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Q-learning with Uniformly Bounded Variance
Adithya M. Devraj, and Sean P. Meyn, Fellow, IEEE

Abstract—Sample complexity bounds are a common
performance metric in the Reinforcement Learning literature.
In the discounted cost, infinite horizon setting, all of the
known bounds can be arbitrarily large, as the discount factor
approaches unity. These results seem to imply that a very large
number of samples is required to achieve an epsilon-optimal
policy. The objective of the present work is to introduce a
new class of algorithms that have sample complexity uniformly
bounded over all discount factors. One may argue that this
is impossible, due to a recent min-max lower bound. The
explanation is that these prior bounds concern value function
approximation and not policy approximation. We show that the
asymptotic covariance of the tabular Q-learning algorithm with
an optimized step-size sequence is a quadratic function of a
factor that goes to infinity, as discount factor approaches 1; an
essentially known result. The new relative Q-learning algorithm
proposed here is shown to have asymptotic covariance that is
uniformly bounded over all discount factors.

Index Terms—Reinforcement learning, Q-learning, stochastic
optimal control

I. INTRODUCTION

MANY Reinforcement Learning (RL) algorithms can be
cast as parameter estimation techniques, where the goal

is to recursively estimate the parameter vector θ∗ ∈ Rd that
directly, or indirectly yields an optimal decision making rule
within a parameterized family. In these algorithms, the update
equation for the d-dimensional parameter estimates {θn : n ≥
0} can be expressed in the general form

θn+1 = θn + αn+1[f(θn) + ∆n+1] , n ≥ 0 (1)

in which θ0 ∈ Rd is given, {αn} is a positive scalar gain
sequence (also known as learning rate), f : Rd → Rd is a
deterministic function, and {∆n} is a “noise” sequence.

The recursion (1) is an example of stochastic approximation
(SA), for which there is a vast research literature. Under
mild assumptions, the estimates converge to a limit satisfying
f(θ∗) = 0. Moreover, the best algorithms achieve the optimal
mean-square error (MSE) convergence rate:

E
[
‖θn − θ∗‖2

]
= O(1/n) (2)

It is known that TD- and Q-learning can be written in the
form (1) [1], [2], [3]. In these algorithms, {θn} represents the
sequence of parameter estimates that are used to approximate
a value function or Q-function.

It was first established in our work [4], [3] that the
convergence rate of the MSE of Watkins’ Q-learning (i.e., Q-
learning with a tabular basis) can be as slow as O(1/n2(1−γ)),
if the discount factor γ ∈ (0, 1) satisfies γ > 1

2 , and if the
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step-size αn is either of two standard forms (see discussion in
Section IV-A). It was also shown that the optimal convergence
rate (2) is obtained by using a step-size of the form αn = g/n,
where g is a scalar proportional to 1/(1−γ); this is consistent
with conclusions in more recent research [5], [6]. In the earlier
work [7], a sample path upper bound was obtained on the rate
of convergence that is roughly consistent with the mean-square
rate established for γ > 1

2 in [4], [3].
Since the publication of [7], many papers have appeared

with proposed improvements to the algorithm; often including
(non-asymptotic) finite-n bounds on the MSE (2). Ignoring
higher order terms, these bounds can be expressed in the
following general form [8], [5], [9], [6], [10]:

E
[
‖θn − θ∗‖2

]
≤ 1

(1− γ)p
· B
n

(3)

where p ≥ 2 is a scalar. The constant B is a function of the
total number of state-action pairs, the discount factor γ, and
the maximum per-time-step cost. Much of the literature has
worked towards minimizing p through a combination of hard
analysis and algorithm design.

It is widely observed that Q-learning algorithms can be
very slow to converge, especially when the discount factor
is close to 1; The bound in (3) offers an explanation for
this phenomenon. Quoting [8], a primary reason for slow
convergence is “the fact that the Bellman operator propagates
information throughout the whole space”, especially when
the discount factor is close to 1. We do not dispute these
explanations, but in this paper we show that the challenge
presented by large discounting is relatively minor. In order to
make this point clear we must take a step back and rethink
fundamentals: Why do we need to estimate the Q-function?

Letting Q∗(x, u) denote the optimal Q-function evaluated
at the state-action pair (x, u), the main reason for estimating
the Q-function is to obtain the optimal policy:

φ∗(x) := arg min
u

Q∗(x, u)

It is clear from the above definition that adding a constant to
Q∗ will not alter φ∗. This is a fortunate fact: the Q-function
can be decomposed as (see for example [11], [12], [13]):

Q∗(x, u) = Q̃∗(x, u) +
η∗

1− γ (4)

where the scalar η∗ denotes the optimal average cost, and
Q̃∗(x, u) is uniformly bounded in γ, x, and u.

The reason for slow performance of Q-learning when γ ≈ 1
is because of the high variance in the indirect estimate of the
large constant η∗/(1−γ). It is argued in Section V that if the
error in the constants is ignored, a far tamer bound is obtained:

E
[
‖θn − θ∗‖2

]
≤ 1

(1− ρ∗γ)p
· B
n

(5)
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where ρ∗ < 1, and 1 − ρ∗ is an upper bound on the spectral
gap of the transition matrix for the pair process (X,U) under
the optimal policy (details are in Section V-C).
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Fig. 1. Comparison of Q-learning and Relative Q-learning algorithms for the
stochastic shortest path problem of [4]. The relative Q-learning algorithm is
unaffected by large discounting.

The new relative Q-learning algorithm proposed here is
designed to achieve the upper bound (5). Unfortunately,
we have not yet obtained this explicit finite-n bound. We
have instead obtained formulae for the asymptotic covariance
that corresponds to each of the algorithms considered in
this paper (see (9)). Numerical results in Figure 1 confirms
the fast convergence of relative Q-learning in comparison
to the Q-learning algorithm. More details are contained in
Section VI-A.

The rest of the paper is organized as follows: The close
relationship between the asymptotic covariance and sample
complexity bounds is discussed in Section II-B, based on
the theoretical background in Section II-A. Section III
sets notation and provides background on MDPs, and
Section IV contains background on Q-learning (along
with new interpretations on the convergence rate of these
algorithms). Section V is devoted to the new relative Q-
learning algorithm. Section VI contains discussion of our
results, and directions for future research and conclusions are
contained in Section VII.

II. PRELIMINARIES

A. Stochastic Approximation & Reinforcement Learning

Consider a parameterized family of Rd-valued functions
{f(θ) : θ ∈ Rd} that can be expressed as an expectation,

f(θ) := E
[
f(θ,Φ)

]
, θ ∈ Rd , (6)

with Φ ∈ Rm a random vector, f : Rd × Rm → Rd, and the
expectation is with respect to the distribution of the random
vector Φ. It is assumed throughout that there exists a unique
vector θ∗ ∈ Rd satisfying f(θ∗) = 0. Under this assumption,
the goal of SA is to estimate θ∗.

The sequence of estimates obtained from the SA algorithm
are defined as follows:

θn+1 = θn + αn+1f(θn ,Φn+1) (7)

where θ0 ∈ Rd is given, Φn has the same distribution as Φ for
each n ≥ 0 (or its distribution converges to that of Φ as n→
∞), and {αn} is a non-negative scalar step-size sequence.
We assume αn = g/n for some scalar g > 0, and special

cases in applications to Q-learning are discussed separately in
Section IV.

Asymptotic statistical theory for SA is extremely rich. Large
Deviations or Central Limit Theorem (CLT) limits hold under
very general assumptions for both SA and related Monte-Carlo
techniques [14], [15], [16], [17], [18].

The CLT will guide design and analysis of algorithms in
this paper. For a typical SA algorithm, this takes the following
form: Denote the error sequence by

θ̃n := θn − θ∗ (8)

Under general conditions, the CLT states that the scaled
sequence {√nθ̃n : n ≥ 0} converges in distribution to
a multivariate Gaussian N (0,Σθ). Typically, the covariance
matrix of this scaled sequence is also convergent:

Σθ = lim
n→∞

nE[θ̃nθ̃
ᵀ
n] (9)

The limit Σθ is known as the asymptotic covariance. Provided
it is finite, (9) implies (2), which is the fastest possible rate
[14], [15], [17], [19], [20]. For Q-learning, this also implies a
bound of the form (3), but for n “large enough”.

An asymptotic bound such as (9) may not be satisfying for
RL practitioners, given the success of finite-time performance
bounds in prior research. There are however good reasons to
apply this asymptotic theory in algorithm design:
(i) The asymptotic covariance Σθ has a simple representation
as the solution to a Lyapunov equation.

(ii) The MSE convergence is refined in [21] for linear SA
algorithms (see Section II-C): For some δ > 0,

Σn = n−1Σθ +O(n−1−δ) , where, Σn := E[θ̃nθ̃
ᵀ
n] (10)

See [22] for general results that may be applied to many
nonlinear algorithms found in RL.

(iii) The asymptotic covariance lies beneath the surface of
the theory of finite-time error bounds. Here is what can be
expected from the theory of large deviations [23], [24], for
which the rate function is denoted

Ii(ε) :=− lim
n→∞

1

n
logP{|θn(i)− θ∗(i)| > ε} (11)

The second order Taylor series approximation holds under
general conditions:

Ii(ε) =
1

2σ2
θ(i)

ε2 +O(ε3) (12)

where σ2
θ(i) = Σθ(i, i), from which we obtain

P{|θn(i)− θ∗(i)| > ε}

= exp
{
− ε2n

2σ2
θ(i)

+O(nε3) + o(n)
} (13)

where o(n)/n → 0 as n → ∞, and O(nε3)/n is bounded
in n ≥ 1, and absolutely bounded by a constant times ε3

for small ε > 0.
(iv) The Central Limit Theorem (CLT) holds under general
assumptions: √

nθ̃n
d−→W (14)
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where the convergence is in distribution, and where W is
Gaussian N (0,Σθ) [15], [14]; a version of the Law of the
Iterated Logarithm (LIL) also holds [25]:

lim
n→∞

√
n

2 log log n
θ̃n ∈ C

where C = {v ∈ Rd : vᵀΣ−1
θ v ≤ 1}. An immediate

corollary is [26]:

lim sup
n→∞

√
n

2 log log n
‖θ̃n‖ =

√
λmax

(
Σθ
)

(15)

The asymptotic theory provides insight into the slow
convergence of Watkins’ Q-learning algorithm, and motivates
better algorithms such as Zap Q-learning [3], and the relative
Q-learning algorithm introduced in Section V.

B. Sample complexity bounds

A sample complexity bound for an algorithm is defined
based on the number of iterations required to obtain a desired
probability of error. Consider for concreteness a single entry
i of a parameter estimate in SA: for given δ, ε > 0, we seek
an integer ni(ε, δ) such that

P{|θn(i)− θ∗(i)| > ε} ≤ δ , for all n ≥ ni(ε, δ). (16)

Such bounds are a foundation of statistical learning theory
[27]. Below are three techniques to construct n, beginning
with the most common approach:

1. LDP theory The inequalities of Hoeffding and Bennett
are finite-n variants of (11):

P{|θn(i)− θ∗(i)| > ε} ≤ b̄ exp(−nĪi(ε)) , n ≥ 1 (17)

where b̄ is a constant and Īi(ε) > 0 for ε > 0. A sample
complexity bound then follows easily, with

ni(ε, δ) =
1

Īi(ε)

[
log(b̄) + log(δ−1)] (18)

See for example [28], [29], [30], [31], and [32], [33] for
general theory in a Markov setting.

2. MSE Given a true finite-n version of (10):

E[(θn(i)− θ∗(i))2] ≤ σ2(i)n−1 (19)

A sample complexity bound follows from Chebyshev’s
inequality, using

ni(ε, δ) =
σ2(i)

ε2
δ−1 (20)

Finite-n bounds on mean-square error are contained in [6],
[34], [21], [35], and the mean `∞ bound in [5] implies a
similar sample complexity bound.

3. CLT A finite-n version of the CLT is the Berry-Esseen
bound: for all z > 0,∣∣∣%i(z, n)− 2F̄ (z)

∣∣∣ ≤ Ki√
n

(21)

where %i(z, n) is the error probability with CLT scaling:

%i(z, n) = P
{√

n|θn(i)− θ∗(i)| > zσθ(i)
}

and F̄ is the complementary CDF for a standard Normal r.v..
For i.i.d. sequences, a simple expression for Ki is available;
bounds for Markov sequences is less complete [36], [37].

For any z > 0 and δ > 2F̄ (z), denote

ni(ε, δ, z) = max
{z2

ε2
σ2
θ(i) ,

1

4

K2
i

[δ − 2F̄ (z)]2

}
(22)

The bound (21) implies a family of sample complexity bounds
that can be optimized over z: for n ≥ ni(ε, δ, z),

P{|θn(i)− θ∗(i)| > ε} ≤ 2F̄ (z) + 2
Ki√
n
≤ δ (23)

The asymptotic covariance is central to each approach:
1. If the the limit (11) and the bound (17) each hold, then
the rate function must dominate: Īi(ε) ≤ Ii(ε). To maximize
this upper bound we must minimize σ2

θ(i) (recall (12), and
remember we are typically interested in small ε > 0).
2. Similarly, the mean-square error bound (19) combined with
the approximation (10) implies σ2(i) ≥ σ2

θ(i).
3. The bound (23) requires σ2

θ(i) through the definition (22).
This theory provides strong motivation for considering the

asymptotic covariance Σθ in algorithm design.
Based on the above discussion, we conjecture that

(i) The sample-path complexity bound (18) with Ī quadratic
is possible for Watkins’ algorithm, provided we use αn =
[1 + (1− γ)n]−1 in the right hand side of the update
equation (1). This step-size was proposed independently in
[5], [38].

(ii) With relative Q-learning, we can obtain similar sample
complexity result with αn = [1 + (1− ρ∗)n]−1, which is
independent of γ.

However, for more complex algorithms we do not expect to
obtain tight bounds, with Īi(ε) ≈ Ii(ε). For this reason we
advocate the CLT for algorithm design and evaluation, even
without a sharp Berry-Esseen bound. We frequently find that
the CLT is highly predictive of parameter error, where the
covariance σ2

θ(i) is estimated via independent runs. Fig. 2
shows results from one experiment using the relative Q-
learning algorithm: the histograms were obtained based on 103

independent runs, with time horizons ranging from N = 103

to 106. The CLT approximation is good even for the shortest
run, and nearly perfect for N ≥ 104.

C. Explicit Mean Square Error bounds for SA

We first present a special case of the main result of [21] for
linear SA algorithms, and then an extension to nonlinear SA.
These results are later recalled in applications to Q-learning:
Even in the tabular setting (see Section IV-A for definitions),
the Q-learning algorithm is a nonlinear SA algorithm, due to
a minimization that appears in the recursion.

The analysis of the SA recursion (7) begins with the
transformation to (1), with ∆n+1 = f(θn ,Φn+1) − f(θn).
The difference f(θ ,Φn+1) − f(θ) has zero mean for any
(deterministic) θ ∈ Rd when Φn+1 has the same distribution as
Φ (recall (6)). Though the results of [21] extend to Markovian
noise, for the purposes of this paper, we assume that {∆n} is
a martingale difference sequence:
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Fig. 2. Histogram of {
√
Nθ̃N (i)} for 103 independent runs. The CLT approximation is good even for the shortest run, and nearly perfect for N ≥ 104.

(A1) The sequence {∆n : n ≥ 1} is a martingale difference
sequence. Moreover, for some σ̄2

∆ < ∞ and any initial
condition θ0 ∈ Rd,

E[‖∆n+1‖2 | ∆1, . . . ,∆n] ≤ σ̄2
∆(1 + ‖θn‖2), n ≥ 0

We also assume a scalar, diminishing step-size sequence:
(A2) αn = g/n, for some scalar g > 0, and all n ≥ 1

With Σn defined in (10), denote

σ2
n = trace (Σn) = E[‖θ̃n‖2]

We say σ2
n → 0 at rate 1/nµ (with µ > 0), if for each ε > 0,

lim
n→∞

nµ−εσ2
n = 0 and lim

n→∞
nµ+εσ2

n =∞ (24)

It is known that the maximal value is µ = 1.
The analysis in [21] is based on a “linearized”

approximation of the SA recursion (7):

θn+1 = θn + αn+1

[
An+1θn − bn+1

]
(25)

where, An+1 = A(Φn+1) is a d × d matrix, and bn+1 =
b(Φn+1) is d× 1. Let A and b denote the respective means:

A = E[A(Φ)] , b = E[b(Φ)] (26)

where the expectations are in steady state. We assume that
the d × d matrix A is Hurwitz, a necessary condition for
convergence of (25):
(A3) The d× d matrix A is Hurwitz. ut

(A3) implies that A is invertible, and θ∗ = A−1b.
The recursion (25) can be rewritten in the form (1):

θn+1 = θn + αn+1

[
Aθn − b+ ∆n+1

]
(27)

in which {∆n} is the noise sequence:

∆n+1 = An+1θ
∗ − bn+1 + Ãn+1θ̃n (28)

with Ãn+1 = An+1 − A. The parameter error sequence also
evolves as a simple linear recursion:

θ̃n+1 = θ̃n + αn+1[Aθ̃n + ∆n+1] (29)

The asymptotic covariance (9) exists under special
conditions (see Thm. II.1), and under these conditions it
satisfies the Lyapunov equation

(gA+ 1
2I)Σθ + Σθ(gA+ 1

2I)ᵀ + g2Σ∆ = 0 (30)

where the “noise covariance matrix” Σ∆ is defined to be

Σ∆ = E
[(
An+1θ

∗ − bn+1

)(
An+1θ

∗ − bn+1

)ᵀ
] (31)

Thm. II.1 is a special case of the main result of [21] (which
does not impose the martingale assumption (A1)).

Theorem II.1. Suppose (A1) – (A3) hold. Then the following
hold for the linear recursion (29), for each initial (Φ0, θ̃0):
(i) If Real(λ) < − 1

2 for every eigenvalue λ of gA, then

Σn = n−1Σθ +O(n−1−δ)

where δ = δ(A,Σ∆) > 0, and Σθ ≥ 0 is the solution to the
Lyapunov equation (30). Consequently, E[‖θ̃n‖2] converges
to zero at rate 1/n.

(ii) Suppose there is an eigenvalue λ of gA that satisfies

−%0 = Real(λ) > − 1
2

Let ν 6= 0 denote a corresponding left eigenvector, and
suppose that Σ∆ν 6= 0. Then, E[|νᵀθ̃n|2] converges to 0 at
a rate 1/n2%0 . Consequently, E[‖θ̃n‖2] converges to zero at
rate no faster than 1/n2%0 . ut

Prop. II.2 extends the conclusions of Thm. II.1 to nonlinear
SA (1). The proof is contained in Appendix A.

Proposition II.2. Consider the general SA algorithm (1).
Suppose (A1) – (A3) hold with A := ∂θf(θ)|θ=θ∗ , and that
f has the form

f(θ) = −θ + F̄ (θ) , θ ∈ Rd

with F̄ Lipschitz continuous, a strict contraction, and C1 in
a neighborhood of the origin. Then,
(i) If Real(λ) < − 1

2 for every eigenvalue λ of gA, then

(a) The CLT holds for {Wn =
√
nθ̃n}, with asymptotic

covariance Σθ ≥ 0 the solution to the Lyapunov equation
(30).

(b) Weak convergence goes beyond bounded and
continuous functions: for any measurable function
g : Rd → R with at most quadratic growth we have

lim
n→∞

E[g(Wn)] = E[g(W∞)] , W∞ ∼ N(0,Σθ)

In particular, E[‖θ̃n‖2] converges to zero at rate 1/n, and

lim
n→∞

nΣn = Σθ

(ii) Suppose there is an eigenvalue λ of gA that satisfies

−%0 = Real(λ) > − 1
2

Let ν 6= 0 denote a corresponding left eigenvector, and
suppose that Σ∆ν 6= 0. Then, E[|νᵀθ̃n|2] converges to 0 at
a rate 1/n2%0 . Consequently, E[‖θ̃n‖2] converges to zero at
rate no faster than 1/n2%0 .

It seems likely that the finite-n bound in Thm. II.1 also
holds for the nonlinear SA algorithm. We believe that coupling
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techniques of [7] is one way to establish such results for Q-
learning. More importantly, even though the finite-n result
remains a conjecture, we have already highlighted how the
CLT is often predictive of finite-n performance.

III. MARKOV DECISION PROCESSES FORMULATION

Consider a Markov Decision Processes (MDP) model with
state space X, action space U, cost function c : X×U→ R, and
discount factor γ ∈ (0, 1). It is assumed throughout that the
state and action spaces are finite: denote ` = |X| and `u = |U|.
In the following, the terms ‘action’, ‘control’, and ‘input’ are
used interchangeably.

Along with the state-action process (X,U) is an i.i.d.
sequence I = {I1, I2, . . . } used to model a randomized policy.
It is assumed without loss of generality that each In takes
values in a finite set. An input sequence U is called non-
anticipative if

Un = zn(X0, U0, I1 . . . , Un−1, Xn, In) , n ≥ 0

where {zn} is a sequence of functions.
Under the assumption that the state and action spaces are

finite, it follows that there are a finite number of deterministic
stationary policies: {φ(i) : 1 ≤ i ≤ `φ}, where each φ(i) : X→
U, and `φ ≤ (`u)`. A randomized stationary policy is defined
by a probability mass function (pmf) µ on the {1, 2, . . . , `φ}×
X, such that

Un =

`φ∑
k=1

ιn(k)φ(k)(Xn) (32)

with µ(k, x) = P{ιn(k) = 1 | X0 , . . . , Xn−1, Xn = x} for
each n ≥ 0, 1 ≤ k ≤ `φ, and x ∈ X. It is assumed that ιn is
a fixed function of (In, Xn) for each n.

For each u ∈ U, the controlled transition matrix Pu acts on
functions V : X→ R via

PuV (x) :=
∑
x′∈X

Pu(x, x′)V (x′)

= E[V (Xn+1) |Xn=x , Un=u ;Xk, Ik, Uk :k < n]

where the second equality holds for any non-anticipative input
sequence U . For any deterministic stationary policy φ, let
Sφ denote the substitution operator, defined for any function
q : X× U→ R by

Sφq (x) := q(x, φ(x))

If the policy φ is randomized, of the form (32), we then define

Sφq (x) =
∑
k

µ(k)q(x, φ(k)(x))

With P viewed as a single matrix with ` · `u rows and `
columns, and Sφ viewed as a matrix with ` rows and ` · `u
columns, the following interpretations hold:

Lemma III.1. Suppose that U is defined using a stationary
policy φ (possibly randomized). Then, both X and the pair
process (X,U) are Markovian, and
(i) Pφ := SφP is the transition matrix for X .
(ii) PSφ is the transition matrix for (X,U). ut

A. Q-function and the Bellman Equation

For any (possibly randomized) stationary policy φ, we
consider two value functions

Vφ(x) :=
∞∑
n=0

(γPφ)nSφc (x) (33a)

Qφ(x, u) :=
∞∑
n=0

(γPSφ)nc (x, u) (33b)

which are related via

Qφ(x, u) = c(x, u) + γPuVφ (x) (34)

The function Vφ : X→ R in (33a) is the value function that
corresponds to the policy φ (with the corresponding transition
probability matrix Pφ), and cost function Sφc, that appears in
TD-learning algorithms [1], [39]. The function Qφ : X×U→
R is the fixed-policy Q-function considered in the SARSA
algorithm [40], [41], [42].

The minimal (optimal) value function V ∗(x):=minφ Vφ(x)
is the unique solution to the Bellman equation:

V ∗(x) = min
u

{
c(x, u) + γ

∑
x′∈X

Pu(x, x′)V ∗(x′)

}
(35)

Any minimizer defines a deterministic stationary policy
φ∗ : X→ U that is optimal over all input sequences [13]:

φ∗(x) ∈ arg min
u

{
c(x, u) + γ

∑
x′∈X

Pu(x, x′)V ∗(x′)

}
(36)

The Q-function associated with V ∗ is given by (34) with
φ=φ∗, which is precisely the term within the brackets in (35):

Q∗(x, u) := c(x, u) + γPuV
∗ (x)

The Bellman equation (35) implies a similar fixed point
equation for the Q-function:

Q∗(x, u) = c(x, u) + γPuQ
∗(x) (37)

in which Q(x) := minuQ(x, u) for any Q : X× U→ R.
For any function q : X× U→ R, let φq : X→ U denote an

associated policy that satisfies

φq(x) ∈ arg min
u

q(x, u) (38)

It is assumed to be specified uniquely as follows:

φq := φ(κ) such that

κ = min{i : φ(i)(x)∈arg min
u

q(x, u), for all x ∈ X} (39)

Using the above notations, and the definitions in Lemma III.1,
the fixed point equation (37) can be rewritten as

Q∗(x, u)=c+γPSφ∗Q
∗(x, u), where φ∗=φq , q=Q∗ (40)
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IV. Q-LEARNING

The goal in Q-learning is to approximately solve the fixed
point equation (37), without assuming knowledge of the
controlled transition matrix. We restrict the discussion here
to the case of linear parameterization for the Q-function:
Qθ(x, u) = θᵀψ(x, u), where θ ∈ Rd denotes the parameter
vector, and ψ : X × U → Rd denotes the vector of basis
functions.

For a given parameter vector θ ∈ Rd, let Bθ : X × U → R
denote the corresponding Bellman error:

Bθ(x, u) := c(x, u) + γPuQ
θ(x)−Qθ(x, u) (41)

A Galerkin approach to approximating the optimal Q-function
Q∗ is formulated as follows: Obtain a non-anticipative input
sequence U (using a randomized stationary policy φ), and a
d-dimensional stationary stochastic process ζ that is adapted
to (X,U). The Galerkin relaxation of the fixed point equation
(37) is the root finding problem: Find θ∗ such that,

f i(θ
∗) := E

[
B̃θ∗n+1ζn(i)

]
= 0 , 1 ≤ i ≤ d (42)

where, for each θ ∈ Rd, B̃θn+1 is the “temporal difference”

B̃θn+1 := c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un) , (43)

and the expectation in (42) is with respect to the steady state
distribution of (X,U , ζ). Equation (42) is often called the
projected Bellman equation. It is a special case of the general
root-finding problem that is the focus of SA algorithms.

The following Q(0) algorithm is the SA algorithm (7),
applied to estimate θ∗ that solves (42): For initialization
θ0 ∈ Rd, define the sequence of estimates recursively:

θn+1 = θn + αn+1ζnB̃θnn+1 , ζn = ψ(Xn, Un) (44)

The choice for the sequence of eligibility vectors {ζn} in (44)
is inspired by the TD(0) algorithm [43], [1].

For a sequence of d × d matrices G = {Gn}, the matrix-
gain Q(0) algorithm is described as follows: For initialization
θ0 ∈ Rd, the sequence of estimates are defined recursively:

θn+1 = θn + αn+1Gn+1ψ(Xn, Un)B̃θnn+1 (45)

A common choice is

Gn =

(
1

n

n∑
k=1

ψ(Xk, Uk)ψᵀ(Xk, Uk)

)−1

(46)

The success of these algorithms has been demonstrated in
a few restricted settings, such as optimal stopping [44], [45],
[46], deterministic optimal control [47], and the tabular setting
that is imposed throughout the remainder of the paper.

We assume a tabular setting throughout this work.

A. Tabular Q-learning

The basic Q-learning algorithm of Watkins [48], [49] (also
known as “tabular” Q-learning) is a particular instance of the
Galerkin approach (44). The basis functions are taken to be
indicator functions:

ψi(x, u) = I{(x, u) = (xi, ui)} , 1 ≤ i ≤ d (47)

where {(xk, uk) : 1 ≤ k ≤ d} is an enumeration of all state-
input pairs, with d = ` · `u. The goal of this approach is
to exactly compute the function Q∗. Letting $ denote the
invariant pmf of the Markov chain (X,U), and substituting
ζn ≡ ψ(Xn, Un) with ψ defined in (47), the objective (42)
can be rewritten as follows: Find θ∗ ∈ Rd such that, for each
1 ≤ i ≤ d,

0 = E
[
B̃θ∗n+1ψi(Xn, Un)

]
(48)

=
[
c(xi, ui) + γE

[
Qθ
∗
(Xn+1)|Xn = xi , Un = ui

]
(49)

−Qθ∗(xi, ui)
]
$(xi, ui)

where the expectation in (48) is in steady state. The conditional
expectation in (49) is

E
[
Qθ
∗
(Xn+1)|Xn = xi , Un = ui

]
= PuiQ

θ∗(xi)

Consequently, (49) can be rewritten as

0 = Bθ∗(xi, ui)$(xi, ui) (50)

If $(xi, ui) > 0 for each 1 ≤ i ≤ d, then the function Qθ
∗

that solves (50) is identical to the optimal Q-function in (37).
There are three flavors of Watkins’ Q-learning that are

common in the literature. We discuss each of them below.
Asynchronous Q-learning: The SA algorithm applied to

solve (48) coincides with the most basic version of Watkins’
Q-learning algorithm: For initialization θ0 ∈ Rd, define the
sequence of estimates {θn : n ≥ 0} recursively:

θn+1 = θn + αn+1B̃θnn+1ψ(Xn, Un) (51)

Algorithm (51) coincides with the Q(0) algorithm (44), with
ψ defined in (47). Based on this choice of basis functions, a
single entry of θ is updated at each iteration, corresponding
to the state-input pair (Xn, Un) observed (hence the term
“asynchronous”). The parameter θ can be identified with the
function Qθ in this tabular setting. This equivalence justifies a
slight abuse of notation: replace Qθ by Q and set B̃Qn+1 = B̃θn+1

(defined in (43)), resulting in a more familiar form of (51):

Qn+1(Xn, Un) = Qn(Xn, Un) + αn+1B̃Q
n

n+1 (52)

and Qn+1(x, u) = Qn(x, u) if (x, u) 6= (Xn, Un).
With αn = 1/n, the ODE approximation of (51) takes the

form (see [2] for details):

d
dtqt(x, u) = $(x, u)

[
c(x, u) + γPuqt (x)− qt(x, u)

]
(53)

in which q
t
(x) = minu qt(x, u) as defined below (37). We

recall in Section IV-B conditions under which this ODE is
stable, and explain why we cannot expect a finite asymptotic
covariance in typical settings.

A second and perhaps more popular “Q-learning flavor” is
defined using a particular “state-action dependent” step-size
[7], [31], [38]. For each (x, u), denote αn(x, u) = 0 if the
pair (x, u) has not been visited up until time n−1. Otherwise,

αn(x, u)=
1

n(x, u)
, n(x, u) =

n−1∑
j=0

I{Xj = x, Uj = u} (54)
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The ODE approximation of (52) simplifies with (54):
d
dtqt(x, u) = c(x, u) + γPuqt (x)− qt(x, u) (55)

The asynchronous variant of Watkins’ Q-learning algorithm
(51) with step-size (54) can be viewed as an instance of G-
Q(0) algorithm defined in (45), with the matrix gain sequence
(46), and step-size αn = 1/n. On substituting the Watkins’
basis defined in (47), we find that this matrix is diagonal:
Gn = Π̂−1

n , where

Π̂n(i, i) =
1

n

n∑
k=1

I{Xk = xi, Uk = ui} , 1 ≤ i ≤ d

By the Law of Large Numbers, we have

lim
n→∞

Gn = lim
n→∞

Π̂−1
n = Π−1 (56)

where Π is a diagonal matrix with entries Π(i, i) = $(xi, ui).
It is easy to see why the ODE approximation (53) simplifies
to (55) with this matrix gain.

Synchronous Q-learning: In this final flavor, each entry
of the Q-function approximation is updated in each iteration.
It is popular in the literature because the analysis is greatly
simplified.

The algorithm requires a model that provides the next state
of the Markov chain, conditioned on any given current state-
action pair: let {Xi

n : n ≥ 1, 1 ≤ i ≤ d} denote a
collection of mutually independent random variables taking
values in X. Assume moreover that for each i, the sequence
{Xi

n : n ≥ 1} is i.i.d. with common distribution Pui(x
i, · ).

The synchronous Q-learning algorithm is then obtained as
follows: For initialization θ0 ∈ Rd, define the sequence of
estimates {θn : n ≥ 0} recursively:

θn+1 = θn + αn+1

d∑
i=1

[
c(xi, ui) + γQθn(Xi

n+1)

−Qθn(xi, ui)
]
ψ(xi , ui)

(57)

Once again, based on the choice of basis functions (47),
and observing that θ is identified with the estimate Qθ, an
equivalent form of the update rule (57) is

Qn+1(xi, ui) = Qn(xi, ui) + αn+1

[
c(xi, ui)

+ γQn(Xi
n+1)−Qn(xi, ui)

]
, 1 ≤ i ≤ d (58)

Using the step-size αn = 1/n we obtain the simple ODE
approximation (55).

B. Convergence and Rate of Convergence

Convergence of the tabular Q-learning algorithms can be
established under the following assumptions:

(Q1) The input U is defined by a randomized stationary
policy of the form (32). The joint process (X,U) is an
irreducible Markov chain. That is, it has a unique invariant
pmf $ satisfying $(x, u) > 0 for each x, u.

(Q2) The optimal policy φ∗ is unique. ut
Both ODEs (53) and (55) are stable under

assumption (Q1) [50], which then (based on the results

of [2]) implies that θ converges to Q∗ a.s.. To obtain rates of
convergence requires an examination of the linearization of
the ODEs at their equilibrium.

Linearization is justified under Assumption (Q2), which
implies the existence of ε > 0 such that

φ∗(x) = arg min
u∈U

Qθ(x, u) , if ‖Qθ −Q∗‖ < ε (59)

Lemma IV.1. Under Assumptions (Q1) and (Q2) the following
approximations hold
(i) When ‖qt −Q∗‖ < ε, the ODE (53) reduces to

d
dtqt = −Π[I − γPSφ∗ ]qt − b

where Π is defined below (56), and b(x, u) =
−$(x, u)c(x, u), expressed as a d× 1 column vector.

(ii) When ‖qt −Q∗‖ < ε, the ODE (55) reduces to
d
dtqt = −[I − γPSφ∗ ]qt − b

where b(x, u) = −c(x, u).

The proof is contained in Appendix B.
The definition of the linearization matrix A in (26) is

extended to non-linear functions as follows [4], [51]:

A = ∂θf(θ)
∣∣
θ=θ∗

The crucial take-away from Lemma IV.1 is the linearization
matrix that corresponds to each tabular Q-learning algorithms:

A = −Π[I − γPSφ∗ ] in case (i) of Lemma IV.1 (60a)

A = −[I − γPSφ∗ ] in case (ii) of Lemma IV.1 (60b)

Since γ < 1, and PSφ∗ is a transition matrix of an irreducible
Markov chain (see Lemma III.1), it follows that both matrices
are Hurwitz.

We consider next conditions under which the asymptotic
covariance for Q-learning is not finite. The noise covariance
matrix Σ∆ defined in (31) is diagonal in all three flavors of
Q-learning discussed in Section IV-A. For the asynchronous Q-
learning algorithm (52) with step-size (54), or the synchronous
Q-learning algorithm (58), the diagonal elements of Σ∆ are
given by Σ

s(i,i)
∆ =

γ2E
[(
Q∗(Xn+1)−PuiQ∗(xi)

)2∣∣∣Xn=xi, Un=ui
]

=γ2E
[(
V ∗(Xn+1)−PuiV ∗(xi)

)2∣∣∣(Xn = xi,Un = ui)
]

(61)

The noise covariance for asynchronous Q-learning with step-
size αn=1/n is Σa∆ =ΠΣs∆Π, with Π defined below (56).

Theorem IV.2. Suppose that assumptions (Q1) and (Q2) hold,
and αn ≡ 1/n. Then, the sequence of parameters {θn}
obtained using the asynchronous Q-learning algorithm (51)
converges to Q∗ a.s.. Suppose moreover that the conditional
variance of V ∗(Xn) is positive:∑

x,x′,u

$(x, u)Pu(x, x′)[V ∗(x′)− PuV ∗ (x)]2 > 0 (62)

and (1− γ) max
x,u

$(x, u) < 1
2 (63)
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Then,
(i) The asymptotic covariance of the algorithm is infinite:

lim
n→∞

nE[‖θn − θ∗‖2] =∞

(ii) E[‖θn− θ∗‖2] converges to zero at a rate no faster than
1/n2(1−γ). ut

The inequality (63) is satisfied for γ ≥ 1
2 .

Thm. IV.2 explains why the Q-learning algorithm can be
terribly slow: If the discount factor is close to 1, which is
typical in many applications, using a step-size of the form
αn = 1/n results in a MSE convergence rate that is much
slower than the optimal rate 1/n.

Similar conclusions hold for the other flavors of tabular
Q-learning, for which the algorithm admits the ODE
approximation (55). Based on Lemma IV.1, the linearization
matrix for these algorithms is defined in (60b). This poses
problems when γ > 1

2 , but for these algorithms there is a
simple remedy:

Theorem IV.3. For asynchronous Q-learning with the step-
size rule (54), or synchronous Q-learning with step-size αn =
1/n, the matrix shown in (60b) is equal to the linearization
matrix A = ∂θf(θ)

∣∣
θ=θ∗

. It has one eigenvalue λ1 = −(1 −
γ), and Re(λ(A)) < −(1 − γ) for every other eigenvalue.
Consequently,
(i) Subject to (62), the asymptotic covariance is not finite
whenever γ > 1

2 .
(ii) Suppose that the step-sizes are scaled: use αn(x, u) =
[(1 − γ)n(x, u)]−1 for asynchronous Q-learning, or αn =
[(1 − γ)n]−1 for synchronous Q-learning. Then, the
eigenvalue test passes: for each eigenvalue λ = λ(A),

Re(λ) = −(1− γ)−1Re
(
λ([I − γPSφ∗ ])

)
≤ −1

The resulting asymptotic covariance is obtained as a
solution to the Lyapunov equation (30), with g = (1−γ)−1,
and Σ∆ = Σs∆ defined in (61). ut

The step-size rule αn = [(1−γ)n]−1 is equivalent to αn =
[1 + (1 − γ)n]−1 that appears in [5], in the sense that each
algorithm will share the same asymptotic covariance.

Overview of proofs: We begin with Thm. IV.2. The proof
of convergence can be found in [48], [52], [2]. The proof of
infinite asymptotic covariance is based on an application of
Prop. II.2. A brief overview follows.

To establish the slow convergence rate, an eigenvector
for A (defined in (60a)) can be constructed with strictly
positive entries, and with real part of the corresponding
eigenvalue satisfying Re(λ) ≥ −1/2 (see Appendix A.2 of
[4]). Interpreted as a function v : X×U→ C, this eigenvector
satisfies v†Σ∆v =

γ2
∑
x,u,x′

$(x, u)|v(x, u)|2Pu(x, x′)[V ∗(x′)−PuV ∗(x)]2 (64)

where Σ∆ is the noise covariance matrix (recall (61)), and
v† denotes complex-conjugate transpose. Assumption (62)
ensures that the right hand side of (64) is strictly positive,
as required in part (ii) of Prop. II.2.

Thm. IV.3 is based on the simple structure of the eigenvalues
of the linearization matrix A = −[I − γPSφ∗ ] defined in
(60b). Because PSφ∗ is the transition matrix for an irreducible
Markov chain, it follows that all of its eigenvalues are in the
closed unit disk in the complex plane, with a single eigenvalue
at λ = 1. Consequently, A has a single eigenvalue at λ =
−(1−γ), and Re(λ(A)) < −(1−γ) for all other eigenvalues.
An application of Prop. II.2 then implies both (i) and (ii) of
the theorem. ut

Theorems IV.2 and IV.3 motivate the introduction of new
algorithms whose performance does not degrade with large γ.

V. RELATIVE Q-LEARNING

The following relative Bellman equation was inspired by
the decomposition (4):

H∗(x, u) = c(x, u) + γPuH
∗(x)− δ〈µ ,H∗〉 (65)

where δ > 0 is a positive scalar, µ : X× U→ [0, 1] is a pmf
(both design choices), and 〈µ ,H∗〉 =

∑
x ,u µ(x, u)H∗(x, u).

For example, we may choose µ concentrated at some fixed
pair (x• , u•), so that 〈µ,H〉 = H(x•, u•) for any H .

With γ = 1, the fixed point equation (65) is very similar
to the fixed point equation that appears in the average cost
Q-learning formulation of [53], though the motivations are
different: the prior work is devoted to Q-learning algorithm
for the average cost criterion, while the present paper concerns
reliable algorithms in the discounted cost setting. Motivation
for the relative Q-function is similar to the introduction of
normalization to define the advantage function of RL [54].

Define H̃∗(x, u) := Q∗(x, u) − 〈µ ,Q∗〉, which by (4) can
be expressed

H̃∗(x, u) = Q̃∗(x, u)− 〈µ , Q̃∗〉

It follows that H̃∗ is uniformly bounded in γ, x, and u [11],
[13]. The relationship (i) in Prop. V.1 is immediate from the
definitions. Part (ii) implies that H∗ is uniformly bounded over
γ ∈ [0, 1). Observe that (66) implies that Q∗ can be recovered
from H∗ and µ.

Proposition V.1. Under (Q1)–(Q2), the solution H∗ to (65)
is unique, and satisfies:
(i) H∗(x, u) = Q∗(x, u)− k, with

k =
δ

1 + δ − γ 〈µ ,Q
∗〉 =

δ

1− γ 〈µ ,H
∗〉 (66)

(ii) H∗(x, u) = H̃∗(x, u) + η∗/δ + o(1), where o(1) → 0
as γ ↑ 1.

ut

Proof. The proof of (i) follows from (65) and (37). This
further implies

H∗(x, u) = Q∗(x, u)−
(

1− 1− γ
1 + δ − γ

)
〈µ ,Q∗〉

= H̃∗(x, u) +
1

1 + δ − γ (1− γ)〈µ ,Q∗〉
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This concludes the proof of (ii), since (1−γ)〈µ ,Q∗〉 → η∗ as
γ ↑ 1; this well known fact follows from (4) (see also [11]).

ut

The objective in relative Q-learning is to estimate H∗. Since
Q∗ and H∗ differ only by a constant, the policy φ∗ defined in
(40) satisfies φ∗ = φq , with q = H∗ (see (38)). It is therefore
irrelevant whether we estimate Q∗ or H∗, if we are ultimately
interested only in the optimal policy.

We conjecture that estimating H∗ results in finite-n error
bounds of the form (5), which is uniformly bounded for all
γ < 1 (in sharp contrast to finite-n bounds for estimating Q∗—
recall (3)). We establish here that the asymptotic covariance
is uniformly bounded in γ under the right choices for δ and
the step-size.

A. Relative Q-learning Algorithm

Consider a linear parameterization for the relative Q-
function: Hθ(x, u) = θᵀψ(x, u), where θ ∈ Rd denotes the
parameter vector, and ψ : X × U → Rd denotes the vector of
basis functions. We restrict the discussion here to the tabular
case, where the basis functions {ψi : 1 ≤ i ≤ d} are the
indicator functions defined in (47).

The goal in tabular relative Q-learning is to find θ∗ such
that

f(θ∗) := E
[{
c(Xn, Un) + γHθ∗(Xn+1)− δ〈µ ,Hθ∗〉
−Hθ∗(Xn, Un)

}
ψ(Xn, Un)

]
= 0

(67)

where U is a non-anticipative input sequence (obtained using
a randomized stationary policy φ), Hθ(x) = minuH

θ(x, u),
and the expectation is with respect to the steady state
distribution of the Markov chain (X,U). With the basis
functions chosen to be indicator functions (47), interpretations
similar to (48)–(50) hold, and the objective (67) can be
rewritten as: For each 1 ≤ i ≤ d,

f i(θ
∗) =

[
c(xi, ui) + γPuiH

θ∗(xi)

− δ〈µ,Hθ∗〉 −Hθ∗(xi, ui)
]
$(xi, ui) = 0

(68)

where $ denotes the invariant pmf of (X,U).
We once again assume (Q1) and (Q2) of Section IV-B

throughout. Under (Q1), it is easy to see that Hθ∗ that solves
(68) is identical to the optimal relative Q-function in (65).
Assumption (Q2) implies existence of ε > 0 such that

φ∗(x) = arg min
u∈U

Hθ(x, u) , ‖Hθ −H∗‖ < ε (69)

As in Section IV-A, there are many flavors of relative Q-
learning algorithm that are possible. We restrict our discussion
here to the asynchronous relative Q-learning algorithm, which
requires access to a single sample path of the Markov chain
(X,U). Extension of the results and discussion to other
flavors of the algorithm is straightforward.

Asynchronous Relative Q-learning: The asynchronous
algorithm is a direct application of SA to solve (67): For

initialization θ0 ∈ Rd, define the sequence of estimates
{θn : n ≥ 0} recursively:

θn+1 = θn + αn+1

[
c(Xn, Un) + γHθn(Xn+1)

− δ〈µ ,Hθn〉 −Hθn(Xn, Un)
]
ψ(Xn, Un)

(70)

Based on the choice of basis functions (47), a single entry of
θ is updated at each iteration, corresponding to the state-input
pair (Xn, Un) observed. By identifying θ with the estimate
Hθ, we can rewrite (70) as

Hn+1(Xn, Un)=Hn(Xn, Un)+αn+1

[
c(Xn, Un)

+γHn(Xn+1)−δ〈µ,Hn〉−Hn(Xn, Un)
] (71)

With αn=1/n, the ODE approximation of (71) takes the form

d
dtht(x, u)=$(x, u)

[
c(x, u) + γPuht (x)

− δ〈µ , ht〉 − ht(x, u)
] (72)

in which ht(x) = minu ht(x, u). Based on the discussion in
Section IV-A, a “more efficient” relative Q-learning flavor is
defined using a particular state-action dependent step-size (54).
The ODE approximation (72) simplifies in this case:
d
dtht(x, u) = c(x, u) + γPuht (x)− δ〈µ , ht〉−ht(x, u) (73)

Henceforth we restrict discussion to the relative Q-learning
algorithm with a scaling of this specific step-size: αn(x, u) =

g ·
[
n(x, u)

]−1
with g > 0. We initially assume g = 1.

B. Stability and Convergence of Relative Q-learning

Convergence of the algorithm holds under mild conditions:

Theorem V.2 (Stability & Convergence). Consider the relative
Q-learning algorithm (71) with step-size αn(x, u) satisfying
(54). Then, limn→∞Hn = H∗, a.s., for each initial condition.

ut

The proof of the theorem follows from [2, Theorems 2.1
and 2.2], which tells us that stability of the ODE (73) implies
firstly that

sup
n

sup
x,u

Hn(x, u) <∞ a.s.

and then convergence follows from more well known
arguments. Global asymptotic stability of the ODE is
established in Prop. A.1. A martingale noise assumption is
imposed on the SA recursions considered in [2], [17] (it
is argued that the stability result holds for more general
Markovian noise). This extension is not required to prove
Thm. V.2, as we can cast the relative Q-learning algorithm
precisely within the setting of [2].

The algorithm in (71), with step-size rule (54) can be
rewritten as:

Hn+1(x, u) = Hn(x, u)

+ αn+1(x, u)[f(Hn, Xn, Un;x, u) + ∆n+1(x , u)]
(74)

where

fHn(Xn, Un;x, u)=
[
T̃Hn(x, u)−Hn(x, u)

]
I{Xn=x, Un=u}
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for any H ,

T̃H(x, u) := c(x, u) + γPuH(x)− δ〈µ,H〉 (75)

and {∆n} is the noise sequence: ∆n+1(x, u) =

γ
(
Hn(Xn+1)− PuHn(x)

)
I{Xn = x, Un = u} (76)

The recursion (74) is SA with Markovian noise.
For the purpose of analysis, it is best to visualize the

algorithm (74) with step-size rule (54) as “d parallel stochastic
approximation algorithms”, one for each state-action pair
(x, u). If a particular (Xn , Un) is observed in the nth iteration,
then the corresponding H-value is updated, with the rest of
the H-values left unchanged.

The martingale difference property is expressed as follows:

E[∆n+1(x, u)|Fn] = 0 , for each (x, u) ∈ X× U, (77)

where Fn = σ(Xm, Um : m ≤ n). A second assumption of
[2] also holds: for some constant K > 0,

E[‖∆n+1(x, u)‖2|Fn] ≤ K(1 + ‖Hn‖2) (78)

C. Convergence Rate of Relative Q-learning

We now analyze the asymptotic covariance of the relative
Q-learning algorithm (71) that approximates the ODE (73).
Following along the lines of analysis in Section IV-B, the
covariance analysis requires two ingredients: identification of
the noise covariance Σ∆ in (31), and examination of the
linearization of the ODE (73). Recall that a finite asymptotic
covariance depends on properties of the eigenvalues of the
linearization matrix A = ∂θf(θ)

∣∣
θ=θ∗

.
As for the first ingredient, it follows from (76) that the noise

covariance is a diagonal matrix, with Σ
(i,i)
∆ =

γ2E
[(
H∗(Xn+1)−PuiH∗(xi)

)2 | (Xn, Un) = (xi, ui)
]

(79)

This is identical to the noise covariance in Watkins’ algorithm:

Lemma V.3. The noise covariance matrix Σq∆ for the Q-
learning algorithm (defined in (61)), and Σh∆ for the relative
Q-learning algorithm (defined in (79)) are identical.

Proof. The proof is a direct application of Prop. V.1: with
κγ = δ〈µ ,H∗〉/(1− γ) we obtain, for each 1 ≤ i ≤ d,

Σ
q (i,i)
∆ =γ2E

[(
Q∗(Xn+1)−PuiQ∗(xi)

)2 |Xn=xi, Un=ui
]

=γ2E
[(
H∗(Xn+1)+κγ−PuiH∗(xi)

)2−κγ |Xn=xi, Un=ui
]

= Σ
h (i,i)
∆

ut
We henceforth denote Σ∆ = Σq∆ = Σh∆.
We turn next to the linearization of the ODE (73) at its

equilibrium: this is justified under Assumption (Q2), which
implies the existence of ε > 0 such that (69) holds. The
following result is a direct analog of Lemma IV.1 for the
relative Q-learning algorithm.

Lemma V.4. Under Assumption (Q2), when ‖h̃t‖ < ε, with
ε > 0 used in (69), the ODE (73) simplifies to

d
dtht = −[I − γPSφ∗ + δ · 1⊗ µ]ht − b

where b(x, u) = −c(x, u). ut

In Lemma V.4, 1 ∈ Rd is viewed as a column vector with
each component 1i = 1, 1 ≤ i ≤ d, and ⊗ denotes the
outer product. The lemma provides a simple expression for
the linearization matrix:

A = −[I − γPSφ∗ + δ · 1⊗ µ] (80)

In addition to (Q1) and (Q2), we impose the following
additional assumption for the convergence rate analysis:
(Q3) The Markov chain with transition matrix PSφ∗ is uni-
chain: the eigenspace corresponding to the eigenvalue λ1 = 1
is one-dimensional. ut

Denote
ρ∗ = max{Re(λi) : i ≥ 2} (81)

where the maximum is over all eigenvalues of PSφ∗ except
λ1 = 1. Under (Q3) we have ρ∗ < 1, and in fact ρ∗ < 0
is possible. Let ρ denote the magnitude of the second largest
eigenvalue of PSφ∗ :

ρ = max{|λi| : λi 6= 1} (82)

The scalar ρ is also known as the mixing rate of the Markov
chain (X ,U), with the input sequence U defined by φ∗, and
1−ρ is the spectral gap of the corresponding transition matrix.
While ρ∗ < 1 is always true under (Q3), this does not exclude
the possibility that ρ = 1 (i.e., there is no spectral gap). We
have an obvious bound:

Lemma V.5. The quantities ρ and ρ∗ defined in (81) and (82)
satisfy ρ∗ ≤ ρ.

The bound is achieved if there is a real and positive
eigenvalue satisfying λ2 = ρ.

The following theorem (which is analogous to Thm. IV.3 for
the Q-learning algorithm) is the main result of this subsection.

Theorem V.6. For the asynchronous relative Q-learning
algorithm (71) with step-size rule (54), the matrix A in (80)
is equal to the linearization matrix A = ∂θf(θ)

∣∣
θ=θ∗

. If we
choose δ ≥ γ(1 − ρ∗), then each eigenvalue of A satisfies
Re(λ(A)) ≤ −(1− γρ∗). Consequently,
(i) The asymptotic covariance is infinite if γρ∗ > 1

2 , and
also ν†2Σ∆ν2 > 0, where ν2 is an eigenvector of PSφ∗ with
eigenvalue satisfying Re(λ2) = ρ∗.

(ii) Suppose that the step-sizes are scaled:

αn(x, u) = [(1− γρ∗) · n(x, u)]−1 (83)

Then, the eigenvalue test passes: each eigenvalue λ(A)
satisfies

Re(λ(A))=−(1− γρ∗)−1Re
(
λ
(
[I−γPSφ∗−δ · 1⊗ µ]

))
≤ −1

The asymptotic covariance of the resulting algorithm is
obtained as a solution to the Lyapunov equation (30), with
g = (1− γρ∗)−1, and Σ∆ defined in (79). ut

To be clear: the condition ρ < 1 is not necessary for
stability of relative Q-learning, or uniform boundedness of
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− (1− γ)
−(1 + δ − γ)

λ1 = 1
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λmax
h

Fig. 3. Relationship between the eigenvalues of the matrices PSφ∗ , Aq , and A.

the asymptotic covariance. Consider the example illustrated
in Fig. 3. The plot of eigenvalues for PSφ∗ shown on the
left hand side indicates complex eigenvalues on the unit
circle, so that ρ = 1. The plots show that ρ∗ < 1, and
therefore, −(1− γρ∗) < −(1− γ). In this case, Thm. V.6 (ii)
implies that the relative Q-learning algorithm with step-size
αn = g · [n(x, u)]−1, g = −[1 − γρ∗]−1 will have finite
asymptotic covariance.

We close the section with proof of Thm. V.6.
Proof of Thm. V.6: The proof is based on comparing

the eigenvalues of the matrix A with the eigenvalues of
the linearization matrix that corresponds to the asynchronous
Watkins’ Q-learning algorithm (recall Lemma IV.1 (ii), and
Eq. (60b)):

Aq = −[I − γPSφ∗ ] (84)

Lemma V.7. (i) The matrix Aq is Hurwitz. Furthermore,
there exists a single eigenvalue at λ = −(1 − γ), and all
other eigenvalues satisfy

Re(λ(Aq)) ≤ −(1− γρ∗) (85)

where ρ∗ ∈ [0, 1) is defined in (81).
(ii) The vector 1 is a right eigenvector of A, with eigenvalue
λ1 = −(1−γ+δ). Moreover, every eigenvalue λ of A, that
is not equal to −(1− γ + δ), is also an eigenvalue of Aq ,
with identical left eigenvectors.

Proof. The proof of (i) follows from the following
observations: Thm. IV.3 combined with assumption (Q3)
establishes the upper bound Re(λ(Aq)) ≤ −(1 − γ). The
column vector 1 is an eigenvector, whose eigenvalue coincides
with this identity: Aq1 = −(1− γ) · 1.

We now prove (ii). The first claim follows from these steps:

A1 = −[I − γPSφ∗ + δ · 1⊗ µ]1 = −(1− γ + δ) · 1
If λ 6= −(1−γ+δ) is an eigenvalue of Aq , with corresponding
left eigenvector ν, we have:

λνᵀ = νᵀA = −νᵀ[I − γPSφ∗ − δ · 1⊗ µ]

(a)
= −νᵀ[I − γPSφ∗ ]
= νᵀAq

where (a) follows from orthogonality of 1 and the left
eigenvector ν. ut

Lemma V.8 asserts that (85) holds for every eigenvalue in
the relative Q-learning algorithm if δ is greater than or equal

to 1− ρ∗. The choice δ = γ will always satisfy the condition
in Lemma V.8. The proof is immediate from Lemma V.7.

Lemma V.8. Suppose we choose δ ≥ γ(1 − ρ∗). Then,
each eigenvalue of the linearization matrix A defined in (80)
satisfies

Re(λ(A)) ≤ −(1− γρ∗) (86)

Consequently, the matrix A is Hurwitz, for all 0 < γ < 1/ρ∗.
ut

Proof of Thm. V.6. Lemma V.8 proves the first conclusion in
Thm. V.6: Each eigenvalue of the linearization matrix A of
relative Q-learning satisfies Re(λ(A)) ≤ −(1 − γρ∗). The
proof of (i) and (ii) then follow from Prop. II.2. ut

VI. DISCUSSION

Theorems IV.3 and V.6 contain conditions for finite
asymptotic covariance of the Q-learning and relative Q-
learning algorithms. Here we provide a more quantitative
comparison. We begin with a coarse comparison, considering
the trace of the respective covariance matrices.

Proposition VI.1. Denote by Σqθ(g), Σhθ (g), the asymptotic
covariance matrices for Q-learning and relative Q-learning
with αn = g · [n(x, u)]−1. Each is finite for all sufficiently
large g, and satisfy the following bounds, uniformly in γ:

min
g

{
trace

(
Σqθ(g)

)}
≥O

(
trace (Σ2

∆)

(1− γ)2

)
, sub. to (62) (87a)

min
g

{
trace

(
Σhθ (g)

)}
≤O

(
trace (Σ2

∆)

(1− ρ∗γ)2

)
(87b)

Proof. The proof of eqn. (87a) follows from Prop. VI.2. This
result also implies that the lower bound for Σqθ(g) in (87a) is
attained with gq = (1 − γ)−1. The upper bound (87b) is a
simple consequence of Thm. V.6. ut

These bounds show a significant contrast in performance
when 1/(1− γ)� 1/(1− ρ∗). However, we find that the two
covariance matrices actually coincide on a subspace. This is
made precise in the following subsections.

A. Covariance Comparison on a Single Eigenspace

The stark contrast between the two covariance matrices is
made clear here. Denote by λh1 the eigenvalue of the matrix
Ah = A (defined in (80)) that has the largest real part (marked
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with pink circles in the third part of Fig. 3), and νh1
the

corresponding left-eigenvector. Similarly, denote λq1 to be the
eigenvalue of Aq (defined in (84)) that has the largest real
part (the green circle in the second part of Fig. 3), and νq1
the corresponding left-eigenvector. Our interest here is the
magnitude of the non-negative quantities

σ2
q (1, 1) :=ν†q1Σqθνq1 and σ2

h(1, 1) :=ν†h1
Σhθνh1 (88)

Explicit formulae are easily obtained, and then optimized over
g. Analogous formulae are obtained in Section VI-C for other
eigenvectors, so we omit the proof of (89) here.

Proposition VI.2.

σ2
q (1, 1)=g2

σ2
∆q

(1, 1)

1− 2g(1− γ)
, g > [2(1− γ)]−1 (89a)

σ2
h(1, 1)=g2

σ2
∆h

(1, 1)

1− 2g(1− γρ∗) , g > [2(1− γρ∗)]−1 (89b)

where σ2
∆q

(1, 1):=ν†q1Σ∆νq1 and σ2
∆h

(1, 1):=ν†h1
Σ∆νh1 . The

minimizing gains are given by gq = (1 − γ)−1 in (89a), and
gh = (1−γρ∗)−1 in (89b). This results in the minimal values,

min
g
σ2
q (1, 1)=

σ2
∆q

(1, 1)

(1− γ)2
, min

g
σ2
h(1, 1)=

σ2
∆h

(1, 1)

(1− ρ∗γ)2
(90)

ut

The gains introduced in Prop. VI.2 imply Re(λ) ≤ −1
for any eigenvalue of either gqAq or ghAh. Denote by
(λh1, νh1) the eigenvalue/left-eigenvector pair of the matrix
Ah, with corresponding right-eigenvector 1. Similarly, denote
by (λq1, νq1) the eigenvalue/left-eigenvector pair of the matrix
Aq , with corresponding right-eigenvector 1. These eigenvalues
correspond to the green circles in Figure 3, and (λq1, νq1)
coincides with (λq1 , νq1). However, a similar property does
not hold for the matrix Ah. We compare next the variances
on the eigenspace spanned by 1:

σ2
q1 := ν†q1Σqθνq1 and σ2

h1 := ν†h1Σhθνh1 (91)

Proposition VI.3. Consider the Q-learning and relative Q-
learning with step-size scaling gq and gh defined in Prop. VI.2,
and with δ ≥ γ(1− ρ∗) in (67). Then,

σ2
q1=

σ2
∆q1

(1− γ)2
σ2
h1=

σ2
∆h1

(1−ρ∗γ)
(
1+ρ∗γ−2(γ−δ)

) (92)

where, σ2
∆q1

=σ2
∆q

(1, 1)=ν†q1Σ∆νq1, σ2
∆h1

=ν†h1Σ∆νh1. ut

For the choice of δ ≥ γ(1 − ρ∗), we have σ2
h1 ≤ σ2

h(1, 1)
defined in (89b), consistent with (87b) of Prop. VI.1.

In Fig. 1 we compare the performance of Q-learning and
relative Q-learning algorithms applied to a simple 6-state MDP
that was considered in [3, Section 3]. Experiments were run for
γ = 0.999 and γ = 0.9999, and in each of the two cases, we
implemented Q-learning with optimized step-size αn = gq/n,
gq = 1/(1− γ), and relative Q-learning with optimized step-
size αn = gh/n, gh = 1/(1 − ρ∗γ). In addition, we also
implemented Q-learning with αn = gh/n; the motivation is
discussed in the following subsection.

We return now to Figure 2, which shows histograms of
{
√
Nθ̃N (i)} from the relative Q-learning algorithm (obtained

from 103 independent runs with random initial conditions,
up to time horizon 106, with data collected at this value,
and intermediate values N = 103, 104, 105). The theoretical
pdf’s were obtained based on the CLT (14): the distribution
of
√
Nθ̃N is approximated by N (0,Σθ) for large N , with Σθ

obtained as a solution to (30). The figure makes clear that the
CLT predicts finite-N behavior for N as small as 104. This is
remarkable, but not surprising given the prior work [3], [38].

B. Solidarity on a Subspace

Prop. VI.2 again shows that a larger gain g is required in
Watkins’ algorithm, and we can expect a larger asymptotic
covariance. Prop. VI.3 compares the asymptotic covariance
with optimal gains for the two algorithms on a particular
subspace. The question we ask here is: what about the
remainder of Rd?

The asymptotic covariances appearing in Prop. VI.1 solve
the respective Lyapunov equations:

0 = FqΣ
q
θ + ΣqθF

ᵀ
q + g2Σ∆ (93a)

0 = FhΣhθ + ΣhθF
ᵀ
h + g2Σ∆ (93b)

where Fq = gAq + 1
2I and Fh = gAh + 1

2I . It is shown
in Prop. VI.4 that the solutions are identical on the subspace
Rd0 = {v ∈ Rd : v†1 = 0} in the sense that

v†Σqθw = v†Σhθw , for all v, w ∈ Rd0 (94)

This identity is valid even when Fq is not Hurwitz, so that Σqθ
is not finite valued. The proof makes use of the representations

v†Σqθw = g2

∫ ∞
0

v†eFqtΣ∆e
Fᵀ
q tw dt

v†Σhθw = g2

∫ ∞
0

v†eFhtΣ∆e
Fᵀ
h tw dt

(95)

Proposition VI.4. Suppose that the matrix Fh is Hurwitz.
Then the asymptotic covariance Σhθ exists and is finite, and
moreover (94) holds, subject to the definition of (95).

Proof. Given the representation (95), it is enough to establish

v†etFq = v†etFh for all t > 0 and v ∈ Rd0 (96)

The proof makes use of the following identity:

v†Fq = v†Fh , for all v ∈ Rd0 (97)

Moreover, F †q : Rd0 → Rd0 and F †h : Rd0 → Rd0.
These identities imply many others. Starting from v†Fq =

v†Fh for v ∈ Rd0, we obtain v†FqFh = v†F 2
h , and the identity

v†F 2
q = v†F 2

h follows since (v†Fq)† ∈ Rd0. By induction we
obtain v†Fnq = v†Fnh for each n and each v ∈ Rd0, and then
(96) follows from the Taylor series representation of the matrix
exponential. ut

Prop. VI.4 says that in the subspace that is orthogonal to
the column vector 1, the solutions to the Lyapunov equations
in (93b) are identical, provided we use the same scalar gain.
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Fig. 4. (a) Span norm error for Q-learning and Relative Q-learning are similar, even for γ ∼ 1. (b) Average error for the three algorithms, with 1/(1−γ) = 104.

Along with Prop. VI.3, this implies that the challenge faced
when estimating the Q-function, as opposed to the relative
Q-function is due to estimating a constant. If an algorithm
designer is content with ignoring the error in constants, they
can obtain a significantly lower asymptotic covariance Q-
learning algorithm.

Fig. 4 (a) contains plots of the span-semi-norm of the errors
in the Q-function estimates obtained using Q-learning and
relative Q-learning algorithms. Once again, experiments were
run for γ = 0.999 and γ = 0.9999, and for each γ, we
used two different step-sizes for the Q-learning algorithm:
gq = 1/(1 − γ), and gh = 1/(1 − ρ∗γ). Since the span
semi-norm ignores the error in the constants, we notice that
the performance of the Q-learning and relative Q-learning
algorithms with the same step-size gh = 1/(1− ρ∗γ) is very
similar — consistent with our findings in Prop. VI.4. Figures 1
and 4 (a) illustrate the behavior of each of the three algorithms
on a single sample path. Fig. 4 (b) shows the average error of
obtained from N = 103 independent runs of each algorithm.

C. What if the Transition Matrix is Diagonalizable?

If the matrix PS∗φ is diagonalizable, this means that there is
a basis consisting of eigenvectors, and also a basis consisting
of left-eigenvectors. Viewed as column vectors, we find that
d− 1 of the left eigenvectors span Rd0. From this we obtain a
refinement of Prop. VI.4: a solution to the Lyapunov equation
on Rd0, and on all of Rd when Fq is Hurwitz.

If PS∗φ is diagonalizable, then the definition (84) implies
that the same is true for Aq . Let {νi : 1 ≤ i ≤ d} be a basis
of left eigenvectors for Aq , with corresponding eigenvalues
{λi : 1 ≤ i ≤ d}, and suppose the eigenvalues are ordered so
that λ1(Aq) = −(1− γ).

Lemma V.7 (ii) asserts that {νi : 2 ≤ i ≤ d} are also left
eigenvectors for Ah, with common left eigenvalues. Moreover,
ν†i 1 = 0 for 2 ≤ i ≤ d, so that their span equals Rd0.

For each 2 ≤ i, j ≤ d, consider the quantities:

σ2
q (i, j) := ν†iΣqθνj σ2

h(i, j) := ν†iΣhθνj

σ2
∆(i, j) := ν†iΣ∆νj

(98)

The identity σ2
q (i, j) = σ2

h(i, j) follows from Prop. VI.4.
Multiplying the left hand side of (93a) and (93b) by ν†i , and
the right hand side by νj , we obtain

σ2
q (i, j) = σ2

h(i, j) = g2 σ2
∆(i, j)

1− g(λi + λj)
(99)

For the optimal gains gq and gh appearing in Prop. VI.2,
substitution into (99) gives the approximation when γ ≈ 1:
For 2 ≤ i, j ≤ d,

σ2
q (i, j)=O

(
σ2

∆(i, j)

1− γ

)
, σ2

h(i, j)=O

(
σ2

∆(i, j)

1− ρ∗γ

)
(100)

D. Performance Comparison via Total Discounted Returns
So far, Figures 1 and 4 illustrate convergence rate of the

estimates of the Q-functions. As noted earlier, even though
the limits of the two algorithms are different, the policies
induced by the optimal Q-function and the relative Q-function
are identical.

Shown in Fig. 5 are plots of the average total discounted
rewards obtained with the Q-function estimates; the x-axis
indicates the number of iterations (log scale). The plot was
obtained by implementing N = 100 parallel simulations of
the Q-learning and relative Q-learning algorithms with their
optimized step-sizes gq and gh, and in each sample path, after
n = 10k iterations, k = 1, . . . , 6, the average total discounted
reward ηγ(φ) that corresponds to the policy φ induced by the
Q-function estimates was computed using Monte-Carlo:

ηγ(φ) := E

[ ∞∑
t=0

γtR(Xt, φ(Xt))

]
(101)

where the expectation was estimated using M = 10 roll-outs
and computing the empirical average, and the infinite sum
within the expectation was replaced with a finite sum until
T = 104 for γ = 0.999 and T = 5× 104 for γ = 0.9999.
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Fig. 5. Estimates of ηγ(φ) defined in (101) with φ = φq and φ = φh, the
policies that are induced by the Q-function and relative Q-function estimates
with g = 1/(1− γ) and g = 1/(1− ρ∗γ) respectively.

The reliability of relative Q-learning is remarkable:
estimates reach the optimal in about n = 100 iterations, and
remain there for all larger n. The sequence of policy estimates
obtained from Q-learning also reach an almost-optimal one
quickly, but consistently take a large excursion resulting in
very poor performance, and finally returning to the optimal
policy after 105 iterations (γ = 0.999) and 106 iterations
(γ = 0.9999).
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VII. CONCLUSIONS AND FUTURE WORK

The factor 1/(1 − γ)p is ubiquitous in RL complexity
bounds, where p ≥ 2. We have shown that this dependency
is artificial: if we ignore the constant terms (that does not
affect the optimal policy), this factor can be improved to
1/(1 − ρ∗γ)p, where ρ∗ < 1 under very general conditions.
Specifically, we showed that the classical Q-learning algorithm
of Watkins has asymptotic (CLT) variance that grows as a
quadratic in 1/(1− γ), and the relative Q-learning algorithm
has asymptotic variance that is bounded by a quadratic in
1/(1 − ρ∗γ). We believe that this will lead to comparable
improvements in sample complexity bounds.

The techniques introduced in this work can also be
extended to various other RL algorithms. For example, it
is straightforward to modify the recursion (70) to obtain a
relative TD(0)-learning algorithm for a discounted cost MDP,
with linear function-approximation. The choice of µ may
require care in a continuous state-space setting.

The contributions of this paper are complementary to the
Zap-Q techniques of [3]. In view of the matrix gain Q-learning
algorithm (45), the goal in [3] is to obtain an optimal matrix
gain sequence {Gn+1} that will result in minimum asymptotic
covariance Σθ. It is straightforward to Zap our relative Q-
learning algorithm, resulting in a further variance reduction.

We close with three open problems:
(i) Choice of δ. The choice δ = 1 serves our purpose
of uniformly bounding the asymptotic variance. Perhaps a
larger δ will result in better transient behavior?

(ii) Optimizing µ (in terms of variance and transients).
(iii) Extensions outside of the tabular setting.
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APPENDIX

A. Convergence Rate of Nonlinear Stochastic Approximation

Proof of Prop. II.2. Part (i) of the Proposition follows from
the main result of [17, Ch. 7].

The proof of (ii) uses similar ideas as in [21]. For simplicity
we normalize so that θ∗ = 0, and take g = 1 so that αn = 1/n.

The proof proceeds by contradiction: Suppose that
n2%1E[‖θ̃n‖2] is bounded in n for some %1 > %0, and
consequently n2%E[‖θ̃n‖2] tends to zero as n → ∞, for any
%1 > % > %0. We then use the new definition Wn = n%θn,
and denote, for a fixed θ ∈ Rd,

fn(θ) = (n+ 1)%f(n−%θ) , Υn = αnn
%∆n

On multiplying each side of (1) by (n+ 1)% we obtain

Wn+1 = Wn + αn+1[%nWn + fn(Wn)] + Υn+1

where %n = % + o(1) appears through the Taylor series
approximation (n+ 1)% = n% + %αn+1n

% + o(αn+1).
Under the assumption that n2%1E[‖θ̃n‖2] is bounded in n,

it follows that

lim
n→∞

E[‖fn(Wn)− f0(Wn)‖2] = 0

and from this we obtain the approximately linear recursion for
ΣWn = E[WnW

ᵀ
n ]:

ΣWn+1 = ΣWn +αn+1[(%+A)ΣWn +ΣWn (%+A)ᵀ +En]+ΣΥ
n+1

where the vanishing sequence {En} is composed of three
approximations: replacing %n by %, the replacement of fn by
f0, and the final term:

α2
n+1E[(%nWn + fn(Wn))(%nWn + fn(Wn))ᵀ]

Denote σ2
n = n2%E[|νᵀWn|2] = νᵀΣWn ν, a vanishing

sequence that evolves according to the recursion

σ2
n+1 = σ2

n + αn+1[2(%− %0)σ2
n + νᵀEnν] + νᵀΣΥ

n+1ν

As in [21], this can be regarded as a deterministic SA recursion
that is unstable under our assumption that %−%0 > 0. An ODE
approximation, along with the fact that νᵀΣΥ

n+1ν > 0 for at
least one n, implies that σ2

n → ∞ as n → ∞ under this
assumption. This contradiction completes the proof. ut

B. ODE Approximation of Q-learning

Proof of Lemma IV.1. We prove (i) only, since the (ii) is
identical. Recall the definition of the ODE (53): d

dtqt = f(qt),
where for any q : X× U→ R, and 1 ≤ i ≤ d,

f i(q) = E
[{
c(Xn, Un)+γq(Xn+1)−q(Xn, Un)

}
ψi(Xn, Un)

]
Substituting q(Xn+1) = q(Xn+1, φ

∗(Xn+1)) for ‖q−Q∗‖ <
ε implies (i), (recalling the tabular basis):

f i(q) = E
[
c(Xn, Un)ψi(Xn, Un)

]
+ E

[
ψi(Xn, Un){γq(Xn+1, φ

∗(Xn+1))− q(Xn, Un)
}]

= $(xi, ui)c(xi, ui)

+$(xi, ui)
{
γ
∑
j

Pui(x
i, xj)q(xj , φ∗(xj)− q(xi, ui)

}
utC. Convergence Analysis of Relative Q-learning

Prop. A.1 is established here, which follows from Props. A.3
and A.4 below.

Proposition A.1. The ODE (73) is globally asymptotically
stable, with unique equilibrium H∗.

For any H : X× U→ R, the span semi-norm is denoted

‖H‖S := max
x ,u

H(x, u)−min
x ,u

H(x, u) (102)

Th operator T̃ defined in (75) is a γ-contraction [11]:

Lemma A.2. For any 0 ≤ γ < 1, the operator T̃ is a γ-
contraction: For any H : X× U→ R and H ′ : X× U→ R,

‖T̃H − T̃H ′‖S ≤ γ‖H −H ′‖S (103)
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The contraction property is used next to prove the stability
of the ODE (73) in the span semi-norm.

For each t ≥ 0, define h̃t := ht − H∗, where H∗ is the
unique solution to the fixed point equation (65). Define

φ∗t := φ(κ), κ = min{i : φ(i)(x) ∈ arg min
u

ht(x, u)}

Prop. A.3 establishes exponential convergence of ht to H∗

in the span semi-norm, which implies the same rate of
convergence for H∗(x, φ∗t (x)) to H∗(x, φ∗(x)).

Proposition A.3. For any 0 ≤ γ < 1, and some K <∞,

‖h̃t‖S ≤ e−(1−γ)t‖h̃0‖S (104a)

‖H∗(x, φ∗t (x))−H∗(x, φ∗t (x))‖ ≤ Ke−(1−γ)t‖h̃0‖ (104b)

Proof. By the variations of constants formula, and using the
notation (75), the solution ht to (73) satisfies:

ht(x , u) = h0(x , u)e−t +

∫ t

0

e−(t−s)(T̃ hs)(x , u) ds

Subtracting H∗(x , u) from both sides, and using the fact that
H∗(x , u) = (T̃H∗)(x , u), we obtain

h̃t(x , u) = h̃0(x, u)e−t

+

∫ t

0

e−(t−s)
[
(T̃ hs)(x , u)− (T̃H∗)(x , u)

]
ds

The following inequalities are then immediate

max
x ,u

h̃t(x , u) ≤ max
x ,u

h̃0(x , u)e−t

+

∫ t

0

e−(t−s) max
x ,u

[
(T̃ hs)(x , u)−(T̃H∗)(x , u)

]
ds

(105a)

min
x ,u

h̃t(x , u) ≥ min
x ,u

h̃0(x , u)e−t

+

∫ t

0

e−(t−s) min
x ,u

[
(T̃ hs)(x , u)−(T̃H∗)(x , u)

]
ds

(105b)

Subtracting (105b) from (105a),

‖h̃t‖S ≤ e−t‖h̃0‖S +

∫ t

0

e−(t−s)‖T̃ hs − T̃H∗‖S ds

≤ e−t‖h̃0‖S + γ

∫ t

0

e−(t−s)‖h̃s‖S ds
(106)

where the second inequality follows from (103). Therefore,

et‖h̃t‖S ≤ ‖h̃0‖S + γ

∫ t

0

es‖h̃s‖S ds

Applying the Grönwall’s inequality completes the proof of
(104a); (104b) follows from (69) and (104a). ut

Define for each t ≥ 0

rt := 〈µ , h̃t〉 (107)

Prop. A.3 (in particular, Eq. (104a)) implies ht → H∗

exponentially fast, in the span-semi-norm: for some K <∞,

h̃t = 1 · rt + εst ‖εst‖ ≤ Ke−(1−γ)t‖h̃0‖S (108)

To establish global exponential stability of the ODE (73), it is
sufficient to show that rt → 0 exponentially fast.

Proposition A.4. For any γ < 1, and δ > 0, the function rt
defined in (107) satisfies, for some K <∞,

|rt| ≤ e−(1−γ+δ)|r0|+Ke−(1−γ)t‖h̃0‖
Proof. Differentiating both sides of (107), and using (73),

d
dtrt = 〈µ , ddtht〉 = 〈µ , T̃ht − ht〉

= 〈µ , T̃ht − ht − T̃H∗ +H∗〉
(109)

where we have used the fact that H∗ = T̃H∗.
Using (108) and (104b), the non-linear term on the right

hand side of (109) admits the approximation,〈
µ , T̃ht − T̃H∗

〉
= γ

∑
x,u,x′

µ(x, u)Pu(x, x′)
[
ht
(
x′, φεt (x

′)
)
−H∗

(
x′, φ∗(x′)

)]
− δ · 〈µ , h̃t〉

= γ
∑
x,u,x′

µ(x, u)Pu(x, x′)
[
H∗
(
x′, φεt (x

′)
)
−H∗

(
x′, φ∗(x′)

)
+εst

(
x′, φεt (x

′)
)]

+
(
γ−δ

)
· rt

=
(
γ − δ

)
· rt + εrt

where |εrt | ≤ Ke−(1−γ)t‖h̃0‖ for some K <∞. Substituting
this into (109) completes the proof:

d
dtrt =

(
γ − δ − 1

)
· rt + εrt ,

rt = e−(1−γ+δ) · r0 +

∫ t

0

e−(1−γ+δ)τ · εrt−τ dτ

ut
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