K) performs on par or even better than OTF_HW_AR. Even for migration
unfriendly workloads, reverse migration shows performance gains of about 3% for all ReMap table
sizes (compared with 7% performance loss using static threshold). Our adaptive techniques either
limit or stop page migrations for these migration unfriendly applications. Thus, the size of the
ReMap table has very little impact on the performance of migration unfriendly workloads. We
believe that reverse migrations can be a viable option to HMA systems, particularly when the AR
is costly. Larger ReMap tables are justified since reverse mapping eliminates the complexity and
overheads of AR. A 64K ReMap table would require about 1.3 MB of storage. This table can be
placed in HBMwhile caching a small portion inside MigC. This is similar to other reported studies
[6, 27, 33]; in those studies, the ReMap tables were much larger than what we are proposing.

5.6 Subpage Migration

Although not actually implemented in this study, reverse migration may be useful in systems with
very large pages. As the physical memory sizes increase, traditional 4K byte pages also increase
the sizes of page tables and TLBs. Page table and TLB sizes can be reduced by using larger pages,
say 64-KB, 1-MB, 2-MB, or even 1-GB pages.
However, it should be noted that only small portions of a large (or huge) page is likely to be hot,

whereas other portions are not heavily accessed. It will be wasteful to migrate the entire page in
such cases. So, instead of migrating large pages, one may consider migrating only hot subpages of
large pages. Such subpage migrations require tracking the physical location of subpages. ReMap
tables can be extended for this purposes: each entry in the ReMap table can contain a bit map to
indicate if a subpage is migrated or not. But AR becomes very cumbersome; we need to migrate
rest of the subpages before updating PTE and TLB entries. Instead, the use of reverse migration can
provide an alternative to AR, making subpage migration a potentially viable method. Migration
(and reverse migration) can take place at smaller subpage granularity (1 KB, 2 KB), as these result
in better performance for some benchmarks. We will explore reverse migration of subpages for
systems using huge pages in the future.

5.7 Energy Consumption

Figure 8 shows the dynamic energy savings that are achieved using adaptive and reverse mi-
gration techniques when compared with the baseline (with no page migrations). For the base-
line system, we measure energy for all demand requests to faster and slower memory. Energy
consumption for our techniques account for energy for demand requests, energy consumed for

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:19

Fig. 8. Energy savings (%) of adaptive and reverse migration over a no-migration baseline (negative y-axis

shows degradation).

Table 5. Memory Energy Parameters

Memory Access Energy

HBM 3.92 pj/bit
PCM Read 42 pj/bit

Write 140 pj/bit

migration of pages (which requires additional accesses to memory), and energy consumed by
the MigC hardware to manage migrations and AR. It should be noted that the HBM energy con-
sumption is much lower than PCM, as shown in Table 5. As the number of accesses to the HBM
increases with the decrease in the accesses to PCM when pages are migrated (even accounting
for the migration cost itself), noticeable energy savings can be observed. All of our OTF migra-
tion techniques show energy savings for migration friendly workloads: the hardware AR tech-
nique (OTF_HW_AR) consumes on average 27% less energy, whereas the adaptive techniques
(OTF_HW_AR_adaptive_1, OTF_HW_AR_adaptive_2 and OTF_HW_AR_adaptive_3) consume
25%, 22%, and 29% less energy than the baseline, respectively. As shown in Section 5.1, the execu-
tion performance of adaptive techniques (OTF_HW_AR_adaptive_1, OTF_HW_AR_adaptive_2)
is slightly lower than OTF_HW_AR, which uses a static threshold. This in turn also results in
slightly higher energy consumption for adaptive techniques, whereas OTF_HW_AR_adaptive_3
performs slightly better than OTF_HW_AR and consumes 2% less energy than OTF_HW_AR. The
reverse migration techniques with 1K, 16K, and 64K ReMap table sizes (OTF_RM_adaptive_1K,
OTF_RM_adaptive_16K, OTF_RM_adaptive_64K) show 0%, 21%, and 29% energy savings,
respectively, over the baseline with no page migrations. As stated, OTF_RM_adaptive_1K causes
frequent migrations and reverse migrations even for heavily accessed pages that otherwise would
have been reconciled. Thus, the benefits of the migrations are negated by the reverse migrations.
For migration unfriendly workloads, our adaptive techniques save power up to 15% compared to
the OTF_HW_AR technique on average. In the case of the reverse migration technique with 16K
and 64K ReMap tables (OTF_RM_adaptive_16K and OTF_RM_adaptive_64K), ReMap table sizes
are large enough to hold hot pages for longer periods, minimizing the need for reverse migra-
tion. This in turn results in improved energy savings. In some cases, the benefit of large ReMap
table size is sufficient to show energy savings that equal the improvements achieved with the best

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:20 S. Adavally et al.

adaptive technique (OTF_HW_AR_adaptive_3). In our energy computations, we have accounted
for the additional power needed for large ReMap table sizes.

6 RELATEDWORK

There have been many studies on page migration techniques for flat-address heterogeneous mem-
ory systems (HMA). They propose different approaches to solve the general challenges associated
with page migration, namely selecting candidate pages to migrate, determining migration fre-
quency, and managing migration metadata. Here we will review only the works that are most
closely related to our research. Meswani et al. [21] presented a study where page migration in
HMA is accomplished by a hardware/software (we refer to it as HMA-HS) mixed approach. The
hardware keeps track of the page access counts over a fixed-length epoch, and at the end of each
epoch, the hottest pages residing in slowmemory are migrated to fast memory by the OS, updating
PAs of the migrating pages. There is no restriction on where (i.e., which HBM page frame) a hot
page can be migrated. Since OS-based address update incurs large overheads, the authors chose a
longer epoch to reduce frequent OS interventions. However, it has been observed that page mi-
gration at shorter intervals is more beneficial than waiting for longer epoch times [27, 33], since
migrating hot pages sooner results in more beneficial accesses to the migrated pages.
AR can be avoided using a very large ReMap table that contains the new locations of migrated

pages. The size and management of this ReMap table presents a new challenge. A number of dif-
ferent approaches have been proposed to keep this table in memory while using a small on-chip
cache for recently accessed entries [6, 18, 27, 33]. Sim et al. [33] used a transparent hardware-
based management of flat-address memory, which restricts where a migrated page can be placed
to reduce the ReMap table: a set of slow memory pages compete for a single fast memory page.
This can reduce potential benefits since only one of the slow memory pages from a given set can
be migrated to fast memory even if all of them are heavily accessed. Chou et al. [6] proposed a
somewhat similar idea of intra-set migration named CAMEO, where the migration is done at finer
granularity (cache line size) and the migration candidate is chosen on each slow memory access,
whereas Chameleon [19], depending on the application requirement, dynamically reconfigures the
parts of stacked DRAM as flat-address memory or cache. Prodomou et al. [27] proposed MemPod,
which provides more flexibility on page relocation than in other works [6, 33]. On-chip MCs for
fast and slow memories are grouped into “Pods,” and only intra-Pod epoch-based page migration
is allowed. A low-cost counter is used to keep track of recently accessed hot pages. A more recent
work, PageSeer [18] proposes extensions to MCs that initiate page swaps between slow and fast
memories based on TLB misses. To use the 3D-DRAM capacity efficiently, Ryoo et al. [32] pro-
posed a sub-block-based page migration and co-location of sub-blocks of two different pages in
an interleaved fashion. However, this scheme only allows migration of sub-blocks within same
congruence group and requires large SRAM tables to keep track of sub-blocks with bit vectors.
In the work of Ryoo et al. [31], the granularity of the data migrated depends on the contiguity of
accesses in the VA space. In our work, migration granularity is fixed; however, we have included
an evaluation of how the page size impacts the performance of page migrations.
In our proposal, we migrate a page immediately when it receives a sufficient number of memory

accesses, unlike any epoch-based schemes described earlier. We allow full flexibility in page relo-
cation like HMA-HS [21] and keep a small on-chip ReMap table for address redirection. A similar
approach has been proposed by Ramos et al. [29], which also performs an OTF type of migration
with periodical reconciliation of remapping table entries and OS memory mappings. However, in
the work of Ramos et al. [29], the migration and reconciliation processes are separate phases since
the reconciliation is completely handled by the OS. In our proposal, we perform AR with help
of specialized hardware, and hence these processes can progress concurrently. Furthermore, our

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

Dynamically Adapting Page Migration Policies 16:21

migration candidate choice scheme is simpler than the multi-queue scheme used by Ramos
et al. [29]. We also study dynamic adjustments to page migrations: we change hotness thresh-
olds to reduce or increase the number of pages migrated or pause migrations when insignificant
benefits are observed. We also explore reverse migration of pages to eliminate AR.
Yu et al. [37] propose a technique (called Banshee) for transferring pages between off-chip mem-

ory and on-chip DRAM cache. Instead of storing tags for DRAM cache, Banshee uses Tag-buffers,
somewhat similar to our ReMap tables. As the Tag-buffer fill up, the user programs are stopped
and the OS updates the TLB (and PTE) entries to reflect the new location of pages—again some-
what similar to our AR. However, unlike our hardware orchestrated approach, they rely on the OS
for AR. Moreover, Banshee assumes that the two levels of memory (on-chip and off-chip DRAMs)
have similar latencies but differ in bandwidth, whereas we assume memory technologies with
significantly different latencies and bandwidths.
Conventional non-uniform memory access (NUMA) systems with multi-socket CPU and ho-

mogeneous memory emulate data migration between local and remote nodes. Accesses to data
within local memory are faster compared to remote memory locations. The main difference be-
tween NUMA and HMA data migration is that NUMAmigration occurs when cores from different
sockets need to work on the same data. This issue of on-demand migration is mitigated in other
works [34, 38] by running multiple threads that share data on the same node, whereas in HMA,
pages are migrated in a single-node system.

7 CONCLUSION AND FUTURE WORK

In this work, we extended our previous study [14] of an OTF page migration technique that mi-
grates a page from slow NVM to fast memory (e.g., HBM) as soon as the page becomes “hot.”
For this contribution, we employ adaptive migration techniques that dynamically change the fre-
quency and the number of pages migrated, and pause or resume migrations based on the memory
access behavior of applications. We use three different adaptive techniques. First, we monitor the
number of pages migrated in a given observation window (mig_count_adaptive). If the number ex-
ceeds a threshold, we increase the hotness threshold so that the number of migrations are reduced
(likewise, we reduce the threshold if the number of pages migrated is below a threshold). Second,
we monitor the MBQ (the average number of accesses to page after migration, which indicates the
usefulness of a migration, MBQ_adaptive) and either increase or reduce migrations based on the
MBQ. We pause migrations temporarily if the MBQ is too low and resume migrations if the MBQ
increases. Third, we explore a combination of the previous two approaches: wemonitor the number
of pages migrated in a window and increase the hotness threshold if too many pages are migrated
and the MBQ is low. Likewise, we reduce the threshold when the number of pages migrated is low
and the MBQ is high. The first technique has resulted in an average of 71% IPC improvement over
the baseline for migration friendly workloads, but more importantly, our technique has shown
on average 2% performance gains over the baseline even for unfriendly workloads. In terms of
energy consumption, this technique has achieved 25% energy savings compared to the baseline
for migration friendly workloads but has consumed 3% more energy than the baseline for un-
friendly workloads. This should be compared with the static threshold OTF migration technique,
which consumes 17% more energy than the baseline. The second technique that monitors the
MBQ has achieved an average performance gain of 65% over the baseline for migration friendly
workloads, 3% gains for migration unfriendly workloads, and 22% energy savings for migration
friendly workloads while consuming 2% more energy for migration unfriendly applications over
the baseline. The third technique that combines the previous two adaptive techniques resulted in
81% performance gains on average over the baseline for migration friendly workloads and 2% gains
even for migration unfriendly workloads. Our adaptive techniques eliminates the need for offline

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

16:22 S. Adavally et al.

profiling of applications to categorize them as a migration friendly or unfriendly. We believe that
additional adaptive techniques may further improve the performance gains with page migrations
in multi-level heterogeneous memories.
We also experimented with reverse migration of pages, eliminating AR (making the page mi-

gration completely transparent to the OS). When the ReMap table is almost full, ReMap entries are
freed for new page migrations by reverse migrating pages with a low MBQ back to their original
locations. We tested with ReMap table sizes of 1K, 16K, and 64K entries. The reverse migration
technique has achieved performance improvements of 2%, 41%, and 57%, respectively, for migra-
tion friendly workloads and 3%, 3%, and 3%, respectively, for migration unfriendly workloads. Re-
garding energy savings, reverse migration technique has achieved 0%, 21%, and 29% for migration
friendly workloads and has consumed 1%, 4%, and 4% for migration unfriendly workloads. It can
be observed that the static OTF technique (OTF_HW_AR) achieved 28% energy savings, which is
lower than the reverse migration technique with 64K ReMap table entries by 1% but requires more
area for the extra ReMap table. We believe that reverse migration can be used when dealing with
very large pages. Since migrating huge pages can be very expensive, one can consider migrating
only hot subpages of a huge page and reverse migrate the subpages as they become cold. We plan
to explore such subpage migrations in the future.

ACKNOWLEDGMENTS

The authors would like to acknowledge Nuwan Jayasena and Mike Ignatowski of AMD for their
feedback and suggestions throughout the conduction of this research.

REFERENCES

[1] John R. Tramm, Andrew R. Siegel, Tanzima Islam, and Martin Schulz. 2014. XSBench–The development and verifi-

cation of a performance abstraction for Monte Carlo reactor analysis. In Proceedings of the Role of Reactor Physics

toward a Sustainable Future (PHYSOR’14). https://www.mcs.anl.gov/papers/P5064-0114.pdf.

[2] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and Gabriel H. Loh. 2017. Avoiding TLB shootdowns

through self-invalidating TLB entries. In Proceedings of the 2017 26th International Conference on Parallel Architectures

and Compilation Techniques (PACT’17). IEEE, Los Alamitos, CA, 273–287.

[3] Chaim Bendelac and Panos Kokkalis. 2017. SAP HANA Memory Usage Explained. Retrieved January 20, 2019 from

https://www.sap.com/documents/2016/08/205c8299-867c-0010-82c7-eda71af511fa.html.

[4] Tim Bird. 2009. Measuring function duration with FTrace. In Proceedings of the Linux Symposium. 47–54.

[5] Daniel P. Bovet and Marco Cesati. 2005. Understanding the Linux Kernel: From I/O Ports to Process Management.

O’Reilly Media.

[6] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014. CAMEO: A two-level memory organization with

capacity of main memory and flexibility of hardware-managed cache. In Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture. IEEE, Los Alamitos, CA, 1–12.

[7] HMC Consortium. 2018. Hybrid Memory Cube Consortium. Retrieved July 27, 2018 from http://hybridmemorycube.

org/.

[8] Standard Performance Evaluation Corporation. 2015. SPEC CPU 2006. Retrieved February 9, 2021 from https://www.

spec.org/cpu2006/.

[9] Joint Electron Devices Engineering Council. 2018. 3D ICs. Retrieved July 27, 2018 from http://www.jedec.org/

category/technology-focus-area/3d-ics-0.

[10] US Department of Energy. 2018. US Department of Energy ECP Proxy Application Suite. Retrieved February 9, 2021

from https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/.

[11] Harish Patil. 2018. PinPlay. Retrieved February 9, 2021 from https://software.intel.com/en-us/articles/program-

recordreplay-toolkit.

[12] M. Heroux and S. Hammond. 2015. MiniFE: finite element solver. https://portal.nersc.gov/project/CAL/

designforward.htm#MiniFE.

[13] R. D. Hornung, J. A. Keasler, and M. B. Gokhale. 2011. Hydrodynamics Challenge Problem. Technical Report. Lawrence

Livermore National Lab, Livermore, CA.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://www.sap.com/documents/2016/08/205c8299-867c-0010-82c7-eda71af511fa.html
http://hybridmemorycube.org/
http://hybridmemorycube.org/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
http://www.jedec.org/category/technology-focus-area/3d-ics-0
http://www.jedec.org/category/technology-focus-area/3d-ics-0
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://software.intel.com/en-us/articles/program-recordreplay-toolkit
https://software.intel.com/en-us/articles/program-recordreplay-toolkit
https://portal.nersc.gov/project/CAL/designforward.htm#MiniFE
https://portal.nersc.gov/project/CAL/designforward.htm#MiniFE

Dynamically Adapting Page Migration Policies 16:23

[14] Mahzabeen Islam, Shashank Adavally, Marko Scrbak, and Krishna Kavi. 2020. On-the-fly page migration and address

reconciliation for heterogeneous memory systems. ACM Journal on Emerging Technologies in Computing Systems 16,

1 (2020), Article 10. http://csrl.cse.unt.edu/kavi/Research/JETC-2019.pdf.

[15] Jewillco. 2015. Graph500-v2-spec. Retrieved February 9, 2021 from https://github.com/graph500/graph500/tree/v2-

spec.

[16] Kimberly Keeton. 2017. Memory-Driven Computing. USENIX Association, Santa Clara, CA.

[17] Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A fast and extensible DRAM simulator. IEEE Computer Architecture

Letters 15, 1 (2016), 45–49.

[18] A. Kokolis, D. Skarlatos, and J. Torrellas. 2019. PageSeer: Using page walks to trigger page swapps in hybrid memory

systems. In Proceedings of the 25th IEEE International Symposium on High Performance Computer Architecture. IEEE,

Los Alamitos, CA.

[19] J. B. Kotra, H. Zhang, A. R. Alameldeen, C.Wilkerson, andM. T. Kandemir. 2018. CHAMELEON: A dynamically recon-

figurable heterogeneous memory system. In Proceedings of the 2018 51st Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO’18). 533–545. DOI:https://doi.org/10.1109/MICRO.2018.00050

[20] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating STT-RAM as an energy-efficient

main memory alternative. In Proceedings of the 2013 IEEE International Symposium on Performance Analysis of Systems

Software. IEEE, Los Alamitos, CA.

[21] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Ignatowski, and Gabriel H. Loh. 2015. Het-

erogeneous memory architectures: A HW/SW approach for mixing die-stacked and off-package memories. In Pro-

ceedings of the 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA’15). IEEE,

Los Alamitos, CA, 126–136.

[22] Jamaludin Mohd-Yusof, Sriram Swaminarayan, and Timothy C. Germann. 2013. Co-design for molecular dy-

namics: An exascale proxy application. https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2013/docs/

Pg88_89.pdf.

[23] David Mosberger and Stephane Eranian. 2001. IA-64 Linux Kernel: Design and Implementation. Prentice Hall PTR.

[24] N. Muralimanohar, Rajeev Balasubramonian, and N. Jouppi. 2007. CACTI 6 . 0 : A tool to understand large caches.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.3834&rep=rep1&type=pdf.

[25] Prashant J. Nair, Chiachen Chou, Bipin Rajendran, and Moinuddin K. Qureshi. 2015. Reducing read latency of phase

change memory via early read and Turbo Read. In Proceedings of the 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA’15). IEEE, Los Alamitos, CA, 309–319.

[26] Osnat Levi (Intel). 2018. Pin - A Dynamic Binary Instrumentation Tool. Retrieved February 9, 2021 from https://

software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

[27] Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel Loh, and Dean M. Tullsen. 2017. MemPod: A clus-

tered architecture for efficient and scalable migration in flat address space multi-level memories. In Proceedings of the

2017 IEEE International Symposium on High Performance Computer Architecture (HPCA’17). IEEE, Los Alamitos, CA,

433–444.

[28] Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. 2011. Phase change memory: From devices to

systems. Synthesis Lectures on Computer Architecture 6, 4 (2011), 1–134.

[29] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement in hybrid memory systems. In Pro-

ceedings of the International Conference on Supercomputing. ACM, New York, NY, 85–95.

[30] Bogdan F. Romanescu, Alvin R. Lebeck, Daniel J. Sorin, and Anne Bracy. 2010. UNified instruction/translation/data

(UNITD) coherence: One protocol to rule them all. In Proceedings of the International Symposium on High-Performance

Computer Architecture (HPCA’10).

[31] Jee Ho Ryoo, Lizy K. John, and Arkaprava Basu. 2018. A case for granularity aware page migration. In Proceedings of

the 32nd International Conference on Supercomputing (ICS’18). 352–362. DOI:https://doi.org/10.1145/3205289.3208064
[32] Jee Ho Ryoo, Mitesh R. Meswani, Andreas Prodromou, and Lizy K. John. 2017. SILC-FM: Subblocked interleaved

cache-like flat memory organization. In Proceedings of the 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA’17). IEEE, Los Alamitos, CA, 349–360.

[33] Jaewoong Sim, Alaa R. Alameldeen, Zeshan Chishti, ChrisWilkerson, and Hyesoon Kim. 2014. Transparent hardware

management of stacked dram as part of memory. In Proceedings of the 2014 47th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’14). IEEE, Los Alamitos, CA, 13–24.

[34] F. Song, S. Moore, and J. Dongarra. 2009. Analytical modeling and optimization for affinity based thread scheduling

on multicore systems. In Proceedings of the 2009 IEEE International Conference on Cluster Computing and Workshops.

1–10. DOI:https://doi.org/10.1109/CLUSTR.2009.5289173
[35] ChunYi Su, David Roberts, Edgar A. León, Kirk W. Cameron, Bronis R. de Supinski, Gabriel H. Loh, and Dimitrios S.

Nikolopoulos. 2015. HpMC: An energy-aware management system of multi-level memory architectures. In Proceed-

ings of the 2015 International Symposium on Memory Systems. ACM, New York, NY, 167–178.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

http://csrl.cse.unt.edu/kavi/Research/JETC-2019.pdf
https://github.com/graph500/graph500/tree/v2-spec
https://github.com/graph500/graph500/tree/v2-spec
https://doi.org/10.1109/MICRO.2018.00050
https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2013/docs/Pg88_89.pdf
https://www.lanl.gov/orgs/adtsc/publications/science_highlights_2013/docs/Pg88_89.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.3834&rep=rep1&type=pdf
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://doi.org/10.1145/3205289.3208064
https://doi.org/10.1109/CLUSTR.2009.5289173

16:24 S. Adavally et al.

[36] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez, Avi Mendelson, Nacho Navarro,

Adrian Cristal, and Osman S. Unsal. 2011. Didi: Mitigating the performance impact of TLB shootdowns using a shared

TLB directory. In Proceedings of the 2011 International Conference on Parallel Architectures and Compilation Techniques

(PACT’11). IEEE, Los Alamitos, CA, 340–349.

[37] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu, and Srinivas Devadas. 2017. Banshee: Bandwidth-

efficient DRAM caching via software/hardware cooperation. In Proceedings of the 50th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO’17). ACM, New York, NY, 1–14. DOI:https://doi.org/10.1145/3123939.
3124555

[38] I. Ştirb. 2018. NUMA-BTLP: A static algorithm for thread classification. In Proceedings of the 2018 5th International Con-

ference on Control, Decision, and Information Technologies (CoDIT’18). 882–887. DOI:https://doi.org/10.1109/CoDIT.
2018.8394925

Received December 2019; revised August 2020; accepted December 2020

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 16. Pub. date: March 2021.

https://doi.org/10.1145/3123939.3124555
https://doi.org/10.1145/3123939.3124555
https://doi.org/10.1109/CoDIT.2018.8394925
https://doi.org/10.1109/CoDIT.2018.8394925

