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ABSTRACT
With the increasing demands for very large physical address spaces
and the advent of memory technologies that can support large mem-
ories, there is a need to reduce the sizes of system tables such as
TLBs and page tables. One can use very large (huge) pages instead
of traditional 4K byte pages. However, huge pages are likely to lead
to internal fragmentation and may make page migration strategies
that aim to move heavily used pages to faster memories inefficient.
If only a small portion of a huge page is heavily accessed, it may
be worth migrating only that portion to a faster memory. This paper
proposes two hardware-based page migration techniques (i) subpage
migration with Address Reconciliation (that is, updating physical
addresses of migrated pages) and (ii) subpage migration with Re-
verse Migration (whereby no Address Reconciliation is needed). We
observed speedup ranging up to 17% over migrating huge pages and
up to 55% over the baseline (no migration).

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid) sys-
tems;

KEYWORDS
Heterogeneous memory systems, Flat-address memory, Reverse
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1 INTRODUCTION
Our research is driven by two emerging trends in computer systems.
First, with increasing memory footprints of modern applications
in high performance computing, big data analytics, cloud comput-
ing and machine learning, there is a demand for large and high
bandwidth memory systems [5], [15]. 3D-DRAMs provide high
bandwidth compared to traditional DRAMs but at higher cost and
lower capacity. On the other end, the advances in non-volatile mem-
ories can support high capacities at lower cost, but at higher access
latencies. This led researchers to combine these diverse memory
technologies into one system as either hierarchical organization (i.e.
fast memory is used as a Last Level Cache) [7] or as flat-address
memories (i.e. fast and slow memories combine to form as single
address space). In flat-address system, different page placement [24]
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and page migration [13], [28] strategies have been studied for their
memory performance. In the case of page placement, applications
are profiled and data is placed either in the fast or slower memories
based on access behaviors. Once allocated, the data (or pages) are
not relocated. In page migration techniques, heavily accessed pages
(hot pages) are migrated from slower memories (NVM) to faster
memories (3D DRAM); cold pages are moved from faster mem-
ories to slower memories to make room for the hot pages. Pages
can be migrated (or swapped) at regular intervals (epoch based)
or individually (on-the-fly). The migration of pages between the
memory systems incur execution and energy overheads. In addition
to the cost of actual data movement between memory devices, OS
tables (Translation Look-aside Buffers (TLBs) and page tables) must
also be updated since physical addresses used by OS are based on
the physical location of pages and a migration changes physical
addresses. We call this process of changing physical addresses and
updating system tables "Address Reconciliation" or AR.

The second trend that drives our research is related to increasing
applications’ virtual address spaces from 256 TB to 128 PB [3],
which leads to an increase in the number of bits needed for virtual
addresses from 48 bits to 57 bits: 48 bits virtual addresses require
4 levels of page table traversals to find its respective physical page
number and 57 bits lead to an increase in the number of page table
traversals (or page walks) to 5 adding to access delays [4]. While
page walk caches, which caches some intermediate levels of trans-
lation table entries can help, however, the ever increasing physical
memory sizes will require larger and larger page walk caches. Simi-
larly, the larger physical memory sizes also necessitates larger TLB’s
(and larger TLBs will necessarily have to be designed with limited
set-associativities). One solution to address both TLB and page walk
cache issues is to increase the page size from 4KB to 2MB, reducing
the number of pages in an address space, and in turn reducing the
number of page tables and TLB sizes. But large page sizes bring
new issues that must be addressed. To avoid internal fragmentation,
new allocation techniques are needed. In addition, since current page
migration techniques (either epoch based or on-the-fly) migrate at
page granularity, migration of large (or huge) pages can cause ex-
cessive overheads in terms of data movement, and these overheads
have to be offset with concomitant usage of migrated pages. We
observed that in most applications, only small portions of a large
page are heavily accessed and migrating the entire page may not
lead to performance gains since the page contains both hot and cold
portions. We propose to divide a huge page into subpages and ex-
plore migrating only the hot subpages. The key contributions of this
work are:

• Subpage Migration with Address Reconciliation (SpAR):
This technique migrates hot portions of a huge page (or Sub-
Pages) to faster memory instead of the entire huge page. Upon
the migration of all the subpages (or a significant number
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of subpages, the remaining subpages are also migrated and
Address Reconciliation is performed to update physical ad-
dresses (and make the physical addresses visible to OS).

• Subpage Migration with Reverse Migration (SpRM): Sim-
ilar to the above technique, this SpRM migrates subpages to
faster memory and maintains the migration metadata in a
table called ReMap table. As the Remap table fills up, in-
stead of migrating remaining subpages of huge pages and
and updating physical addresses, we reverse migrate some
(cold) subpages back to slower memories to make room for
new hot subpages. Reverse migration eliminates the need for
Address Reconciliation since the migration is transparent to
OS. However it may incur more overheads as subpages are
swapped back to their original location.

2 BACKGROUND AND MOTIVATION
2.1 Background
There have been many studies on page migration techniques for
flat-address heterogeneous memory systems (HMA), They propose
different approaches to solve the general challenges associated with
page migration, viz., selecting candidate pages to migrate, determin-
ing migration frequency and managing migration metadata. Meswani
et al. [18] presented a study where page migration in HMA is ac-
complished by a hardware/software based approach. When pages
are migrated, physical addresses change. This work relies on OS
to update physical addresses for all migrated pages. We refer this
process of updating physical address Address Reconciliation (this
requires updating TLBs and Page Table Entries). Since OS-based
address update incurs large overheads, the authors choose a longer
epoch to reduce frequent OS interventions. However, it has been
observed that page migration at shorter intervals is more beneficial
than waiting for longer epoch times [23, 25], since, migrating hot
pages sooner result in more beneficial accesses after the migration.

Address Reconciliation can be avoided using very large Remap
table 1 that contains the new locations of migrated pages: the Remap
table aids in redirecting accesses using current physical addresses to
correct physical locations of the migrated pages (making page mi-
gration transparent to OS). The size and management of this Remap
table present new challenges. A number of different approaches
have been proposed to keep this table in memory while using a small
on-chip cache for recently accessed entries [7, 17, 23, 25]. Sim et
al. used a Transparent Hardware based Management (THM) of flat-
address memory [25]. THM restricts where a migrated page can
be placed to reduce the ReMap table: a set of slow memory pages
compete for a single fast memory page. This can reduce potential
benefits since only one of the slow memory pages from a given
set can be migrated to fast memory even if all of them are heavily
accessed.

Authors of Thermostat [2] proposed a technique to estimate access
rates of huge pages by projecting the computed access rate for
random sample set of 4KB pages and migrate the huge page to
the slower memory. In our work, we maintain hardware-assisted
access counts at subpage level granularity and migrate the individual
hot subpages instead of the huge page to the faster memory to

1ReMap table is a hardware structure in our proposal that holds the new physical page
addresses of the migrated pages as a temporary reference before Address Reconciliation.

Figure 1: Normalized unique accesses ratio of huge page com-
pared to 4K

prevent migrating less useful portions of huge page due to internal
fragmentation.

2.2 On-The-Fly Migration
In our previous research [1, 13], we migrated a page immediately
when it receives sufficient number of memory accesses (i.e., On-The-
Fly or OTF migration), unlike any epoch-based schemes described
above. Since in OTF migration, a page migration can take place at
any time, it is important to ensure that a migration does not halt user
program execution 2. Moreover, OS based address reconciliation on
each page migration is prohibitive for OTF migration. To mitigate
these issues, we devised a special hardware called MigC [13], placed
on the processor chip, which performs actions necessary for our OTF
page migration.

Figure 3 (in Appendix) shows a high-level system architecture of
MigC. There are hot and cold buffers to temporarily store data from
pages as they are being migrated. There is a Wait queue in MigC,
which holds read/write requests from Last Level Cache (LLC) for
the currently migrating pages; these requests will be serviced from
the hot/cold buffers. The memory controllers (MCs) are equipped
with a separate Migration Queues (Mig.Q) to service requests from
MigC for the migrating pages. There is a small remap (ReMap) table
which holds new physical page addresses of the migrated pages. The
ReMap table is consulted on every LLC miss (or on a write-back),
using the old physical address to find the new location. The size of
the ReMap table is kept small (e.g., 1024 entries) so that it can be
placed on-chip. Whenever the table is full to a certain level, say 50%,
address reconciliation process starts, i.e., entries from ReMap table
are deleted and the new physical addresses are made visible to OS
as describe in [13]. Some details of the page migration and address
reconciliation are included in the Appendix.

2.3 Motivation for Subpage Migration
With the increase in memory sizes, huge pages can be used to reduce
the overhead of page table walks. But one of the disadvantages
with huge pages is the potential for internal fragmentation. When a
page is allocated in the physical memory, some portions of the page

2Epoch based approaches stop program execution and migrate several hot pages at the
end of an epoch. OS manages the migration as well as updating TLBs and page table
entries with new physical addresses.
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may not be used by the application due to the way applications are
programmed and how address space is divided into different sections
(code, static data, heap and stack). Page migration in systems using
huge pages can be expensive due to migration overhead of huge
pages. Internal fragmentation can make it even worse since some
portions of a migrated page may not used. We propose to migrate the
pages at a smaller (or subpage) granularity to reduce the overhead
of migrating huge pages, as well as migrating only heavily used
portion of a huge page. To understand internal fragmentation, we
measured the ratio of normalized unique accesses to a huge page
compared to the unique accesses to a regular page (4K) as shown in
Figure 1. This ratio indicates if the unique accesses are distributed
evenly across all subpages of a huge page or not: a ratio that is less
than 100% implies that the accesses are not evenly distributed. It can
be seen from Figure 1 that workloads like mcf, mix1, mix2, mix4,
mix5 which were classified as migration friendly in our previous
work[13] (and shown in Table 4 in Appendix) have a lower ratio
of unique accesses to a huge page normalized to 4K size, implying
internal fragmentation. 3 This also indicates that only useful subpage
of huge pages should be migrated. Our focus is to improve migration
efficiency in above mentioned list of applications as they suffer
the most due to internal fragmentation: an analysis such as the one
described here can be used to identify such memory behaviors.

3 SUBPAGE MIGRATION
In our subpage migration technique, the Migration controller logic
remains similar to the page migration controller used in our previous
work [1, 13]. We maintain entries and access counters in the ReMap
table at subpage granularity. For example, if the page size is 512K,
and the subpage size is 64K, we track the 8 subpages of a page
with access counters and migrate only those subpages that receive
sufficient number of accesses. As described in the section 1, we
evaluated two subpage migration techniques.

• 1) Subpage migration with Address Reconciliation (SpAR)
• 2) Subpage migration with Reverse Migration (SpRM).

In SpAR, we migrate the subpages as the access counts reach the
threshold and mark them as migrated in the ReMap table. Since
operating system tracks the details of the pages at huge page level
but not at the subpage level, the page can be reconciled only if all the
subpages have been migrated from slower to faster memory. When
it becomes necessary to reconcile addresses when the ReMap table
becomes full to a selected level, we migrate any remaining subpages
of some huge pages that are not migrated and then complete address
reconciliation. Note that in subpage migration, subpages from a
specific page are migrated to a huge physical frame in HBM (High
Bandwidth Memory, fast memory), so that Address Reconciliation
of the page is easier. A free frame is created by migrating a cold
page from the HBM to PCM (Phase Change Memory, slow memory)
in case if HBM is out of frames. This process can hinder the perfor-
mance if all the sub-pages are not beneficial but it is advantageous
to reconcile the huge page so that the future accesses will be ser-
viced without indirection through ReMap table. We select pages that

3Even though xalancbmk has noticeably lower ratio, application itself is categorized as
migration unfriendly in our previous work [13], and thus unlikely to benefit either from
"full page" migration or subpage migration.

have very high percentage of subpages already migrated for Address
Reconciliation.

We also experimented with a different technique called subpage
migration with Reverse Migration (SpRM). Here, migration is still
done at subpage granularity, but when the ReMap table becomes
full to a selected level, we select some subpages in the ReMap ta-
ble whose Migration Benefit Quotient(MBQ)4 is low and reverse
migrate them to their original locations (that is, slower memory)
and remove the entries from the remap table. The advantages here
are: 1) Address Reconciliation can be eliminated making the page
migration completely transparent to the Operating System; 2) elimi-
nate the need to migrate less beneficial subpages to perform Address
Reconciliation. Disadvantages with reverse migration are: 1) we pay
additional overhead for reverse migration, 2) we may have to migrate
very beneficial subpages several times, unlike the case where such
hot subpages are among the pages whose addresses are likely to be
reconciled.

4 EXPERIMENT SETUP
In this section, we will describe our simulation setup and the bench-
marks we used. This setup and workloads are the same that we used
in our previous work [13], [1].

4.1 Simulation Infrastructure
We model a 16-core system with a flat-address heterogeneous mem-
ory consisting of 1GB of HBM and 16GB of PCM using Ramula-
tor [16]. Ramulator is a trace driven, cycle-level memory simulator
with support for a simple multi-core CPU model with cache hier-
archies. Each core is 4-wide out-of-order issue with 128 Reorder
Buffer (ROB) entries and operates at 3.2GHz. The cores have private
L1-D caches (32KB, 4-way, 2-cycles) and shared L2 (16MB, 16-way,
21-cycles) as LLC. Physical address tags, write-back policies are
used for all caches and LLC is inclusive. Ramulator does not model
L1-I cache, and assumes non-load/store instructions are executed in
one cycle. The memory system configuration is shown in Table 1;
for timing parameters of HBM we rely on [16] and for PCM timing
on [21].

Parameter HBM PCM
Channels, 8, 1GB 2, 16GB
capacity (8 x 128 MB) (2 x 8 GB)
Memory 1 per channel 1 per channel
Controller (MC)
Row buffer 2KB 2KB
Queue size/MC RD 32, WR 32, RD 64, WR 256,

Mig. 32 entries Mig. 32 entries
Latency tCAS-tRCD Read 80ns

-tRP-tRAS: (7.5ns tPRE
14ns-14ns + 62.5ns tSENSE
-14ns-34ns + 10ns tBUS)

Write 250ns tCWL
Bus/channel 128 bit, 1 GHz 64bit, 400MHz

Table 1: Baseline configuration
A basic address mapping function is added to Ramulator to sup-

port our flat-address heterogeneous memory system: pages are al-
located to frames of different types of memories in a round-robin
4MBQ tracks the number of accesses received after migration to faster memory.
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Figure 2: Performance improvement (%) of Subpage migration over Huge page migration (negative y-axis shows degradation)

fashion (viz., 4 pages to faster, 3D DRAM memory, then 4 pages
to slower NVM memory), as long as there are free frames in faster
memory. When faster memory capacity is exhausted, only slower
memory frames are assigned. This allocation ensures that pages for
all application span both memory devices and thus necessitating
page migration considerations. We also made sure that the mem-
ory footprints of our benchmarks are at least twice as large as the
HBM capacity, requiring the use of both HBM and PCM (NVM).
We incorporate our MigC unit in Ramulator with all necessary de-
tails to perform functions as described in previous sections (more
details can be found in [1, 13]). MigC operates at the same clock
rate as the CPU cores.cWe assume the huge page size as 512KB
and we selected the subpage size to be 64 KB (We observed 64
KB to be the optimal size for subpage based on our experiments).
The ReMap table is implemented as a 1024 entry fully-associative
table and each entry contains a bit vector used to distinguish the
subpages that have been migrated. We conservatively assumed an
access latency of 10 CPU cycles for ReMap table. We included all
timing overheads (listed in Table 2 assuming 3.2GHz clock rate) for
performing different HW/OS tasks. Finally, we used CACTI [20] to
model the power rating of the MigC components. 5

5 RESULTS
Figure 2 shows the performance improvement of our proposed tech-
niques compared to the baseline (no migration). First bar (labeled
512K_huge_th16384) represents huge page migration with hotness
threshold of 16384 (the entire huge page is migrated if number of
accesses to the page reaches 16384 or more). We proportionately in-
creased the threshold with page size and selected 16384 as threshold.
Similarly, second bar (labeled 64K_subpage_adaptive_th2048) rep-
resents subpage migration with Address Reconciliation with hotness
threshold of 2048. The third bar (64K_subpage_reverse_large_swap)
represents subpage migration with reverse migration. It can be seen
that on average (including both migration friendly and unfriendly

5Further details of our experimental setup and benchmarks can be found in our previous
publications [13], [1]. Some information is included in Appendix.

workloads), subpage migration with Address Reconciliation per-
forms about 20% better than baseline (i.e. no migration), 2% better
than the huge page migration and 10% better then subpage migration
with reverse migration. Looking at the performance of individual
workloads, workloads that were categorized as migration unfriendly
6 were not expected to achieve performance gains from either page
or subpage migration. Some of the migration friendly workloads
do benefit from subpage migration when compared to migrating
entire huge pages, by up to 17%. This is because of huge page mi-
grations were difficult to adapt to changing hotness thresholds as
done in [1]. If the hotness threshold is decreased, then too many
huge pages will be migrated, defeating the benefits of migration
and if threshold is increased, very few huge pages will be migrated,
missing some pages that can benefit from migrating to faster mem-
ory. With subpage migration, we can maintain a balance between
the number of migrations and threshold with relative ease. Thus, we
observed more migrations were possible with subpages than huge
pages, still maintaining the balance between migration benefits and
migration overheads. 7 As shown in Figure 1, we also believe that
workloads like mix1, mix2, mix4, mix5 are largely affected by inter-
nal fragmentation and are benefiting from subpage migration. With
reverse migration, it can be observed that we are losing performance
for some workloads like xalancbmk, zeusmp, GemsFDTD. This
is because we reserved a fixed amount of swap space in HBM for
migrated subpages and this space is not available for permanently
placing hot pages in HBM. This is beneficial for workloads that ben-
efit if very few subpages of a page are candidates for migration (like
mix1, mix2, mix4, mix5). We will further investigate the memory
access behaviors that benefit from subpage migrations and reverse
migrations, as well as adaptively adjusting swap space.

6See Table 4 in Appendix for a list of such workloads
7Due to the page count limitation, we couldn’t include additional data related to the
improved demand request traffic to HBM with subpage migration resulting in improved
performance
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6 CONCLUSION
In this paper we studied two subpage migration techniques: subpage
migration with Address Reconciliation and subpage migration with
reverse migration when systems use very large (huge pages) in order
to reduce the sizes of TLBs and page tables. The idea with both these
techniques is to migrate data at subpage granularity to overcome
issues such as internal fragmentation in huge pages, and migrating
only useful portions of a huge page. With subpage migration, our
hardware migration controller can better adapt to changing memory
access behaviors of applications, than with huge page granularity.
The hotness threshold for migrating pages (either at subpage or entire
page level) is changed based on the number of pages migrated and
the benefit accrued by the migrated pages in terms of faster accesses.
In our experiments, we observed as much as 55% improvement in
performance compared to the baseline (i.e. no migration) and up to
17% compared to huge page migration.
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Figure 3: High-level system architecture

Appendices

A ON-THE-FLY MIGRATION
A.1 User Transparent Page Migration
We migrate a hot page from slower PCM into a free frame of HBM
if available (one-way migration), or select an HBM page that has not
been accessed recently (LRU Cold page) and swap the hot and cold
pages (two-way migration). Consider that MigC finds that a PCM
page (say page A with physical address, PA 8192) meets the hotness
threshold for migration. MigC then finds a cold page from HBM
(say page B with physical address, PA 0) to swap with the hot page.

MigC inserts entries for pages A and B in the ReMap table with
their current OS visible physical addresses (namely 8192 and 0)
and future PA (after migration, namely 0 and 8192). ReMap table
is always looked up using OS visible (original) PA. Mig flag is set
to 1 when these pages are being migrated and a Pair flag is set to 1
to indicate a two-way migration involving a hot and cold pair (this
flag will be set to zero for one-way migration). The Pair flag will
be checked during address reconciliation (AR) to update page table
entries for both (or one) pages involved in the migration.

MigC waits for any pending read requests to the pages involved
in the migration that were already issued to complete. Then, MigC
starts reading hot and cold pages into their respective buffers (inside
MigC). Any new requests (after the migration is initiated) for these
pages from LLC will be held in MigC resident Wait Queue and will
be served from these buffers. After completely reading the migrating
page contents into the buffers, MigC starts writing contents of buffers
to their respective new page frames. When migrations are completed,
the Mig flag for these pages will be reset (to indicate completion of
migration). All future requests for these pages will be directed to
proper new locations based on the ReMap table information.

A.2 Address Reconciliation
Address reconciliation can be eliminated (and make page migra-
tion transparent to OS) by using very large ReMap tables, sufficient
to track all migrated pages during the lifetime of an application.

However, this is not practical for emerging systems with very large
memories (several hundred giga bytes to tera bytes). We use a very
small ReMap table and periodically evict old entries to make room
for new entries for future migrations. Removing entries from the
ReMap table requires updates to physical addresses (i.e., address
reconciliation) to reflect the new location of the page consistently
throughout the system, and making the new physical addresses vis-
ible to OS. We reconcile entries from the ReMap table pair-wise
if the Pair flag is 1, thus updating the physical addresses of the
pages swapped during the migration. When the Pair flag is 0 then
we perform AR only for that entry. The following actions must be
performed to ensure correct address reconciliation. We use the same
example hot and cold page pair, A (PA=8192) and B (PA=0), respec-
tively. First, all cache lines from these pages, which are currently
residing in the cache hierarchies and tagged with OS visible (old)
physical address, must be invalidated (and dirty lines written back),
since the current OS visible PA will be replaced with the new PA.
All future accesses to these pages will only have access to the new
PA. Next, corresponding page table entries (PTEs) for A and B need
to be updated with new PAs. The TLB entries in all cores using the
old PA must also be invalidated (known as TLB shootdown).

Task Time Requirement
ReMap table lookup 10 cycles (after LLC)
Light-weight TLB 300 cycles (round trip
invalidation at core latency to off-chip

memory [27])
Page walk 150 cycles
OS reverse mapping 4480 cycles (measured using

Ftrace [6] on a real
machine running Linux)

Table 2: Timing parameters at 3.2GHz clock

B WORKLOADS
We use sixteen multi-programmed SPEC CPU2006 [8] workloads,
four multi-threaded benchmarks from the US Department of En-
ergy (DOE) provided ECP Proxy Applications [9] as well as the
BFS from Graph500 suite [14]. We selected SPEC benchmarks with
large memory footprints, at least twice the capacity of HBM. SPEC
benchmarks allow us to compare our work with other studies. We
profile benchmarks using PinPlay kit [10] to collect a representative
slice of 500M instructions from each of the applications. To make a
multi-programmed workload, we run a 16-core Ramulator simula-
tion where each core runs one of the SPEC traces to completion. We
either run 16 copies of the same benchmark on 16 cores (each such
workload is labeled by the benchmark name in our graphs) or run a
random mix of benchmarks on 16 cores (these workloads are labeled
as mix1 to mix6 and described in Table 3). The publicly released
multi-threaded HPC proxy benchmarks by the US Department of
Energy (DOE) that we used are- XSBench [26], LULESH [12],
CoMD [19] and miniFE [11]. We ran each HPC benchmark in a
16-thread setup and collected 500M instruction traces for each of the
threads using Pin tools [22]. By running traces of the 16 threads of a
HPC benchmark in Ramulator we obtain a multi-threaded workload
(each such workload is labeled with the name of the benchmark). The
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mix1 mix2 mix3 mix4 mix5 mix6
astar 2x 1x 1x
bzip2 1x 1x 2x
cactus 2x 2x 1x
dealII 3x 1x 1x
gcc 1x 2x 1x 3x
Gems 2x 2x 1x
lbm 2x 3x 1x 6x 1x
leslie 2x 1x
libq 2x 1x 3x 4x
mcf 3x 2x 1x 5x
milc 2x 2x 1x 2x
omnetpp 1x 3x
soplex 2x 3x 3x 5x
sphinx 1x 2x 3x

Table 3: SPEC multi-programmed mix workloads

Friendliness Benchmark
Very Friendly mcf, mix1, mix2, mix4,

mix5
Moderately Friendly lbm, omnetpp, astar

cactus, mix3, mix6
Least friendly or Unfriendly milc, Gems, zeusmp

xalancbmk,
Table 4: Migration Friendliness of Applications

memory footprint of the workloads range between 2GB to 11GB, en-
suring that the workloads fit in physical memory and do not require
access to secondary storage. They are large enough to cause migra-
tion but not unrealistically small. Table 4 shows the category of each
workload. Workloads under very friendly category indicates that
they benefit the most from page migration based on their behavior.
Similarly, moderately friendly represents that these workloads may
be take advantage of page migration minimally and least friendly
workloads doesn’t benefit from migration [13].


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 On-The-Fly Migration
	2.3 Motivation for Subpage Migration

	3 SubPage Migration
	4 Experiment Setup
	4.1 Simulation Infrastructure

	5 Results
	6 Conclusion
	References
	Appendices
	A On-The-Fly Migration
	A.1 User Transparent Page Migration
	A.2 Address Reconciliation

	B Workloads

