Towards Application-Specific Address Mapping for Emerging
Memory Devices

Shashank Adavally
University of North Texas

ABSTRACT

Recent advancements in 3D-stacked DRAM such as hybrid memory
cube (HMC) and high-bandwidth memory (HBM) promise higher
bandwidth and lower power consumption compared to traditional
DDR-based DRAM. However, taking advantage of this additional
bandwidth for improving the performance of real-world applica-
tions requires carefully laying out the data in memory which incurs
significant programmer effort. To alleviate this programmer burden,
we investigate application-specific address mapping to improve per-
formance while minimizing manual effort. Our approach is guided
by the following insights: (i) toggling activity of address bits can
help determine strategies to improve parallelism within memory
but this metric underestimates conflicts and (ii) modern memory
controllers reorder address requests and therefore any toggling
activity measured from an address trace is non-deterministic. Fur-
thermore, our position is that analyzing individual address bits
results in poor estimates for actual conflicts and exploited paral-
lelism and that entropy needs to be calculated for groups of address
bits. Therefore, we calculate window-based probabilistic entropy
for groups of address bits to determine a near-optimal address map-
ping. We present simulation results for ten applications that show
a performance improvement up to 25% over fixed address-mapping
and up to 8% over previous application-specific address mapping
for our proposed approach.

ACM Reference Format:

Shashank Adavally and Krishna Kavi. 2020. Towards Application-Specific
Address Mapping for Emerging Memory Devices. In The International
Symposium on Memory Systems (MEMSYS 2020), September 28-October 1,
2020, Washington, DC, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3422575.3422785

1 INTRODUCTION

High-bandwidth memory (HBM) offers much higher bandwidth
than traditional DRAM. For instance, DDR5 provides up to 51.6 GB/s

per module [13], while HBM2e provides up to 640 GB/s per stack [20].

However, extracting this additional bandwidth for real applications
can be challenging. One possible reason is that the memory requests
from a multicore CPU are often not distributed optimally across
the HBM resources causing conflicts for channels, ranks, banks or
TOWS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8899-3/20/09....$15.00
https://doi.org/10.1145/3422575.3422785

105

Krishna Kavi
University of North Texas

One approach to maximize memory system performance for
high-performance computing codes is to manually layout the data
structure or reorder computational loops. Kripke !, for instance,
performs a sweep over many possible data layouts and loop ordering
to find optimal layouts for memory accesses. This approach leads
to bloated code bases that can be be hard to debug and maintain.

We posit that there is a better approach to achieving the same
performance benefits—by making the mapping of address requests
to HBM structures programmable, exposing it to the superuser by
some mechanism, and developing a methodological approach to
determining the optimal address mapping for a given application.
Previous works have shown that application-specific address map-
pings are possible and that they can provide up to 16% performance
improvement. However, they require tedious manual evaluation
and the insights were based on a limited set of applications [4]. In
this work, we leverage their insights and design a rigorous approach
to determine near optimal address mapping for each application.
Furthermore, our position is that analyzing individual address bits
results in poor estimates for actual conflicts and exploited paral-
lelism and that entropy needs to be calculated for groups of address
bits.

Contributions. Towards supporting our position, we make the
following contributions in this paper.

e We propose a new metric to determine optimal address map-
ping from an address trace by considering address bits in
groups rather than individually. The proposed metric esti-
mates parallelism and conflicts more accurately than previ-
ous entropy metrics.

e We present a methodology to determine application-specific
address mapping. In our methodology, we hierarchically re-
solve mapping address bits to channels, columns, banks, bank
groups, and rows (in that order) making use of our proposed
metric in conjunction with metrics from past research.

We present experimental results of ten applications from high-
performance computing and graph processing that demonstrate
the performance improvements for our approach.

Findings. Application-specific address mapping based on entropy
of individual bits results in 5% performance improvement on av-
erage over a baseline application-agnostic address mapping. Our
approach which determines entropy of groups of address bits results
in 8% performance improvement on average over the baseline.
Organization. Section 2 provides pertinent background informa-
tion and Section 3 presents our approach. Our experimental setup is
described in Section 4. We present our results in Section 5, discuss
related work in Section 6, and conclude in Section 7.

'https://github.com/LLNL/Kripke

https://doi.org/10.1145/3422575.3422785
https://doi.org/10.1145/3422575.3422785
https://doi.org/10.1145/3422575.3422785

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

2 BACKGROUND

In this section, we provide background on the internal organization
of HBM and other pertinent information.

2.1 HBM Organization

Figure 1 shows an example 4-layer high-bandwidth memory (HBM)
stack and its organization. The HBM stack is composed of a buffer
die and 4 DRAM dies. Each DRAM die supports 2 independent
channels for a total of 8 physical channels, each with an independent
128-bit interface to the host processor. The channels are clocked
independently and are the primary source of parallelism within
the memory subsystem. Each channel is composed of a set of 16
banks organized into 4 bank groups of 4 banks each. Each bank is
further sub-divided into a number of DRAM rows and columns. In
some cases, a physical channel may be subdivided into two pseudo-
channels to save energy and improve performance for some access
patterns.

An application’s performance can be improved by carefully opti-
mizing the data layout and choosing an optimal address mapping
which maps a physical address to DRAM structures (channels, bank
groups, banks, rows, and columns). Our hypothesis is that, for
memory-sensitive applications, choosing the right address map-
ping can result in performance improvements comparable to careful
data layout and loop ordering optimizations. We posit that an near-
optimal address mapping can be identified automatically based on
statistical techniques and without a knowledge of the algorithm.
We expect that this technique is more productive than techniques
that manually changes data layouts and/or reorder loops. In this
paper, we are concerned with choosing an near-optimal mapping
for a given application.

2.2 Row-buffer Locality and Bank-Level
Parallelism

An application’s performance can be improved by exploiting row-
buffer locality and bank-level parallelism offered by a given HBM’s
organization.

Row-buffer Locality. Accessing data from the memory typi-
cally involves: (i) opening a row (or DRAM page) by issuing an ACT
command, (ii) reading or writing one column worth of data via
RD/WR command, and (iii) in some cases, closing a row by issuing a
PRE command. In a standard HBM2 organization, activating a row
fetches 2 KB-wide [14] data into a row buffer, from which data can
be accessed in column width-sized chunks, with the width typically
matching the size of a CPU cache line (e.g., 64B). Accesses to an
already open row are faster as they avoid the latency incurred from
PRE and ACT command. Applications exhibiting high spatial locality
benefit from this wider row size relative to cache line and are said
to exploit row-buffer locality. Back-to-back accesses to the same
bank are serialized and to exploit parallelism, the accesses must be
spread across banks.

Bank-Level Parallelism. While the banks can operate in par-
allel, there are a number of restrictions imposed on them due to
some shared structures as well as current-draw limitations. Banks
within a bank group share a local data bus and the bank groups
within a channel share a global data bus.

106

Shashank Adavally and Krishna Kavi

Parallel data transfers to different banks in the same group are
serialized as they share a narrow bus. However, accesses to different
banks in different bank groups can be overlapped as they only share
the global data bus. Banks within a bank group can partially operate
in parallel. For instance, data transfer between bank A and the host
processor can be overlapped with opening or closing of rows in
bank B via ACT or PRE commands. That said, in a typical HBM, only
four ACT command can be issued in a time window known as tpaw
(four-activation window) which further limits parallelism across
banks.

2.3 Address Mapping

Given how HBM is organized, one may strive to improve bank-
level parallelism by spreading out one regular stream of accesses
across bank A of the four different bank groups and another stream
of accesses across bank B of another bank group. It is difficult to
analyze real application code to achieve this type of parallelism.
Although, modern memories use permutation-based mapping, it is
primarily focused on reducing row-conflicts. In permutation-based
mapping, least significant bits of row are XORed with the bank’s
address bits to generate a new bank ID. So, it tries to change the bank
ID whenever there is a change in row ID to prevent a row conflict.
It is intended to reduce row conflicts for certain strided pattern.
In real applications, the access patterns are more complex and
an automated approach in determining the near-optimal address
mapping strategy can help exploit both bank-level parallelism and
row-buffer locality.

It is unreasonable to expect the programmer to understand the
nuances of memory organization to properly layout their data in
memory. To complicate matters further, when running applications
in parallel, it can be hard to reason about access patterns seen by
the memory controller since requests come from many different
threads, resulting in an access pattern that was not originally in-
tended by the programmer. Therefore, it becomes necessary to
adopt an algorithm/code agnostic technique to determine the near-
optimal address mapping for an application. The potential uplift in
performance can be high — up to 60% performance improvement
has been observed in some cases [19].

3 METHODOLOGY AND APPROACH

In this section, we describe our high-level methodology and pro-
posed approach to determine a near-optimal application-specific
address mapping.

3.1 Methodology Overview

Figure 2 summarizes our methodology to determine an application-
specific address map. At a high-level, we run the application on
a reference multi-core CPU. We collect memory address traces
via a PIN tool [17]. From the address trace, we calculate three dif-
ferent statistical metrics — bit-flip count, bit-flip probability, and
repetitive counter — which are measures of exploitable parallelism
and toggle activities in address bits. Using a combination of these
three metrics, we determine the near-optimal address mapping
using the approach presented in Section 3.3. The metrics them-
selves and their limitations when used individually are described

Towards Application-Specific Address Mapping for Emerging Memory Devices

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Pseudochannel

/

/

CHANNEL 6 CHANNEL 7

CHANNEL 4 CHANNEL 5

4-I;tlal-$M / CHANNEL 2 CHANNEL 3
/ CHANNEL O CHANNEL 1

Buffer Die /

CHANNEL BANK oRAM
BANK GROUP 0 ii BANK GROUP 1 =
Rows
BANK | BANK || BANK | BANK
BANK || BANK || BANK || BANK
BANK | BANK || BANK | BANK
’ BANK | BANK [} BANK | BANK ‘
{ BANK GROUP 2 i BANK GROUP 3 DRAM
Columns

Figure 1: HBM Organization. Memory spans multiple layers of DRAM dice and is organized hierarchically into channels, banks,
rows, and columns. Banks are grouped and channels are sub-divided into pseudo-channels.

T
Appl Trace Entro
|j Run application || Tracing memory 'l—J Extracting entropy L o
to profile requests behavior
Entropy behavior
Optimal asinput
Programmable IAtdress
CPU Memory .

Controller (MC) Program MC with MaPP"‘E
new address Algorithm
mapping

Hardware

Figure 2: High level steps to determine near-optimal address
mapping

in Section 3.2. Finally, we program the memory controller with the
calculated near-optimal address mapping.

3.2 Statistical Metrics

In our approach, we introduce a statistical metric which we term
“repetitive counter” to aid in the selection of an near-optimal address
mapping. We use this metric in conjunction with two other statisti-
cal metrics previously deviced by other researchers from — termed
“bit-flip entropy”[9] and “bit-flip probability”[16]. We note that each
of these metrics only address some aspects of address bit entropies,
but collectively these metrics better measure the randomness of
memory addresses accessed by applications.

Entropy measures the frequency of an address bit flip (changing
from zero to one or one to zero). It helps to determine the optimum
address bits to use to identify rows, banks, columns etc. For example,
Figure 3 shows a sequence of addresses in the left-most block and
each of the bit positions have been color-coded based on the bit
flip rate: bits with high flip rates are denoted with darker color,
bits with medium flip rates are marked with medium and bits with
low flip rate are denoted in lighter color. The intention is to map
least flipping bits to rows to reduce row conflicts and bits with high
flip rate to columns, banks etc to increase the spatial locality and
parallelism.

107

Address sequence
111]1
e
i[1]o [t | [o]
111]0
1111
111]0

Figure 3: Based on the bit flip intensity, respective bits are
mapped to a specific abstraction layer

Bit-Flip Entropy. Figure 4 shows 4 consecutive address requests
to memory. Consider bit 2 as highlighted. The behaviour of each
bit position is obtained by calculating the bit-flip rate. The final flip
count is shown at the bottom. Per the figure, bits with low flip rate
(i.e. bit flip count with 0 and 1) are used to identify rows (to reduce
the row conflicts by mapping to bits that flip less frequently), bits
with medium flip rate are used to identify banks and bits with high
flip rates are used to identify columns (to increase spatial locality
and bank-level parallelism).

Bit-Flip Probability. Figure 5 shows the same address sequence,
but shows the Bit Value Ratio (BVR). For example for bit 4, the BVR
is 0.75 since this bit has a value of one 75% of the time. Then bit
flip probability is calculated using BVR ratios when the bit is zero
and one, as min(BVR, 1-BVR). Based on the frequency of the bit
flip rate, address bits are mapped to different memory structures.
It should be noted that entropy is calculated based on a sliding-
window fashion to negate the entropy variance due to the requests
reordering in the memory controller. This method produces much
precise behaviour of bit-flip. Since this technique presents more
accurate entropy information for multi-threaded workloads, we
used this method in our study.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Initialize count[2] =0

> No bit flip, count[2]=0
> Bit flip, count[2]++
> Bit flip, count(2]++

[O [B B B
[[o] [o] [EHeH
[[o] [B B BHH
L] [o] [] (o] B

] B [[B & G]

Mapping based | I |
on bit count

Address Stream —

Counter array Count[2] =2

Row Bank | | Column |

Figure 4: Bit flip count method showing the final bit flip
count in the bottom for each address bit of the given address
stream [9]

DENDnnEn
Ionnnnon
DODDDDEn
o
EEEE
DEDEEEEE

Mapping based
onasizlggunatse | | | | I Column |

Address Stream —

Bit value ratio

Bit flip probability

Row Bank

Figure 5: Bit Probability method describing bit flip probabil-
ity of the given address stream [16]

3.3 Proposed Approach

Before we describe our methodology, we will illustrate an existing
work [9] with another example. Figure 6 shows a sequence of 8 ad-
dresses with bit flip counts shown at the bottom. For simplicity, we
are assuming that the memory has only 1 channel, 0 bank groups,
8 Banks (similar to [9] configuration). We are required to map 8
address bits to rows, columns and banks. As proposed in [9], (and
shown in Table 1), bits with (medium) bit-flip count of 2 (viz., bits
0, 2, 4) are used to identify banks, bits with (high) bit-flip count of
4 are used to identify columns and the remaining bits are used to
identify rows. The main focus is to reduce the number of row con-
flicts. With today’s HBM technology (comprising multiple channels,
bank groups and banks), implementing this technique for address
mapping resulted in performance improvement. However, based on
a simple observation as discussed in Section 5, we can determine
that this technique may not achieve optimal address mapping (as it
may cause conflicts in banks). Also, with the availability of parallel
structures such as channels, bank groups and banks, it would be

108

Shashank Adavally and Krishna Kavi

Bit entropy ’0 ‘0 ‘0 ‘2 ‘4 ‘2 ‘4 ‘2 ‘

Figure 6: Sample address stream and its bit flip behaviour

beneficial to utilize them in parallel; that is, improve Channel level
parallelism and Bank parallel utilization (BPU). 2

Combinations ‘Co|Ca‘Ba‘Ba|Ba| ‘Co|Ba‘Cu‘Ba|Ba| ‘Ba|Co‘Ba‘Co|Ba|
Address stream
ofofofefoe]a]o ;@
ofofofoloft]i]o [?{g
i

=

B

B

Eama

=

=5

P

d

Figure 7: Methodology

[~]

B—' Repetitive counter

We now introduce our technique that leads to a near-optimal ad-
dress mapping, so that requests are more evenly distributed among
channels, bank groups and banks. To simplify the explanation of
our technique, we assume that the memory is configured with a
single channel and has only banks (and no bank groups). As a first
step, we consider high entropy bits, and explore all possible per-
mutations of using these bits to identify banks and columns (not
rows). For example, from Figure 6, we identified 5 bits with high
entropy (viz., bits 0-4): for our example DRAM, we need two bits
for column ID and three bits for bank ID. Thus we can explore all 60
permutations of mapping these 5 high entropy bits for column and

2BPU is quantified as the average number of banks in main memory that are being
used concurrently [10]

Towards Application-Specific Address Mapping for Emerging Memory Devices

bank addresses. We only show three possible permutations (out
of possible 60) in Figure 7. For each possible mapping, in a sliding
window fashion among memory requests, with a window size of
8 (since there are 8 banks), we track unique banks accessed in a
window. In the figure 7, the array under each permutation shows
the bank ID used for the specific address. At the end of address
trace, for each possible mapping we compute a “repetitive count”.
A repetitive count indicates, for a given mapping how many times
a bank is being used by multiple addresses. For example the right-
most address mapping results in 4 addresses mapped to bank 6 (i.e.,
repetitive count of 3) and 2 addresses mapped to bank 7 (i.e., repeti-
tive count of 1), giving a net repetitive count of 4. The permutation
with least repetitive count is considered the near-optimal mapping
configuration since it minimizes conflicts to banks (similarly for
channels or bank groups) and improve parallelism. So, out of the 3
permutations shown in figure 7, second permutation has the least
repetitive count for the example address trace, indicating that banks
are being used in higher degree of bank level parallelism. So bits 0,
1 and 3 are used to identify banks and remaining bits 2 and 4 are
used to identify columns.

Conventional address mappings try to preserve spatial locality
so that consecutive addresses are mapped to the same row (least
significant bits are used for column selection). However such an
assignment does not benefit from bank and channel parallelism
available. In our method, we select n bits with high entropy, where
n is the number of bits needed for selecting channels, bank groups,
banks and columns.

Algorithm 1: Near-Optimal Address Mapping

procedure SELECTMAP(trace, map)
Calculate bit flip count from trace
Sort and extract indices of n highest values
Permute all (nCc) combinations for channel assignment

Assign bits with the lowest repetitive counter to channels
Assign bits with the next highest bit flip count to columns

1:
2
3
4
5: For each permutation calculate repetitive counter value
6
7
8

Permute remaining combinations for bank group
assignment
9: Identify optimum bank group assignment
10:

Algorithm 1 outlines our method. Let us consider a realistic con-
figuration of HBM that consists of 8 channels (i.e., 3 bits for channel
address), 4 bank groups (i.e. 2 bits for bank group identification), 4
banks per group (2 bits for bank address) and 32 columns per row
(5 bits for column address; each column consists of 64 bytes). We
assume that each row in a bank contains 2KB. For such HBM system
we select n=12 bits with highest entropy. We start with all possible
permutations of 3 bits needed for channel address. Once we identify
the 3 bits that result in least repetitive count (as explained in previ-
ous paragraphs) and are set aside for channel address. These bits
are excluded from further consideration. We then set aside 5-bits
with highest entropy as column address. We then repeat selecting
optimal permutations (resulting in least repetitive count) for select-
ing bits to identify bank groups and then for selecting banks. The

Permute remaining high entropy bits for bank assignment
Identify optimum bank assignment via repetitive counter

109

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Table 1: Simulation Setup

Configuration Description

Core configuration 128-entry
instruction window,

4 wide issue

Core count 8
Core frequency 3.2 GHz
Caches L1 32kB
8-way set associative
L2 128kB
8-way set associative
L3 8MB
16-way set associative
Memory type HBM 1Gbps
Memory channels 8
Memory size 4GB

Memory controller queue size
Scheduling Policy
Baseline Memory Mapping

Readq-32; Writeq-32
FR-FCFS-Cap [18]
SK Hynix GDDR5 [1]
(RoBaCoBaChCo)

remaining address bits are used for row address. Our methodology
identifies bits for the memory structures (channels, bank groups,
banks, columns and rows) to maximize memory parallelism.

One of the limitations with previously reported works is that bit
entropy alone does not lead to optimal address mapping since such
a mapping can still limit potential memory parallelism. Entropy
explains the bit flip behaviour but not the bit flip rate with respect
to other bits. More details will be discussed in section 5.

4 EXPERIMENTAL SETUP

In this section, we describe the experimental setup used to evaluate
our address mapping technique. We describe the simulation setup
used to evaluated the effectiveness of our technique, the workloads
used in this study and the technique to collect address traces.

4.1 Simulation Setup

We used Ramulator [14] for our simulations. The system configura-
tions used are listed in Table 1. We assumed a realistic multi-core
configuration with 128-entry instruction window, 4-wide issue
running at 3.2 GHz. Cores are supported by 3 levels of caches of
different sizes. We selected our memory type to be HBM with multi-
ple levels of memory hierarchies like channels, banks, bank groups,
rows and columns with a memory size of 4GB and optimal sched-
uling policies. We assume a memory mapping similar to SK Hynix
GDDR5 (RoBaCoBaChCo) as our baseline.

We modified Ramulator to support and maintain OpenMP multi-
core ordering of memory requests (using time stamps with memory
traces as mentioned in section 4.2). Ramulator allocates all physical
pages randomly but in a real system, some portion of the pages are
allocated consecutively. So, we modified Ramulator such that the
address translation results in 40 percent consecutive pages and 60
percent random pages to mimic operating system allocation.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

4.2 Workloads

A wide variety of workloads have been considered in our study, in-
cluding from Rodinia [8], graph processing [12], LLNL [15], HPCG [3],
GAP [6] suites and different micro benchmarks. More details of the
workloads can be found in Table 2. For each benchmark, we cap-
tured 1 billion instructions using modified Intel PIN tool [17] and
replayed them through Ramulator. Our modified PIN tool captures
actual CPU cycle-stamps along with other necessary data. So that
the address traces are replayed in the specific order of the cycle-
stamp to maintain the correct address ordering for multi-threaded
programs.

Table 2: Benchmarks description

Benchmarks Label Description

Sequential access SEQ Vector Addition

Strided access STR Stride Vector addition

Random-10 R10 Vector addition with 10% of elements
accessed randomly

Random-40 R40 Vector addition with 40% of elements
accessed randomly

Random-70 R70 Vector addition with 70% of elements
accessed randomly

Hotspot HS Temperature simulation tool from
Rodinia

Kripke KR Deterministic particle transport
code

Breadth First Search BFS Graph traversal workload

High-Performance HPCG SpMV and dot product

Conjugate Gradient

Triangle Counting TC
belling

Order invariant with possible rela-

5 RESULTS AND ANALYSIS

From Figure 8, it can be observed that most of the workloads are
benefiting from our proposed technique except BFS. Our technique
generates near-optimal mapping that distributes the memory re-
quests across the channels, banks groups and banks. One of the
key differences we notice is the reduction in row conflicts com-
pared to the baseline and count-based entropy mapping. It should
be noted that the strided access workloads have higher improve-
ments over the baseline. This is because in strided workloads, the
spacial locality is minimal and leads to higher row conflicts with
sub-optimal address mappings. With three types of synthetic micro-
benchmarks, R10, R40, R70 (with different randomized memory
accesses), it can be seen that the difference in performance im-
provement between bit-flip count-based entropy technique and our
method is decreased. This can be explained as the randomness in
the application increases, performance difference between near-
optimal and non-optimal mapping techniques decreases because
the random requests cannot be guaranteed more even distribution
across channels, bank groups and banks. For benchmark BFS, our
methodology has lower row conflicts but smaller Bank Parallel

110

Shashank Adavally and Krishna Kavi

utilization (BPU). Figure 9 shows the reduction of row conflicts
compared to baseline. Using the proposed technique, row conflicts
have improved except for R70. We have seen 2% increase in row con-
flicts for R70 but with equal distribution of requests among banks
and channels, overall performance has improved by 7%. In Gen-
eral, we observed over 16% reduction in row conflicts on average
compared to the baseline.

Now let us return to the issue we raised in section 3.3. Figure
10 shows a stream of addresses and bit flip counts shown at the
bottom. It can be seen that the LSB portion of the bits have smaller
entropy when compared to MSB portion. As explained previously,
LSB bits are used to map to rows to reduce row conflicts and MSB
bits to columns to increase locality or to banks to increase bank
level parallelism. But the behaviour of each requests’ LSB bits (3
bits) is seen to be varying for each address request. As per suggested
mapping suggested in [9], had these bits been used to identify a row,
each of the request would create a row conflict. With our technique,
selection of the mapping bits is done based on the load distribution,
eliminating this problem.

5.1 Case Study: Kripke Application

Apart from regular compute workloads, this technique can be im-
plemented for HPC application codes. We considered Kripke [15]
as an initial scientific example. One of the main goals with Kripke is
to investigate how different data layouts effect performance. Kripke
supports 6 layouts using Directions(D). Groups (G) and Zones (Z),
and we explored a relation between data layouts with different
address mappings. Figure 12 shows the overall performance of dif-
ferent layouts running different workload configurations. It can be
seen that the best performing layout is different for each workload
size configuration. We can conclude that an optimal layout has to
be determined for each configuration to achieve the best perfor-
mance. Since Kripke is a 3-dimensional application, it is simpler to
sweep all layout possibilities across the loops to calculate optimal
layout. But this may not be a viable technique to determine optimal
layout for more complex workloads like 6-dimensional applications.
Instead of estimating the optimal mapping for each data layout,
we calculate a near-optimal mapping of one layout for a workload
configuration to improve the performance without modifying the
layout but changing the mapping of addresses to different HBM
structures.

5.2 Entropy Persistence

We wanted to explore if the computed entropy remains consistent
across different runs for a given application. This is because as
the system ages, the virtual-to-physical address mapping changes
and we verify the amount of variance this could introduce in the
calculated entropy. Such a study was not undertaken by others.
Since the proposed technique uses physical addresses, it is also
important to investigate the consistency of physical address bits
across multiple runs. For this purpose, we collect physical address
traces using "kpageflags" and "pagemap" files in linux, which pro-
vide necessary information on physical pages [2], and capture
physical addresses through modified PIN tool (traces the physi-
cal addresses that are computed using the information provided by
"kpageflags" and "pagemap" files) and replay them on Ramulator.

Towards Application-Specific Address Mapping for Emerging Memory Devices

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Performance improvement over baseline

30

25

20

15

10

Percent of improvement

|
SEQ STR R10

R40

R70

HS

TC

Average

Benchmarks

| Bit-flip count

B Proposed work

Figure 8: Performance results comparing past application-specific technique [9] and our proposed approach against a static
baseline. Our proposed approach improves performance up to 25% over the static baseline and up to 8% over previous ap-

proaches [9].

Row Conflicts improvement over baseline

60%
3
2 s0%
£
c 40%
2 o 30%
B
209
25
: [s i
-
€ 0% — [
o
g 0% £ & & S & g 1 q.vé
&
S
Benchmarks

Figure 9: Row conflicts improvements the static baseline.

Our proposed approach reduces row conflicts by 16% over
the static baseline.

We compared the change in performance of near-optimal address
mapping achieved by our technique over multiple runs, each with
potentially different physical addresses assigned to application. This
process of collection of traces, simulation and compute near-optimal
address mapping is repeated for multiple runs of each application
to validate the stability of entropy across possibly different physical
address assignments.

Figure 11 shows the bit-flip probability of hotspot benchmark
for each address bit. Y-axis shows bit-flip ratio (i.e. higher the value,

higher the probability that the bit flips) for each address bit (X-axis).

This figure includes bit-flip probability data from three different

runs of the benchmark and, measuring the entropy for each run.

The entropy for address bits is similar for most of the workloads
but in some some workloads, the entropy for Most Significant bits
(MSB) tends to differ slightly (it can also be seen in Figure 11). One

111

31 30|29|

B

Bit position |

RIR|[O|O|Rr|RLR|O|O
RIRPr|[O|O|R|RL|O|O

RIRr|[O|O|Rr|RL|O|O

O|O|rRr|rRr|r|O|O|F

O|lRr|[RPr|O|C|O|F |-
OoO|Oo|Co|Oo|r |||k

Bit flip entropy -

[3]1]3]

Figure 10: Observed limitation in generating optimal map-
ping by depending solely on entropy

of the reason could be the change in locality of the physical pages
across multiple runs could have led to higher variation of MSB bits.
Overall, we observe that the average entropy variation is as low as
1% and at most as high as 6%. Although the variation in entropy
may reach 6%, it is limited to specific range of bits (i.e. MSB bits
25-31). We also observe that these variations do not lead to signifi-
cant changes in the near-optimal address mapping configurations.
And performance variations between these different mappings over
multiple runs is small (between 1%-4%). This supports that entropy
behaviour may show small variations between different runs, but
the impact on the overall performance using our address mapping

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Entropy behaviour of Hotspot workload across multiple runs

205

v

313029282726252423222120191817161514131211109 8 76 543 2 1 0
Bit position

—Run_1 —Run_2 Run_3

Figure 11: Entropy consistency over multiple runs

Execution cycles normalized to DGZ layout

—
—- w« ~

Normalized execution cycles
o
«

16,16 16,32 16,64 32,16 32,3
Workload variations (Groups, Zones)
1DGZ uDZG6 GDZ GID B1DG B1GD

Figure 12: Multiple Layout performance under different

workload configurations
Performance

Baseline (DGZ)

1.85E+09

1.8E+09

1.75E+09

1.7E+09

1.65E+09

Execution cycles

1.6E+09
1.55E+09

1.5E+09
Optimal mapping (DGZ) Layout change (GDZ)
Configuration

Figure 13: Comparison

does not vary significantly. Thus, we only need to run the applica-
tion once, collect traces and compute near-optimal address mapping
for the application. This mapping should be suitable for all future
executions of the application.

6 RELATED WORK

Liu et al. [21] were among the earliest to show that the memory sub-
system performance can be improved by manipulating the address
map. Specifically, they proposed to hash bank bits of a physical
address with other address bits to create modified bank bits which
increased bank-level parallelism (and row-buffer hit rate). Our work

112

Shashank Adavally and Krishna Kavi

in comparison explores optimizing row, column, bank group, and
channel bits in addition to bank bits for better memory perfor-
mance. Bojnordi et al. [19] demonstrated the importance of having
a application specific mapping and their work shows performance
gains of up to 12%. While they projected the performance bene-
fits, reliable techniques to achieve the optimal mapping was not
described. Other works [21] propose permutation-based page inter-
leaving technique that decreases row-buffer conflicts by remapping
the conflicting request to a different bank. Our proposed work
focuses on broader level of memory hierarchy on distribution of
workload equally to among multiple channels, banks groups and
banks. DREAM [9] propose a method to extract memory access
pattern and estimate optimized address pattern. This study is lim-
ited to one channel and our investigation revealed that the similar
estimation technique for multi-channels may not work for all ap-
plications. In our work, we proposed a technique that performs
better for some applications in multi-channel configuration and
also investigated the reliability of entropy. Berkin [5] introduced a
mathematical framework to optimize data reorganization process
for common operations such as swap, transpose. Impulse [7] is
an improved memory controller that improves the effective use of
memory bandwidth by prefetching only the useful data in case of
scientific workloads like sparse matrix-vector product. Our work
focuses on optimizing address mapping for different types of appli-
cations. Self-Optimizing Memory Controller [11] is a Reinforcement
learning (RL) based memory controller, that dynamically adjusts
DRAM command scheduling policy based on the requirement, that
improves DRAM bandwidth usage efficiently. While it is important
to improve memory controller scheduling techniques, it is also
crucial to optimize the address mapping for different category of
applications.

7 CONCLUSION

In this paper, we investigated an address mapping technique that
achieves near-optimal performance gains. We also evaluated the sta-
bility of entropy (and thus consistency of address mapping) across
different runs of an application. Our technique is evaluated with
different workloads and noticed on average 8 percent performance
gains, and in some cases as high as 25 percent gains, when compared
to the baseline. We have also shown that our approach to computing
entropy is consistent across different runs with possibly different
physical addresses. We noticed very small performance variations,
between 1%-4%, across runs with different physical addresses, sug-
gesting that entropy varies very little for each application and thus
can be used more reliably for mapping addresses near optimally.

ACKNOWLEDGMENTS

The authors sincerely thank Vignesh Adhinarayanan (AMD), Der-
rick Aguren (AMD), Jagadish Kotra (AMD), Karthik Rao (AMD) for
their feedback on this work. The research is supported in part by
NSF award #1828105, and the NSF Net-Centric Industry/University
Cooperative Research Center.

REFERENCES

[1] [n.d.]. Hynix GDDR5 SGRAM Part HSGQ1H24AFR. http://www.hytic.net/upload/
files/2014/05/HYNIX-H5GQ1H24AFR pdf.

http://www.hytic.net/upload/files/2014/05/HYNIX-H5GQ1H24AFR.pdf
http://www.hytic.net/upload/files/2014/05/HYNIX-H5GQ1H24AFR.pdf

Towards Application-Specific Address Mapping for Emerging Memory Devices

[7

8

[10

[11

[12

]

]

]

]

[n.d]. Linux pagemap. https://www.kernel.org/doc/Documentation/vm/
pagemap.txt.
2019. High Performance Conjugate Gradient. https://github.com/hpcg-

benchmark/hpcg.

Shashank Adavally and Krishna Kavi. 2018. 3D-DRAM Performance for Different
OpenMP Scheduling Techniques in Multicore Systems. In 2018 IEEE 20th Inter-
national Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 675-683.

Berkin Akin, Franz Franchetti, and James C. Hoe. 2015. Data reorganization
in memory using 3D-stacked DRAM. 42nd ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA) (2015), 131-143.

Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.
03619

J. Carter, W. Hsieh, L. Stoller, M. Swanson, Lixin Zhang, E. Brunvand, A. Davis,
Chen-Chi Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. 1999.
Impulse: building a smarter memory controller. In Proceedings Fifth International
Symposium on High-Performance Computer Architecture. 70-79. https://doi.org/
10.1109/HPCA.1999.744334

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE
International Symposium on Workload Characterization (IISWC). 44-54. https:
//doi.org/10.1109/IISWC.2009.5306797

Mohsen Ghasempour, Jim D. Garside, Aamer Jaleel, and Mikel Lujan. 2015.
DReAM: Dynamic Re-arrangement of Address Mapping to Improve the Per-
formance of DRAMs. ArXiv abs/1509.03721 (2015).

Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur
Mutlu. 2019. Understanding the Interactions of Workloads and DRAM Types: A
Comprehensive Experimental Study. ArXiv abs/1902.07609 (2019).

E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. 2008. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In 2008 International Sympo-
sium on Computer Architecture. 39-50. https://doi.org/10.1109/ISCA.2008.21
Jewillco. 2015. Graph500-v2-spec. https://github.com/graph500/graph500/tree/
v2-spec.

113

(13

[14

[15

(17

[18

[19

[21

]

]

]

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

Dongkyun Kim, Minsu Park, Sungchun Jang, Jun-Yong Song, Hankyu Chi, Ge-
unho Choi, Sunmyung Choi, Jaeil Kim, Changhyun Kim, Kyungwhan Kim, et al.
2019. 23.2 A 1.1 V 1ynm 6.4 Gb/s/pin 16Gb DDR5 SDRAM with a Phase-Rotator-
Based DLL, High-Speed SerDes and RX/TX Equalization Scheme. In 2019 IEEE
International Solid-State Circuits Conference (ISSCC). IEEE, 380-382.

Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A Fast and Extensible DRAM
Simulator. IEEE Computer Architecture Letters 15, 1 (Jan 2016), 45-49. https:
//doi.org/10.1109/LCA.2015.2414456

Adam Kunen, Teresa S. Bailey, and Peter N. Brown. 2015. KRIPKE - A MASSIVELY
PARALLEL TRANSPORT MINI-APP.

Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo, and L. Eeckhout. 2018. Get
Out of the Valley: Power-Efficient Address Mapping for GPUs. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). 166-179.
https://doi.org/10.1109/ISCA.2018.00024

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Languagen
Design and Implementation (Chicago, IL, USA) (PLDI ’05). ACM, New York, NY,
USA, 190-200. https://doi.org/10.1145/1065010.1065034

Onur Mutlu and Thomas Moscibroda. 2007. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors.. In MICRO. IEEE Computer Society, 146—
160.

Mahdi Nazm Bojnordi and Engin Ipek. 2012. PARDIS: A programmable memory
controller for the DDRx interfacing standards. ACM Transactions on Computer
Systems (TOCS) 31, 13-24. https://doi.org/10.1109/ISCA.2012.6237002
Chi-Sung Oh, Ki Chul Chun, Young-Yong Byun, Yong-Ki Kim, So-Young Kim,
Yesin Ryu, Jaewon Park, Sinho Kim, Sanguhn Cha, Donghak Shin, et al. 2020.
22.1 A 1.1V 16GB 640GB/s HBM2E DRAM with a Data-Bus Window-Extension
Technique and a Synergetic On-Die ECC Scheme. In 2020 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 330-332.

Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. 2000. A permutation-based page
interleaving scheme to reduce row-buffer conflicts and exploit data locality. In
Proceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-33 2000. 32-41. https://doi.org/10.1109/MICRO.2000.898056

https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://github.com/hpcg-benchmark/hpcg
https://github.com/hpcg-benchmark/hpcg
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/HPCA.1999.744334
https://doi.org/10.1109/HPCA.1999.744334
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/ISCA.2008.21
https://github.com/graph500/graph500/tree/v2-spec
https://github.com/graph500/graph500/tree/v2-spec
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/ISCA.2018.00024
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/ISCA.2012.6237002
https://doi.org/10.1109/MICRO.2000.898056

	Abstract
	1 Introduction
	2 Background
	2.1 HBM Organization
	2.2 Row-buffer Locality and Bank-Level Parallelism
	2.3 Address Mapping

	3 Methodology and Approach
	3.1 Methodology Overview
	3.2 Statistical Metrics
	3.3 Proposed Approach

	4 Experimental Setup
	4.1 Simulation Setup
	4.2 Workloads

	5 Results and Analysis
	5.1 Case Study: Kripke Application
	5.2 Entropy Persistence

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

