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Abstract— There is enormous flexibility potential in the
power consumption of the majority of electric loads. This
flexibility can be harnessed to obtain services for managing
the grid: with carefully designed decision rules in place, power
consumption for the population of loads can be ramped up and
down, just like charging and discharging a battery, without any
significant impact to consumers’ needs. The concept is called
Demand Dispatch, and the grid resource obtained from this
design virtual energy storage (VES). In order to deploy VES,
a balancing authority is faced with two challenges: 1. how
to design local decision rules for each load given the target
aggregate power consumption (distributed control problem),
and 2. how to coordinate a portfolio of resources to maintain
grid balance, given a forecast of net-load (resource allocation
problem).

Rather than separating resource allocation and distributed
control, in this paper the two problems are solved simultane-
ously using a single convex program. The joint optimization
model is cast as a finite-horizon optimal control problem in
a mean-field setting, based on the new KLQ optimal control
approach proposed recently by the authors.

The simplicity of the proposed control architecture is remark-
able: With a large portfolio of heterogeneous flexible resources,
including loads such as residential water heaters, commercial
water heaters, irrigation, and utility-scale batteries, the control
architecture leads to a single scalar control signal broadcast to
every resource in the domain of the balancing authority.
Keywords: Smart grids, demand dispatch, distributed control,
controlled Markov chains.

I. INTRODUCTION

A. Background

Aggressive renewable portfolio standards are set in place
all over the world. Twenty nine states have adopted such
standards within the U.S., with California and Hawaii target-
ing 100% renewable energy by 2045 [29]. The global climate
strike of September 20, 2019 provides dramatic evidence that
people all over the world will continue to push policy makers
to incentivize clean energy.

While it is true that energy from sun and wind present
challenges because of volatility and uncertainty of energy
supply, we have faced similar challenges with balancing
supply and demand in communication networks. Similar to
managing supply and demand in the Internet and wireless
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communication, the solutions developed in this paper are
based on distributed control, designed to maintain grid sta-
bility, while ensuring quality of service (QoS) to customers
remains within specified bounds.

Policy makers today have emphasized battery technology
to help absorb volatility — notably in California and Aus-
tralia. Demand side resources can be used along side these
battery systems, and with good design we will spend far less
on these expensive resources [9], [10], [4].

Theory supporting distributed control of the power grid
has developed rapidly over the past decade. The main idea
is that many electric loads are highly flexible in terms of
power consumption, and are already built with substantial
computing power. This flexibility and “intelligence” can be
harnessed to obtain services for managing the grid: with care-
fully designed decision rules in place, power consumption
from the population of loads can be ramped up and down,
just like charging and discharging a battery. The concept
has been coined Demand Dispatch [3]. The grid resource
obtained is called virtual energy storage (VES).

Consider for example an electric water heater – residential
or commercial. In this case, maintaining QoS within desired
limits simply means keeping the water temperature within
given bounds. The load measures QoS directly; with the
addition of a bit of communication, it can also receive a
signal from a balancing authority or aggregator.

The balancing authority is then faced with two challenges:
1. how to design local decision rules for each load, and 2.
how to coordinate a portfolio of resources to maintain grid
balance, given a forecast of net-load (nominal load minus
renewable generation).

The goal of [9] is to solve the second challenge. It is
formulated as a quadratic program in which the objective
function is a weighted sum of cost functions: some designed
to smooth net-load to reduce stress on traditional generation,
and others designed to ensure that loads in the population do
not deviate significantly from nominal behavior. A surrogate
for state of charge (SoC) for each class of loads is proposed,
based on the virtual battery models of [23], [24], [20], [21],
[13], [27]. This is a linear dynamical model, so the quadratic
program is in fact a finite-horizon optimal control problem.
Structure of the control solution was obtained in more recent
research [26].

The output of that optimization problem is the optimal
power deviation for each class of resources in the population.
Five classes of flexible loads were considered in the numer-
ical experiments of [9]: residential air conditioners (ACs),
residential water heaters with faster cycle times (fHWs),



TABLE I
VES CAPACITY OF FIVE LOAD CLASSES IN CALIFORNIA

Par. Unit ACs fWHs sWHs RFGs PPs
N million 7 0.7 0.7 17 1.2
C GWh 5.6 0.26 0.70 0.43 14.55

commercial water heaters with slower cycle times (sHWs),
refrigerators (RFGs), and pool pumps (PPs). The number of
loads per class, N , and their flexible energy capacity, C,
are listed in Table I; these values were chosen based on
a residential energy consumption survey of California [33].
Aggregation is required to control the power consumption of
17 million refrigerators, and 7 million air conditioners.

In [9] it is argued that once this optimization problem is
solved, it is up to the aggregator or balancing authority to
decide how best to control the loads so that the aggregate
power consumption in each class tracks the optimal target.

λ∗
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Fig. 1. Control architecture and KLQ optimal solution: a common scalar
signal λ∗ is broadcast to every resource in the population. This signal
defines a local randomized decision rule at the resource.

In the present paper we adopt the framework of [27],
[15], [6], [25] in which the aggregator broadcasts a common
signal to each load in a given class. Communication from
loads to aggregator is potentially useful, but only required
for estimating the SoC [14]. However, instead of separating
resource allocation and distributed control, in this paper
the two problems are solved simultaneously using a single
convex program. The optimization model is a generalization
of the new approach to distributed control proposed in [8].

B. Contributions

The approach of this paper, in its simplest form, is the
solution of a convex program with objective function

J(p) =

NR∑
i=1

d(pi, p0i) +
1

2

NH∑
k=1

(yk − rk)2 (1)

where NR denotes the number of resource classes and NH
is the terminal time; p0i is a nominal probabilistic model for
a load of class i, over the time horizon [0, 1, . . . , NH ], pi is
the controlled model, and yk is “virtual energy discharge” at
time k based on these controlled models (see eq. (8)).

The “reference signal” r = {rk} is much like the
balancing reserves supplied by traditional generators in the
Pacific Northwest [1]. However, the signals envisioned in
the present paper are far more non-stationary and with far
greater magnitude than anything seen in power grids today.
Our goal is to eliminate ramps and peaks in net-load. So, for
example, to balance California’s grid today, the range of r
may be nearly ±10 GW.

In this paper, the “distance” d(pi, p0i) appearing in (1) will
be defined using relative entropy (also known as Kullback-
Leibler divergence). The objective (1) is a generalization of
the KLQ cost criterion introduced in [8]. The optimizers
{p∗i} define a randomized decision rule for each load class.

It would appear that by performing the two optimization
problems simultaneously – both resource allocation, and op-
timal distributed control – the overall computational burden
would be insurmountable. This was our belief at the start.

Due to special structure of the KLQ cost criterion, and the
fact that quadratic cost is only a function of the sum of power
deviation, the optimization problem admits a Lagrangian
decomposition, with special structure that is very attractive
for implementation. The structure is illustrated in Fig. 1: The
solution to the minimization of J(p) is characterized by a
single vector λ∗ ∈ RNH . The population may be extremely
heterogeneous, including commercial air-conditioning, resi-
dential refrigerators, and even true storage devices such as
batteries. Even though the probabilistic models are entirely
different, each load performs an exponential “tilting” of its
nominal behavior based on the common vector λ∗.

This paper introduces several variations of the basic con-
trol problem. In particular, it is found that it is valuable to
introduce ramping costs, and transform techniques inspired
by wavelets are used to reduce computational complexity.

C. Literature review

Since the seminal work of Schweppe [31] there has been
great interest in decentralized control solutions to manage
residential distributed energy resources, with much of this
research focused on the use of price signals. Recent examples
include [22], [34], [12] (and their extensive bibliographies).

Reference [16] is concerned with the 2012 ENTSO-E rules
on demand-side management, that look similar to rules for
“droop” for synchronous generators, and also Schweppe’s
proposal known as “FAPER” [31]. As expected based on
prior research (see [30] for a bibliography), it is found that
loads will sometime synchronize, leading to large oscillations
in demand. This is why randomization is favored in both
academic studies and recent patents such as [32].

Control techniques for demand-side management have
evolved rapidly in the past decade. The priority stack ap-
proach [21] requires two way communication in real-time
between aggregator and each load, but its simplicity makes
it valuable when feasible. The approach of [2] uses two-way
communication, but at a lower rate by using concepts from
communication theory.

Decentralized control solutions through a control archi-
tecture similar to that proposed here are presented in [25].
Besides the difference in control architecture, the big dif-
ference between [16], [34] and the present paper is the
choice of timescales. This work is about control at low
frequencies, such as the balancing reserves in the U.S. Pacific
Northwest, or the ramping/valley filling services at CAISO
(see http://www.caiso.com for history since 2011).

Previous work based on an MPC architecture includes
the aforementioned papers [4], [9], and [22], [19] which

http://www.caiso.com


consider building operations, with attention to a range of
QoS metrics. The load management problem is reduced to
a linear program in [22] (eqns. (19,20)), and the goal is to
obtain a decentralized solution in a game-theoretic setting.
While [19], [11] aim to solve a game that arises in their
control formulation, which is far from the motivation of the
present work, the dual variables in these papers are similar to
the signal λ∗ that arises in this paper. Distributed techniques
to learn λ∗ may be devised based on the methods in this
prior work, or consensus algorithms as in [18], [35], [5],
[28].

The remainder of this paper is organized as follows:
details on the optimization model for control is included
in Section II, along with extensions. Section III contains a
characterization of the solution to the general optimization
problem, along with a proof – see Thm. 3.1. Numerical
results are contained in Section IV, and conclusions and
directions for further research in Section V.

II. OPTIMIZATION MODEL

A. Notation

The control problem is formulated as a finite-horizon
optimization problem over [0, 1, . . . , NH ]. In practice, this
is just one part of an MPC control architecture.
• If µ is a pmf (probability mass function) on a discrete

set S, and F a real valued function, its mean is denoted

〈µ, F 〉 =
∑
x∈S

µ(x)F (x)

• NR is the number of distributed energy resource (DER)
classes; for each i ∈ {1, . . . , NR}; there are ni resources
in DER class i.
• A load in class i is modeled as a stochastic process
Xi evolving on the finite state space denoted Xi =
{xi1, ..., xid}. Si denotes the set of sequences in Xi:

Si = Xi × · · · × Xi (NH + 1 times).

The common distribution is denoted: pi(~x):=P{Xi = ~x},
~x ∈ Si. That is,

pi(x0, x1, . . . , xNH} = P{Xi
0 = x0, . . . X

i
NH = xNH}

The kth marginal is denoted νik(x):=P{Xi
k = x}, x ∈ Xi.

• If Xi is Markovian, then we let {P ik : k ≥ 0} denote
the transition matrices. In this case, the marginals evolve
according to the linear “state equations”:

νik+1 = νikP
i
k k ≥ 0 . (2)

• The nominal model describes behavior without inter-
action with the balancing authority, and is assumed to
be Markovian. This is distinguished using the notation
{ν0ik , P 0i

k : k ≥ 0}, and p0i. The Markov Property implies
the factorization:

p0i(~x) = ν0i0 (xi0)P 0i
0 (xi0, x

i
1)P 0i

1 (xi1, x
i
2) · · · (3)

The overall stochastic models are denoted p0 :={p0i : 1 ≤
i ≤ NR} and p := {pi : 1 ≤ i ≤ NR}.

• For each 1 ≤ i ≤ NR, power consumption as a function
of state is denoted U i : Xi → R+, and its mean under the
nominal model

Ū0i
k = 〈ν0k ,U i〉

The “virtual energy discharge” at state x and time k, is

Yik(x) = −∆[U i(x)− Ū0i
k ] (4)

where ∆ is the inter-sampling time.
• Kullback-Leibler divergence, or relative entropy, is the

mean log-likelihood:

D(pi‖p0i) =
∑
~x∈Si

log
( pi(~x)

p0i(~x)

)
pi(~x) (5)

It is assumed in this paper that the nominal model p0 is
obtained through a combination of system identification and
design. The design aspect is based on the construction of a
nominal decision rule for the load. The special case of an air
conditioner is illustrated in Fig. 2. The standard hysteresis
band [Θmin,Θmax] is replaced by randomized decision rule: if
the AC is on, and the room temperature is θ degrees at time
slot k, then the load is turned off with probability p	(θ).

If the state space for an AC is chosen to be Xi =
{0, 1} × R, where the discrete variable is power mode and
the continuous variable is temperature, then these switching
probabilities define a randomized policy:

φ0i(0 | x) =

{
p	(θ) x = (1, θ)

1− p⊕(θ) x = (0, θ)

and φ0i(1 | x) = 1− φ0i(0 | x).
A full construction of the nominal model is described

as follows. Suppose we have deterministic dynamics for a
nominal model without randomization:

(Utk+1
, θtk+1

) = f ik(Utk , θtk)

where U denotes power mode, and θ temperature. In this
case, denoting x = (m, θ) and x′ = (m′, θ′), we take

P 0i
k (x, x′) = φ0i(0 | x)I{θ′ = f ik(0, θ)}

+ φ0i(1 | x)I{θ′ = f ik(1, θ)}
(6)

temp (θ)

p⊕(θ)

p (θ)

p⊕/
Design

Aléatoire 

Θmin Θmax

: Prob. to turn AC  on
: Prob. to turn AC  o�

0

1

0.5

Y AC
j (k)

XAC
j (k)

λ∗

Fig. 2. Switching probabilities and local decision making for an AC.
The two plots show the nominal probability of switching power mode
as a function of state. The signal λ∗ will modify this nominal behavior.
While the sequence λ∗ is identical for each load in the population, the
transformation is sensitive to the nominal load dynamics.

It is assumed that the only randomness in the nom-
inal model is through the randomized decision rule, so
in particular the construction (6) is used for TCLs. This
ensures that the optimal control solution is feasible. The fully
probabilistic solution is the subject of current research [7].



B. Control Objective

The objective function is expressed as follows:

J(p; ν00) :=

NR∑
i=1

D(pi‖p0i) +
1

2

Nγ∑
n=1

κnγ
2
n (7)

in which D(pi‖p0i) denotes Kullback-Leibler divergence
(interpreted as the control cost), and the quadratic terms are
designed to encourage reference tracking. The integer Nγ
and non-negative weights {κn} are design parameters, and
each γn is an affine function of p. Examples are provided in
the following.

Basic model: For given p, the virtual energy discharge
is denoted (recalling (4)),

yk =

NR∑
i=1

ni
∑
x∈Xi

νik(x)Yik(x) , 0 ≤ k ≤ NH (8)

If yk > 0, this means that the loads are consuming less power
at time k as compared to consumption under the nominal
model p0. The constraint ν0 = ν0i0 is imposed throughout
the paper, which implies that y0 = 0 for any feasible p.

In the basic model we take Nγ = 2NH , and

γk = yk − rk
γNH+k = yk − yk−1 − (rk − rk−1) , 1 ≤ k ≤ NH

(9)

The objective function (7) is then a weighted combination of
relative entropy, cost on deviation, and cost for ramping. The
objective function (1) is a special case of the basic model in
which κn = 1 for n ≤ NH , and κn = 0 for n > NH .

The difficulty with this formulation is complexity: for a
24-hour time horizon, with 5-minute sampling, this results
in NH = 576. The resulting optimization problem is ill-
conditioned, but may be easily solved with a carefully
designed algorithm. However, there is little motivation for
exactly solving the basic model since there are attractive
alternatives.

Transform techniques: Lossy compression of r can be
used to reduce complexity. The transform techniques are
based on a collection of functions {wn : 1 ≤ n ≤ NW },
with wn : {0, 1, . . . , NH} → R for each n, and NW � NH .
It is assumed that these functions are orthonormal:∑

k

wn(k)wn′(k) = I{n = n′} (10)

Standard examples are Fourier series and also the degenerate
case

w•n(k) := I{n = k} , 1 ≤ n, k ≤ NH (11)

The transformed signal is the NW -dimensional vector r̂, with

r̂n =

NH∑
k=1

wn(k)rk , 1 ≤ n ≤ NW . (12)

The functions on Xi used in the definition of {yk} are
similarly transformed functions defined on Si. Denote

Ŷin(~x) =

NH∑
k=1

wn(k)Yi(xik) (13a)

δŶin(~x) =

NH∑
k=1

wn(k)[Yi(xik)− Yi(xik−1)] (13b)

and for any model p denote

ŷn =

NR∑
i=1

ni〈pi, Ŷin〉 (14a)

δyn =

NR∑
i=1

ni〈pi, δŶin〉 , 0 ≤ n ≤ NW (14b)

An application of the transforms results in Nγ = 2NW for
the optimization model (7), and for each 1 ≤ n ≤ NW ,

γn = ŷn − r̂n (15a)
γNW+n = δyn − (r̂n − r̂n−1) (15b)

III. KLQ AND LAGRANGIAN DECOMPOSITION

In analysis and code it is convenient to restrict only to
γn of the form (15a) through the following transformations:
define for 1 ≤ n ≤ NW , and 1 ≤ k ≤ NH ,

r̂NW+n = r̂n − r̂n−1
wNW+n(k) = −wNW+n(k + 1) + wNW+n(k)

(16)

with the convention that wn(NW + 1) = 0. We have thus
doubled the number of transform functions. With Eqs. (13a),
(14a) and (15a) defined with respect to the extended set of
{wn}, we obtain

γNW+n := δyn − (r̂n − r̂n−1) = ŷNW+n − r̂NW+n

In the remaining analysis we assume that all γn are of the
form (15a) for some wn, and relax the requirement (10). In
this case, with the objective function expressed

J(p; ν00) :=

NR∑
i=1

D(pi‖p0i) +
1

2

Nγ∑
n=1

κnγ
2
n , (17)

the goal is to minimize over p subject to

γn =ŷn − r̂n , 1 ≤ n ≤ Nγ
νi0 =ν0i0 , 1 ≤ i ≤ NR.

(18)

The minimum of (17) over all pmfs p satisfying (18) is
denoted J∗(ν00).

The Lagrange multipliers for the first and second con-
straints are denoted λ ∈ RNγ and h ∈ RNR × Rd, respec-
tively. Although hi, the ith element of h, can be regarded
as a real-valued function on Xi, we take hi : Si → R to
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Fig. 3. Balancing with VES: impact of the ramping penalty κ2

simplify exposition; that is, hi(x0, x1, x2, . . . ) depends only
on x0. The Lagrangian is the augmented function:

L(p, γ, λ, h) =

NR∑
i=1

D(pi‖p0i) +
1

2

Nγ∑
n=1

κnγ
2
n

+

NR∑
i=1

〈 pi − p0i, hi 〉

+

Nγ∑
n=1

λn[γn + r̂n − ŷn]

(19)

and its infimum over p and γ is the dual function:

ϕ∗(λ, h) = inf
p,γ
L(p, γ, λ, h) . (20)

The supremum over h is denoted

ϕ∗(λ) := sup
h
ϕ∗(λ, h) (21)

Slater’s condition implies that strong duality holds so
maxλ,h ϕ

∗(λ, h) = J∗(ν00).
For any λ ∈ RNγ and any i, let pλi denote the pmf with

log-likelihood ratio Lλi = log(pλi/p0i) given by

Lλi(~x) =

Nγ∑
n=1

λnniŶin(~x)− Λiλ(x0) , (22)

where for each x0 ∈ Xi,

Λiλ(x0) = log
[∑
~x

p0i(~x | x0) exp
{ Nγ∑
n=1

λnniŶin(~x)
}]

(23)

Observe that pλi and p0i have common first marginals.

Theorem 3.1. Consider the problem of minimizing J(p; ν00)
over the set of pmfs p with given initial marginals ν00 . Assume
moreover that κn > 0 for each n. Then:

(i) An optimizer p∗ exists and is unique.
(ii) The log-likelihood ratios L∗i = log(p∗i/p0i) are

given by

L∗i(~x) =

Nγ∑
n=1

λ∗nniŶin(~x)− Λiλ∗(x
i
0) (24)

(iii) The function defined in (21) is strictly concave, and
admits the representation

ϕ∗(λ) = −1

2

Nγ∑
n=1

κnλ
2
n + λTr̂ −

NR∑
i=1

〈 ν0i,Λiλ 〉 (25)

with partial derivatives, for 0 ≤ n ≤ Nγ ,

∂

∂λn
ϕ∗(λ) = − 1

κn
λn + r̂n −

NR∑
i=1

ni〈 pλi, Ŷin 〉 (26)

where pλi has log likelihood ratio (22).
(iv) The optimizer λ∗ satisfies, for each 0 ≤ n ≤ Nγ ,

0 = − 1

κn
λ∗n + r̂n −

NR∑
i=1

ni〈 p∗i, Ŷin 〉 (27)

Proof. To establish (i) we show that the Lagrangian admits
a unique optimizer pλ,h for each λ and h. The assertion (i)
follows once we obtain a unique optimizer (λ∗, h∗) for the
dual function.

Express the Lagrangian as

L(p, γ, λ, h) =

NR∑
i=1

Li(pi, λ, hi)−
NR∑
i=1

〈 p0i, hi 〉

+ λT (γ + r̂) +
1

2

Nγ∑
n=1

κnγ
2
n ,

with Li(pi, λ, hi) = D(pi‖p0i) + 〈 pi, hi − niλnŶin 〉

We thus obtain a Lagrangian decomposition:

L(p, γ, λ, h) =

NR∑
i=1

inf
pi
Li(pi, λ, hi)−

NR∑
i=1

〈 p0i, hi 〉

+ inf
γ

[
λT (γ + r̂) +

1

2

Nγ∑
n=1

κnγ
2
n

] (28)

The minimization over γ is trivial: γ∗n = κ−1n λn. The
minimization over pi appears more complex, but this can
be expressed in the suggestive form:

inf
pi
Li(pi, λ, hi) = − sup

pi

[
〈 pi, F i 〉 −D(pi‖p0i)

]
, (29)
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Fig. 4. Balancing the California “Duck Curve”. Peaks and ramps are significantly reduced without violating customers’ QoS.

with F i = ni
∑
n λnŶin − hi. It follows from Kullback’s

Lemma [17] that there is a unique optimizer

pλ,h,i = p0i(~x) exp
(
F i(~x)− Λ(F i)

)
(30)

where Λ(F i) is a normalizing constant.
For a given λ, maximizing ϕ∗(λ, h) over hi leads to

hiλ(~x) = Λiλ(x0) + Const.,

where the constant is arbitrary (a constant does not change
the value of the Lagrangian in (19)). The identity (25) is
obtained on substituting pλ,h,i, γ∗n = κ−1n λn and hiλ = Λiλ
into (28).

The function Λiλ appearing in (23) is convex in λ (for
each x0) since it is a log-moment generating function. Under
the assumption that κn > 0 for each n, it follows that
the function ϕ∗(λ) in (25) is strictly concave, and admits a
unique maximizer λ∗ that satisfies the first-order optimality
conditions (27) for each n.

Part (i) follows as claimed, with p∗i = pλ
∗,h∗,i.

IV. NUMERICAL EXPERIMENTS

The dual function (25) is strictly convex and its gradient
(26) is easily computed. In the following numerical experi-
ments, proximal gradient methods were used to obtain λ∗ and
h∗, and hence, p∗. The reference signal was chosen to be net
load and it was centered by subtracting its mean. The goal
of these experiments was to learn what kind of trajectories
the loads can easily provide, and to find the resulting net-
load that must be supplied by traditional generation. The
difference in the net load curves with and without DD is
due to the VES “discharge”, which is simply the negative of
the collective power deviation for each class. Three classes
of homogeneous electric loads were included: residential
water heaters, commercial water heaters, and residential
refrigerators.

The first experiment, displayed in Fig. 3, was chosen to
illustrate the potential for flexible loads to ’flatten’ a net load
curve and to demonstrate the benefits of including a ramping
penalty in the objective function. In both cases, the net
load was significantly flatter. However, with the introduction
of a ramping penalty, the large ramp in the net load was
eliminated.

A second experiment was performed using a more realistic
net load profile. The ’Duck Curve’, shown in Fig. 4, is
a typical net load profile that would be experienced in
California on a sunny day. During the middle of the day,
the net load is very low due to an abundance of solar
generation, but in the evening, as the sun sets and people
turn on their appliances, the net load can ramp up as fast as
10 GW in three hours! This presents a major challenge for
grid operators, many of which are already spending millions
of dollars on lithium-ion batteries to “flatten the Duck”.
However, as shown in Fig. 4, demand dispatch was able to
reduce the peak by more than two GW and significantly
reduced the evening ramp. Notice that the VES “discharge”
of the collection was well within its power and energy limits
[21]; the deviation from nominal behavior of the electric
loads would be nearly invisible to the customers since QoS
would be satisfied for every individual.

V. CONCLUSIONS

The work presented in this paper shows that distributed
energy resources can be optimally allocated and controlled
using a single convex program. Surprisingly, every class of
DERs receives the same control signal, and although their
responses can very wildly, their cumulative effect is a flatter,
smoother net load curve.

As observed in prior research, it is found that the con-
trolled behavior of the aggregate of electric loads appears
very similar to a grid-scale battery, but are potentially much
cheaper. The main contribution here is the new methodology
to simultaneously perform resource allocation and control.

Many extensions are planned for future work. For ex-
ample, this control scheme assumes each class of DERs
is homogeneous; what happens if this is only an approx-
imation? Robustness to heterogeneity, modeling error, and
performance over long time scales can be improved with the
introduction of feedback, such as through model predictive
control (MPC). A combination of non-uniform sampling and
alternative transform techniques are being investigated as
ways to create effective and computationally efficient MPC
implementations.
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