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ABSTRACT
Sparse matrix-dense vector (SpMV ) multiplication is inherent in
most scientific, neural networks and machine learning algorithms.
To efficiently exploit sparsity of data in the SpMV computations,
several compressed data representations have been used. However,
the compressed data representations of sparse date can result in
overheads for locating nonzero values, requiring indirect memory
accesses and increased instruction count and memory access de-
lays. We call these translations of compressed representations as
metadata processing. We propose a memory-side accelerator for
metadata (or indexing) computations and supplying only the re-
quired nonzero values to the processor, additionally permitting an
overlap of indexing with core computations on nonzero elements.
In this contribution, we target our accelerator for low-end micro-
controllers with very limited memory and processing capabilities.
In this paper we will explore two dedicated ASIC designs of the
proposed accelerator that handles the indexed memory accesses for
compressed sparse row (CSR) format working alongside a simple
RISC-like programmable core. One version of the the accelerator
supplies only vector values corresponding to nonzero matrix values
and the second version supplies both nonzero matrix and match-
ing vector values for SpMV computations. Our experiments show
speedups ranging between 1.3 and 2.1 times for SpMV for different
levels of sparsities. Our accelerator also results in energy savings
ranging between 15.8% and 52.7% over different matrix sizes, when
compared to the baseline system with primary RISC-V core per-
forming all computations. We use smaller synthetic matrices with
different sparsities and larger real-world matrices with higher spar-
sities (below 1% non-zeros) in our experimental evaluations.

CCS CONCEPTS
•Hardware→Hardware accelerators; • Computer systems
organization→ Embedded systems; Pipeline computing.

KEYWORDS
Sparse matrix-dense vector multiplications, Compressed Sparse
Row (CSR), Hardware accelerators, Application Specific Integrated
Circuits, RISC-V
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1 INTRODUCTION
With the trend towards embedding intelligence into the edge, there
is a growing need for architectural support for compute and storage-
efficient machine learning algorithms on low-power sensing and
handheld devices. These devices are characterized by simpler cores
and small on-chip memories, often without cache memories [20,
21, 27]. Achieving real-time inference capability in these devices
requires optimizing both the storage and computations performed.
Matrix computations such as matrix-vector multiplication is an es-
sential component of machine learning algorithms. For many practi-
cal applications, matrices contain a large proportion of zeroeswhose
storage and processing is wasteful. Hence sparsity (the percentage
of zeroes in the matrix) can be exploited to improve performance, as
well as reduce storage and energy requirements. [15, 22, 32]. Vari-
ous sparse matrix representations have been proposed and used in
scientific and machine learning codes. These include compressed
sparse row (CSR [4]), block compressed CSR (BCSR [5]), compressed
sparse column (CSC [6]), coordinate list (COO [10]), bit-vectors [22],
and run-length encoding [22]. There are also some newer represen-
tations including hierarchical bit vectors [16] and compression on
top of CSR [23]. Conceptually, compressed representations store
only the nonzero (denoted 𝑁𝑍 ) values of a matrix along with meta-

data to identify the row and column positions (i.e., indices) of these
values. Matrix codes are written to a specific sparse format in order
to interpret the metadata and to perform computations only on the
𝑁𝑍 values.

We claim that accessing and processing compressed metadata

incurs overheads. For example, to perform pairwise multiplications
of elements from matching columns locations metadata of one
matrix is used to locate the nonzero elements of another. If the
memory itself (or a small processing unit placed close to mem-
ory) could perform this metadata access and provide only needed
nonzero values to the primary processing element, it saves the CPU
energy and execution cycles. Such a memory system can provide
computation-memory parallelism by overlappingmetadata accesses
with CPU computation. In this contribution we describe the de-
sign and evaluation of such a dedicated (or ASIC) memory-side
hardware accelerator called Sparse-T.

There are several studies that propose intelligent and programm-
able prefetching of data, particularly for applications that rely on
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irregular data structures including linked lists and sparse data rep-
resentations such as CSR. For example, IMP [31] proposes hardware
support for prefetching data items that involve indirect accesses
such as m[v[j]], which can represent accessing elements of a vector
based on the location of nonzero values of matrix rows using CSR-
based sparse matrices. We would like to point out that while our
Sparse-T has the affect of prefetching data for processing, Sparse-T
should not be considered merely as a prefetcher. In general IMP [31]
and other prefetchers only aid in prefetching data to the processor
while our Sparse-T can be programmed to supply only needed data,
rather than prefetching all data to the core. For SpMV application,
Sparse-T can be programmed to provide only matching nonzero
values when both the matrix and the vector are sparse. Likewise,
while there have been many prior studies in terms of decoupling or
off-loading memory access operation (consider an early decoupling
work reported in [26]), Sparse-T is a flexible hardware which can be
programmed to process application specific metadata processing.
Helper threads (particularly software threads) have been used to
aid primary threads with some operations (for example see [17]).
Such software techniques may not lead to performance gains if the
threads are scheduled on different cores requiring cache coherency
related overheads. We use separate hardware unit specifically for in-
dexing operations, placed near memory and hence eliminate cache
coherency issues and compiler optimization that leads to perfor-
mance loss in software threads.

This paper makes the following contributions.
(1) We designed two versions of ASIC memory-side accelera-

tor, called Sparse-T : in the first case (Sparse-T_1), Sparse-T
only provides vector values corresponding to nonzero matrix
values (and the primary CPU core obtains nonzero matrix
values); in the second case (Sparse-T_2), Sparse-T provides
both matrix and vector values to the primary core, eliminat-
ing the need for the primary core accessing memory.

(2) Using ARM current standard technology cell libraries, we
reported power, performance and area (PPA) for both the
ASIC designs of Sparse-T using Synopsys design tool suite
for SpMV computations.

(3) We evaluated performance gains (speedup and energy sav-
ings) with smaller synthetic matrices by varying sparsity lev-
els and also presented results using real-world large sparse
matrices with higher sparsities. We presented a compari-
son of the performance with RISC-V alone and RISC-V with
Sparse-T designs.

In this work, our focus is on computations on low-end compute
platforms. These microcontroller-based devices (MCUs) comprise
simple in-order cores (such as a core from ARM Cortex-M series or
RISC-V RV32) integrated with a small on-chip SRAM, clocked at no
more than a few hundred MHz. Thus, achieving intelligence at the
edge requires highly optimized implementations of various types
of ML inference algorithms. However, the use of a memory-side
accelerator such as our Sparse-T can be explored for other types
of processing environments. The primary concerns of SpMV op-
eration involve memory access latency, bandwidth utilization and
parallelism. In the MCU integration, 𝐵𝐸 and 𝐹𝐸 units of Sparse-T
issue requests directly to the on-chip SRAM via an on-chip inter-
connect. Thus bandwidth utilization is not a problem for Sparse-T.

Similarly, Sparse-T is envisioned as an accelerator alongside single
in-order CPU core. In case of multicore systems, it may be possible
to use multiple Sparse-T accelerators, one per core. To summarize,
Sparse-T proposed in this work focuses on decreasing memory ac-
cess latency by overlapping computation time in primary RISC core
with that of memory fetching in Sparse-T accelerator.

2 BACKGROUND
Accessing and processing compressed metadata incurs overheads.
To perform pairwise multiplication of elements from matching
columns (of rows of one matrix), metadata of one matrix is used to
locate (and often match) the nonzero elements of another matrix
(or vector). Consider the SpMV algorithm that multiplies a sparse
matrix𝑀 by a dense vector 𝑉 to produce an output (dense) vector
𝑌 . Figure 1 shows a sample 3 × 3 matrix 𝑀 of compressed sparse
row (CSR) representation.

Figure 1: A 3x3 sparse matrix in CSR Format
In the CSR representation, a cols array holds the column indices

of the nonzero values for each row of the matrix. A rows array
holds pointers (indices) to the cols array where the row’s non-zero
column indices are stored. The vals array holds the 𝑁𝑍 values.
The SpMV algorithm traverses 𝑀 row by row, obtains the column
indices of the 𝑁𝑍 values, and accesses the corresponding indices
of the (dense) vector 𝑉 . An outline of this algorithm implemented
for a CSR representation of𝑀 is shown in Algorithm 1.

Algorithm 1 CSR Version of spMV

1: procedure SpMV (𝑀_𝑟𝑜𝑤𝑠 ,𝑀_𝑐𝑜𝑙𝑠 ,𝑀_𝑣𝑎𝑙𝑠 , n, v)
2: s← 0
3: k← 0
4: for 𝑖 = 0; 𝑖 < 𝑛; 𝑖 = 𝑖 + 1 do
5: nnz← M_rows[i+1] −M_rows[i]

6: s← 0
7: for 𝑗 = 0; 𝑗 < 𝑛𝑛𝑧; 𝑗 = 𝑗 + 1 do
8: s← s +M_vals[k+j] ∗ v[M_cols[k+j]]

9: k← k + nnz
10: y[i]← s

Among the memory accesses made by this code, the indirect
accesses performed by 𝑣 [𝑐𝑜𝑙𝑠 [.]] are expensive – these indirect
accesses require accessing 𝑐𝑜𝑙𝑠 [.] before values of 𝑣 [.] can be read.
As illustrated in the Algorithm 1, the Sparse Matrix-Vector multi-
plication (SpMV ) is bottle-necked by memory accesses. Figure 2
illustrates this. Each iteration accesses are made to 𝑀_𝑐𝑜𝑙𝑠 (blue

Figure 2: Metadata Overhead Memory Accesses in SpMV
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blocks) to obtain non-zero column indices. Using these column
indices, the values of 𝑉 are read (shown in yellow blocks). Next,
values from the sparse matrix row are read from𝑀_𝑣𝑎𝑙𝑠 [] (shown
as green blocks). Finally, multiply-accumulate (MAC) operations
are performed (shown as gray blocks) on values obtained from
𝑀_𝑣𝑎𝑙𝑠 [] and 𝑉 []. There are 3 memory accesses per iteration per
MAC operation.

We deem that fetching the elements of 𝑀_𝑐𝑜𝑙𝑠 [] in order to
access elements of 𝑉 [] as overhead – the CPU incurs the cost of
fetching, decoding, and executing this memory access instruction
(loading𝑀_𝑐𝑜𝑙𝑠 []) whose only usefulness is to provide the address
for the memory access into array 𝑉 . If the memory itself could
perform this metadata access to fetch 𝑉 [], then it saves the CPU
energy and cycles. Such a memory system can provide computation-
memory parallelism by overlapping metadata accesses with CPU
computation. This parallelism is depicted in Figure 2. Here, the
memory system accesses the metadata first and performs a read of
𝑉 [.]. The CPU no longer issues explicit metadata accesses followed
by accesses to the vector 𝑉 . Instead, the CPU directly reads the
values of 𝑉 [] that the memory system has gathered. In this sense,
the memory system can act as an accelerator to improve the over-
all performance of real-time ML code. Our memory-side Sparse-T
accelerator, is motivated by this observation.

3 DESIGN OF SPARSE-T
Figure 3 shows the system organization of a typical embedded
system.We envision our Sparse-T accelerator to be either embedded
or placed very close to the RAM of a MCU as shown. In Figure 3,
the black lines show that the primary CPU core still has access to
both RAM and external flash memory of the device whereas the
accelerator is connected only to the RAM. Our Sparse-T accelerator
snoops over the memory requests sent from primary CPU core to
memory over the memory bus to determine when to start fetching
required data for CPU. In this section we describe the designs
our proposed ASIC Sparse-T accelerator. We first describe (see
Section 3.1) a design where Sparse-T supplies only the vector values
corresponding to the nonzero values in the sparse matrix for the
processor. In Section 3.2 we describe an ASIC design where Sparse-
T supplies both the nonzero values of matrix and corresponding
vector values to the processor. Both versions of Sparse-T use a 4-
stage pipeline design and operate at the same clock rate as the main
processor (Ibex [18] core).

Figure 3: System Organization with Sparse-T

3.1 Sparse-T fetching vector values (Sparse-T_1)
In the first ASIC Sparse-T version, the 4-stage pipeline architecture
is organized into memory buffers, front-end (𝐹𝐸) unit, back-end

(𝐵𝐸) unit and processor-side buffer as shown in Figure 4. The 𝐵𝐸
loads matrix column indexes (location of nonzero matrix values)
from CSR metadata and stream them to 𝐹𝐸 which fetches vector
elements using the column indexes. The 𝐹𝐸 is responsible for CPU-
side interactions, supplying vector elements to the CPU in response
to buffer load requests.The architecture assumes at least two mem-
ory read ports; one for 𝐹𝐸 and one for 𝐵𝐸 to operate without stalls
and in a decoupled manner synchronized by a control unit that
starts or throttles the 𝐵𝐸 and 𝐹𝐸 units based on availability of space
in the buffers.

3.1.1 Sparse-T Front-End. The Sparse-T 𝐹𝐸 is responsible for fetch-
ing vector values using matrix metadata configuration, and coordi-
nating with the CPU. The 𝐹𝐸 is supplied with matrix metadata by
the primary processor core. This is achieved by writing to a set of
memory-mapped registers (MMRs) upon initializing the 𝐹𝐸. The
MMRs needed of CSR-based SpMV multiplication are listed below.1

• 𝑀_𝑁𝑢𝑚_𝑅𝑜𝑤𝑠: Number of rows of sparse matrix𝑀 .
• 𝑀_𝑅𝑜𝑤𝑠_𝐵𝑎𝑠𝑒: Base address of CSR rows array of𝑀 .
• 𝑀_𝐶𝑜𝑙𝑠_𝐵𝑎𝑠𝑒 : Base address of CSR cols array of𝑀 .
• 𝑉 _𝐵𝑎𝑠𝑒: Base address of dense vector 𝑉 .
• 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒𝑠 : Sizes for Rows, Cols, Vals arrays and Vector.

For SpMV computations, Sparse-T provides indexed gather sup-
port. Values from vector 𝑉 [.] are gathered using indices from
𝑀_𝐶𝑜𝑙𝑠 to construct buffers. Vector values collected by Sparse-

T are written into the scratch-pad memory shared between CPU
and Sparse-T and are read by the CPU without load instructions. In
our design, we assume a scalar load-store interface, but the Sparse-
T design can work with vector load-store interfaces as well. The
CPU obtains scalar or vector 𝑣 [.] values from Sparse-T and perform
multiply-accumulate to produce the output vector. Whenever the
CPU accesses the stored vector value, the 𝐹𝐸 updates its buffer state
to determine when the buffer has been completely drained by the
CPU. If multiple CPU-side buffers are available for Sparse-T, then
whenever one buffer is drained, the 𝐹𝐸 switches to the next ready
buffer. In this sense, the 𝐹𝐸 offers a streaming FIFO interface to the
CPU. If the CPU performs a load when the buffer is not ready, then
the 𝐹𝐸 stalls the load. Figure 4 describes the design of the Sparse-T
pipeline operation.

Figure 4: Sparse-T Pipeline fetching vector values

1We described ASIC Sparse-T for SpMV here. The design can be extended for Sparse
matrix - Sparse vector SpMSpV multiplication using additional metadata and comparing
indexes of Matrix columns with Vector indexes to match non-zero values.
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3.1.2 Sparse-T Back-End. The 𝐵𝐸 pipeline stage issues memory
read requests to obtain contents of the𝑀_𝑐𝑜𝑙𝑠 [.] array. Using the
base address of 𝑀_𝑐𝑜𝑙𝑠 [.] array (stored in register 𝑀_𝑐𝑜𝑙𝑠_𝐵𝑎𝑠𝑒)
and element size 𝑠 , the element address is calculated as𝑀_𝑐𝑜𝑙𝑠_𝐵𝑎𝑠𝑒+
𝑠 by 𝐵𝐸. This computed address is used to generate requests to mem-
ory. The memory response obtained through the memory buffer is
shared with 𝐹𝐸. Column index values from 𝐵𝐸 are used to compute
the addresses of the elements of array𝑉 [.]. This computed address
is used to issue a second memory request in 𝐹𝐸 stage of the pipeline.
Values read from array 𝑉 [.] are stored in a CPU-side buffer. While
CPU issues load instruction for the matrix value fetch for the next
operation, vector value for the operation is available from Sparse-T.

The control unit generates signals for all stages of the pipeline. In
particular, the unit tracks processor buffer empty or full conditions
to stall CPU load requests (when no ready buffer is available) or to
stall memory request generation to𝑉 [.] (when column indices have
not yet been read from memory) or to skip issuing new memory
read requests when all buffers are full. The unit also tracks the
coordination between the pipeline stages and their communication
with the memory buffers. Depending on the number of buffers
provisioned to interface between Sparse-T and CPU, the control
unit can also be configured to track which buffer to access.

3.2 Sparse-T fetching matrix and vector values
(Sparse-T_2)

In the second version of Sparse-T, the 𝐵𝐸 calculates load address
and fetches sparse matrix nonzero row and column indices from
the memory system to enable the 𝐹𝐸 assemble CPU data buffer in a
timely fashion. In addition, 𝐹𝐸 is responsible for fetching nonzero
matrix and corresponding dense vector values for CPU and handling
configuration writes from the CPU. In CSR representation, the
difference of the current row index and previously fetched row
index determines the number of non-zero values in the current row.
Initially, the row address is calculated by incrementing the value
stored in𝑀_𝑅𝑜𝑤𝑠_𝐵𝑎𝑠𝑒 register by element size 𝑠 and is stored in
𝑐𝑢𝑟_𝑟𝑜𝑤 register in 𝐵𝐸. The value in 𝑐𝑢𝑟_𝑟𝑜𝑤 register will be used
to calculate address for next elements by incrementing. At the start
of each row, the current row index value is stored in 𝑐𝑢𝑟_𝑟𝑜𝑤_𝑖𝑑𝑥
register. When switching rows, the 𝑐𝑢𝑟_𝑟𝑜𝑤_𝑖𝑑𝑥 register value is
mapped to 𝑝𝑟𝑒𝑣_𝑟𝑜𝑤_𝑖𝑑𝑥 register while 𝑐𝑢𝑟_𝑟𝑜𝑤_𝑖𝑑𝑥 register is
updated with new value. To calculate the number of non-zeros in
each row, the difference is calculated between 𝑐𝑢𝑟_𝑟𝑜𝑤_𝑖𝑑𝑥 register
value and 𝑝𝑟𝑒𝑣_𝑟𝑜𝑤_𝑖𝑑𝑥 register value. This difference is stored in
𝑐𝑢𝑟_𝑛𝑜𝑛_𝑧𝑒𝑟𝑜 register and is updated only when switching rows
by 𝐵𝐸. This value in 𝑐𝑢𝑟_𝑛𝑜𝑛_𝑧𝑒𝑟𝑜 register determines the number
of column indices to be fetched for that row. The column indices
are fetched by calculating address as𝑀_𝑐𝑜𝑙𝑠_𝐵𝑎𝑠𝑒 + 𝑠 and updating
𝑐𝑢𝑟_𝑐𝑜𝑙_𝑖𝑑𝑥 register by 𝐵𝐸. 𝐹𝐸 calculates the matrix values starting
from𝑀_𝑏𝑎𝑠𝑒 address by incrementing the value stored in𝑀_𝑏𝑎𝑠𝑒
register with element size 𝑠 and is stored in 𝑐𝑢𝑟_𝑚𝑎𝑡_𝑣𝑎𝑙 . This
value in 𝑐𝑢𝑟_𝑚𝑎𝑡_𝑣𝑎𝑙 is incremented for each matrix value fetch.
The vector address generation and value fetch by 𝐹𝐸 remain same
as described in the previous architecture. Figure 5 describes the
pipelined architecture of Sparse-T_2 design.

For this implementation, the Sparse-T constructs two values
into the output buffer at each step – one is the nonzero values of

Figure 5: Sparse-T Pipeline fetching matrix and vector values

the matrix row and the other is the vector value corresponding to
this nonzero matrix value. The nonzero values of sparse matrix are
pushed into the buffer first and vector value is pushed into the buffer
next. CPU buffer is continuously updated with required nonzero
matrix and vector value and there is a break only when moving
the computation to the next row. Two memory buffers are still in
use as described in previous architecture for 𝐹𝐸 and 𝐵𝐸 units to
fetch memory values and the size of the buffers can remain as small
as required. There are no additional metadata registers or pipeline
stages required for the enhanced architecture. This architecture
consumes slightly more area but less execution time compared to
the Sparse-T architecture discussed in Section 3.1 and reduces the
stalls due to memory access conflicts between CPU and Sparse-T.
The matrix and vector values are available to the CPU directly from
the scratch-pad memory without any additional load instructions.

4 EXPERIMENTAL EVALUATION
In this paper we evaluated both ASIC Sparse-T designs described
in the previous section (Section 3); one which fetches only the
required vector values (Sparse-T_1) and the second fetches both
matrix and vector values (Sparse-T_2) for SpMV operations in em-
bedded processing environments.
SystemConfiguration: Table 1 describes the system configuration
used in our work. While evaluating the ASIC Sparse-T designs, we
used Ibex RISC-V [18] core as the primary core. The ASIC hardware
is designed using Verilog language to accurately model the embed-
ded RISC-V Ibex core [18] and Sparse-T architectures. The system
includes a 32-bit RISC-V [11] based instruction set architecture that
supports compressed, integer multiply and divide, embedded and
bit manipulation extensions also known as Zero-Riscy [18] along
with required Sparse-T architecture. The primary CPU core uses
an in-order 3-stage pipeline implementation. In particular, loads
require two cycles to complete; hence stalling the pipeline for one
cycle. ASIC Sparse-T is equipped with a 32-byte buffer to commu-
nicate with the primary CPU core. Both ASIC Sparse-T and CPU
core evaluated at a maximum of 50MHz frequency.
Tools and Libraries Used:Weused ARM standard libraries of 7nm,
16nm and 28nm to estimate the area occupied by Sparse-T architec-
ture with respect to the CPU (Ibex [18]) core. However, the com-
parisons of ASIC Sparse-T with baseline (using only a Ibex RISCV
core) for power, execution time and energy estimates are based
on ARM 16nm technology node library with a standard thresh-
old voltage (svt) of 80mV. We used Synopsys Design Compiler tool
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Table 1: System Configuration
Processor Values
Core RISCV32 with IMAFDCV Extensions

Frequency = 50 MHz
In-order 3-stage

Element Size (SEW) = 32 bit
ASIC Sparse-T N=2 Buffers

Buffer size = 32B

to generate gate-level netlist of the Verilog described hardware.
Both the Verilog design and the synthesized netlist are verified for
functionality against different workloads as specified below using
Synopsys VCS tool. Synopsys Primetime is used to generate the
power report for the netlist generated against the value change
dump (VCD) trace file. We collected total execution cycles, area
and power estimates for different combinations of RISC-V core and
Sparse-T configurations.
Workloads: To analyze the performance of Sparse-T, synthetic
matrices are generated. Since ML applications involve different
sparsity levels, we generated synthetic matrices with different per-
centages of zero values (or sparsity) varying from 10% to 90% in
steps of 10%. Experimental results are presented in Section 5 with
synthetic sparse matrices of sizes 16*16, 32*32 and 64*64 for ASIC
designs. We also included performance results for several matrices
drawn from the Texas A&M Sparse Matrix collection (TAMU) [8].
These sparse matrices benchmark collection represent scientific
workloads with very high levels of sparsities.

5 EXPERIMENTAL RESULTS
In this section we report power, performance and area for both ASIC
Sparse-T designs and compare them with baseline of RISC-V alone.
We used the same clock frequencies for the primary RISC-V core
and Sparse-T. The two Sparse-T designs, (i) Sparse-T fetching vector
values and processor fetching matrix values (Sparse-T_1 design),
(ii) Sparse-T fetching matrix and vector values while processor
only performs matrix-vector multiplications (Sparse-T_2 design)
are compared with the baseline where the processor fetches matrix
and vector values and performs the arithmetic computations.

5.1 Area Results
The area of ASIC Sparse-T is the sum of the logic gates of the control
unit and storage for pipeline stages, Sparse-T buffers, memory-
mapped registers, internal state registers and column-index storage.
The area of Sparse-T varies by the type of variant chosen whereas
processor area remains constant in all three configurations. The
designs (Sparse-T and RISC-V) are synthesized using three of the
recent semiconductor technology nodes (7nm, 16nm and 28nm of
standard threshold voltage (svt) libraries from ARM) that are used
in embedded devices. From Table 2, it can be observed that Sparse-
T_1 design occupies 30.86% of the processor area while Sparse-T_2
design occupies almost 40.09% of the processor area for standard
16nm node technology. The reported area for Sparse-T designs
considers RISC-V area as well since Sparse-T is an addition to the
processor. Sparse-T_2 occupies more area compared to Sparse-T_1
since it requires more registers to store the state of the design as
shown in Figure 5 and performs more work including calculating

Table 2: Area in µ𝑚2 of RISC-V and Sparse-T configurations
Area(µ𝑚2)

Configuration 7nm 16nm 28nm
RISC-V alone 1451 5543 10961

RISC-V with Sparse-T_1 1920 7254 14651
RISC-V with Sparse-T_2 2059 7766 15664

Table 3: Power in µW on 16*16 matrix size at 10% sparsity for
RISC-V and Sparse-T configurations

Power in µW
Configuration 10MHz 25MHz 50MHz
RISC-V alone 71 181 367

Sparse-T_1 alone 18 44 88
RISC-V of Sparse-T_1 75 195 377

Total RISC-V with Sparse-T_1 93 239 465
Sparse-T_2 alone 102 116 125

RISC-V of Sparse-T_2 63 168 323
Total RISC-V with Sparse-T_2 165 274 448

Table 4: Execution time in in µs on 16*16 matrix size at 10%
sparsity for RISC-V and Sparse-T configurations

Execution time in µs
Configuration 10MHz 25MHz 50MHz
RISC-V alone 327 136 68

RISC-V with Sparse-T_1 225 90 41
RISC-V with Sparse-T_2 156 62 32

row address and addresses of nonzero matrix values; the latter is
handled by CPU core in Sparse-T_1.

5.2 Power Results
The power estimates reported in Table 3 include both leakage power
and dynamic switching power using 16nm technology process run-
ning at 10MHz, 25MHz and 50MHz frequencies for 16*16 matrix
size. It is observed that Sparse-T_1 alone without RISC-V consumes
less power compared to Sparse-T_2 without RISC-V at the reported
frequencies. This additional power consumption in Sparse-T_2 de-
sign is because there is more switching activity than Sparse-T_1
design as it has to compute address for matrix values as well. How-
ever, it is also observed that RISC-V processor consumes less power
when it is accelerated by Sparse-T_2 (represented as RISC-V of
Sparse-T_2 power) compared to rest of the configurations (RISC-V
of Sparse-T_1 and RISC-V alone). Due to the load balancing in RISC-
V with Sparse-T_2 design, power consumption is also distributed
among primary RISC-V core and Sparse-T_2. It is to be noted that
RISC-V of Sparse-T_1 has higher power consumption compared
to RISC-V of Sparse-T_2 and RISC-V alone since RISC-V in this
configuration performs memory accesses for matrix values as well
as access the buffered vector values supplied by Sparse-T. In the
case of RISC-V alone, the RISC core is accessing both matrix and
vector values, but it does not use the additional buffers as needed
when a using Sparse-T, and the RISC-V core will be stalled during
the memory accesses. The total power of RISC-V with Sparse-T_1
is given by sum of RISC-V of Sparse-T_1 and Sparse-T_1 alone in
Table 3. Similarly, total power of RISC-V with Sparse-T_2 is sum of
RISC-V of Sparse-T_2 and Sparse-T_2 alone.
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Table 5: Energy in nJ for different matrix sizes at 10% sparsity
and 50MHz frequency onRISC-V and Sparse-T configurations

Energy (nJ)
Configuration 16*16 32*32 64*64
RISC-V alone 24 94 372

RISC-V with Sparse-T_1 20 78 305
RISC-V with Sparse-T_2 12 45 176

5.3 Execution time Results
From the pipeline representations shown in Figure 4 and Figure 5,
it can be observed that the execution time of the Sparse-T designs
depend on the number of nonzero column index values. Sparse-T_1
supplies a new vector element at every clock cycle after the initial
delay of 9 cycles to primary RISC-V core. Sparse-T_2 design supplies
a new nonzero matrix value and a corresponding vector value every
3 cycles after an initial delay of 14 cycles. Hence the execution time
of the Sparse-T_1 design is given as a product of the number of
nonzero column indices in sparse matrix times the clock period
added to the initial delay. However, Ibex processor [18] requires 3
cycles for a multiplication (MUL) and hence by the end of the execu-
tion on previous operands, both Sparse-T_1 and Sparse-T_2 designs
will be able to supply new data to CPU without any CPU stalls
waiting for Sparse-T. Also, if the processor has multiple buffers,
then Sparse-T fetching both matrix and vector values will greatly
reduce the loading of data and wait times compared to the other
two configurations. Table 4 shows execution times that include
arithmetic operations for matrix-vector multiplication and address
computations (for 16*16 matrices at 10% sparsity). Sparse-T_2 de-
sign results in the lowest execution time, since Sparse-T handles
the memory accessing and CPU performs multiply-accumulate op-
erations in parallel. Whereas in Sparse-T_1 design, Sparse-T fetches
vector values, while RISC-V fetches matrix values and perform
computations which increase the total execution time of Sparse-
T_1 design compared to Sparse-T_2 design with RISC-V. Although
RISC-V in Sparse-T_2 design requires less execution times than
Sparse-T_1 design, RISC-V with Sparse-T_2 requires additional 10%
of hardware area to accommodate matrix value computations.

5.4 Energy Results
Energy consumption is particularly important for embedded com-
puting devices. Since execution time is saved by using Sparse-T to
support the processor with loadingmatrix and vector values, Sparse-
T_1 and Sparse-T_2 designs result in energy savings compared to
the RISC-V alone configuration as can be seen from Figure 6. How-
ever, the performance improvements depend on the amount of
work offloaded to Sparse-T. The reported values are for both Sparse-

T designs and RISC-V processor running at 50MHz frequency and
synthesized using 16nm process technology. For Sparse-T designs,
RISC-V is considered to be executing in parallel that adds to the area
and power while reducing execution time. Since memory accesses
in Sparse-T overlap with CPU’s arithmetic operations, Sparse-T is
never turned off during the entire execution time. Figure 6 shows
that Sparse-T_1 design achieves between 15.8% and 5.4% energy
savings for sparsities between 10% to 90% and Sparse-T_2 design
achieves between 50.2% and 18.9% energy savings. On average,
Sparse-T_1 and Sparse-T_2 achieve 13.7% and 38.7% energy savings
respectively.

Figure 6: Energy in nJ for 16*16 matrix size over sparsity
percentage

Using different matrix sizes of 16*16, 32*32 and 64*64 with 10%
sparsity, power and execution times are obtained at 50MHz fre-
quency to calculate the energy savings shown in Table 5. Energy
savings slightly increase with increasing size of the matrix; 15.8%
on 16*16, 17% on 32*32 and 18% on 64*64 for Sparse-T_1 and 50.2%
on 16*16, 52.1% on 32*32 and 52.7% on 64*64 as the number of
non-zero values at chosen 10% sparsity increase with matrix size.
From the table, it can also be observed that both Sparse-T_1 and
Sparse-T_2 perform better than RISC-V across all the matrix sizes
due to the offloading and compute-memory overlap. In Sparse-T_2
design, Sparse-T executes almost half of the instructions (3 loads)
required in each of the SpMV loop iteration and hence shows 50%
reduction in energy compared to the baseline RISC-V alone per-
forming both load and arithmetic operations. Sparse-T_1 design still
requires RISC-V to compute arithmetic computations and hence
shows lower savings.

5.5 Benchmark Evaluation
In most of the real world applications, large matrices are often
used to store the information compared to the smaller matrix sizes
presented in previous analysis. But for fast and effective parallel
processing of these large matrices in machine learning and image
processing applications, they are broken into smaller batches or
blocks of size 16, 32 and 64. However, our Sparse-T accelerator
can also perform well when dealing with large matrices. Table 6
shows the results for six large sparse matrices drawn from different
domains of engineering from SuiteSparse Matrix Collection [8].
These scientific matrices exhibit very high degree sparsities. The
distribution of nonzeros across the rows of the matrix (symmetry)
does not have a large impact on the speedup and energy savings
on our accelerator unlike the common prefetchers. Among the
matrices selected, jpwh, rbsa_480 and pesa have asymmetric nonzero
distribution and the other three benchmarks (685_bus, G10 and
Andrews) are symmetric. rbsa_480 and G10 have 7.4% and 5.9%
nonzero values and show higher speedups and energy savings
with Sparse-T compared to other benchmarks with 1% nonzeros.
Among the other benchmarks (685_bus, jpwh, pesa and Andrews),
as matrix size increases, we notice an increase in the speedup and
energy savings. The energy savings and speedups of RISC-V with
Sparse-T_1 and RISC-V with Sparse-T_2 exhibit the same trend that
was observed with smaller matrices. Since Sparse-T_2 has equal
distribution of workload with RISC-V, it has more energy savings
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Table 6: Percentage of energy savings and speedup for matrices from SuiteSparse Matrix collection [8] at 50MHz frequency on
RISC-V and Sparse-T configurations

Energy savings and Speedup

Benchmark
suite Matrix size

Number
of non-
zeros

Application

RISC-V
with

Sparse-T_1
Energy
savings

RISC-V with
Sparse-T_1
Speedup

RISC-V with
Sparse-T_2
Energy
savings

RISC-V with
Sparse-T_2
Speedup

685_bus 685 x 685 1,967 Power network problem 6.21% 1.38x 27.78% 1.79x
jpwh 991 x 991 6,027 Semiconductor device problem 10.78% 1.46x 38.80% 2.01x

rbsa480 480 x 480 17,088 Robotics problem 14.17% 1.53x 45.65% 2.26x
G10 800 x 800 38,352 Undirected weighted random graph 15.22% 1.54x 46.34% 2.28x
pesa 11738 x 11738 79,566 Directed weighted random graph 13.21% 1.47x 40.84% 2.02x

Andrews 60000 x 60000 410,077 Computational graphics/vision
problem 14.63% 1.50x 44.49% 2.14x

and higher speedup when compared to Sparse-T_1 design where
the workload is unequally distributed between primary core and
accelerator (primarily doing more work than the accelerator).

6 RELATED WORKS
Sparse Matrix Accelerators. Accelerating sparse matrix operations
has received attention from both the hardware and software commu-
nities. On the hardware side, works propose hardware acceleration
of the entire computation: some of these works include a CAM-
based accelerator [30], accelerator for very large SpMV. The work
in [25] proposes a Two-Step SpMV algorithm and a memory-based
accelerator to accelerate such computations on very large, very
sparse graphs. Our work is different: we focus on reducing memory
latency issues of embedded systems for matrix computations. Un-
like works that aim to move the entire computation to a dedicated
accelerator, our goal is simply to reduce the memory bottleneck
faced by vectorized codes running on traditional cores. Some re-
searchers explored hardware that expands sparse data into dense
by inserting zeroes [3], [1]. It is believed that at lower sparsities,
such expansion can improve performance since the expanded data
can be executed using vector and SIMD instructions.

In [19] hardware SVM-based accelerator is designed which relies
on data prefetchers and Compressed Sparse Column (CSC) format
to reduce the number of indirect memory accesses and speed up
SpMV computations. CSC format is similar to CSR format but com-
presses along columns. This allows for reuse of vector values by
computing partial results using the nonzero values in each col-
umn of the matrix. These accelerators require (possibly floating
point) multipliers inside the accelerators unlike our Sparse-T which
only calculates memory addresses and requires only simple integer
ALUs (possibly with shift operations instead of multipliers). The
design reported in [28] takes advantage of the DRAM interleaving
storage for improving bandwidth utilization in SpMV computations
but our implementation focuses on embedded processors which do
not have DRAMs and do not suffer from bandwidth utilization.

There are several works that focus on performance of sparse ma-
trices for scientific applications. Authors of [7] proposed a parallel
sparse matrix algorithm based on SUMMA used in BLAS library and
parallelized the sparse matrix multiplication, while we used hard-
ware accelerator to extract only nonzero values. Greathouse [14]
proposed an algorithm, CSR-Stream to compute sparse Matrix -

dense Vector multiplication for smaller rows. They also present
a CSR-Adaptive algorithm which chooses CSR-Stream instead of
traditional CSR, and expands sparse matrices to dense to enable
parallelization. Azad and Buluc [2] proposed a parallel sparse Ma-
trix - sparse Vector (SpMSpV ) algorithm that stores the product of
sparse Matrix - dense Vector based on the row indices and later
accumulates it, all by using buckets.

Processing InMemory and Near Data Processing Approaches. There
have been many studies on near-data processing (or Processing-In-
Memory) approaches for improving memory latencies and utilize
higher bandwidths. More recent works focused on migrating com-
putations to PIM. Some older reports proposed migrating memory
intensive operations closer to memory including memory allocation
and garbage collection functions (see for example [9, 24, 29]). In one
interesting work, the authors propose creating memory gestures
(or macros) for some common operations involved in traversing
linked lists and avoid bringing intermediate nodes into processor
caches [12].

New Sparse Representations. In a different vein, there have been
proposals on improving compression of sparse matrices and pro-
posed techniques including hierarchical bit vectors [16] or com-
pression on top of CSR [23]. There are proposals for specialized
hardware to compress and decompress data for use by CPU (assum-
ing that the CPU uses conventional SpMV software) [23]. Others
propose hardware for new compression formats (such as hierar-
chical bit maps) for performing sparse matrix computations [16].
We programmed Sparse-T to handle sparse data represented using
SMASH [16] format. SMASH format requires complicated indexing
to locate the row and column positions of non-zero values of a
sparse matrix. This implies that Sparse-T for SMASH is performing
more work than the CPU, causing CPU to idle. Moreover, we feel
that SMASH format may not be suitable for embedded systems. Due
to space limitations, we did not include of the performance gains
achieved when Sparse-T is programmed using Spike simulator [13]
to process hierarchical bit representation of sparse data as done in
SMASH [16].

7 CONCLUSIONS
In this work, we presented two ASIC designs of a memory-side
accelerator for sparse matrix-dense vector multiplications. The ac-
celerator, denoted as Sparse-T, decouples the overhead of accessing
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and interpreting sparsity metadata from the primary CPU core. Our
approach should be distinguished from most other accelerators that
accelerate the entire computation, not just index computations. In
addition, we focus on micro-controller domain, necessitating low
power design. We presented the ASIC implementation of Sparse-T
that handles CSR sparse data representations. Although not shown
in this paper, we have evaluated ASIC Sparse-T designs for other
sparse representations like bit-vector and run-length. However, CSR
format is chosen in this work since it is widely used. While more
specialized sparse formats may be explored for specific domains
and specific sparsity levels, they are likely require more complex
programming and/or more complex hardware support.

The two ASIC Sparse-T designs presented in this paper show
average performance gains between 1.3 and 2.1 depending on the
sparsity levels with small synthetic and large real-world matrices
over RISC-V baseline. The Sparse-T designs also result in energy
savings, as high as 18% with Sparse-T fetching only vector values
and 52.7% with Sparse-T fetching both matrix and vector values
when compared to baseline with a RISC-V alone performing indexed
computations for SpMVover different matrix sizes.

We are currently exploring the design of programmable Sparse-
T using a bare minimum RISC-V like instructions with very few
integer instructions, registers and caches so that different sparse
representations and access patterns can be processed by Sparse-T.
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